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Abstract

We show how to use model classes of partial logic to de�ne semantics of general knowledge�based reasoning�

Its essential bene�t is that partial logics allow us to distinguish two sorts of negative information� the absence
of information and the explicit rejection or falsi�cation of information� Another general advantage of

partial logic� which we discuss in the �rst part� is that its meta�theory is very close to the meta�theory of

classical logic� In the second part notions of minimal� paraminimal and stable models are presented in terms

of partial logic and we show how the resulting de�nitions can be used to de�ne the semantics of knowledge

bases such as relational and deductive databases� and extended logic programs�
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�� Introduction

As opposed to theoretical reasoning� such as in mathematics� where all predicates are exact��

and a single contradiction destroys the entire theory� knowledge�based reasoning has to be able
to deal with inexact predicates �e�g� from empirical domains� having truth value gaps� and
with knowledge bases containing contradictory items but being still informative� Therefore�
partial logics allowing both for truth�value gaps and for inconsistency are natural candidates
for modelling knowledge�based reasoning�
In knowledge representation� two di�erent notions of falsity arise in a natural way� Certain

facts are implicitly false by default by being not veri�ed in any intended model of the knowl�
edge base� Others are explicitly false by virtue of a direct proof of their falsity� corresponding
to their falsi�cation in all intended models� These two kinds of falsity in knowledge repre�
sentation are captured by the two negations� called weak and strong� of partial logic�� In the
monotonic base system of partial logic� weak negation corresponds to classical negation by

�In the sense of K�orner �Koe����
�This was already noticed in �Wag����
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virtue of a straightforward translation of partial logic into classical logic which is discussed
in section 	� In the nonmonotonic re�nements of partial logic� discussed in sections 
 and
�� weak negation corresponds to negation�as�failure� and hence can be used to express local
Closed�World Assumptions� default rules� and the like�
As opposed to the traditional logical notion of a theory being a �possibly deductively closed�

set of formulas� the emerging concept of a knowledge base �KB� is richer both in terms of
the expressive structure of a KB and in terms of the meaningful restrictions imposed upon
it� Typically� a KB consists of facts and various kinds of rules� In this paper� we shall
only consider deduction rules� Facts correspond to sentences of an appropriately restricted
language� and deduction rules correspond to non�schematic �Gentzen� sequents� While facts
express extensional knowledge� rules express intensional knowledge� This dichotomy of the
knowledge representation language also a�ects the use of the universal quanti�er� a generic
law� for instance� is rather expressed in the form of a rule and not by means of a universal
sentence�
In real world knowledge bases like� for instance� relational or deductive databases� it is

essential to be able to infer negative information by means ofminimal �resp� stable� reasoning�
i�e� drawing inferences on the basis of minimal �resp� stable� models� Relational databases�
being �nite sets of tables the rows of which represent atomic sentences� have traditionally been
viewed as �nite models� On this account� answering a query F is rather based on the model
relation�M� j
 F � where M� is the �nite interpretation corresponding to the database ��
and not on an inference relation� However� especially with respect to the generalization of
relational databases �e�g� in order to allow for incomplete information�� it seems to be more
adequate to regard a relational database as a set of atomic sentences A�� and to infer a query
F whenever it holds in the unique minimal model of A�� i�e�

A� � F �� Min�Mod�A��� � Mod�F ��M� j
 F

While minimal models are adequate for de�nite extensional knowledge bases �such as rela�
tional databases�� a re�nement of the notion of minimality� called paraminimality� is needed
to capture the inclusiveness of disjunctive knowledge� Minimal and paraminimal models are
discussed in section 
�
It turns out� that for a deductive knowledge base� corresponding to a set of sequents�

minimal �resp� paraminimal� models are not adequate because they are not able to capture
the directedness of rules� We� therefore� propose stable models as the intended models of
deductive knowledge bases in section �� We show that Gelfond�s and Lifschitz�s notion of an
answer set of an extended logic program �GL��� corresponds to a special case of our notion
of a stable model of a sequent set�
Since in practice large knowledge bases cannot be expected to be free of inconsistent in�

formation� one needs a notion of inference which is able to tolerate inconsistency and at the
same time still as logically conservative as possible� In order to deal with possibly inconsistent
KBs� the simplest way is to refer to minimally inconsistent four�valued models as proposed in
�Pri���� In summary� we get an �orthogonal� combination of minimally inconsistent paramin�
imally stable models as the preferred models of a deductive knowledge base�
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�� Preliminaries

A signature � 
 hRel �ExRel�Const�Funi consists of a set of relation symbols Rel� a set
ExRel � Rel of exact relation symbols� a set of constant symbols� and a set of function
symbols�
The set of all variables� Var� is fx�� x�� � � �g� we will also use x� y� � � �� however� U���

denotes the set of all ground terms of �� The logical functors are �������� j�	�
� �� where
���� j and 	 are called weak negation� strong negation� exclusive disjunction� and material
implication� respectively�� L��� is the smallest set containing the atomic formulas of �� and
being closed with respect to the following conditions� if F�G � L���� then f�F ��F� F �
G� F � G� F jG� F 	 G� �xF� 
xFg � L����
L���� denotes the corresponding set of sentences �closed formulas�� For sublanguages of

L��� formed by means of a subset F of the logical functors� we write L���F�� With respect
to a signature � we de�ne the following sublanguages� At��� 
 L��� 
�� the set of all atomic
formulas �also called atoms�� Lit��� 
 L��� f�g�� the set of all literals� Lit���� the set of
ground literals �also called Herbrand basis�� and XLit��� 
 Lit��� � f�l � l � Lit���g� the
set of all extended literals� We introduce the following conventions� When L� � L��� is
some sublanguage� L�� denotes the corresponding set of sentences� If the signature � does not
matter� we omit it and write� e�g�� L instead of L���� Furthermore� eX 
 f� F � F � Xg�
Let L � L��� be a nonempty language� An operation C � �L � �L is called an inference

operation� and the pair hL�Ci is said to be an inference system� The corresponding inference
relation � is de�ned by X � F i� F � C�X�� An inference operation �relation� is called a
consequence operation �relation� if it satis�es Inclusion �Re�exivity�� Idempotence �Transi�
tivity�� and Monotony� hL�Ci is called a deductive system if C is a consequence operation
satisfying Compactness�
A model�theoretic system hL� I� j
i is determined by a language L� a set I whose elements

are called interpretations and amodel relation j
� I�L between interpretations and formulas�
With every model�theoretic system hL� I� j
i� we can associate a model operator ModI � a
consequence operation CI � and a consequence relation j
I in the following way� Let X � L�
then the associated model operator is de�ned as ModI�X� 
 fI � I � I j
 Xg� where I j
 X

i� for every F � X � I j
 F � The associated consequence operation is de�ned by CI�X� 

fF � L � ModI�X� � ModI�F �g� and �nally X j
I F i� F � CI�X�� For a subset K � I
the theory of K� denoted by Th�K� is de�ned by Th�K� 
 fF � L � I j
 F f�a� I � Kg�
A model�theoretic system hL� I� j
i is called compact if CI is compact� An inference system
hL�CLi is called correct� resp� complete� with respect to the model�theoretic system hL� I� j
i
i� CL�X� � CI�X�� resp� CL�X� 
 CI�X�� In the case of completeness we also say that
hL� I� j
i represents hL�CLi�
IfX is a set of sets� then Fin�X� denotes its restriction to �nite elements� If Y is an partially

ordered set� then Min�Y � denotes the set of all minimal elements of Y � i�e� Min�Y � 
 fX �
Y j ��X � � Y � X � � Xg� and Max�Y � denotes the set of all maximal elements of Y � i�e�
Max�Y � 
 fX � Y j ��X � � Y � X � � Xg�

�Possible extensions of our framework may in addition include negation	as	inconsistency 
��� intensional
implication 
��� and modal operators for de
nite and persistent belief�
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�� Partial Logics with Two Kinds of Negation

In this section we start with a brief introduction of partial model�theory� and then we present
their underlying axiomatics� Since partial logic adopts its name from its alternative at the
very core of denotational semantics� consisting of a shift from total to partial truth�value
assignments� this order of presentation seems most natural�
More speci�cally� we begin with a presentation of partial �rst�order models� Then we

will discuss some issues of the expressivity of certain languages for reasoning on the basis of
partial models� An essential feature of partial models is the fact that they allow to distinguish
between two types of extensional� negative information� i�e� between the explicit falsity and
the non�truth of a proposition�
After this� we will show how partial �rst�order logics can be translated into classical �rst�

order logic� This result does not mean that partial logic is abundant� but rather shows
how well�known meta�theoretic theorems can be adopted from classical logic� An immediate
consequence� which is directly relevant for this paper� is compactness�
In the third subsection we will present Gentzen�style axiomatizations of partial logics�

Other styles of derivation� like Hilbert�style axiomatization and natural deduction� are also
possible� The reasons for us to chose in favor of the Gentzen�style comes down to its meta�
theoretical convenience and its brevity�

��� Model Theory
The model�theory of partial logic is slightly deviant from the standard Tarskian one of classical
logic� The only di�erence is that the predicate structure is somewhat richer� As already
stressed above� the central idea of partial logic is the distinction between falsity and non�
truth� In the partial predicate logics which we will discuss this distinction is implemented by
assigning a positive and a negative extension to each predicate�

De�nition � �Interpretation� Let � 
 �Rel�ExRel�Const�Fun� be a signature� A par�
tial ��interpretation I consists of�

�� A set UI	 the universe or domain of I


�� an assignment cI � UI to every constant symbol c � Const


�� an assignment of a function fI � U
ar�f	
I � UI to every function symbol f � Fun	 where

ar�f� denotes the arity of f 


�� an assignment of a pair hRI � eRIi to every relation symbol R � Rel such that

�Roughly speaking� extensionality says that the information is only about one speci
c information state or
model� Intensional information comes from other information state which are related in one way or another to
the information state at hand� An example of an intensional treatment of negation can be found in intuitionistic
logic� In this setting� �� means that every hypothetical veri
cation of � will lead to a contradiction� In other
words� for determining the truth of �� we need to take �later� states of information� which contain more
information than the current one� into account�

�Opponents of partial logic may argue that the translation actually �proves� the abundance of partial logic�
We disregard such an abstract position� because for practical purposes� partial logic arises as the most natural
model	theoretic method for interpreting the two kinds of extensional negative information that we mentioned
above�



�� Partial Logics with Two Kinds of Negation �

RI � eRI � U
ar�R	
I �

and in the special case of an exact relation symbol R � ExRel	

RI � eRI 
 U
ar�R	
I �

where ar�R� denotes the arity of R�

While many predicates from the ontology of empirical domains are inexact� i�e� have truth
value gaps� analytical predicates �such as equality� or being a prime number�� and legally
de�ned predicates �such as being eligible� or having a certain nationality� are exact�
In the sequel we shall often simply say �interpretation� instead of �partial interpretation��
The class of all partial ��interpretations is denoted by I����� We de�ne the classes of

coherent �sometime also called ��valued�� of total� and of total coherent �or ��valued� ��
interpretations by

Ic��� 
 fI � I���� � R
I � eRI 
 
 for all R � Relg

I t��� 
 fI � I���� � R
I � eRI 
 U

ar�R	
I for all R � Relg

I���� 
 Ic��� � I t���

The satisfaction relation j
 between an interpretation� a valuation and a formula is de�ned
inductively on the complexity of formulas F � L��� and �F � L���� Such a dichotomous
induction is needed� because veri�cation and falsi�cation are independent truth�value assign�
ments in partial logic�
 A valuation over an interpretation I is a function � � Var � UI �
which can naturally be extended to arbitrary terms by

��f�t�� � � � � tn�� 
 fI���t��� � � � � ��tn��

Note that for a constant c� being a ��ary function� we have ��c� 
 cI � For a tuple t�� � � � � tn
we will also write �t when its length is of no relevance� We write 	 
x �� if two valuations 	� �
are equal except for the variable x� 	�y� 
 ��y� for all y � V ar n fxg�

De�nition � �Satisfaction Relation�

I� � j� R�t�� � � � � tn� i� h��t��� � � � � ��tn�i � RI

I� � j� �R�t�� � � � � tn� i� h��t��� � � � � ��tn�i � eRI

I� � j� F �G i� I� � j� F and I� � j� G
I� � j� F �G i� I� � j� F or I� � j� G

I� � j� �F i� I� � �j� F

I� � j� �xF i� I� � j� F for all � �x �
I� � j� 	xF i� I� � j� F for certain � �x �

All other cases of formula composition are treated by the following DeMorgan�style rewrite
rules expressing the falsi�cation of compound formulas�

�Most often these two relations are also written in a di�erent fashion� e�g� j� for veri
cation and �j for
falsi
cation� Such a treatment is needed when the strong negation � is not available� In this paper� we will
not deal with strong negation free sublanguages�
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� �F �G� �� �F � �G � �F �G� �� �F � �G
� �xF �x� �� 
x�F �x� � 
xF �x� �� �x�F �x�

��F �� F � �F �� F

and the de�nitions for exclusive disjunction�

F jG �� �F � �G� � �G� �F �

and material implication�

F 	 G �� �F �G

in the sense that for every rewrite rule LHS �� RHS � we de�ne

I� � j
 LHS i� I� � j
 RHS

Notice that conjunction and disjunction� resp� the universal and the existential quanti�er�
are interde�nable via the DeMorgan rules� and consequently� it is su�cient in de�nitions and
proofs to treat the functors ������ 
�

De�nition � �Model Relation� The model relation between an interpretation and a for�
mula F � L��� is also denoted by j

 it is de
ned by

I j
 F i� I� � j
 F for every � � UI
Var

If I j
 F for every F � X and I � I� 	 then I is said to be a ��model of X�

For � 
 
� c� t� �� Mod� denotes the model operator associated with the system hL���� I�� j
i�
and j
� and C� denote the corresponding consequence relation and operation� i�e� X j
� F
i� Mod��X� � Mod��F �� A set X is ��satis�able i� Mod��X� �
 
�

De�nition � �Satisfaction Set� Let I � I����	 and X � L���� Then

SatI�X� 
 f� � UI
Var � I� � j
 Xg

De�nition 	 �Logical Equivalence� Let F�G � L���� The formulas F and G are logically
��equivalent	 symbolically F �� G	 i� for all I � I����	 SatI�F � 
 SatI�G��

Note that this de�nition of equivalence does not capture uniform substitutability� For example
p��p �c q ��q� but ��p��p� �j
c ��q ��q�� In general� substitutability of F by G can be
regained by requiring that F �� G and �G �� �F �

It is not hard to show that the general case of I���� can be reduced to classical logic�
Because the propositions F and �F are completely independent� they can be understood as
two di�erent propositions in a two�valued setting� This can be made explicit by a dichotomous
translation function� which has been given �in a slightly di�erent way� by Gilmore�Gil�
�� but
can also be found in Feferman�Fef�
� or Langholm�Lan���� ��

De�nition 
 �Gilmore translation� The Gilmore translation function g is a pair ht� fi
with�
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�R��t��t 
 Rt��t� �R��t��f 
 Rf ��t�

��F �t 
 F f ��F �f 
 F t

�F �G�t 
 F t �Gt �F � G�f 
 F f �Gf

�
xF �t 
 
xF t �
xF �f 
 �xF f

��F �t 
 �F t ��F �f 
 F t

where we have introduced the new relation symbols Rt and Rf which are intended to capture
the truth and the falsity extension of R�

If � 
 hRel�ExRel �Cons�Funci is a signature� then we de�ne �g to be the signature
hRelg�Relg�Cons�Func� such that Relg 
 ExRel � fRt� Rf j R � Relg� Furthermore� if I is
a ��interpretation� we write Ig for the �g�interpretation such that I and Ig coincide with
respect to Cons and Func� and for R � Rel � �Rt�

Ig 
 RI � and �Rf�
Ig 
 eRI � By a simple

inductive argument it can be shown that

I� � j
 F i� Ig� � j
 F t for all I�valuations �� �	���

The translation is surjective� which implies that we even have the following more drastic
equivalences�

Proposition � If X � L��� and F � L���	 then

X j
� F �� Xt j
� F
t


X j
c F �� Xt� Y j
� F
t with Y 
 f��Gt � Gf� j G � L���g


X j
t F �� Xt� Z j
� F
t with Z 
 fGt �Gf j G � L���g��

Corollary � �L�owenheim�Skolem� Let � 
 
	t or c� If a formula F � L��� is ��satis
able	
then it also has a countable model	 i�e� there exists I � Mod��F � such that UI is countable�

Corollary � Let � 
 
	t or c�
��� Compactness� X � L��� is ��satis
able i� every 
nite subset of X is
��satis
able�

��� Finiteness� X j
� F i� there is a 
nite set Y � X such that Y j
� F �

��� Propositional Expressivity and Normal Forms
Let us suppose that we only deal with the sublanguage Prop��� �
 L������������� A
��interpretation I can then be understood as a partial truth�value assignment VI � At�����
�f���g� The simple reason to do so is that we wish to discuss the expressivity of connectives�
rather than that of quanti�ers� The corresponding partial truth�value assignment� VI�P � is
the subset of f�� �g such that

� � VI�P � i� P � DI

� � VI�P � i� �P � DI

In other words� f�� �g stands for over�valued� f�g for falsity� f�g for truth� and 
 for under�
valued� The set of all truth�values� f
� f�g� f�g� f�� �gg� will be called four� The subsets

�The stronger versions with G � At
�� also hold�
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f
� f�g� f�gg� ff�g� f�g� f�� �gg and ff�g� f�gg will be denoted by three� three
 and two�
respectively�
Of course� this de�nition settles a ��� correspondence between partial interpretations and

partial truth�value assignments� For this reason� we will drop the I�index in the sequel of
this subsection� For the full collection of partial truth�value assignments we write V�� Vc�
Vt and V� refer to the obvious subclasses of partial truth�assignments�
The question arises� whether our propositional language that we work with� is expressive

enough to describe the content of a partial truth�assignment V � V�� In other words� can
every �extensional� connective be de�ned in terms of the connectives of the language� This
property is also called expressive or functional completeness of the language� In classical
logic� we know that the language L�������� is adequate for this purpose� In partial logic
this is certainly not the case� by means of these two connectives we can not express that a
proposition is not true� �P can not be de�ned by means of P � � and � alone�
These issues of expressivity are not of purely theoretical concern� For example� given a

subclass of models which behaves computationally very well� then we want to know the exact
language which describes such a class�� Furthermore� if we want to axiomatize an extension
of the model class I�� then we need to know whether connectives are independent or can
be de�ned in terms of others� We know for sure� that the former class requires explicit
reference within such an axiom system� Last but not least� we also want to have a formal
understanding what we really gain in expressivity� once we extend a model class� For example�
the formula ��P ��P � has no ��models� but is c�satis�able� which makes clear that � really
adds expressive power to the connectives � and ��
In other words� given a class of models� we wish to know the underlying languages of both

super� and subclasses�
Formally� we interpret an n�ary connective 
 as a function �
� from n�tupels of truth�values

to truth�values�

�
� � valn �� val

with val being one of the earlier mentioned truth�value sets�

ff�g� f�gg � val � f
� f�g� f�g� f�� �gg�

For example� the weak negation � is interpreted as the function

��� �x� 


�
f�g if � � x
f�g otherwise�

The question arises� whether this weak negation is su�cient as an addition to � and � to
obtain functional completeness for the classes Vc� Vt and V�� The answer is� �nearly�� We
only need to add some additional nullary connectives u and o� which obtain the following
denotation� �u� 
 
� and �o� 
 f�� �g�
The following table presents for all four classes the associated set of connectives which

yields functional completeness�

�E�g� Langholm�s description of Horn clauses in partial logic �Lan��� in terms of transferring the classical
semantic properties of such clauses to partial logic� and then de
ne the language which has this properties
over partial models�
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V� ���
Vc u������
Vt o������
V� u� o������

In the �eld of partial logic many more expressivity results are known for well�de�ned sub�
classes of Vc and V� �see �Bla� �� �Lan���� �Ben�
�� �Mus��� and �Thi����� An important
result is the functional completeness of u���� with respect to the persistent connectives over
Vc by Blamey in �Bla� ��
 A connective 
 is persistent i� its interpretation �
� is monotone
over ��

�
i � f�� � � � � ng � xi � yi�� �
� �x�� � � � � xn� � �
� �y�� � � � � yn��

In V� we also need o for getting the same complete expressivity over the same class of
persistent connectives �Mus������

In most cases� functional expressivity of a propositional language can be demonstrated
by means of so�called normal forms in the language� which speci�es the class of satisfying
truth�value assignments in an obvious way� In this section we only discuss the language with
complete expressivity for V�� Vc� Vt and V��

De�nition � If X is a set of formulas	 then 
X �
 f
F j F � Xg for a given unary
connective 
� If X 
 fF�� � � � � Fng is a non�empty 
nite set of formula then

V
X �
 F� �

� � �� Fn and
W
X �
 F� � � � �� Fn���

A conjunct form is a formula of the form��
W �

�
�X �

�
�Y �

�
��Z	 such that W�X� Y� Z � At� �	���

A ��conjunct form is a conjunct form as in ��� with W � Y 
 X �Z 
 At� and W � Y 

X �Z 
 
� A c�conjunct form is a ��conjunct form as in ��� with W �X 
 
� Analogously	
a t�conjunct form is obtained by taking Y � Z 
 
 and for a ��conjunct form we stipulate
Y 
 Z 
 
�
A disjunct form is a formula of the form��

W �
�
�X �

�
�Y �

�
��Z such that W�X� Y� Z � At�� �	�	�

The notions of ��disjunct form are de
ned analogously� A disjunct form in L��� is said to
be a clause�

A prenex formula F � L��� has the form Q�x� � � �QnxnG�x�� � � � � xn� y�� � � � � ym�� where G
is quanti�er free and Qi � f
� �g� G is called the matrix of F and is denoted by matrix�F��

	The connective set f���g has complete expressivity over so	called closed persistent connectives in Vc

�Ben���� Closed connectives always obtain a classical value� f�g or f�g� if all its arguments have classical
values�

�
This result for persistence gives us immediately an answer to the question for which class of formulas
�	satis
ability is the same as c	satis
ability� all the formulas which can be de
ned in terms of u� � and ��

��Of course� this is not a well	de
ned formula� but because of commutativity of � and � this choice is unique
op to logical equivalence�
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Proposition � �Propositional Normal Form� Every propositional formula is ��equivalent
to either a disjunction of ��conjunct forms	 �	 o or u� Analogously	 such a formula is
��equivalent to �	 u or a disjunction of ��conjunct forms	 and t�equivalent to �	 o or a
disjunction of t�conjunct forms�

In general� it is not possible to obtain precise predicate logical version of proposition 
�
Most often� so�called prenex normal forms are used to de�ne versions of the normal form
result above for the predicate logical case�

Proposition 	 �Prenex Normal Form� For every formula F �x�� � � � � xn� � L��� there
are prenex formulas G�x�� � � � � xn�� H�x�� � � � � xn� � L��� such that
��� F �� G	 and F �� H

��� matrix�G� 


W
X	 X is a set of conjunct forms	 matrix�H� 


V
Y 	 Y is a set of disjunct

forms�

��� Proof Theory
In this subsection we will present sequent calculi for partial logics� As mentioned earlier�
other styles of derivation calculi are also possible� There are several reasons to chose for the
sequential style� First� they make the axiomatic di�erences between di�erent partial logics
and classical logic immediately visible� Second� meta�theoretic proofs about the relations
between deduction and model�theory� such as correctness and completeness proofs� bene�t
from a sequential proof theory� Third� in many cases sequential systems turn out to be
shorter��� For example� general completeness results for functionally complete languages�
can be easily be transformed to completeness proofs for poorer sublanguages�

De�nition � �Sequent� A sequent s is an expression of the form

F�� � � � � Fm � G�� � � � � Gn

where Fi� Gj � L��� for i 
 �� � � � � m and j 
 �� � � � � n� The body of s	 denoted by Bs	 is
given by fF�� � � � � Fmg	 and the head of s	 denoted by Hs	 is given by fG�� � � � � Gng� Seq���
denotes the class of all sequents s such that Hs�Bs � L����

De�nition � �Model of a Sequent� Let I � I�� Then	

I j
 F�� � � � � Fm � G�� � � � � Gn i�
�
i�m

SatI�Fi� �
�
j�n

SatI�Gj�

For S � Seq� Mod��S� and S j
� s are de�ned analogously as in De�nition 	�

De�nition �� �Sequential inference� A sequential inference rule R has the form

s� � � �sn
sn��

	

��In partial predicate logic� this advantage of sequential systems does not become sharply evident� A branch
of partial logic� which surely bene
ts in this respect from sequential axiomatization is partial modal logic� as
have been shown in Jaspars�Jas����
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with si � Seq��� for all i � f�� � � � � ng� The elements of fs�� � � � � sng are called the assumptions
of R	 and sn�� is called the conclusion of R� If n 
 �	 that is rules without assumptions	 we
say that R is axiomatic	 and simply write s�� A sequential system s is a set of sequential
inference rules� Every conclusion of an axiomatic rule in s is said to be s�derivable in ��steps�
If m � � then a sequent s is said to be s�derivable in m steps if there exists a rule s������sk

s
� s

such that for all i � f�� � � � � kg the sequents si are s�derivable in less than m steps� A sequent
is called s�derivable if it is s�derivable in a certain 
nite number of steps� These sequents
X � Y are called s�sequents	 and we write �s X � Y �

Below we will present sequential systems for the partial logics which have been discussed
earlier� As usual� we distinguish structural rules from introduction rules� Structural rules are
syntactically independent of the logic which we are axiomatizing� Introduction rules stipulate
the meaning of logical functors in a proof�theoretic fashion� Logical functors are introduced
both in the head of a sequent �l�introduction� and in the body of a sequent �r�introduction��
Furthermore� we distinguish between rules which introduce a new compound proposition as
being true and those which de�ne the falsity of a new compound proposition which then
appears in the scope of the strong negation � within the conclusion of the rule��� Every
introduction rule is speci�ed by an abbreviation of the form xv
� where x � fl�rg �left or
right�� v � ftrue� falseg and 
 speci�es the connective or quanti�er which is introduced�
Below we give a presentation of the rules which are relevant for the axiomatization of

partial logic� Instead of X � fFg we write X�F �

Structural Rules

F 
 F start

X 
 Y�X � X�� Y � Y �

X� 
 Y �
mon

X�F 
 Y X� 
 F� Y �

X�X� 
 Y� Y �
cut

This set of structural rules will be called struc�

��In �FLV��� so	called quadrants have been introduced� which can be understood as a kind of four	placed
sequents� XjX � � Y jY �� The truth	conditional reading of such a quadrant is that all models which verify all
members of X and falsify all members of X �� verify at least one member of Y or falsify at least one member of
Y �� This approach makes falsity introduction possible within the derivational format and is therefore somewhat
more elegant� If we wish to axiomatize �	free sublanguages� such a choice would even be necessary in order
to obtain complete inference systems in a sequential fashion�
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Truth Rules

X 
 F� Y
X��F 
 Y

l
true�

X�F 
 Y
X 
�F� Y

r
true�

X�F�G
 Y

X�F �G
 Y
l
true�

X 
 F� Y X� 
 G� Y �

X�X� 
 F �G� Y� Y �
r
true�

X��
 Y l
true�

X 
 o� Y r
true

o

X�F �t�x�
 Y ���
X� �xF 
 Y

l
true�

X 
 F �c�x�� Y ���
X 
 �xF� Y

r
true�


�� � t substitutable 
�� � c is a closed term

for x in F not occurring in X � Y

Furthermore� ltrue� and rtrue� are the rules which evolve from substituting � for �
in the rules ltrue� and rtrue�� respectively� For the ��ary connective u we have only
one rule� the same as as for �� ltrueu 
 X�u� Y � All these rules together are called
true�

Falsity rules

X�F 
 Y

X���F 
 Y
l
false�

X 
 F� Y

X 
��F� Y
r
false�

X��F 
 Y X���G
 Y �

X�X����F �G�
 Y� Y �
l
false�

X 
�F��G� Y
X 
��F �G�� Y

r
false�

X 
��� Y r
false�

X��u
 Y l
false

u

X��F �c�x�
 Y ���
X���xF 
 Y

l
false�

X 
�F �t�x�� Y ���
X 
��xF� Y

r
false�

��� and ��� as in
true above	

rfalseo is the same as rfalse� with � replaced by o� For � we have the same rules as for
�� Simply substitute �F for the occurrences �F in lfalse� and rfalse� and we obtain
lfalse� and rfalse� respectively� The complete set of these falsity rules will be called
false�

We de�ne the following sequential systems�

� 
 struc � �true n frtrueo� ltrueug�

c 
 struc � �true n frtrue��rtrueog� � �false n frfalseog�

t 
 struc � �true n fltrue�� ltrueug� � �false n flfalseug�

� 
 �c � t� � flvu�rwo j v�w � ftrue� falsegg

Below we will present completeness results of these systems with respect to the correspond�
ing model�theoretic consequence relations� This completeness only holds when we presuppose
the absence of exact predicates within the underlying signature� If � contains exact predi�
cates� we need to strengthen the systems c and � with a straightforward compensation for the
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loss of frtrue�g� Let L��ex� be the sublanguage of L��� which consists of all the proposition
that only contain exact predicates� The systems c�ex and ��ex evolve from adding the rule
rtrueex � to c and �� respectively� This additional rule has the following form�

X�F � Y F � L��ex�

X � �F� Y
rtrueex �

Observation � The di�erences between �	 c	 t	 and � can also be described by means of
relativized versions of contraposition� In � we have that

�� X � Y �� �� �Y � �X

This is a form of contraposition for strong negation� In all the other systems we obtain this
contraposition rule at least for the weak negation� The systems c and t have mixed versions
of the rule of contraposition�

�c X � Y �� �c �Y � �X

�t X � Y �� �t �Y � �X

The following proposition presents the completeness of the sequential systems of the pre�
vious paragraph� In fact� for the logic whose underlying language is functionally complete�
these results can be already obtained by means of the translation of de�nition  �

Proposition 
 �Completeness� Let s be �	 c	 t or �	 and let � refer to the associated
model class	 
	 c	 t or �	 respectively� If � is a signature with no exact predicates	 then for
all 
nite sets X� Y � L��� we have�

�s X � Y i� j
� X � Y

If � contains exact predicates	 then the completeness result only holds for � and t� For � and
c	 we have

���ex X � Y i� j
c X � Y and ���ex X � Y i� j
� X � Y

The partial results of soundness are the left�to�right directions of the equivalences in the
above proposition� These results can be checked by a straightforward induction on the length
of derivation�
In order to give an ordinary Henkin�style proof of these completeness theorems� we need

to de�ne the notion of saturated sets� This is a generalization of the notion of maximally
consistent sets� which is needed to prove the completeness for partial logics with poorer
expressivity� Especially� when the weak negation is lacking� the requirement of maximal
consistency is too strong�

De�nition �� �Saturation� Let s be a sequential inference system� A set X � L��� is
called s�saturated i� for all 
nite sets X �� Y � � L��� and X � � X�

If �s X
�� Y � then Y � �X �
 
� �	�
�

A set X � L��� is called s�term�saturated i� X is saturated and for every �xF � X there
exists a constant c in � such that F �x�c� � X�
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Note that for every s�saturated X there exists no �nite X � � X such that �s X � � 
�
This property captures the s�consistency of X ��� Taking Y � in 	�
 to be a singleton tells us
that s�saturated sets are closed under s�deduction� If Y � has multiple elements� the de�nition
tells us that every �disjunctive� conclusion from X breaks down into at least one element of
X � In other words� the information in X does not contain disjunctive uncertainty� Complete
certainty is captured by the de�ntion of term�saturation�
A further relevant observation here is that if a sequential system s contains struc and a

rule
X�F � Y

X � �F� Y
� then s�saturated sets are the same as maximally s�consistent sets�

Lemma � �Generalized Lindenbaum Lemma� Let X and Y be two 
nite subsets of the
language L���	 and let s � f�� c� t� �g� If ��s X � Y 	 then there exists a s�saturated set
Z � L��� such that X � Z and Y � Z 
 
�

The standard Lindenbaum lemma can be obtained by taking Y 
 
 in the general formu�
lation above� Because saturation is the same as maximal consistency for systems with the
l�true rule for negation� the classical result is the same as saying that every consistent set
is a subset of a maximal consistent set�
The generalization of the classical Lindenbaum lemma is due to Aczel and Thomason � The

generalization of the classical result evolved from independent succesful attempts to prove
the completeness of intuitionistic predicate logic �Acz ��� �Tho ���
Most often� the proof of the generalized Lindenbaum lemma is presented by making use

of syntactic expressivity of the language that one works with� In fact� the set of rules struc
is enough to obtain the result �Jas���� If ��s X � Y � and fFigi�IN is an enumeration of the
language� we de�ne the following sequence of sets of formulas�

X� 
 X

Xn�� 


�
Xn � fFng if ��s Xn� Fn � Y

Xn otherwise�

The limit of this sequence is an s�saturated set� which contains X and does not intersect Y �
In the completeness proofs of partial predicate logics� we need term�saturated sets instead

of saturated sets� The �cheap� trick to obtain these term�saturated sets is to extend the
language with a countably in�nite number of additional constants �also called parameters��
Let L���� be such an extension of L���� and let X and Y be two �nite subsets of the latter
language�

Corollary � If ��s X � Y then there exists an s�term�saturated Z � L���� such that X � Z
and Z � Y 
 
�

This result immediately follows from lemma � and by taking a unique fresh parameter as
an instantiation for each existentially quanti�ed formula to obtain the desired term�saturated
set�

��If 	s X � � 
 then 	 X � � F for all F by application of mon� Note that a sequential system s which
contain the rules struc is conistent i� �	s 
 � 
�
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The following lemma� which is also called the truth lemma� tells us that a term�saturated
set veri�es exactly those formulas which it contains� To formulate this result properly� we
associate with every s�term�saturated set X � L��� an interpretation IsX

UIs
X 
 the set of all closed terms of ��

fI
s

X 
 f for all functions and constants f �

P I
s

X 
 f�t j P ��t� � Xg�eP IsX 
 f�t j �P ��t� � Xg for all predicates P �

Lemma � �Truth Lemma� Let s be a system which contains the rules struc	 and let X
be s�term�saturated�

IsX j
 F � F � X�

The proof of this lemma consists of a fairly straightforward induction on the construction
of formulas� In fact every connective or quanti�er only uses its own introduction rules� This
settles the completeness result also for poorer languages over the di�erent model classes�
The �nal argument of the completeness result is an immediate consequence of lemma ��

corollary � and lemma �� Suppose that X and Y are �nite subsets of L��� and ��s X � Y �
According to corollary � there exists an s�term�saturated set Z in a parametrized superlan�
guage L���� such that X � Z and Y � Z 
 
� Lemma � above tells us that IsZ j
 F for
all F � X and IsZ �j
 G for all G � Y � In other words� �j
� X � Y where � refers to the
associated model class���

�� Minimal Reasoning

In this section we study several versions of nonmonotonic reasoning based on partial logic� In
the �rst subsection nonmonotonic reasoning is analysed in an abstract setting� This is done
by using the concept of a deductive frame and its semantical counterpart� a model�theoretic
frame� On this level of abstraction one can give a characterization of several kinds of partial
propositional logic� The second subsection is devoted to Herbrand models� Several theorems
are generalized to partial logics� in particular the proposition about canonical models of
universal theory� In the third subsection minimal models are investigated� Then� a new
class of models is introduced� the !�paraminimal models of a universal theory which are a
generalization of the good models of �TEG�	�� Subsection 
�
 concludes with an investigation
of compactness properties of the introduced nonmonotonic model operators�

��� Inference Frames and Model�Theoretic Frames
Let L be a language and C � �L � �L an inference operation� A condition on C is said
to be pure if it concerns the operation alone without regard to its interrelations to classical
consequence operation and truth�functional connectives� The most important pure conditions
are the following�

X � Y � C�X�� C�Y � � C�X� �Cut�
X � Y � C�X�� C�X� � C�Y � �Cautious Monotony�
X � Y � C�X�� C�X� 
 C�Y � �Cumulativity�
C�C�X��� C�X� �Idempotence�

��It is not hard to verify that IsZ � I�
�� for all s	term	saturated sets Z�
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An inference operation C is cumulative i� C satis�es inclusion� cut and cautious monotony�
Besides the three conditions of cut� cautious monotony and cumulativity �Mak�	� emphasizes
several mixed conditions of inference� supraclassicality� distributivity� and rationality� C is
said to be supraclassical if it extends the usual consequence operation Cn of classical logic�
ie� Cn�X� � C�X� for all X � L� Obviously� these mixed conditions can be formulated for
any logic� �
 For this purpose we use the following de�nition �Her���

De�nition �� �� �L�CL� C� is said to be an inference frame i� the following conditions
are satis
ed�

�a� L is a language�

�b� CL is an inference operation on L satisfying inclusion	 idempotence and monotony�

�c� C is an inference operation on L extending CL	 i�e� CL�X� � C�X��

�� An inference frame �L�CL� C� satis
es

�a� left absorption i� CL�C�X�� 
 C�X�


�b� congruence or right absorption i� CL�X� 
 CL�Y �� C�X� 
 C�Y �


�c� full absorption i� it satis
es left absorption and congruence�

If full absorption holds	 CL is called a monotonic basis for C�

�� An inference frame �L�CL� C� is said to be a deductive frame if it is compact and
satis
es full absorption� In this case	 CL is called a deductive basis for C�

If CL is compact then the system �L�CL� C� is called a compact inference frame� A semantics
of an inference frame can be introduced by a model�theoretic frame�

De�nition �� �L� I� j
�!� is a model�theoretic frame i�

�� �L� I� j
� is a model�theoretic system


�� ! � �L � �M is a functor such that !�X� �ModI�X�� ! is called model operator�

Every model operator ! corresponds to an inference operation C��X� 
 Th�!�X��� C�

extends CI and satis�es left absorption� and hence �L�CI� C�� is an inference frame�
A model operator ! is said to be invariant with respect to a model�theoretic system

�L� I� j
� i� for all X � L� !�X� 
 !�CI�X��� A model�theoretic frame �L� I� j
�!� is said
to be compact if CI satis�es compactness� it is called invariant if the model operator ! is
invariant wrt �L� I� j
��

Proposition �� If ! is invariant for the compact model�theoretic system �L� I� j
� then
�L�CI� C�� is a deductive frame�

��This point of view was assumed in �FL���



�� Minimal Reasoning 	�

In order to obtain a semantics for a nonmonotonic inference system �L�C� we proceed in
two steps� �rst we have to �nd an appropriate deductive basis �L�CL� C�� then we have to
construct a model�theoretic semantics for the deductive system �L�CL� which will �nally
yield a model�theoretic frame representing the deductive frame �L�CL� C��
A set X � L is said to be deductively closed i� CL�X� 
 X � X is deductively consistent

�in short� d�consistent� if CL�X� �
 L� A deductive system �L�CL� is called explosive i� there
exists a �nite subset Y � L such that CL�Y � 
 L� CL is negation explosive if there is a
unary functor n � L � L in the language such that for every X � L� and every F � L� the
following holds� CL�X � fFg� 
 L i� n�F � � CL�X�� A set X � L is maximally d�consistent
if CL�X� �
 L and for every proper superset Y of X it holds that CL�Y � 
 L�

Observation � The deductive systems �L����� C��	 where � � f�� c� 
g	 are explosive and
negation explosive�

Proof� We consider only the case � 
 c� the other cases are analogous� Let F be an arbitrary
sentence and G �
 F � �F � Obviously� Cc�G� 
 L����� To prove that Cc is negation
explosive let n�F � 
df �F � In general we have Modc�X� 
 
 if and only if Cc�X� 
 L�
Let Cc�X � fFg� 
 L� then Modc�X � fFg� 
 
� We prove� that X j
c �F � Assume�
X �j
c �F � then there is a coherent model I j
 X such that I �j
 �F � hence I j
 F � But
then Modc�X � fFg� �
 
� a contradiction� Conversely� assume X j
c �F � It is su�cient
to show that Modc�X � fFg� 
 
� Assume Modc�X � fFg� �
 
� then there is a coherent
interpretation I such that I j
 X�F � From this follows X �j
c �F � a contradiction�

Proposition �� If �L�CL� is explosive then every d�consistent subset of L can be extended
to a maximally d�consistent set�

Closed sets can be used to represent models� and to build model�theoretic semantics for
deductive systems� Let �L�CL� be a deductive system and Cs�L� 
 fX � L � CL�X� 

Xg� For every subset M � Cs�L� the following model�theoretic system �L�M� j
� can be
introduced� De�ne for F � L and m � M � m j
 F i� F � m� The model�theoretic system
�L�M� j
� represents a semantics for �L�CL� i� CM 
 CL� then it is called a Lindenbaum�
Tarski�semantics for �L�CL�� Obviously� a subset M � Cs�L� represents a L�semantics for
�L�CL� i� for all consistent X � L it holds that CL�X� 


T
�Cs�X��M�� This observation

implies the following proposition�

Proposition �� A subset M � Cs�L� represents a semantics for �L�CL� if for every d�
consistent subset X � L and F �� CL�X� there is an extension X � m	 m � M such that
F �� m�

For the construction of a semantics it is su�cient to select a subset of Cs�L� representing
the models� X is said to be relatively maximal �abbreviated r�maximal� i� there is a formula
F � L such that F �� CL�X� and for every proper superset Y of X the condition F � CL�Y �
is satis�ed� Obviously� every r�maximal set is deductively closed� Let rmax�L� � Cs�L� be
the set of all relatively maximal subsets wrt �L�CL��

Proposition �� �Lindenbaum�Tarski� Let �L�CL� be a deductive system	 X � L	 and
F �� CL�X�	 then there exists a maximal extension Y � X	 such that F �� Y �
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Observation � rmax�L� is smallest subsystem of Cs�L� representing a semantics for �L�CL��
We call it the Lindenbaum�Tarski standard semantics �LT�semantics��

De�nition �� The inference operations C�� Cc� Ct� C� can be characterized as follows� We
restrict our consideration to the case of propositional logic� Let Ax��Prop� be the following
set of formulas�

�� F 	 �G 	 F �
�� �F 	 �G 	 H�� 	 ��F 	 G� 	 �F 	 H��
�� �F 	 �G 	 H�� 	 �G 	 �F 	 H��
�� �F 	 G� 	 ��G 	 �F �
�� � � F 	 F

�� F 	 � � F
�� ��F 	 F

�� F 	 ��F
�� �F � G� 	 F

��� �F � G� 	 G
��� �F 	 �G 	 H�� 	 ��F � G� 	 H�
��� ��F 	� �F �G�
��� �� G 	� �F �G�
��� ���F 	 H� 	 ���G 	 H� 	 �� �F � G� 	 H��

Axt�Prop� 
 Ax��Prop� � f�F 	 �F�F � Fm�Prop�g

Axc�Prop� 
 Ax��Prop� � f�F 	 �F�F � Fm�Prop�g

Ax��Prop� 
 Axc�Prop� �Axt�Prop��
Rules� Modus ponens � f�F� F 	 G�G� � F�G formulas g�

Observation � �Completeness Theorem� Let X � Fm�Prop� and � � f�� c� 
� tg�
D��X� is the smallest set containing X�Ax��Prop� and closed with respect to modus ponens�
De
ne X �� F i� F � D��X�� Then	

X j
� F i� X �� F�

Proof �scetch for j
��� A set X of formulas is said to be complete i� the following conditions
are ful�lled�
F �� X i� �F � X �
F �G � X i� fF�Gg � X �
F �G � X i� fF�Gg �X �
 
�
� �F � X i� F � X �
�� F � X i� F � X �
� �F � G� � X i� f� F�� Gg �X �
 
�
� �F � G� � X i� f� F�� Gg � X �
If X is complete then the set I 
 fl � Lit���� � l � Xg is a partial model of X � To prove the
completeness theorem we assume X j
� F but X ��� F � By proposition �	 there is a maximal
set Y � X � Ax� such that Y ��� F � It can be shown that Y is complete and deductively
closed� This implies F � Y � hence �F � Y � Then there exists a model I j
 Y such that
I �j
 F � This is a contradiction to X j
� F ��
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Deductive frames can be semantically characterized as follows �DH�
��

Proposition �� Let F 
 �L�CL� C� be a deductive frame� Then there exists a model�
theoretic frame S 
 �L�M� j
�!� such that ! is invariant and S represents F �

The subsequent schema summarizes the general method for constructing a semantics for a
given inference system� The main point here is to �nd the right deductive basis in the set
fCL � �L�CL� C� is a deductive frame g� In many cases a deductive basis �L�CL� can be
chosen to be maximal �Die�
��

�L�C�
�

Construction of a deductive frame
�

�L�CL� C�
�

Construction of a model�theoretic frame
�

�L�M� j
�!�
such that CL 
 CM � and C 
 C�

��� Herbrand Models
A partial Herbrand interpretation in the language L��� is one for which the universe equals
U���� and the function symbols have their canonical interpretation� In this section we study
model�theoretic frames based on Herbrand interpretations� Let IH� ��� be the set of all Her�
brand interpretations in I����� with � � f
� c� t� �g� and ModH� �X� 
 IH� �Mod��X�� X �
L���� The corresponding consequence relation j
H

� is de�ned by X j
H
� F � ModH� �X� �

Mod��F ��

De�nition �	 �Diagram� The diagram of a ��interpretation I is de
ned as DI 
 fl �
Lit���� � I j
 lg���

Observation 	 Partial Herbrand interpretations can be identi
ed with their diagrams�

Proof� Let I 
 �U���� �fI�f�Fun� �R
I�R�Rel� be a Herbrand interpretation and t�� � � � � tn �

U���� Then I j
 R�t�� � � � � tn� i� htI� � � � � � t
I
ni � RI and I j
 �R�t�� � � � � tn� i� htI� � � � � � t

I
ni �eRI � "From this follows that DI represents the set RI � eRI � �

Herbrand interpretations over � can be considered as subsets of Lit����� Then the set
I
H
� ��� coincides with �Lit
��	� IHc ��� 
 fJ � Lit���� � s�th� there is no l � At���� satisfying
fl��lg � J g� IHt ��� 
 fJ � for all l � At���� � fl��lg�J �
 
g� and I

H
� ��� 
 IHc ����It����

A consistent set X � L��� does not always have a Herbrand model�

��Notice that� strictly speaking� we de
ne the ground diagram� and not the full diagram�



�� Minimal Reasoning �


Observation 
 There are consistent sets X � L���� without a Herbrand model� X 

fP �a�� 
x�P �x� 	 P �f�x��� �x��P �x��g�

Let � 
 hRel� ExRel�Const� Funi be a signature� I a partial ��interpretation� and U� �
UI � The restriction of I to U� is a partial interpretation J � denoted by J 
 I � U�� which
is de�ned by the following conditions�
��� the subset U� is closed with respect to the functions ffI � f � Fung� and
fcI � c � Constg � U��

��� for every R � Rel �ExRel� RJ 
 RI � U
ar�R	
� and eRJ 
 eRI � Uar�R	

� �
J is said to be a substructure of I if there is a subset U� � UI such that J 
 I � U��

Proposition �	 Let 
x� � � �xmA�x�� � � � � xm� y�� � � � � yn� 
 B�y�� � � � � yn� � L��� be a univer�
sal formula	A�x� y� quanti
er free	 I � Modc���	 and I� 	 j
 B�y�� � � � � yn�	 	 an evaluation
and 	�y�� 
 a�� � � � � 	�yn� 
 an� Let J be a substructure of I such that fa�� � � � � ang � UJ �
Then J � 	 j
 B�y�� � � � � yn��

Proof� Assume I� 	 j
 B�y�� � � � � yn�� and denote this condition by the expression I j

B�a�� � � � � an�� Since B�a�� � � � � an� is universal it follows that for all b�� � � � � bn � UI the
condition I j
 A�b�� � � � � bm� a�� � � �an� is satis�ed� Because the formula A�x� y� does not
contain quanti�ers it follows J j
 A�b�� � � � � bm� a�� � � �an�� provided fb�� � � � � bm� a� � � � �ang �
UJ � This implies j
 B�a�� � � � � an�� ��

Corollary �
 Let I � Ic���	 F � L���� a universal sentence	 and J � I a substructure of
I� Then I j
 F implies J j
 F �

Proposition �� Let S � L��� be a universal theory of signature � and Const��� �
 
� If S
has a coherent model then it has a coherent Herbrand model�

Proof� Let I be a model of Modc�S�� A Herbrand model I� is de�ned as follows�
��� U�I�� 
 U����
��� ht�� � � � � tni � RI
 i� I j
 R�t�� � � � � tn� and ht�� � � � � tni � eRI
 i�
I j
 �R�t�� � � � � tn�� where R � Rel����

From ��� follows for every quanti�er free formula A�x�� � � � � xn� and terms t�� � � � � tn � U����
�	� I� j
 A�t�� � � � � tn� i� I j
 A�t�� � � � � tn��

Now� let A � S� and A 
 
x� � � � xkG�x�� � � � � xk�� Assume� I� �j
 
x� � � �xkG�x�� then
there is an evaluation � such that I�� � �j
 
xG�x�� By de�nition this is equivalent to the
existence of variable free terms t�� � � � � tn such that I� j
 �G�t�� � � � � tn�� by condition �	� this
is equivalent to I �j
 G�t�� � � � � tn�� But then I �j
 
x� � � �xnG�x� which is a contradiction to
the assumption� ��

Observation � The relation j
H
c is not axiomatizable	 i�e� there are decidable sets X � L���

such that fF � X j
H
c Fg is not recursively enumerable�

Proof� Let PA be the axioms of Peano Arithmetic in the signature � 
 ���#� �� s�� then
PA j
H

c F i� F is true in the standard model of arithmetic� This gives a contradiction to
G$odel�s incompleteness theorem��
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Proposition �� Let S be a universal theory	 and F 
 �xG�x� a closed existential formula�
Then S j
H

c G i� S j
c F �

Proof� The implication ��� is trivial� We show ���� Assume S j
H
c F � but S �j
c �xG�x��

then there is a partial model I � Modc�S� such that I �j
 �xG�x�� and hence I j
 
x�G�x��
Then S � f
x � G�x�g has a model and by proposition there is a Herbrand model I� for
S � f
x� G�x�g� Since I� j
 S this implies S �j
H

c F � a contradiction� ��

Proposition �� cannot be generalized to universal sentences�

Observation � For every language L���	 � containing a relational symbol of arity � �	

there exists a universal theory S � L��� and a universal sentence F such that S j

H��	
c F but

S �j
c F �

Proof� W�l�o�g�� we assume that � contains a unary relational symbol P �x�� Let S 
 fP �t� �
t � U���g� then S j
H

c 
xP �x�� but� obviously� S �j
c 
xP �x���

De�nition �
 �Persistent Formula� A formula F � L��� is called persistent if for ar�
bitrary partial Herbrand interpretations I�J over � satisfying I � J 	 and every substitution
� � V ar � UI the condition I j
 F� implies J j
 F��

Observation � Every formula F � L��������� �� 
� is persistent�

Proof� �inductively on the complexity of F �� Let l � Lit��� and I j
 l�� then l� � I and
hence l� � J for every extension J � I� Let I j
 �G � H��� then I j
 G� or I j
 H�� By
induction hypothesis it holds J j
 G� or J j
 H�� and hence I j
 �G �H��� Similarly� this
is proved for F 
 G �H �
Now let be F 
 �xG�x� y� and 
 � V ar � U��� is a substitution such that I j


G�
�x�� ��y��� By induction hypothesis J j
 G�
�x�� ��y��� and this impliesJ j
 �xG�x� ��y���
Finally� F 
 
xG�x� ��y��� Then� for every substitution 
 � x� U�I� I j
 G�
�x�� ��y��� By
induction hypothesis I� j
 G�
�x�� ��y��� and since UI 
 UJ it follows J j
 
xG�x� ��y��� ��

Proposition �� Let S be a universal theory	 and F 
 �xG�x� a closed existential sentence�
Then the following conditions are equivalent�
��� S j
c F �
��� There are variable free substitutions ��� � � � � �n such that S j
c

W
i�nG��i�x���

Proof� Assume S j
c F � since F is an existential sentence this is equivalent to S j
H
c F �

This is the case if and only if for every Herbrand model I of S there is a substitution �I such
that I j
c G�I � From this follows that S j
H

c

W
fG�I � I is an Herbrand model of Sg� By

the compactness theorem for Lc there is a �nite set � of Herbrand models of S such that
S j
c

W
fG�I � I � �g� �

Proposition �� can also be proved for j
t and j
�� For j
� this proposition is Herbrand�s
theorem�
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��� Minimal Models
In the sequel we introduce several versions of minimal models� we assume that all interpre�
tations under consideration are Herbrand interpretations�

De�nition �� �Extension� Let I and I� be two interpretations� We say that I� extends
I	 symbolically I � I�	 if DI � DI� �

This ordering of interpretations corresponds to the intuitive notion of information growth� It
has also been called knowledge ordering in the literature�

De�nition �� �Minimally Inconsistent Models� Let Inc�I� 
 DI �gDI measure the
inconsistency of a four�valued interpretation I� Then

ModHmi�X� 
 fI � ModH� �X� � ��I� � ModH� �X�	 s�th� Inc�I��  Inc�I�g

is the class of minimally inconsistent models of X � L����

Minimally inconsistent models were introduced in �Pri���� Like plain four�valued models they
tolerate inconsistency� but they are� in a sense� logically more conservative as the following
example shows�

Example � �Disjunctive Syllogism� Four�valued inference does not respect the Dis�
junctive Syllogism	 but minimally inconsistent inference does�

fp � q� �qg �j
� p	 but fp � q� �qg j
mi p�

Notice that whenever X � L has a coherent model� then Modmi�X� 
 Modc�X�� i�e� j
c can
be viewed as a restriction of j
mi to coherent knowledge bases�

De�nition �� �Minimal Models� Let X � L���	 and � � fc� 
� mig� Then Modm� �X� 

Min�ModH� �X�� is the class of all minimal ��models of X with respect to �� Similarly	
Modmax

� �X� 
 Max�ModH� �X�� is the class of all maximal ��models of X�

The following systems are important model�theoretic frames� �L� IH� � j
�Modm� �� where � �
fc� 
g� and L is a sublanguage of L���� and furthermore �L� IH� � j
�Modmmi��

Observation �� There are theories T � L��� which are c�satis
able	 i�e� Modc�T � �
 
	 but
do not have minimal models� Modmc �T � 
 
�

Proof� Let T� be the theory of linear ordering with �rst but without last element� P is a
unary predicate satisfying the following property� �xP �x� � 
v
u�P �u�� v � u 	 P �v��� i�e�
P is a nonempty co�nal segment of the linear ordering� Then every partial model of this
theory is not minimal�

Observation �� Let K � IH� � An interpretation I � IH� is said to be minimal in K if
I �K	 and there is no J �K such that J � I� Then the following holds� An interpretation
I � IH� is minimal in IHt if I is ��valued�



�� Minimal Reasoning ��

From the results of section 	 the following observation can be easily derived�

Observation �� For every set S of universal sentences there is a set of clauses Cl�S� such
that Mod��S� 
 Mod��Cl�S��	 � � f
� c� tg�

Proposition �� Let S be a universal theory in L���� Every partial model from IHc of S is
an extension of a minimal coherent model of S and can be extended to a maximal coherent
model of S�

Proof� Let S be given� we may assume that S is a set of clauses� Let I be a coherent
model of S and %�I� 
 fJ � J � I�J j
 Sg� We show that every decreasing chain
I� � I� � � � � � In � � � in �%�I���� has a lower bound� Using Zorn�s lemma this implies
the existence of a minimal element� which is a minimal partial coherent model of S� Assume
I� 


T
n�� In� and In j
 S for every n � �� We show that I� j
 S� Choose C � S� and

C 
 E� � � � �� Ek � �F� � � � ��Fl � �G� � � � �� �Gm � ��H� � � � �� ��Hn�

where Ep� Fq� Gr� Hs � At���� Assume I� �j
 C� this is the case if and only if

I� j
 �
x�
�
p�k

Ep �
�
q�l

�Fq �
�
r�m

�Gr �
�
s�n

��Hs��

implying that I� j
 �x�
V
p�k �Ep �

V
q�l��Fq �

V
r�m � � Gr �

V
s�n ����Hs�� which is

equivalent to

I� j
 �x�
�
p�k

�Ep �
�
q�l

��Fq �
�
r�m

Gr �
�
s�n

�Hs��

There is an evaluation � � V ar� U���� such that

I� j

�
p�k

�Ep� �
�
q�l

��Fq� �
�
r�m

Gr� �
�
s�n

�Hs��

"From this follows that �fEp�g � f�Fq�g� � I� 
 
� This implies the existence of a num�
ber m � � such that Im � �fEp�g � f�Fq�g� 
 
� On the other hand� since I� j
V
r�mGr� �

V
s�n �Hs�� then by persistence of formulas without weak negation for ev�

ery extension J � I� it holds J j

V
Gr� �

V
�Hs�� Alltogether� we may conclude

Im j

V
p�k �Ep� �

V
q�l��Fq� �

V
r�mGr� �

V
s�t�Hs�� But then Im �j
 
xC� and this is

a contradiction� The proof for the existence of maximal models is analogous� ��

Proposition �� holds also for 
�valued and for total models� Let Modmax
� �T � be the set of

maximal ��models of T �� 
 c� 
�

Proposition �� Let S be a universal theory in L���	 and ���S� � fl � Lit���� � S j
� lg	
���S� 
 fl � Lit���� � S j
� �lg� Then�
���
T
Modm� �S� 
 ���S��

��� Lit�����
S
Modmax

� �S� 
 ���S��

Proof� ��� Let l �
T
Modm� �S�� then l � I for every I � ModH� �S�� since every I � ModH� �S�

is an extension of some J � Modm� �S�� Hence� l � ���S�� If l � ���S�� then l � I for every
I � ModH� �S� and it follows I �

T
Modm� �S��
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��� Let l � Lit���� �
S
Modmax

� �S�� then for every I � ModH� �S�� l �� I� since I can be
extended to a maximal model J � ModH� �S�� It follows that l � ���S�� Now� let l � ���S��
then S j
 �l� This implies l �� I for every model I j
 S and in particular l ��

S
Modmax

� �S��
hence l � Lit�����

S
Modmax

� �S�� �

De�nition �� �Paraminimal Models� LetX � L���	 � 
 c� 
� mi	 andK � ModH� �X��
Then	

Modm� �K� X� 
 Min�fI � ModH� �X� �
�
K � Ig�

is the set of all minimal ��supermodels ofK� The set Modpm� �K� X� of paraminimal ��models
over K is the smallest set of ��models of X containing K and being closed with respect to
the condition�

��� if M � Modpm� �K� X� then Modm� �M � X� � Modpm� �K� X��

If in condition ��� the set M is assumed to be 
nite then the resulting set	 denoted by
Modfpm� �K� X�	 is the set of 
nitely based paraminimal ��models over K� Finally	 the set of
paraminimal ��models of X is de
ned by Modpm� �X� 
 Modpm� �Modm� �X�� X�	 and the set of

nitely based paraminimal ��models by Modfpm� �X� 
 Modfpm� �Modm� �X�� X��

The paraminimalmodel operator is the basis of the followingmodel�theoretic frames� �L� IH� � j

�Modpm� �� where � � fc� 
g� and �L� IH� � j
�Modpmmi �� Let �L�M� j
�!� be a model�theoretic
frame based on a partial logic L�� The set of !�paraminimal models of X � denoted by
Modpm� �!� X�� is de�ned by Modpm� �!�X�� X�� We introduce following notation� Cfpm

� �X� 

Th�Modfpm� �Modm� �X�� X��� Obviously� Cpm

c �X� � Cfpm
c �X� � Cm

c �X��
Our notion of a paraminimal ��model is a generalization of the �good models� de�ned in

�TEG�	� for classical theories� In the next section we will combine the idea of paraminimality
with the idea of stability which is essential for an adequate interpretation of nonpersistent
sequents� resp� generalized logic programming rules�
Paraminimalmodels can be classi�ed with respect to a rank notion� We set Modpm� ��� X� 
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 Modm� �X�� and for � � ��

Modpm� �� # �� X� 
 Modpm� ���X��
�
fModm� �K� X� �K � Modpm� ���X�g

and �nally for limit ordinals�

Modpm� �
�X� 

�
��	

Modpm� ���X�

A paraminimal model I � Modpm� �X� has rank �� denoted by rk�I� 
 �� i� I � Modpm� ��#
�� X� � Modpm� ���X�� The p�rank of X � abbreviated prk�X�� is de�ned by prk�X� 

supfrk�I� � I � Modpm� �X�g�

Example � Let T 
 fa � b � c � d� a � b 	 c � d � e � f� c � d 	 e � fg� Then the largest
paraminimal model of T is abcdef 
 since it is the minimal supermodel of the two minimal
models a and b it has rank �� There are exactly two paraminimal models of rank �� cdef and
bcdef 	 consequently prk�T � 
 ��
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Observation �� Let X � Prop��� contain persistent formulas only� Then prk�X�� ��

Proof� Let Min��I� be the set of all minimal submodels of I� and K be a set of submodels
of I being models of X � If I is a minimal supermodel of K then by the persistence of X it
holds that I 


S
K � We show that the rank hierarchy stabilizes at �� i�e� Modpm� ��� X� 


Modpm� ��� X�� Let I � Modpm� ��� X�� then there is a set M of submodels of I such that
M � Modpm� ��� X� and I is a minimal supermodel of M � By the above remark I 


S
M �

Furthermore� every J �M can be represented by J 

S
Min��J �� From this follows that

I 

S
Min�I�� i�e� rk�I� 
 ��

If Y is a partially ordered set� then we can select those elements from Y which are minimal
upper bounds of certain minimal elements of Y by means of an operator

PMin��Y � 
 fX � Y j ��X � � Y � X � � X & MinX ��Y � 
 MinX�Y �g

where MinX�Y � 
 fX � � Min�Y � � X � � Xg� We obtain the following corollary�

Corollary �� Let X � Prop��� contain persistent formulas only� Then	

Modpm� �X� 
 PMin��ModH� �X��

Eventually� an important question is� which of the inference relations j
x
y for x 
 m� pm� and

y 
 
� c�mi� is the natural choice for knowledge systems� We shall see below that the answer to
this questions depends also on the logical expressiveness of the language of knowledge bases�
In the simplest case� where only extensional knowledge� corresponding to sentences from
L�������� is represented the preferred inference relation is based on paraminimal models�
i�e� j
pm

mi �resp� j

pm
c if only consistent KBs are admitted�� as the following example illustrates�

Example � �Inclusive Disjunction� Let X 
 fq�c�� p�a� � p�b�g� From this KB we
want to be able to infer �p�c�	 but not �p�a� � �p�b�� However	 X �j
� �p�c�	 for � 
 c�mi	
but X j
m

� �p�c�	 since

Modm� �X� 
 ffq�c�� p�a�g� fq�c�� p�b�gg

and also	 X j
m
� �p�a� � �p�b�	 which is not wanted� Therefore	 we need paraminimal

reasoning�

Modpm� �X� 
 ffq�c�� p�a�g� fq�c�� p�b�g� fq�c�� p�a�� p�b�gg

and hence	 X �j
pm
� �p�a� � �p�b��

��� Compactness Properties
We conclude this section with the investigation of compactness properties� Let F 
 �L� I� j

!� be a model�theoretic frame� C� is semantically compact if for every set X � L the
following holds� if !�Xf� �
 
 for every �nite subset Xf � X then !�X� �
 
� In classical
logic compactness and semantical compactness coincide� For arbitrarymodel�theoretic frames
this is not longer true� The following facts clarify the relation between compactness and
semantical compactness� ! is strongly semantical compact i� for every set X � L and
formula � � L the following holds� if !�Xf� �Mod��� �
 
 for every �nite subset Xf � X

then !�X� �Mod��� �
 
� The following proposition shows the interrelation between these
properties�
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Proposition �� Let F 
 �L� I� j
�!� be a model�theoretic frame�

�� Assume �L�CI� is explosive� If C� is compact then it is semantically compact�

�� Assume �L�CI� is negation explosive� Then C� is strongly compact if and only if it is
compact�

Let C be an inference operation on the language L� and Cf be the 
nitary restriction of
C� i�e� dom�C� 
 fX � X � L� X is �nite g� and Cf�X� 
 C�X� for all �nite subsets X
of L� Let C be monotonic� and ���Cf��X� 


S
Y �Fin�X	Cf�Y �� �� can be considered as

an operator extending �nitary inference operation to in�nitary ones� and if C is monotonic
then ���Cf� � C� If C is monotonic and compact then ���Cf� 
 C� ie� C is uniquely
de�ned by its �nitary restriction via ��� In case C is not compact� but monotonic� ���C�
gives an approximation of C from below� If C does not satisfy monotony then there is no
well�de�ned operator � allowing to reconstruct the operation C from its �nitary restriction
Cf � To analyse this phenomenon we use the following notions from �Her����

De�nition �� Let �L�CL� be a deductive system� D�L�CL� 
 fC � �L�CL� C� is a deductive
frame g
 Df �L�CL� 
 fC � C is 
nitary and �L�CL� C� is a deductive frame g
 I�L�CL� 

fC � �L�CL� C� is an inference frame g�

�� A functor � � Df �L�CL� � I�L�CL� is said to be an extension operator if for every
C � D�L�CL� the conditions dom���C�� 
 �L and ��C� � Fin�L� 
 C are satis
ed�
� is called deductive if im��� � D�L�CL��

�� An inference operation C � �L � �L is ��compact i� C � ��Cf�
 C is completely
��compact i� C 
 ��Cf��

Abstract compactness properties can be expressed by conditions compcond�CL� C � Fin�L��
depending on C�CL and the �nite subsets of the language L� Important compactness prop�
erties are summarized in the following de�nition �DH�
��

De�nition �� Let �L�CL� C� be a deductive frame�

�� C is weakly compact i� for every X � L	 � � C�X� there is a 
nite subset A � CL�X�
such that � � C�A��

�� C is weakly supracompact i� for every X � L	 � � C�X� and every 
nite A � CL�X�
there is a 
nite set B	 A � B � CL�X� such that � � C�B��

�� Let F be an inference operation de
ned for 
nite sets only� �wsc�F ��X� 
 f� � for
every 
nite A � CL�X� there is a 
nite B such that A � B � CL�X� and � � F �B�g�

The concepts in the preceding de�nition are modi�cations and generalizations of com�
pactness notions introduced and studied in �FL�
�� The operator �wsc was introduced and
presented in �DH�
�� In the following we show that the extension operator �wsc is suitable
for analysing minimal reasoning in partial propositional and partial predicate logic�
The set Prop��� of propositional sentences over � is de�ned by Prop��� 
 L��� � f�����

��g�� Let V � Lit���� and Prop�V � the smallest set of formulas in L��� containing V and



�� Minimal Reasoning ��

closed with respect to �������� Obviously� Prop��� 
 Prop�Lit������ Given F � Prop���
then lit�F � 
 the set of literals fromLit���� appearing in F � and lit�X� 


S
flit�F � � F � Xg�

To simplify the notation let Mod�X� be the set of all coherent Herbrand models of X �
X � Prop���� For a set V � Lit���� let ModV �X� 
 fI � V � I � Mod�X�g� The deductive
frame under consideration is de�ned by �Prop���� IHc � j
�Modmc ��

Proposition �� Let V � Lit����	 F � Prop�V �	 and I � IHc � Then I j
 F if and only if
I � V j
 F �

Proof� We may assume that F is in negation form� The proof is inductively on the complexity
of F � We consider only the case F 
 �A� Let I j
 �A� then A �� I� hence A �� I � V �
this implies I � V j
 �A� Conversely� let I � V j
 �A� then A �� I � V � by assumption
A � V � hence A �� I� and this implies I j
 A� hence I j
 �A� The remaining cases are
straightforward� �

Proposition �	 If V � Lit����	 F � Prop�V �	 then X j
 F if and only if ModV �X� �
Mod�fFg��

Proposition �
 Let X � Prop���	 V � lit�X� a 
nite subset� Then there is a 
nite subset
B � Cc�X�	 such that lit�B� 
 V and ModV �X� 
 ModV �B��

Proof� ModV �X� 
 fI �V � I � Mod�X�g is a �nite set of cardinality � �card�V 	� For every
J � ModV �X� let d�J � 


V
J �

V
f�l � l � V � Jg� and F 


W
fd�J � � J � ModV �X�g�

Then B 
 fFg satis�es the desired condition��

Obviously� the model operator Modmc is semantically compact� since for every set X the
condition Modc�X� �
 
 implies Modmc �X� �
 
� In �PW��� it is shown that Cm

c is not
deductively compact� The following simpler example is due to J� Dietrich� Let Lit����
be in�nite� and fpi � i � �g an enumeration of Lit����� The set X is de�ned as follows
X 
 fp� � � � �� pi � �pi�� � p�� � � � i � �g� Then X j
m

c ��p� ! p��� If I � Modmc �X�
then I j
 �p�� m j
 p�� hence I j
 ��p� ! p��� For every �nite subset Xf � X holds
Xf �j
m

c ��p� ! p���

Proposition �� The deductive frame �Prop���� Cc� C
m
c �	 is weakly supracompact�

Proof Let X j
m
c F � A � Cc�X�� A �nite and lit�A�� lit�F � 
 fl�� � � � � lsg 
 V � By propo�

sitionh there is a �nite subset B � Cc�X� such that lit�B� 
 fl�� � � � � lsg and ModV �X� 

ModV �A � B�� Let J � ModmV �A � B�� then J � V � J can be extended to a model I � J �
I � Mod�X�� By proposition �� there is a minimal model I� � ModmV �X� such that I� � I�
By assumption I� j
 F � It is J � I�� since J is a minimal model of A�B� Then J j
 F i�
I� j
 F � hence A �B j
m

c F � �

Proposition �� Let X � Prop��� and F � Prop���� Following conditions are equivalent�

�� X j
m
c F 	

�� for every 
nite subset A � Cc�X� there exists a 
nite subset B � Cc�X� such that
lit�B� � lit�A� and A �B j
m

c F �
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Proof� The implication ��� � ��� follows immediately from proposition ��� We show
��� � ���� Using the preciding propositions we construct a sequence A�� A�� � � � � of �nite
sets Ai � Cc�X� such that lit�F � � lit�A��� lit�Ai� � lit�Ai���� lit�

S
i��� 
 lit�X�� and

Modlit�Ai	�Ai� 
 Modlit�Ai	�X�� Denote l�i� 
 lit�Ai�� Obviously� Cc�
S
i��Ai� 
 Cc�X�� By

assumption for every Ai there is a Bi � Cc�X� such that lit�Bi� � lit�Ai�� and Ai�Bi j
m
c F �

It is Modl�i	�Ai� 
 Modl�i	�Ai � Bi�� and since lit�Bi� � lit�AI� it follows Mod�Ai� 

Mod�Ai �Bi�� This implies Ai j


m
c F � i 
 �� �� � � ��

We show that X j
m
c F � Assume that this is not the case� Then there is a I � Modmc �X�

such that I �j
 F � Then I � l�i� is not minimimal for Ai for every i � �� Let Ii 
 I � l�i�
and %�i� 
 fJ � J � Modl�i	�Ai� and J is minimal for Ai� J � Ii�J �
 Iig� Obviously�
J j
 F for every J � %�i�� i � �� By assumption� the sets %�i� are nonempty for e every
i � �� For each k � � let '�k� 
 fJ � l�k� � J �

S
j�i %�j�g� Let be ' 


S
k�� '�k�� For

J � ' let be dom�J � 
 l�k� i� J � '�k� and for J��J� � '� J� v J� if dom�J�� � dom�J��
and J� 
 J� � dom�J��� Then �'�v� is a tree of �nite valency� Furthermore� if J � '�k�
and j � k then J � l�j� � '�j�� hence J � l�j� v J � By K$onig�s lemma there is an in�nite
branch B in �'�v�� and let K 


S
B� Obviously� K j
 F � because for every J � %�i��J j
 F �

and J � l�j� j
 F for every j � i� "From this follows K �
 I� Furthermore� K j
 X � since
K j
 Ai� for every i � �� We show that K � I� Assume this is not the case� Then there
is a v � XB��� such that v � K but v �� I� Then there is a i � � such that v � l�i�� By
construction� there is a J � %�j�� j � i� such that K� l�i� 
 J � l�i�� but J � I � l�j�� This
gives a contradiction� It follows K � I� which is a contradiction to the minimality of I� ��

Proposition �� �Corollary� Let �Prop���� Cc� C
m
c � be the deductive frame of minimal rea�

soning in partial propositional logic of coherent models� Then Cm
c is completely �wsc�compact	

ie� Cm
c 
 �wsc��Cm

c �f ��

�� Sequents and Stable Models

Traditionally� Gentzen sequents are used in a schematic way in sequent calculi� such as in 	�	�
in order to express valid transitions from one argument schema to another� In other words�
a sequent in a sequential inference rule stands for a whole class of propositional substitution
instances�
In this section� we propose to use sequents in a non�schematic way for the purpose of

representing rule knowledge� A sequent here is not a schematic but a concrete expression
representing some piece of knowledge�
We de�ne the following classes of sequents�

�� Seq���� 
 fs � Seq��� jBs�Hs � Lit���g�

�� Seq���� 
 fs � Seq��� jHs � Lit���� Bs � XLit���g�

	� Seq���� 
 fs � Seq��� jHs � L���������� Bs � L����������� j�	�g�


� Seq���� 
 fs � Seq��� jHs � L��������� ��
�� Bs � L����������� j�	� ��
�g�

We also de�ne S� 
 fs � S j card�Hs� 
 �g for every class of sequents S� For S � Seq����
and � 
 
� c� t� �� we de�ne the model operators




� Sequents and Stable Models ��

Mod��S� 
 fI � I���� � I j
 s for all s � Sg
ModH� �S� 
 fI � IH� ��� � I j
 s for all s � Sg
ModHmi�S� 
 fI � ModH� �S� � ��I � � ModH� �S� s�th� Inc�I��  Inc�I�g

and their minimal reasoning re�nements

Modm� �S� 
 Min�ModH� �S��
Modpm� �S� 
 Modpm� �Modm� �S�� S�

The associated inference relations are de�ned as follows�

S j
x
y F i� Modxy�S� � Mody�F �

where x 
 H�m� pm� and y 
 
� c� t� ��mi� and F � L����

Observation �� Let B � H be any sequent� Then	 for any I � I�	

I j
 B � H i� I j

�
B 	

�
H

This observation seems to imply that there is no big di�erence between sequents and material
implications� since for F�G � L� it holds that

Mod��F � G� 
 Mod��F 	 G�

However� for other model operators� such as stable models Modms
� �see below�� this is not the

case�

Example � Sequents di�er from material implication�

Modms
c ��p 	 q� 
 ffpg� fqgg �
 Modms

c ��p� q� 
 ffqgg

Observation �	 Let S � Seq be a set of sequents� Then	

ModH� �S� 
 ModH� ��S��

where �S� is the Herbrand instantiation of S�

Observation �
 Let S � Seq����	 and F � L���� be a closed existential sentence� Then	

S j
� F i� �S� j
� F

��� Paraminimal Models for Persistent Sequents
A sequent s � Seq� is called persistent� if all body formulas F � Bs are persistent� For in�
stance� all sequents from Seq� are persistent� For a set S of persistent sequents� its paramin�
imal models� Modpm� �S�� are the intended models� and thus j
pm

c �resp� j
pm
mi � are the natural

inference relations for consistent �resp� inconsistent� knowledge bases consisting of persistent
sequents�

Example 	 Let S 
 f� q�b�� � p�a�� p�b�� p�x�� �q�x�g� Since

Modpmmi �S� 
 Modpmc �S� 
 ffq�b�� p�a���q�a�gg




� Sequents and Stable Models �


we obtain for � 
 c�mi

S j
pm
� �q�a� � �p�b�

Observation �� For a sequent set S � Seq��	 where the head of a sequent consists of a
single literal	 and its body of a set of literals	 the notions of minimal and of paraminimal
models coincide	 and there is a unique minimal model	 denoted MS� Formally	

Modpm� �S� 
 Modm� �S� 
 fMSg

Proof� We have to show that the interpretationMS 

T
ModH� �S� is a model of S� Obvi�

ously� if it is a model� it is the least one�
Let �B � l� � �S� and MS j
 B� By persistence of B we have M� j
 B for every

M� � ModH� �S�� This implies that l � M� for every M� � ModH� �S�� and hence l � MS � �

��� Stable Models for Non�Persistent Sequents
When a knowledge base consists of a set of sequents S � Seq�� where body formulas may be
non�persistent� it may have �para�minimal models which are not intended� This is illustrated
by the following example�

Example 
 �Local Closed�World Assumption�
Let S 
 f� q�c�� � p�a�� p�b�� �p�x� � �p�x�g� The last sequent	 from �p�t� conclude
�p�t� for any term t	 expresses a local Closed�World Assumption which is only admissible
for exact predicates	 i�e� p � ExRel� Since we want to infer �p�c�	 the following paraminimal
models are not intended models�

M� 
 fq�c�� p�c�� p�a���p�b�g
M� 
 fq�c�� p�c�� p�b���p�a�g
M� 
 fq�c�� p�c�� p�a�� p�b�g

Therefore� we need a more re�ned preference criterion which allows to select the intended
models of a set of sequents from its Herbrand models�

De�nition �� �M��M�� 
 fM � IH� �M� �M�M�g

Recall that wrt a class of interpretations K � we write K j
 F i� I j
 F for all I � K � We
denote the set of all sequents from a sequent set S which are applicable in K by

SK 
 fs � �S� �K j
 Bsg

The following de�nition of a stable model is inspired by the de�nition of a stable closure of a
set of rules in �Wag�
a��

De�nition �� �Stable Model� Let � 
 c� 
� M� ModH� �S� is called a minimally stable
��model of S � Seq����	 symbolically M � Modms

� �S�	 if there is a chain of Herbrand
interpretations M� � � � ��M
 such that M 
M
	 and

�� M� 
 
�




� Sequents and Stable Models �	

�� For successor ordinals � with � � � � �	M� is a minimal extension ofM��� satisfying
the heads of all sequents whose bodies hold in �M����M�	 i�e�

M� � MinfI � IH� � I � M���	 and I j

�
Hs	 f�a� s � S�M����M�g

�� For limit ordinals 
 � �	

M	 

�
��	

M�

Paraminimally stable coherent models are de�ned accordingly �replacing in the de�nition all
occurences of �minimal�� resp� �Min�� by �paraminimal�� resp� �PMin���� The set of minimally
stable ��models of S is denoted by Modms

� �S�� and the set of paraminimally stable models of
S by Modpms

� �S�� A further interesting class of models is de�ned by Modpm� �Modms
� �S�� S��

Minimally inconsistent stable models are de�ned by

Mod�mi�S� 
 fI � Mod���S� � ��I
� � Mod���S� s�th� Inc�I

��  Inc�I�g

where � 
 ms� pms�

Example 
 �continued� Only the following three paraminimal models of S are stable�

M� 
 fq�c���p�c�� p�a���p�b�g
M� 
 fq�c���p�c�� p�b���p�a�g
M
 
 fq�c���p�c�� p�a�� p�b�g

and hence	 S j
pms
c �p�c��

Thus� j
pms
c �resp� j
pms

mi � will be our preferred inference relation for knowledge�based reason�
ing�

Example � �Default Rules� A default �resp� exception tolerant� rule can be expressed
by a combination of weak and strong negation� E�g�	 the rule �birds �normally� �y� is expressed
as

b�x�� ��f�x�� f�x�

If the knowledge base S contains in addition the facts that Tweety and Opus are birds	 b�T ��
b�O�	 but Opus does not �y	 �f�O�	 we can infer by stable reasoning that Tweety �ies�

S j
pms
mi f�T �

Paraminimally stable reasoning supports inclusive disjunctive information as the following
example shows�

Example � �Inclusive Disjunction� Let S 
 f� p � q � ��p � q�� r � sg� Then	

Modm� �S� 
 fpr� ps� qr� qs� pqg

Modpm� �S� 
 fpr� ps� qr� qs� pq� prs� qrs� pqr� pqs� pqrsg

Modms
� �S� 
 fpr� ps� qr� qsg

Modpms
� �S� 
 fpr� ps� qr� qs� pq� prs� qrsg




� Sequents and Stable Models ��

Stable models do not exist in all cases� For instance� S 
 f�p� pg has exactly one minimal
model� Modm� �S� 
 ffpgg� which is not stable� however� A sequent set� resp� logic program�
without stable models will be called unstable�

Example � S 
 fp 	 q � r� r� pg is unstable�

Observation �� Stable reasoning is not cumulative�

Proof� The following counterexample is due to �vG���� Let S 
 f�r � q � �q � r � �p �
p � �r � pg� Since Modms

� �S� 
 ffp� qgg� and S j
ms
� p� q� but Modms

� �S � fpg� 

ffp� qg� fp� rgg� and hence S � fpg �j
ms

� q� �

��� Extended Logic Programs as Sequent Sets
A sequent set S � Seq�� corresponds to an extended logic program �ELP�

(S 
 fl� B � �B � l� � Sg

The other way around� an extended logic program ( corresponds to a sequent set S� � Seq��
with

S� 
 fB � l � �l� B� � (g

For B � XLit���� let B� denote the set of literals which occur weakly negated in B� i�e�
B� �
 fl � Lit��� � �l � Bg� and let B� 
 fl � Lit��� � l � Bg� It holds that for any
B � XLit�� and any I � IH� �

I j
 B i� B� � DI & B� �DI 
 


De�nition �	 �Immediate Consequence Operator� Let ( be an extended logic pro�
gram	 and I � Lit be the diagram of I � IH� � Then

T��I� 
 fl � Lit� � ��l� B� � �(�	 s�th� I j
 Bg

is called the immediate consequence operator associated with (�

De�nition �
 �Gelfond�Lifschitz ����� Let M � Lit	 and ( be an ELP� Then the
Gelfond�Lifschitz transformation of ( with respect to M is de
ned as

(M 
 fl� B� � �l� B� � �(�	 and B� �M 
 
g

M is called an answer set of (	 if Modmc �(
M � 
 fMg	 and M 
 DM�

We shall show below that the de�nition of answer sets is just a specialization of our notion of
a stable model� The same holds for the de�nition of stable models of normal logic programs
in �GL���� Since these de�nitions are based on the Gelfond�Lifschitz�transformation (M

requiring a speci�c rule syntax they are not very general� as a consequence� Gelfond and
Lifschitz are not able to treat negation�as�failure as a logical functor� and to allow for arbitrary
formulas in the body of a rule� The interpretation of negation�as�failure as weak negation in
partial logic according to our stable semantics seems to be the �rst general logical treatment
of nonmonotonic logic programs��� It was already proposed by Wagner in �Wag��� Wag�
b��
but without the full generality of the stable semantics proposed in the present paper�

��There have been many meta	logical 
notably modal logic� proposals� though�



�� Conclusion ��

Proposition �� An answer set of an extended logic program ( is the diagram of a mini�
mally stable coherent model of the corresponding sequent set S��

Proof sketch� LetM � Lit be an answer set of an extended logic program(� i�e� Modmc �(
M� 


fMg� where M 
 DM� For (M 
 fl � B � �(� � M j
 Bg� the immediate consequence
operator T�M generates M as the supremum of the following chain�

M� 

�
���

M� � T�M �
�
���

M���

It is easy to see for all rules l � B � �(�� that M� j
 l whenever �M����M� j
 B� simply
because l � T�M �

S
���M�� whenever

S
���M� j
 B� It is also clear that M� is a minimal

�in fact� the least� such extension of M���� �

Proposition �� LetM � Modmc �S� be a minimally stable coherent model of a sequent set
S � Seq��	 then M 
 DM is an answer set of the corresponding extended logic program (S �

Proof� Let Modmc ��(S�M � 
 fM�g� We have to show that M� 
 M� Denoting M � 

DM� � we �rst prove that M � � M � Let l � M �� i�e� there is �l � B�� � (M � such that
M j
 B�� Then there is a corresponding rule �l � B� � �(S �� such that B� 
 B�� and
B� �M 
 
� and consequently M j
 B� implying that l �M �
Assume that M is generated by M� � � � � � M
� We show by induction on � that

M� � M � for � � �� For � 
 �� we have M� 
 
 � M �� For a sucessor ordinal � 
 � # ��
let l � M��� � M�� This means that l � fk � �A � k� � �S� & �M����M� j
 Ag�
Consequently� there is some rule �l � B� � �(S �� such that �M��M� j
 B� implying that
�l � B�� � �(S�M � Since by the induction hypthesis M� � M �� it follows that M� j
 B��
and consequently� l �M ��
Finally� let � 
 
 be a limes ordinal� Then M	 


S
��	M� � M �� since by the induction

hypothesis for all � � 
� M� �M �� �

Observation �� Since an ELP ( may have several minimal models	 it holds that in gen�
eral Modm� �(� �
 Modpm� �(�� However	

Modms
� �(� 
 Modpms

� �(�

Proof� There is exactly one minimal extension ofM��� satisfying all heads of sequents from
S�M����M�� namely M� 
 fl � Lit� � �l� B� � S�M����M�g� �

�� Conclusion

Partial model theory� being a natural generalization of classical model theory� is able to
capture many important distinctions arising in knowledge�based reasoning� such as explicit
falsity vs� non�truth� or exact vs� inexact predicates� At the object level� these distinctions
can be expressed by means of the two negations of partial logic� While the strong negation is
useful to express the explicit falsity or incompatibility of some piece of information� the weak
negation� as a non�persistent functor� can be used to express local Closed�World Assumptions
and default rules�



References ��

We have shown in this paper how the fundamental notions of minimal� paraminimal and
stable models in partial logic can be used to de�ne the semantics of knowledge bases including
relational and deductive databases� and extended logic programs�
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