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Such a usual concept like expectation or average is not straightforward to define
for random sets. This survey provides an overview of existing definitions of
expectations for random sets and figures with emphasis on their use in image
analysis.

1. INTRODUCTION

A sample of real numbers is the classical object of statistics. Such a sample
can be summarised in many different ways, for example, through its average,
sample median, sample variance, etc. These quantities estimate respectively
the mean, the median and the variance of the underlying distribution.

These classical numerical summaries have been successfully extended to the
area of signal processing, see, e.g., [6]. In signal processing values of a signal
around a point (in time) or pixel (in space) are used to produce summary
statistics. These statistics are often used to filter signals, for example, the
famous median filter returns the median of a signal’s values acquired through
a neighbourhood of a given time moment. Similar methods are used in image
analysis, since an image can be represented as a signal evolving in space rather
than time.

The very fact that a signal is a function explains close links with the func-
tional data analysis [26]. The latter tends to consider functions ‘in the whole’
rather than ‘locally’ or pixelwise. One of typical problems of the functional data
analysis is related to realignment (or synchronisation) of functions (curves) us-
ing the dynamic time warping [20].

A binary image can be also represented as a signal with two possible values
0 and 1. Unfortunately, this rigid structure of the set of possible values makes
it very difficult to apply effectively both filtering (averaging methods) from
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signal processing and the functional data analysis approaches. For example,
the average of several 0- or 1-valued functions may take values between 0 and 1.

When dealing with binary images it is often quite natural to view them as
indicators of sets which are also referred to as binary images. A single binary
image (or set) is usually filtered and summarised using methods coming from
mathematical morphology [14]. These methods are essentially non-statistical
and do not impose assumptions on the distribution of the image, although the
obtained summaries (e.g., granulometry) can be used as visual summaries for
classification purposes [2, 28]. If, additionally, we assume that the binary image
is obtained by sampling a ‘large’ stationary image through a bounded sampling
window, then it is possible to use statistical methods developed for some models
of stationary random sets and point processes [23, 30]. The relevant objective is
to estimate parameters of the underlying probability model for the image. Some
of the methods are designed for discretised images [12], while other assume that
the image is a closed set with non-empty interior [23].

A random closed set, X, is a random element whose values are sets; the
details are described in [30]. In this survey we always consider random closed
sets in the Euclidean space R?. Note that a random compact set is a random
closed set which is almost surely bounded (and thereupon compact).

While images representing a part of a ‘stationary’ or spatially homogeneous
patterns are common in texture analysis, material science and microscopy, there
are many cases when images cannot be represented as observations of station-
ary random sets. Therefore, statistical analysis of such images should rely
on several independent (or weakly dependent) observations rather than a sin-
gle realisation within a big window. In other words, the aim is to analyse a
sample of sets corresponding to a sample of binary images and interpreted as
independent identically distributed realisations of a certain random closed set.
Purposes of such statistical analysis could be: to average the sets, to explore
their variability, to fit a probability model, etc.

The situation is easy if the images are aligned, i.e. all features are in the
same relative positions with respect to the boundaries of observation windows
or other reference points. Small displacements represent little problem if they
do not have a systematic component and can cancel through the law of large
numbers.

However, in many interesting situations images are not aligned. For in-
stance, if a sample of sand grains is considered, then location or orientation of
a particular grain is of no relevance for the subsequent analysis. What matter
are the grains’ shapes and sizes. Roughly speaking, the shapes represent infor-
mation left after neglecting positions and orientation (and sometimes size) of
sets, so that two shapes are identical if the corresponding sets can be super-
imposed using rigid motions (and sometimes scale transformations). Instead
of observing shapes we deal with sets which represent relevant shapes. In this
case we speak about a sample of figures rather than a sample of sets, so that
each set ‘represents’ the corresponding figure.

A sample of non-aligned images (or shape representatives) must be first
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realigned with subsequent application of statistical methods for a sample of
sets. It should be noted that there are various alignment methods and the
choice of a particular method usually depends on the statistical (or averaging)
techniques applied afterwards [31]. In statistical shape analysis [29] the concept
of shape roughly corresponds to our concept of figure, apart from the fact that
we usually exclude scale transformations from consideration.

A simple random set is obtained as an unordered collection of random
points X = {&,...,&}. These k points can be interpreted as landmarks; if a
specific order of them is prescribed, then we end up in the framework usual in
the statistical theory of shape. However, random sets offer substantially more
flexibility in comparison with the classical statistical studies of shapes given
as collections of points [7, 19, 29]. For instance, a random set framework can
be used when it is difficult to identify natural landmarks (so that, perhaps,
the whole set should be a ‘landmark’), or when the numbers of landmarks are
different for different shapes (like polygons with different numbers of vertices),
or when some landmarks are missing.

2. EXPECTATIONS OF RANDOM SETS

A general construction. Such a natural concept like expectation or average
is not straightforward to define for random sets. The space F of closed sets
(as well as the space K of compact sets) is non-linear, so that conventional
concepts of expectations in linear spaces are not applicable directly to deal
with random closed (or compact) sets. Sets have different features (that often
are difficult to express numerically) and particular definitions of expectations
highlight particular features important in different contexts.

Further, X is an almost surely non-empty random compact set in R¢. Dif-
ferent realisations of X may be quite different and have no ‘common features’
which could be used as a ‘platform’ for averaging. For example, if X takes
values {0} and {0, 1} with probabilities 1/2, or X takes values {0, 1} and [0, 1],
with equal probabilities, then it is quite difficult to come up with an ‘intuitive’
definition of expectation for X.

Clearly, different definitions of expectations utilise different features of the
realisations of the random set X. The situation can be explained by the fol-
lowing lucid example. Imagine that X is a ‘cat’ with probability 1/2 and a
‘dog’ otherwise. Clearly, it is pointless to average them, there is no known
animal that might serve as their average. However, on the second thought, the
question becomes sensible if we aim to average several features of a ‘cat’ and
a ‘dog’ (weight, tail length, etc.) and then find an existing animal with the
features matching the obtained averages as exactly as possible.

The above described approach is the most common to define expectations
of random sets. With a random compact set X we associate a random element
¢x taking values in a Banach space £. This is done by mapping K into &, so
that £x becomes the image of X under this embedding. For example, K can
be mapped into the line R (so that & = R) by taking Lebesgue measures of the
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elements of K.
Then the expectation of {x is defined in £ with the aim to ‘map it back’
into IC, as the following diagram shows:

X —random set, X € X — &x — random element in &

+ (1)

inverse image of Eéx «— Efx

However, in many interesting cases E{x has no inverse image, so that in-
stead of the ‘exact’ (or ‘ideal’) inverse image of E£x one takes a deterministic
set K such that &k is as close as possible to Ex. Several examples of this
construction are given below.

Aumann expectation. This definition relies on representation of X through its
support function

h(X,u) = sup{(z,u): v € X}, ueR?,

where (z,u) is the conventional scalar product. Assume that E||X|| is finite,
where || X|| = sup{||z|| : * € X} is the norm of X. Then

Eh(Xv U) = h(EA(X)) u)

is again the support function of a compact set Ex(X) called the Aumann
expectation of X, see [4, 32, 33]. The corresponding space £ is the space of
square integrable functions on the unit sphere (it suffices to consider u with the
unit norm only); and the expectation E€x = Eh(X, ) has the unique inverse
image in the space K.

Alternatively, the Aumann expectation of X is defined as the set of all ex-
pectations E(, where ( is a random vector such that ( € X almost surely. Such
a random element ( is called the selection of X. It follows from Lyapounov’s
theorem on vector-valued measures that both definitions yield the same set if
the underlying probability space is non-atomic, see also [27]. This definition
works well for convex random sets, while if X is non-convex (and even non-
random), then E (X) coincides with the expectation of the convex hull of X.
For instance, if X = {0,1}, then ExX = [0, 1].

The Aumann expectation is very popular in the studies of multivalued func-
tions. It also can be used to define set-valued martingales, see [1, 8, 18, 24, 25].
A generalisation which handles more naturally both atomic and non-atomic
probability spaces was suggested in [34].

Vorob’ev expectation. This definition is based on representation of X through
its indicator function {x(z) = lx(z), * € R?, so that £ is the space of in-
tegrable functions on R?. The expectation of the indicator function is the
coverage function

px(z) =P{z e X}.
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Assume that p(X), the Lebesgue measure of X, has a finite expectation, so
that

Eu(X) = / px(x)dr < 00.
Rd

It should be noted that px(z) is not an indicator function anymore, so that
E{x has no ‘exact’ inverse image in the space K. This situation is quite typical
in many definitions of expectations and is usually circumvented by finding a
deterministic compact set K such that {x ‘mimics’ E£x as exactly as possible.
Since it is very difficult to solve minimisation problems parametrised by K
running through the whole family /C, one usually searches through a sub-family
of I, which is often determined by E&x itself. In the current setup, possible
‘candidates’ are provided by thresholded sets of the coverage function,

L,={zeR": px(z) >p}.

The Vorob’ev expectation is defined by Ev (X) = L, for p determined from the
inequality

p(Ly) < E@X)) < p(Ly), forall ¢>p,

see [32]. In other words, EvX is the thresholded set of the coverage func-
tion such that its Lebesgue measure is as closest as possible to Eu(X). Note
that this definition treats singletons as well as sets of almost surely vanishing
Lebesgue measure as uninteresting.

Radius-vector expectation. The radius-vector expectation [32] is applicable for
star-shaped sets. This expectation is defined by the expected values of the
radius-vector function, rx (u), of X (that represent the boundary of X in polar
or spherical coordinates) for u from the unit sphere. The major shortcoming is
the necessity to work with star-shaped sets and the non-linearity with respect to
translations of the sets. This means that the expectation is essentially different
for different choices of the reference point (or the polar origin) within X, see
[21].

Distance average. A random closed set X corresponds to its distance function
¢x(x) = p(x, X) which equals the Euclidean distance from z to the nearest
point of X, so that £ becomes the space of continuous functions on R%. It is
easy to show that the expected distance function

d(z) = E(p(z, X))

is not a distance function of a deterministic set (unless X is deterministic itself).
A suitable thresholded set of the expected distance function d(z) can serve
as the mean of X. The distance average X is the set

X(e) ={z:d(z) <e},
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where € > 0 is chosen to minimise
m(d, p(-, X (¢))) = sup{|d(z) — p(z, X (e))| : = € R'}, (2)

see [5] for details and further generalisations. In particular, it is possible to
use the signed distance function ps(z, X) instead of p(z,y), so that ps(z, X)
is equal to the difference between the distance function of X and its comple-
ment. Furthermore, the distance m in (2) could be the L? distance between the
corresponding functions instead of L* metric used in (2). If X is a subset of
W C R?, then it is possible to rewrite the definition for the functions defined
on W.

It should be noted that this approach allows us to deal with sets of zero
Lebesgue measure, since the distance function is non-trivial in this case. Dis-
tance average has a serious potential in imaging applications because it can
deal with non-convex sets and also is not computationally expensive, see [5].
It is also possible to use an analogue of distance average to threshold grey-
scale images, see [10]. Then the threshold appears at the level such that the
corresponding distance function approximates the expected distance function
of a random set obtained by thresholding at a random height U. Note that
the Vorob’ev expectation in this context leads to naive thresholds, where the
threshold level is chosen in such a way that the measure of the thresholded set
equals the integral of the image (if U is uniformly distributed over the range
of grey levels) or half the measure of the window (if U is distributed according
to the histogram of the image).

Evaluations and expectations. Another approach to define expectations of gen-
eral lattice-valued random elements (in particular, random sets) was elaborated
in [15], see also [22, Chapter 2]. Let U be a family of evaluations which are
functions mapping F into R. Then 6,(F) = {u(z) : =z € F}, F € F, and
euly) = {z € RT : wu(z) < y}, vy € R, form a pair (g4,d,), which is an
adjunction between F and R, see [14]. The expectation is defined as

EuX = (] cu(Bdu(X)). (3)
uelU

If X is a deterministic set, then EyX is called the U-closure of X. For instance,
the Aumann expectation is obtained if U is the family of support functions,
and the U-closure becomes the convex hull. In this approach £ is the space of
all real-valued functions on U. However, instead of finding the inverse of E{x
by minimisation, the approximate inverse image is computed directly by (3).

Doss expectation. The Doss expectation, Ep (X)), is defined by
En(X) = {y: plz,y) < Bpu({a}, X) for all z € B},

see [9, 16]. The Doss expectation is a particular case of EyX, if U is the family
of functions p(x,u), u € R?. Since Ep(X) equals the intersection of all balls
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with radius Epg({z}, X) centred at 2 with z running through R?, it is easy
to see that Ep(X) is convex and the Doss expectation is ‘compatible’ with the
standard definition of the expectation if X is a random singleton. The Doss
expectation can be also used to define set-valued martingales, see [17].

Fréchet expectation. It is possible as well to explore the metric structure on the
family K of compact subsets of R? that is determined by the Hausdorff metric

pu(K,Ky)=inf{r >0: K C K{,K; C K"},

where K7 is the r-neighbourhood of K. Now a set K = K € K that minimises
E(pu(X,K)?) for K € K is said to be the Fréchet expectation of X. This
approach is very general and can be used if py is replaced by another metric
on K. Unfortunately, in most practical cases it is not possible to solve the
basic minimisation problem, since the parameter space K is too rich. Also the
Fréchet expectation can be non-unique.

A toy example. Let X be a random subset of the real line so that X takes
values [0,1] and {0, 1} with probabilities 1/2. Then EAX = EyX = EpX =
[0,1], the radius-vector expectation is not applicable, the distance average is
[—1/8,1/8] U [7/8,9/8], and the Fréchet expectation is [0,0.4] U [0.6,1]. In
this case, the latter seems to reflect the best the true character of the mean
for X, since the Aumann, Vorob’ev and Doss expectation do not respect the
possibility of X being {0, 1}, while the distance average is not a subset of [0, 1].
Unfortunately, for more complicated examples the Fréchet expectation becomes
very difficult to compute.

3. PROPERTIES OF EXPECTATIONS

A classification of basic properties. It is possible to formulate several basic
properties of a ‘reasonable’ expectation E(X) of X. The first group of the
properties is related to inclusion relationships.

A1l If X is deterministic, then EX = X.
A2 If K C X a.s., where K is deterministic, then K C EX.

A3 If X C W as. for a deterministic set W (perhaps, from some special
family), then EX C W.

A4 If X CY as., then EX C EY.

Clearly, A2 and A3 imply A1, while A1 and A4 yield both A2 and A3.
The second group consists of the properties related to invariance with re-
spect to some transformations.

B1 If X is distribution-invariant with respect to a certain group G (which
means that gX and X have the same distribution for each g € G), then
the expectation of X must be invariant with respect to G.
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B2 Translation-equivariance: E(X + z) = EX + z.
B3 Homogeneity: E(cX) = cE(X).

The third group of properties relates expectations of sets and ‘usual’ expec-
tations of random variables and vectors.

C1 If X = {¢} is a random singleton, then EX = {E¢}.

C2 If X = B,(&) is a ball of random radius n and centre &, then EX =
Bgy, (E¢).

C3 If X = conv(&y,...,&,) is the convex hull of a finite number of random
points, then EX = conv(E¢&, ..., EE,).

C4If X = {&,...,&} is of a finite set of random points, then EX =
{E&, ... ,E&, )

Note that some of these natural properties are non-compatible and have
far-reaching consequences. For example, A4 and C1 imply that EX 3 E¢ for
each selection £ € X, so that EX should contain the Aumann expectation of
X. For instance, it is possible to see that the Doss expectation satisfies C1 and
A4, whence it contains the Aumann expectation. However convexity of both
Aumann and Doss expectations severely restricts possible applications, e.g. in
image analysis, where most images are non-convex. The distance average seems
to be the most versatile expectation, which can have a wide range of possible
applications in image analysis.

Averaging and laws of large numbers While the above mentioned expectations
are derived from the probability distributions of random sets, in practice they
are estimated as averages if a sample of independent identically distributed
realisations is given. Such a sample of sets X1, ..., X, can be interpreted as a
random closed set X which takes the enlisted values with equal probabilities
1/n. This allows us to reformulate all expectations for samples of sets. In
statistical language this approach means substituting of the empirical distri-
bution instead of the theoretical distribution of X. The corresponding ‘naive’
estimators are unbiased for the case of Aumann expectation and radius-vector
average and asymptotically unbiased in other cases.

For instance, if the Aumann expectation is chosen, then it is estimated by

X’n: Xl@"'@Xn’
n

since the Minkowski addition of convex sets corresponds to addition of their
support functions. If E||X;|| < oo, then the strong law of large numbers for
random sets [3] states that X, converges to o X almost surely in the Hausdorff
metric as n — 00.
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4. AVERAGING OF FIGURES

Typically, the starting point for statistical analysis is a sample of i.i.d. real-
isations of a random compact set. If positions of the sets are known, then
we speak about statistics of sets, in contrast to statistics of figures when loca-
tions/orientations of sets are not specified. This means that the positions of
the sets are irrelevant for the problem and the aim is to find the average shape
of the sets in the sample. Such a situation appears in studies of particles (dust
powder, sand grains, abrasives etc.).

At the first approximation, one can characterise the shape of a compact
set X by numerical parameters, called shape ratios, see [32]. For example,
the area-perimeter ratio (or compacity) is given by 4rarea(X)/perimeter(X)?,
circularity shape ratio is the quotient of the diameter of the circle with the
same area as X and the diameter of the smallest circumscribed circle of X.
All these shape ratios are motion- and scale-invariant, so that their values do
not depend on translations/rotations and scale transformations of X. In the
engineering literature it is usual to perform statistical analysis of a sample of
sets X1, ..., X, by computing several shape ratios for each set from the sample.
This yields a multivariate sample, which can be analysed using multivariate
statistical methods. It should be noted that the distributions of the relevant
measurements are not known in most cases, so that non-parametric statistical
methods are the best suitable for statistical analysis of such samples.

If an observer deals with a sample of figures rather than sets, then the
definitions of expectation of a random compact set are not directly applicable
or are not informative. For instance, the images of particles are isotropic sets,
whence the corresponding set-expectations are balls or discs.

The approach below can be found in [31]. It is inspired by the studies
of shapes and landmark configurations, see [7, 29]. Two compact sets are
equivalent if they can be superimposed by a rigid motion (scale transformations
are excluded). Then a sample of sets (that represent the corresponding figures)
must be transformed in order to place them ‘close together’, and then a set-
theoretic mean could be determined for the transformed sets. If X7,..., X, is
a sample of sets which ‘represent’ the corresponding figures, then the aim is to
‘move’ these sets in such way that the results X7,..., X are ‘closed together’
or ‘aligned’.

Remember that (1) defines expectation of X through a map into a linear
space £. Assume that £ is a Hilbert space. Motions of sets (translations,
rotations, etc.) give rise to transformations of functions in £. For example, if
w is rotation, then the support function of X is transformed as

h(wX + z,u) = h(X,w tu) + (z,u). (4)

Then motions of sets Xi,...,X,, correspond to transformations of the asso-
ciated functions {x,,...€x, . Such associated functions are typically used to
defined the average

E=n""(x, + +Ex,)
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and then find a set X such that &y is the closest (in some sense) to €. This
implies that the functions rather that the sets themselves should be ‘closed
together’ in the corresponding norm. This allows us to use simple geometrical
facts of Hilbert space theory (applied to elements of £) in order to characterise
the families of functions in ‘optimal relative position’.

To be general enough, let 7 be an abstract Hilbert space, and let G be
a group of isometric transformations acting on H. Two elements of H are
equivalent if they can be superimposed by actions of G, or, in other words,
if they belong to the same orbit generated by G. The procrustean distance
between two elements is given by

= inf ||z — gy|| .
pr(x,y) = inf [z — gyl

This definition goes back to the theory of shape where the group G often
includes non-isometric scale transformations, see [11, 13].

A finite set of points x = {z1,...,2,} C H is called a configuration. Now
the aim is to determine transformations g = {g1,...,9n} C G such that the
elements of the transformed configuration gx = {¢121,...,9.2,} are close
together. A possible goal functional is the inertia of configuration

Ix)= Y llo -l

1<i<j<n

If
I(x) = Jnf, I(gx), (5)

then the configuration x is said to be in optimal relative position (with respect
to G).

It is easy to show (see [31]) that I(x U {y}) is minimal over y € H if and
only if

y=%x=n""(x1 4+ + )

is the (arithmetic) mean of the points from x. However, it is not the arithmetic
mean which is of interest when computing the average of several figures. In the
latter case one seeks the relative mean xg which is a set of all points b € H
such that

Jnf (I(gx U {b}) — I(gx)) = inf inf (I(gxU{y}) - I(gx)).

It is shown in [31] that x is in optimal relative position if and only if x € x¢
and foreachi=1,...,n

[l = %[ = pp(2i,%) -
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The latter means that each of z; is in (pairwise) optimal relative position with
the arithmetic mean X. This result explains that finding the relative mean
is equivalent to finding the arithmetic mean if the configuration is in optimal
relative position.

In order to bring x to its optimal relative position, one has to find g C
G which provides the global minimum for the right-hand side of (5). This
complicated optimisation problem can be simplified in several cases. In the
most versatile case, let g € G allow representation as g = ¢'¢g” with ¢’ and ¢"
belonging to other groups G’ and G" respectively. Furthermore, assume that
each g’ € G' corresponds to a point | = I(g') € L C H such that ¢’z = x +1
for all x € H with L being a linear subspace in H; and G' consists of linear
operators such that ¢’ C L. Then x is in optimal relative position with
respect to G if and only if

Prp &1 =prp T2 = --- =PIy Tn,

where pr; x denotes the orthogonal projection of z onto L; and the configura-
tion of ‘residuals’:

o __
x° ={xy —pr,T1,...,&n — Pr Tn}

is in optimal relative position with respect to G". In applications, G’ becomes
the group of translations and G" the group of rotations. This result allows us to
find the optimal translations explicitly while the rotations are to be determined
via a numerical optimisation problem.

For example, if convex compact sets are described by support functions,
then the group of proper motions of sets corresponds to a group acting on
the space of support functions as shown in (4). It was proven in [31] that
the ‘optimal’ translations of convex sets Xy, ..., X, superimpose their Steiner
points

1

/ (X, wudu, i=1,...,n,
llull=1

where by is the volume of the unit ball in R¢.

To find the optimal transformations in the general case, it is possible to
use an iterative algorithm, described in [31]. On each step it computes the
arithmetic mean of x and then brings each point z; as close as possible to the
computed mean using admissible transformations from G in order to obtain
another configuration which is used to initiate the next step of the algorithm.

5. CONCLUDING REMARKS

Since there is no universally applicable concept of expectation for random sets,
the choice of a particular definition depends on the objective. In many cases,
geometric properties of realisations of random sets entail the first choice of ex-
pectation and at the same time rule out some other definitions. For example, if
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realisations are convex, then the Aumann expectation is the only natural choice,
since it works very well for convex random sets and at the same time has de-
sirable theoretical properties. If realisations are star-shaped, the radius-vector
expectation is quite natural, but a lack of natural candidates for the reference
points (polar origins) within the sets can cause considerable problems in prac-
tice. If all realisations are accessible through some numerical measurements
only, then the approach based on evaluations becomes the first choice. In im-
age analysis, the distance average yields sufficiently good results, as it does not
rely on specific geometric properties of the sets (or images), which often are
impossible to impose in real imaging applications. The Fréchet expectation is
a very general and natural definition, but it is very difficult to use because of
computational problems.
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