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Boundary Layer-Adapted Grids and Domain
Decomposition in Stabilized Galerkin Methods for Elliptic
Problems

R. Hangleiter and G. Lube
University of Géttingen,
Mathematics Department, D-37083 Géttingen
e-mail: lube@math.uni-goettingen.de

Global error estimates are considered for stabilized Galerkin finite element meth-
ods to second order elliptic boundary value problems with emphasis on the sin-
gularly perturbed case. We address the resolution of boundary layers on layer-
adapted grids using both anisotropic interpolation estimates and sharp estimates
of derivatives. A critical point is the choice of numerical damping parameters.
A non-overlapping domain decomposition method is considered for an efficient
solution of the discrete problems.

1. INTRODUCTION

We apply stabilized Galerkin finite element methods to elliptic boundary value
problems of second order (advection-diffusion-reaction model), with empha-
sis on singularly perturbed problems. Such problems appear e.g. within the
iterative solution of coupled incompressible Navier-Stokes problems [5], [16].

The Galerkin method may suffer from numerical instabilities generated by
dominant advection/ reaction. Hughes et al. introduced the concept of stabi-
lized Galerkin methods which combine improved stability and accuracy due to
a residual formulation. The numerical analysis of such methods is more or less
restricted to quasi-uniform meshes so far, but in the singularly perturbed case
it is often desirable to resolve boundary or interior layers [20], [21].

The outline of this paper is as follows: In Section 2 we review a class of
stabilized Galerkin methods, derive a basic quasi-optimal estimate and give a-
priori error estimates on quasi-uniform meshes. In the singularly perturbed
case, we try to resolve boundary layers. A modified application of the quasi-
optimal estimate using asymptotic expansions is addressed in Section 3 for
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a 2D model in combination with a-priori generation of layer-adapted grids
and (anisotropic) interpolation estimates for exponentially decaying boundary
layers (cf. Section 4). In Section 5 we present a non-overlapping domain
decomposition method, with application to numerical experiments.

For a subdomain G C Q we denote by W#*?(G) the usual Sobolev space of
functions with derivatives of order < k belonging to LP(G). The norm resp.
seminorm on WP (@) are denoted by || -||x.p.c resp. |*|kp.c- (-,*)c is the inner
product in L?(G@). In case of G = Q we usually omit the index . C' denotes
a generic constant not depending on singular perturbation and discretization
parameters.

2. STABILIZED GALERKIN METHODS
2.1. Continuous problem
Consider the following elliptic boundary value problem

Lou:=—-eAu+b -Vu+cu = f in Q (1)
u = 0 on 0N (2)

on a bounded domain Q@ C R%,d < 3 with a Lipschitzian boundary 89 and
outer normal n.

Of particular interest is the singularly perturbed case 0 < ¢ < 1 where
the solution of (1)-(2) is mainly characterized by the solution wug of the limit
problem for ¢ = 0. Different kinds of interior resp. boundary layers of the
solution of (1)-(2) can appear in subregions where ug is not smooth resp. where
ug does not satisfy (2). In particular, boundary layers may appear at outflow
parts I'y. of Q2 where b -n > 0 or at characteristic parts I'g with b-n = 0.

Throughout this paper, we assume for problem (1)-(2):

(Hla) 0<e<l1l, beWbh*()? ceL>®(), feL*Q)
(H1b) ¢>0, V:-b=0 ae. in Q.
A weak solution u € V := W, () of (1)-(2) satisfies
Find v € V such that: Bg(u,v) = (f,v), YweV (3)

Bg(u,v) := (eVu, Vo) + W ((b-Vu,v) — (b-Vuv,u)) + (¢ u,v) (4)

(using integration by parts of the advective term). The standard energy norm
reads

1/2
Ilollle == V/Ba(v,v) := (e[vlip,0 + IVevll 20) " - (5)
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2.2. Stabilized Galerkin methods
We consider Lagrangian elements on simplices K C R? of an admissible trian-
gulation T, = {K} with @ = U K. IT;(K) is the set of polynomials of maximal
degree [ > 1 on K. The Lagrangian interpolant of a continuous function v is
uniquely determined by Abm:ev (z;) = v(x;) for all nodal points of K.

Let Vj, C V be the finite—dimensional subspace of conforming finite elements
such that V3 |k C II;(K). The standard Galerkin method reads

Find w, € V}, such that : Bg(un,vn) = (f,vn), Yup € V. (6)

For later extension on possibly different sizes of the element in different
directions, we introduce some notation, cf. Figure 1: For K C R? let Ex be
the longest edge of K. Then we denote by hi r := meas(Eg) its length and
by ho i := 2meas(K)/hi k the diameter of K perpendicularly to Ex.

In the 3D-case we proceed as follows. Let again Ex be the longest edge of
K, and let Fx be the larger of the two faces of K with Fx C Fg. Then we
denote by h; g := meas(Ef) the length of Ex, by he i := 2meas(Fg)/h1, i the
diameter of Fx perpendicularly to Ex, and by hs x := 6meas(K)/(h1,xh2 k)
the diameter of K perpendicularly to Fx. Then holds hy x > .... > hg k.
Later on, an element K will be called isotropic if hy i & hq i resp. anisotropic
if hy k> ha.k.

Throughout this paper, for interpolation estimates on an element K we
require the
MAXIMAL ANGLE CONDITION. There is a constant v* < w (independent of h
and K € Ty) s.t. the mazimal interior angle yx of any element K is bounded
by v*: vk <"

The 3D-condition can be formulated by analogy [3]. Then we have with 1, :=
u—1T Mc: the following interpolation result on arbitrary elements:

Vu € WHY(EK) 2 Inullme.x < ChE ™ uliyron 0 <m <141, VK € Ty.(7)

In the singularly perturbed case 0 < € < 1, it is often useful to stabilize
unphysical oscillations of the discrete Galerkin solution. Using that under
assumptions (H.1) a solution u € V satisfies L.u = f in L?*(2), we consider
stabilized Galerkin methods of residual type

Find U, € Vi, such that Bsq(Un,v) = Fsa(v) Vv € Vy (8)
Bsq(v,w) = Ba(v,w)+ WU (Lev, (w)) 5

Fsa(w) = f(w)+ WU (f;¥(w))g » (9)
Y(vp)|x := 6 (b - Vv + v (—eAwy, + cvp) € L*(K), (10)

with 0 < |vk| < 0k, a unique sign of all yx and the following minimal design
properties
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(H.2) 30 €(0,0): (i) edxC? < m@wk« ;o (id) dke< 4 ae. in Q

where © = 3 if infx yx > 0 and © = £ if supg 7k < 0. The constant C (with
Cr=0if I = 1) appears from the inverse inequality

|Av[lo2,x < Crhglvhio g Vv € Vi
Assumption (H.2) covers in particular
- the streamline upwind method (SUPG) with i >0, vk =0,
- the Galerkin/ Least-squares method (GLS) with dg = vk > 0 and
- the Douglas—Wang method with g = —yx > 0.

The Galerkin approach corresponds to dx = yx = 0. The critical point is the
choice of the sets {0k} and {7k} such that (8)-(10) yields a stable and accurate
method.

2.3. Quasi-optimal energy norm estimates on arbitrary grids
We introduce the following stabilized energy norm ||| - |||sc defined by

olllEe == lollIE + Y dxcllb - Vollg 5+
K
+ Yy max (0;sgn(yx))l| — £A0 + cvl[§ o5
K

and

T3%(w) ==Y 0xlb-Vollgairs T5(0) := Y Iyl Il —eAv+evlfg o, -(12)
K K

Additional stability of the skew-symmetric part of the operator (or weighted
control of the streamline derivative) is the main effect of the stabilization. We
start with the following more or less standard stability and continuity estimates,
cf. [9], [19], [21].

LEMMA 2.1.  For vy € V}, we obtain under the assumptions (H.1), (H.2):
Bsq (vn,vn) > Co(@)||vnlléa (13)

si@@n?éiqEiww@giQ&SHTQSyQQVnwe+
V0% +460) if supg vx < 0. Consequently, the stabilized schemes (8)-(10) are

uniquely solvable.

Now we introduce the notation

Bk :=[|bllo,co,kxs Ck = l|cllo,00,ks ZKk :=min Qw\mfmwmmluv. (14)
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LEMMA 2.2. For u € V with Au € L*(K),YK € T; and v € V}, we obtain
under the assumptions (H.1), (H.2) that

Baa(wo)l < U2NellEe + 5 5 @solw) (15)

Qsa(w) = |ulllE+T5 (W) + T (w) + Y Zllulls .« (16)
K

K

with K = 3 if infgyx > 0 resp. K =6 if supg vk < 0 and the obvious
definition of ﬁw%.v“ cf. (12).

For the stabilized methods (8)-(10), then we have the following variant of Cea’s
Lemma.

THEOREM 2.3. The assumptions (H.1)-(H.2) imply the quasi—optimal a-priori
error estimate of the stabilized Galerkin methods (8)-(10)

llu = Unlllse < C Qsa(u— I u) (17)

where C denotes a constant which is independent of ¢, h,0k, and vix. Note
that in particular Qsa(v) := |||v]||l¢ and C =1 if 6k = vk =0, b =0.

PRroOOF. Let
ep, =Up—u= AQF — N\mC:v + AN\MC: - ﬁv =Xn+ M

where %v : V' — V}, denotes the Lagrangian interpolation operator. By Lemma
2.1, Lemma 2.2 and the consistency of the methods, we obtain

Colllxnllke¢ < Bsa(xn,xn) = Bsa(en — nn, xn) = —Bsa(Mn, Xn)
Co
< w___x:___wo‘ +
K
+ = lnalllE + T35 () + H@ (nn) + MU Zrc|nnllg 2.5
2C =

The triangle inequality and (16) conclude the proof. O

2.4. Energy norm stimates on quasi-uniform grids

Now we give an error estimate on quasi—uniform grids where hg =~ hi k = hq K
and determine the parameters é x and yx. Note that we introduce (with respect
to the anisotropic case in Section 4) a modified definition of the mesh Péclet
number

Peg = F&RA@WMIH. Ava

THEOREM 2.4.  Let the solution of (1)-(2) be smooth according to w € V N
WHHL2(Q) and the triangulation Ty quasi-uniform such that for each element
K holds hx = hi,k = hq,x. Then, under the assumptions (H.1)-(H.2) and
with the choice
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_Q\W_ < dg ~ min QW&MNNWHW kaﬂmlpvu (19)

the a-priori discretization error estimate of the stabilized Galerkin methods
reads

llu=Unlllte < CD_ hi (e + Bichic + Crchiye) [ulfr 0,5 (20)
K

ProoF From Theorem 2.3 and the approximation result (7) we conclude using
(H.2)(ii)

llenllZe < C { ImalllE + TS () + Ti§ (0n) + D Ziclmallg 2,5
K

AN

< CY 'k (e +Ckhi g + 0k By + Zichi k) |ulfys 5 k- (21)
K

Balancing the terms dx B% ~ NN@WN = bwkm min QWHWNWmLY we arrive
with the mesh Peclet number as in (18) at dx ~ FﬁmmMmH if Peg > 1 and

S ~ bwkmm\p if Pey < 1. Note that this definition gives no contradiction to
(H.2). This concludes the proof. ad

REMARK 2.5. (i) In the weakly anisotropic case hy g /hax =: Tk <T for all
K € 7T, such that I % 1 which allows for local mesh-refinement, we have the
modified estimate

Il = Unlllse < C > b3 (e + Tk Bichi + Crchiye) |ulf 0 - (22)
K

(ii) In contrast to other papers (e.g. [7], [15]), we did not include the reaction
term in the design of the parameters i and yx. The main point is that, in the
symmetric case the quasi-optimal estimate in the energy norm ||| |||¢ with the
optimal constant C' = 1 of the Galerkin method cannot be improved. For linear
elements, it is wrong to use the GLS method, as numerical dissipation is then
substracted instead of being added to the Galerkin method. We did not find
an improvement with the Douglas-Wang variant in numerical experiments [2].

3. AsympTOTIC EXPANSION OF THE CONTINUOUS PROBLEM

In the singularly perturbed case 0 < ¢ <« 1, the estimates of Theorem 2.4
are in general not satisfactory. The interpolation estimate in (17) requires
information on local Sobolev norms of the solution which are in general not
uniformly bounded with respect to e — +0.

Stabilized Galerkin methods have the advantage of high accuracy away from
boundary and interior layers where the solution is smooth [22], [13]. Different
methods have been proposed to remedy (restricted) oscillations of the discrete
solutions of stabilized Galerkin methods in layer regions, e.g. methods of shock-
capturing type [4] or methods using stabilizing terms of higher order [8], [24].
Such methods are in general not satisfactory to resolve layers.
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In the remainder of this paper, we combine stabilized Galerkin methods
with the resolution of layers (as important point in practical computations).
Therefore we modify the application of the quasi—optimal estimate of Theorem
2.3 using the asymptotic expansion v = u}j + ry with a sufficiently small
remainder rps:

llu = Unlllse < C{Qsa(ugi — IV ush) + Qs (ra — I ran) b (23)

It is often possible to find estimates of the derivatives of the asymptotic expan-
sion. On the other hand, we require only a low order estimate of the remainder.

3.1. Asymptotic expansion of the solution

The behaviour of the solution of (1)-(2) with 0 < ¢ <« 1 can be arbitrarily
complicated, depending essentially on the behaviour of the characteristics of
the limit operator Lg. So we restrict ourselves to the model problem (1)-(2) on
a bounded polygonal and convex domain 2, with sufficiently smooth data and
with a ”simple” asymptotic structure of the solution. The precise assumptions
will be given below. In particular, interior layers and geometrical singularities
at corners are avoided. Moreover assume that for any edge ¥ C 912 holds

(H.3) ECTlywith|b-n|lg>F>0 or X CTIy,ie b-n|g=0.

This considerably simplifies the different possibilities of boundary layer be-
haviour at I'y UT.

A standard expansion of the solution of (1)-(2) without interior layers has
the structure

u = tm\w.f rM = AQNS + Vv + Ngv + v AMNC

with the global (regular) expansion Uy, boundary layer expansions Vs (of
outflow or characteristic type), corner layer expansions Zys at corners, if there
holds Var + Un # 0, and the remainder rps, cf. [21], [10]. The global part

Uy = Mw\%o eluj(x) solves recursively the system
Louj :=b-Vuj+cu; =f; in Q\T—; u; =0 on T'_; j=0,..,M (25)
with fo = f and f; :== Auj_1,7 =1,..., M. Let us assume now that
(H4) Uy € WHLe(Q).

In particular, no interior layer originates at points of [ _ NIy UTy. (Isotropic)
interpolation estimates of Ups and the design of the sets {vx}, {0k}, as given
in (19), follow now similarly as in Theorem 2.4 for subdomains away from layer
regions.
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3.2. Construction of boundary layer corrections

The global expansion Uy; does in general not satisfy the boundary conditions
(2) at outflow resp. characteristic boundaries I'; resp. I'g. According to (H.3),
anedge ¥ C 0Q\I'_ belongs either to I';. or I'y. We introduce a local coordinate
system (¢, p) in a neighborhood U(X) of ¥ where p(z) := dist(z,X) and ¢
denotes a tangential variable on ¥. The diffeomorphic mapping (z1,z2) —
(¢, p) transforms the operator L. to

- - 0% 0 ou
Lou:= —clsu+ Lou = —¢ A\»% + h v A ®M + mw + mo:v, (26)

. 2 op 2
with A(6,p) = Yoy (22) > 05 Bil6,p) =D Vs,
By(¢,p) :=b-Vp, By(o,p) := c. Taylor expansion of the coefficients at p =0
yields

K
Ag,p) =D Ai(@)p" + ollp]™),
= (27)
Bj(¢,p) =>_ Bji(¢)p' +ollp*), j=0,1,2.
=0

Introducing the transformation ¢ := p/e?, we determine o € (0, 1] such that

le(L2v) (6,7 O)llo,00,4

I(Lov) (¢, 7 llo,00.u
3.2.1. Outflow layers.
The simplest case appears if ¥ is part of the outflow boundary I'y such that
Bso(¢) =b-Vp|,=0 =b-n|x >3 > 0. Then (28) results in ¢ = 1 and (with
K:=M)

=0,(1), £—0. (28)

1 . 02 ]
L. — |Mqu (6,0’ + ... L “n|\_omm+m2mn

(“)

The formal expansion of the boundary layer correction Vj; := Muw\%o ew_. (6,0)
can then be determined recursively from the system of ordinary differential
equations

J
Livg =0;  Livf =- MU vl i=1,..M iU

with ew. +u; = 0 on X. We obtain sufficiently smooth solutions (via smoothness

of the data and of Uys) of exponentially decaying form
—B
5100 o (22295) S,
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3.2.2. Characteristic layers
Assume now that an edge ¥ belongs to I'g, hence B o(¢p) = b - Vp|y=0 =
b-n|s = 0. Let k; be the smallest index in (27) such that Bj;, #Z 0. We restrict
ourselves to the simplest variants: Under one of the assumptions c(z)|y =
By(¢) > v > 0or |Bio(@) =|b-Vels| > v >0, (28) yields ¢ = 1/2. This
implies with K = 2M that

2M
L. — Hz\m = MUH\WAAF ﬁvmm\ww
=0

- +B 0 +B n + By ol
e 1054 21655 0,0{.
(1) Reaction-diffusion problems: The simplest case mvcmmwm in (29)ifb=0
and ¢ > v > 0, hence k; = ky = oo and L := — Ay 2 3¢z + Bool. The formal

expansion of the layer correction Vj; := Muwio w /2 (¢, ¢) can then be determined

recursively from ordinary differential equations

N\W = |\wo

J
Liug = 0,L§v) = = > L) 4, j=1,..,2M  inU(%),
k=1

and ewb. +u; =0,7=0,.., K; ew\L =0,7=1,..., M on ¥ with exponentially
decaying solutions

ew@u () =exp A moo v MUQQ

(i1) Advection-diffusion problems: (29) is more complicated if b Z 0, b-n = 0 at
H,o and EEQ. 1.2 k; is finite. The simplest case appears for k; = 0, k2 > 2, hence
= —AyLs @mm + B; o%& + By 0l. The formal expansion of the correction Vjs :=

Mwio w /2 (¢, () can then be determined recursively from parabolic differential

equations
Livy = f3:=0, L= MUP} o i=1,.,2M  inUX)

such that Uys + Vi satisfies (2) on X (i.e. at p = 0) resp. at ¢ = 0. A smooth
transformation

- o Ao(1) ? Boo(T)
—~¢:=H = —— dr, Ui t=v;e — = d
& & A&v 0 .mfoﬁ v T @Q @.w Xp 0 .mfoﬁﬂ.v T
results in
. 9?09 o0) 1 ¢ Bo.o(7)
050 ._ 9% _j0._ L w0 0,0
Lyv; = @mw + 99 =f; 1 fj exp \o Bro(r) dr



The leading term has the form

7 = J\W\AH\& exp A|Wﬁwv ug Az - wlwv dt. (29)

Corresponding expressions can be found for higher order terms mw of the layer
expansion. The terms ¢ resp. v? are sufficiently smooth under (rather restric-
tive) compatibility conditions

@a:m
Ok

REMARK 3.1. The structure of the layer terms arising from (26) can be much
more complicated in other cases of the numbers k; as discussed above, cf. [10].

=0, |k<I at $=0 (resp. at TNT_). (30)

3.8. Remarks on corner layer terms and on the remainder

Different boundary layer term can interact at convezx corners of 9§2. Then one
has to construct corner layer expansions Zy; as solutions of elliptic equations
in appropiately stretched variables ((i,(z2) such that u$f = Uy + Ve + Zns
satisfies (2). We omit details. In general, there appear at corners the same
geometrical singularities of the solution as for standard elliptic equations [11],
but on e—dependent scales. The latter problem is avoided if

(H.5) Un + Vg + Zy € WHL2(Q)

which implies certain data compatibility conditions (of higher order) at corners.
Then the corner layers are essentially tensor products of the interacting layer
terms.

The simplest case appears for diffusion—reaction problems. The influence of
corner layers (and singularities) is then only restricted to a 0(y/2|loge|)-region
of a corner. For a detailed discussion of this problems (including the case of
geometrical singularities and of concave corners) we refer to [12], [14]. The
remainder s is shown to be smooth and small.

The situation is more complicated for advection—diffusion-(reaction) prob-
lems. In general, the effect of corner layers is not local in corner regions. Sin-
gularities of the solution caused by geometrical reasons at points P of I'_ are
distributed along subcharacteristics of the limit operator Ly passing through P.
Estimates of the remainder rj; are again more complicated. For the simplest
case of outflow layers in the unit square only, we refer to the discussion in [6].
A more general result is open so far.

4. ANISOTROPIC LAYER REFINEMENT AND INTERPOLATION

An isotropic resolution is in general to expensive due to the lower-dimensional
character of layer phenomena, an anisotropic approach is much better suited.
This approach is rather new in the literature and far away from being complete
[6], [20], [21]. We consider in the special situation of Section 3 some aspects of
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such an approach in the special case of exponential boundary layers occuring
at edges of a convex polygon 2. The ingredients are the construction of layer
adapted grids and the (anisotropic) interpolation of boundary layer functions
together with the design of the parameters dx and vg.

4.1. A-priori generation of layer-adapted grids

Let h be a user-given global mesh size which is a-priorily set to resolve the
solution away from layers. The following steps of the a-priori generation of
hybrid grids are proposed:

- Detection of boundary layers at an edge ¥ C 92 and of its width ayg

- Generation of a structured (possibly anisotropic) mesh in the layer strip U(X)
of thickness O(ayx)

- Generation of an (possibly unstructured) isotropic mesh of size h1 x ~ hq,x ~
O(h) away from layer regions.

To be more precise, we discuss the simplified situation of Section 3 with as < h.

ExaAMPLE 4.1. Consider at an edge ¥ C 012 an edge-fitted Cartesian coordi-
nate system (¢, p) with p := dist(z,X) and tangential variable ¢. A boundary
fitted layer-adapted mesh is built in the strip #(X): 0 < p < ax as follows
(cf. Figure 2): Setting p = p;, i =0,...,N + 1 with pp = 0 and py11 =~ ax,
we construct a quadrilateral mesh in the strips () (Z) : p;_1 < p < p; with
corners in the lines p = p;. Suppose that the resulting grids at p = p; consist
of isotropic elements of size 0(h).

Assuming p; — p;—1 < h (to be verified below), we subdivide each quadri-
lateral element into two triangles K in such a way that the maximal angle
condition (cf. Section 2.2) and the coordinate system condition (cf. Section
4.2 below) are fulfilled. Then set hgx ~ pi — pi_1 = aw«vb with aw«v to be
determined later.

REMARK 4.2. (i) The distribution of (anisotropic) strips parallel to ¥ is not
necessary. But it turns out from numerical experience, that the longest edge
of the finite elements has to be carefully orientied with respect to X, at least
in the neighborhood of characteristic layers.

(ii) The proposed a-priori construction of layer-adapted grids simplifies the pre-
sentation but it may also be incorporated within an adaptive method where the
global mesh size h can be modified based on appropriate a-posteriori estimates
or error indicators.

4.2. Anisotropic interpolation estimates

The following condition is useful to describe the orientation of the layer-adapted
grid and to derive interpolation estimates with respect to the edge-fitted Carte-
sian coordinate system (¢, p).
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COORDINATE SYSTEM CONDITION (2D): The angle ¢i between the longest
side of element K and the ¢—axis (of an appropriate fixed Cartesian coordinate
system) is bounded by |sinyx| < Chs kx/h1 k.

It is satisfied in the situation of Example 4.1 with respect to the (¢, p)-
system. The following interpolation result [2] takes advantage of different di-
rections in K using the multi-index notation

a=(a1,as) € Zw, la| :== oy + ao, h% = h{* - h$?
and derivatives D® with respect to the (¢, p)— system. Furthermore, we denote
by @MGC the Lagrangian interpolant in V, C V := W1H2(Q).

THEOREM 4.3.  Assume that a finite element K € Ty, satisfies the mazimal
angle resp. coordinate system conditions. Furthermore let bev € WHP(K), k €
{1,..,1+1}, p € [1,00] s.t. p > 2/k. Then we obtain for fizted m € {0,...,k—1}

(1 o o
_elbmve_ﬁ%um <C MU | D0 pi ke -

|a|=k—m

In view of Theorem 2.3, we derive an upper bound of the term Qsa (v — @m:ev
as in (16) for a smooth function v on a mesh satisfying the coordinate system
condition with respect to a fixed coordinate system.

COROLLARY 4.4. Under the assumptions of Theorem 4.3 we obtain for v with
v|g € WIHL(K) for all elements K € Ty, and with n, := (I — Nz\mcve that

Qs (m) < QMUBmmmANvﬁN,
K

2(«x
Fi = 3 > Brp hgPIDI R e (3D)
la|=l-1|8|=|y|=1
Bk, i= m.rQwaw+mwﬂmw5|%m+mwmv+N~m:ww. (32)

PRrROOF. Theorem 4.3 implies for n, := (I — Nz‘mcve with £k =1+ 1and p =00
that

ol < C hi& meas(K) |Dv[7, ook,
la|=l+1—m

hence with Ek.3, as defined in (32) follows

Qvc () = Y Aelmlizox + IVemlliox + 0xlb- Vil 2 x
K

+ 0k | I = eAny + enolld o x + Ziclnollg 2,5}

QMU MU MU mwwmkbw«ﬁpiﬁgmmmﬁé

K lal=i-181=7]=1
1D 0]l0, 005 O (33)

IN

REMARK 4.5. For anisotropic interpolation estimates on quadrilateral ele-
ments see [1] .
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4.8. Interpolation of exponential layer terms

Now we apply the anisotropic estimates to the interpolation of exponential
boundary layer terms on a layer-adapted grid as discussed in Example 4.1. To
be precise, consider the edge-fitted local coordinate system (¢, p) and let the
following exponential decay condition be valid:

(ED) For given numbers I' > 0, o € (0,1], for || <1+ 1 and each element
K € U(X) holds

|D*0||0,00;x < Ce™ 47 exp (—Te “dist(K, X)) . (34)

EXAMPLE 4.6. Condition (ED) is satisfied in advection-diffusion-reaction prob-
lems with |b| > 8 > 0 on U(X) for

- outflow layers with o = 1 and 0 < T' < ming Bs o(4)/Ao(¢), cf. Section 3.2.1,
and

- simple characteristic layers with ¢ = 1/2, 0 < ' < ming 1//2H(¢), cf.
Section 3.2.2 (ii).

Furthermore, condition (ED) is fulfilled for layers in diffusion-reaction problems
with 0 =1/2 and 0 < T < ming By o(¢)/Ao(4), cf. Section 3.2.2 (i).

(ED) implies that || D%v||g,c0,x < Ce if dist(K,X) > {o(I+1)+00}[ 'e|loge]
with og > 0. The r.h.s. value may be defined as the layer thickness ay. Using
an appropriate cut-off function, we suppose that the layer term v vanishes in
Q\U(X). Then we have the following global interpolation estimate:

LEMMA 4.7. Let a layer-adapted grid be constructed in U(X)NQ as in Example
4.1 with (possibly anisotropic) elements K with hy x = O(h) and hy k = axh,
arx > €. Suppose that a boundary layer term v € WL (Q) satisfies (ED).
Then we obtain for the interpolation error n, := (I — »ﬁm:ve that (with Eg.3
defined in (32))

Qi (m) <CY W' FrGr, (35)
K
Nﬂwﬂ = MU DW«\M{N.@W«E):
EEE
G == exp (—20e~"dist(K, 8)) (axe=") "™ (36)

Proor. Corollary 4.4, condition (ED) and the special mesh construction imply

2 a
Q3c (m) < QMUES&QQ MU mwwmkbmié_s +m+>€__w.8km
K

Ja|=1—1
18]=[v|=1
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x Y ax PEkp,. O
1Bl=|vI=1
The idea now is to use Gk for an appropriate choice of ax and to minimize
the expression F with respect to dx (resp. vi).

DEFINITION 4.8. A layer-adapted mesh in the strip U(X) N Q as constructed
in Sec 4.1 and satisfying supyx Gx < 1 (with Gk as in (36)) is called layer-
resolvent.

ExampLE 4.9. Condition Gk < 1 can be satisfied recursively (with increasing
i) if for all elements K in the strip /() (%), i.e. pi—y < p = dist(K,¥) < p;,
holds

S.HbHEIEL Aq ﬂP,L wﬂ
KT bk ho —° méﬂméivv. (37)

In particular, in the strip /(") nearest to ¥, one has to take ax = @mv SN

One should of course set the values amv in (37) as large as possible, i.e.

S.H P.IP.LZQ ﬁP.L wm
ap = ——p—— ~e’exp A‘mq@.fsv. Av

Setting formally T' = 0, hence ax = @ww ~ %, we get a so-called Shishkin
type mesh. The number of anisotropic layers ¢(?) is then given by N ~ 1+
1)h~1|logel, hence the number of (anisotropic) elements in the layer U(X) is of
order O(h~?|logel). Such meshes take no advantage of the exponential decay
of layer functions. A mesh satisfying (38) with T" > 0 leads to a logarithmically
graded mesh of so-called Gartland type . The number of layer strips () is
considerably smaller than for a Shishkin mesh. a

a

a

THEOREM 4.10. Let the assumptions of Lemma 4.7 be valid. Furthermore let
the mesh be layer-resolvent. With the choice

_Q\W_ < %N & min QE&«@WHW FW,WMIHV Awwv
we obtain
h
Q¥c(m) < O W2 (e + Bichex + Cxh i) (40)
= ha K ’
< Qbﬁ__omm_a%x (e'77 + Bxh + Cxhhs k) . (41)
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PROOF. Starting from Lemma 4.7, we estimate different terms of Fi sepa-
rately:

1—272 \:,W 2y 1—2v9
M 7e ~ h ) M \N\WDW \.(\SRA\S,WV
2, K
1Bl=lv|=1 1Bl=lv|=1

_ _ h
> R
=0 h3 i
[B]=]v|=1

This implies using (H.2)(i)

_ h
M Expgray " < Qbrw Ex; Ex = e+Ckhj i +0x B + Zrch3 i .(42)
2,K
1Bl=]v|=1 '

We proceed now with the minimization of Fx with respect to dx as in the
proof of Theorem 2.4. Finally, for the aspect ratio holds “-X < =7 The

ha K
number of elements is bounded by h~?|loge|. o

REMARK 4.11. (i) The interpolation estimate of Theorem 4.10 is of order !
and almost uniformly valid with respect to €. As a remedy, one can consider
the original Shishkin mesh with ay = £7|log h|. This case can be found in [6]
for ] =1 and ! > 1in [1]. Furthermore, note that there is a gap of O(¢?) in
the first r.h.s. term of (41) as compared to estimates of smooth solutions away
from the layer region (cf. Theorem 2.4).

(ii) Condition (39) indicates that the numerical diffusion parameters yx and
dx have to be chosen much smaller in the boundary layer region as compared
to the global domain (cf. Theorem 2.4). In particular, we have on a Shishkin
type mesh hgrx ~ €”h. This implies for advection-diffusion problems with
|Br| > 8 > 0 for all elements K € U(X) that

- in outflow layers (cf. Section 3.2.1): |yk| < 8k ~ chmin (Bg';h) ~ eh?,
- in the simplest characteristic layers (cf. Section 3.2.2): |yx| < 0k
~ hmin (vEBg'; h).

A straightforward calculation yields

COROLLARY 4.12. The estimate of Theorem 4.10 remains valid if we add to
a layer term v satisfying (ED) a function w € W!T1°°(Q) with ||D%w||o,co.0 <
C # C(e) for all |a| <141, e.g. the global part Uy of an asymptotic expansion
of solution u (cf. Section 3.1).

4.4. Condensed grids at corners

A condensed mesh (not necessarily of isotropic type) appears if different layer
adapted regions U(X;) match at a convex corner S = ¥; N Xy. Special layer
terms compensate perturbations arising around S from the interacting layers
terms. According to (H.5), we neglect here a (possible) singular behaviour of
the solution caused by data incompatibility at S. The resolution of geometrical
singularities in reaction-diffusion problems is considered in [1].
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Let us, without loss of generality, assume that the Cartesian coordinate
system (x1,22) is adapted to S such that the edges X1, Xy are located at x5 =
0, s = 1,2. Furthermore, assume that a layer term z satisfies at S the following
exponential decay condition:

(EDC) For given numbers I's > 0, o5 € (0,1], s = 1,2, for |a| <1+ 1 and
each element K € U(S) :=U(X1) NU(X>) holds

2
1D 2lo,00ic < C J] 677 exp (~Tue™ " dist (K, I,)) (43)

s=1

which implies certain data compatibility conditions at S to guarantee z €
WL (S)).

ExXAMPLE 4.13. Condition (EDC) is satisfied for intersecting outflow/ outflow

layers resp. outflow/ characteristic layers with numbers o4 and Iy as in Exam-
ple 4.6.

Suppose again that, using suitable cut-off functions, the layer term z vanishes
in Q\U(S). A straightforward calculation (using similar arguments as in the
proof of Theorem 4.10) yields

COROLLARY 4.14. Suppose that a corner layer term z satisfies (EDC). Then
the result of Theorem 4.10 remains valid (with obvious modifications). Note
that ha K has to be choosen according to the layer U(X;) with mazimal 0.

REMARK 4.15. A detailed calculation shows that the result of Corollary 4.14
for corner layer terms with (43) remains valid if we add a smooth function
(as in Corollary 4.12) and exponentially decaying layer terms (according to
Lemma 4.7 and Theorem 4.10) on a condensed mesh at corners of an edge ¥
as discussed in Example 4.1.

4.5. Summary
We summarize the results of Section 3, 4 in the following

THEOREM 4.16. Suppose that the assumptions (H.1)-(H.3) for problem (1)-
(2) on the convex polygonal domain Q are valid. Let an asymptotic expan-
sion (24) be constructed with a smooth regular part Uy as in (H.4) and with
boundary resp. corner layer corrections Vs resp. Zyr satisfying (H.5) and the
decay conditions (ED) resp. (EDC). Suppose that the remainder ry satisfies
Iraellwier. (@) < C # C(e). Then we obtain on a hybrid mesh as constructed
in Example 4.1 with layer-resolvent anisotropic refinement according to Def.
4.8 that

Il — Unlll$e < Ch*|loge|max ('~ + Bxh+ Cichha k) - (44)

& is the mazimal number o, which appears in (ED) resp. (EDC).
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5. NON-OVERLAPPING DOMAIN DECOMPOSITION
We propose a non-overlapping domain decomposition method (DDM) for an
efficient solution of the arising large discrete systems.

5.1. Continuous problem

Let us consider first the continuous problem (1)-(2). The idea of the non—
overlapping DDM, on a partition Q = UM_,Q,,, is to enforce (in appropriate
trace spaces) continuity of the solution u and of the flux eVu - ny,; at the
interfaces I'y,; 1= 08y, N 0; using a transmission condition of Robin type.
More precisely, the iteration for n € N consists of solving on Q,,, m =1,...,. M
(in parallel) the following subproblems:

Lul =f in Qp;  uph =0 on 80, NN (45)
together with the interface conditions
oul, n m:wl i .
gy T Pmitim = g — Fpmitj T on Ty i= 00 N0, j 7 m.(46)

The main problem is the design of the functions p,,; in (46). It turns out
that the behaviour of the subcharacteristics of the reduced first order operator
Lo at Ty, , i.e. the scalar product b - n,,;, is essential. The following class of
conditions with arbitrary A > 0 is considered

1 .

(b-njm)? +4eA. (47)

In [16], [18] we proved the following

THEOREM 5.1. Let (H.1) be valid. Then the solutions of the non—overlapping
DDM (45)-(47) converge under appropriate smoothness conditions on the ini-

; 0
tial guess u,,

u?, = ulg,, in H'(Qy), n— occ.

Furthermore we obtain convergence of the traces of ull,—u resp. eV (ull, —u) -1y,
to zero in HY/?(0Q,,) resp. H=Y/2(T,,;) for m,j =1,..., M,m # j.

REMARK 5.2. Different variants of the interface condition (46)—(47) were
proposed in recent papers, cf. [16] for a review. In contrast to other methods,
our approach allows the field b both to vanish (Poisson problem or reaction-
diffusion problems) or to be parallel to I'y,;.

Theorem 5.1 gives no information on the convergence rate of the method. The
analysis of a one-dimensional model problem can be found in [16].
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5.2. Discrete problem
We consider now a discrete DDM-version using the stabilized Galerkin method
(8)-(10). Let T, be an admissible triangulation of the domain 2 with simplicial
elements K such that each subdomain €2,, is the union of such elements K.
Further let V;, C V := W, *(Q) be the subspace with piecewise linear finite
elements (I = 1). Denote by B, (-, ) and LE,(-) the obvious restrictions of
Bsa(+,-) resp. Lsa(-) to Q.

The discrete DDM consists in the iterative solution (for n € N) (in parallel)
of the subproblems on Q,,:  Find U}, € V™ := Vj|q,. s.t.

BI(Up,on)+ 3 (iU = Al oon) = Lg(on) Yon € Wi (48)
J(F#%)
AL = (P + pm) Uy = Al = ZUp — AT (49)

where the explicit calculation of the fluxes is avoided.

Numerical 2D- and 3D-experiments [16], [18] show linear convergence of
the discrete DDM independent of A in the full range from advection and/ or
reaction—dominated to diffusion—dominated problems. The convergence rate
improves with e — 0. A typical anisotropic advective transport phase from
subdomain to subdomain is observed in the advection—dominated case, other-
wise a global isotropic diffusive-reactive transport appears. The overall conver-
gence depends on the number of subdomains. Hence in the massively parallel
case one should include some coarse grid solver mechanism.

5.8. Numerical results

The goal is now to support the theoretical results by numerical examples using
the proposed domain decomposition and the GLS approach. Let be Q = (0,1)2
and suppose that boundary layers with thickness a; resp. ao are located at
¥, :={0} x (0,1) resp. £, := (0,1) x {0}.

The domain is decomposed into the non-overlapping subdomains Q; :=
Am:v Hv X ADM“ ”_.vv @w = N\\AMHV = AOVQHV X ADMV Hv“ Dw = N\\AMUMV = An:v Hv X AOVQMV
and Q4 = U(S) := (0,a1) x (0,a2). The degenerated case a; = 0 is allowed.
We choose a; = Ce%|loge| as the layer thickness. The main reason is to keep
the fluxes appearing in the interface condition uniformly bounded with respect
to €.

Each subdomain is now assigned to a processor of a multi-processor sys-
tem. Note that the resolution of the boundary layer and corner layer regions
according to Section 4 guarantees an appropriate load balancing. The resulting
discrete problems are solved using the preconditioned QMRCGSTAB method.

5.3.1. Outflow layers
We consider first the more academic case of outflow layers in advection-diffusion
problems.
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ExaAMPLE 5.1.  Consider problem (1)-(2) with b = —(1,1)T,¢ = 0 and the
exact solution

u = .MU@% (—wife) — mec (—zi/e)

with vanishing global expansion Uy, and outflow layers at ;7 = 0 and 2, = 0.
The corner layer term EWHH exp (—z;/e) can be resolved by the condensed mesh
at the origin. The remainder of the asymptotic expansion vanishes.

The domain decomposition is performed with a1 = as = 2¢|loge|. Ap-
plication of Theorem 4.10 to the outflow layers and Corollary 4.14/ Remark
4.15 to the corner layer yield the global (and almost uniform with respect to
€) estimate

llu = Unll[§¢ < Ch?|logel.

We resolve the outflow layers by a Shishkin type mesh. In Figure 3 we present
the convergence history in the energy norm and L?—norm for ¢ = 1072 and
different choices of d;oc = g = vk in the layer elements. First resp. second
order accuracy are observed. On the other hand, for moderate h, the error
is considerably smaller for d;,. = 0 and &, = €h? in comparison to djoc =
Ch which would be the standard choice on an isotropic mesh. This supports
Remark 4.11 (ii). There is no remarkable difference between the seq(uential)
and the DD solutions.

5.8.2. Characteristic layers
Consider now the case of characteristic edge(s).

(i) Reaction-diffusion problems: (cf. Section 3.2.2 (i))

EXAMPLE 5.2.  Consider problem (2)-(2) with b = (0,0)%,¢ = 1 and the
exact solution

u = exp (—x1/ve) + exp (—z2/Vz)

which consists s only of two exponential boundary layer terms.
The domain decomposition is performed with a; = as = 24/¢|loge|. Appli-
cation of Theorem 4.10, Corollary 4.14 and Remark 4.15 result in

llu = Unll[5e = llu = Unlll; < Ch?vE |loge|

which is uniformly valid with respect to €. In Figure 4 we present the con-
vergence history in the energy norm (unscaled and scaled) for a Shishkin type
mesh and different values of e. We observe similar results as in Example 5.1 and
additionally robustness with respect to . Furthermore, the scaled results (en-
ergy norm divided by /e1/2|loge|) indicate that this factor in the theoretical
estimate is sharp.

Now we compare the layer resolution with a Shishkin and a Gartland type
mesh on moderate fine meshes with 65 x 65 = 4225 resp. 43 x 43 = 1849 grid
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e  mesh type | energy norm L?-norm L*®-norm
10~2 Shishkin 6.430E-003 2.234E-004 1.413E-003
Gartland 1.560E-002 8.072E-004 5.406E-003
10~% Shishkin 1.711E-003 1.500E-004 8.659E-003
Gartland 2.254E-003 4.191E-004 2.132E-002
10~19 Shishkin 2.842E-004 2.639E-005 2.043E-002
Gartland 2.681E-004 3.101E-005 1.511E-002

TABLE 1. Comparison of Shishkin and Gartland type grids in Example 5.2

points. The error is nearly of the same order on both meshes (at least for small
¢), cf. Table 1. The Gartland type mesh should be prefered due to the smaller
number of required (anisotropic) elements.

(ii) Advection-diffusion problems: Let us consider the simplest case of a non-
degenerating characteristing layer with ky = 0, k2 > 2 in (29) (cf. Section 3.3.2
(ii))-

EXAMPLE 5.3.  Consider problem (1) with b = (1,0)%, ¢ = 0 and the exact
solution

1 2
V14 4e(1+ 1)

with a parabolic layer term at z2 = 0, hence a; = 0. No global and corner
layer terms appear. The error estimate follows from Theorem 4.10

llu = Unlll$e < Ch*(ve + h)|logel.

u =

In Figure 5 we compare the convergence history in the energy norm and
L?—norm for € = 10~% and different choices of the parameters §;,. = dx = Vi
in the layer region with resp. without domain decomposition (seq. resp. DD).
Again we obtain first resp. second order convergence for the energy resp. the
L?—norm. The first observation is that the choice &, & h is somewhat bet-
ter than the variants with a much smaller §;,.. This supports again Remark
4.11(ii). Furthermore, the domain decomposition approach with d;,. ~ h is
seemingly more stable as the discrete solvers had problems for small values of
h in the sequential case.

6. CONCLUDING REMARKS

In this paper, we consider error estimates (in the energy norm) for stabilized
Galerkin methods. After a review of such methods on isotropic meshes we
focus the discussion on the a—priori resolution of boundary layers. The main
point is a refined design of critical discretization parameters which depend on
the diameter of the largest ball inscribed in an element K.
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FIGURE 1. Element related mesh sizes.

The analysis is based on anisotropic interpolation estimates of different layer
parts of the asymptotic expansion of the solution. This has been done for the
special (but important) case of exponentially decaying boundary layers appear-
ing at edges of an polygonal domain 2 C R2. Furthermore, we discuss different
types of layer-resolvent grids. Meshes of Shishkin type, recently introduced in
the literature, are covered. Grids which are more adapted to the exponential
decay of the layer (e.g. of Gartland or Bachvalov type) require much less grid
points in the layer and give essentially the same numerical results. Numerical
results for different exponential layer types confirm the theoretical convergence
rate for the energy norm ! (here ! = 1). A theoretical foundation of the observed
second order convergence rate (for [ = 1) in the LP—norms will be considered
elsewhere.

A remarkable fact is that numerical diffusion parameters of the stabilized
Galerkin methods have to be chosen much smaller in layer regions than pre-
dicted by the theory on isotropic meshes. However, it is preferable to stabilize
the Galerkin method (at least away from layers) in order to get a robust discrete
problem.

Open problems are the discussion of more complicated layers, the extension
to curved manifolds generating the layers and to interior layers. Other impor-
tant topics are the resolution of geometrical singularities and estimates of the
remainder of the asymptotic expansion which will be discussed elsewhere.

The proposed a-priori approach to the resolution of boundary layers is
of course more or less academic and restricted to problems with a known
asymptotic structure of the solution. In more realistic problems (nonstationary
and/or nonlinear — with possibly moving interior layers), an adaptive approach
is necessary. Ingredients of such a method would be sharp a-posteriori esti-
mates for singularly perturbed problems (cf. [25]) and an adaptive method
which allows anisotropic refinement (cf. e.g. [23]).
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