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In this paper we consider the standard Galerkin �nite element method applied to
singularly perturbed convection�di�usion problems in 
D� Their discretizations
are based on piecewise bilinears on a Shishkin mesh with total number of points
O�N��� Discretization error estimates of order O�N��� in L� norm� which hold
uniformly in �� are provided� The theoretical results are supported by numeri�
cal results for both� the standard Galerkin and the streamline upwind di�usion�
methods on a Shishkin mesh� This a priori adapted mesh gives good results for
exponential and parabolic layers� Nevertheless� the use of Shishkin meshes to
solve problems with interior and more complicated layers� the location of which
is unknown a priori� is still questionable� In this case we use the black box tool
� a posteriori adapted meshes obtained by some adaptive re�nement procedure
combined with a special discretization method to get a high order of accuracy�
The advantages and disadvantages of a priori � and a posteriori � adaptive re�
�nement techniques are illustrated by numerical experiments in 
D�

�� Introduction

We consider the convection�di�usion problem ����� with boundary conditions
�����	

L�u 
 ���u� b � ru� cu 
 f� x � 
 � R
� � �����

u 
 �� x � ���
�u

�n

 g� x � �� 
 �
��� 
 �� � ��� �����
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The solution is driven by the vector �eld b	 and �� 
 fx � ��b � n � �g	
�� 
 fx � ��b � n � �g	 �� 
 fx � ��b � n 
 �g are the corresponding in�ow	
out�ow and characteristic parts of �	 the boundary of 
�

Here 
 is a bounded convex domain of polygonal type and b	 f are given
su�ciently smooth functions in 
� The singular perturbation parameter �	
� � � � � is used to measure the relative amount of di�usion to convection�
The function g is given on �� and n is the outward normal vector on this part
of the boundary� Further	 we assume

min
x��

�c� �
�divb� � c� � �� �����

Under this condition it can be shown that �����	 ����� has a unique solution in
H�
� �
��

In practice	 ����� can always be satis�ed by a proper variable transformation of
u� The assumption on homogeneous Dirichlet boundary conditions are made
just to simplify the presentation	 because a linear transformation eu 
 u� � u	
where u� represents any given inhomogeneous boundary condition on ��	 leads
to homogeneous boundary conditions for u�

The major problem in the numerical solution of ����� is to �nd a numerical
approximation scheme which is uniformly accurate in � and with a solution cost
which does not grow with �� The standard Galerkin �nite element scheme on a
uniform mesh does not belong to this class� Moreover	 it is numerically unstable
and gives an oscillating approximate solution unless the �nite element mesh is
extremely �ne� Furthermore	 the pointwise error is not necessarily reduced by
successive uniform re�nement of the mesh in contrast to solving nonsingularly
perturbed problems� Recently	 three books ���	 ����	 ���� appeared about the
numerical solution of singularly perturbed problems�

The introduction of specially adapted �a priori or a posteriori� meshes in
the layer region�s� overcomes these di�culties� Bakhvalov was the �rst using a
uniform mesh outside the layer�s� and specially graded mesh at the layer�s�	 see
���� Then	 Shishkin ���� introduced piecewise equidistant meshes and showed
that one can also obtain uniform convergence in the layer� These Shishkin
meshes combined with standard Galerkin �SG� or streamline upwind di�usion
�SUPD� �nite elements discretization are the focus of our paper� It is orga�
nized as follows� In Section �	 the uniform convergence in � of the SG method
applied to problems with exponential layers is analyzed� In Section �	 we do
similar analysis of problems with parabolic layer� The uniform L��norm er�
ror estimates	 obtained in these sections are of optimal order O�N���� The
SUPD method is introduced in Section �� Several numerical experiments on
Shishkin meshes as well as some illustrations concerning the necessity of using
a posteriori adapted meshes for more general problems are given in Section ��

Notation �� Throughout the paper we denote with C a generic constant in�
dependent of � and the mesh parameters�

Notation �� We denote by ��� �� and k�k the usual L��
� product and L��
norm�

���



Definition ���� The weighted energy norm is de�ned by

kjukj� 
 �kruk� � kuk��

�� Convergence analysis of problems with exponential layers�

L�� norm error estimates

We consider the problem ����� in 
 
 ��� ��� with homogeneous boundary
conditions on � and the additional assumption that

b 
 �b�� b�� � �	�� 	�� � ��� ��� �����

Exponential boundary layers occur then at the out�ow boundary �� 
 fx 

� � y 
 �g� Condition ����� excludes the occurrence of internal and parabolic
boundary layer�s�� To avoid also layers caused by data incompatibility at the
corners of the unit square the zero�order compatibility conditions should be
imposed	

f��� �� 
 f��� �� 
 f��� �� 
 f��� �� 
 �� �����

which ensure that u�x� y� � C
��
�	 for more details see ���� Roos ���� assumes

in addition the �rst�order compatibility conditions at the corner ��	�� of the
unit square

fx��� �� 
 fy��� �� 
 �� �����

and deduces Theorem ���	 which plays important role in the estimate of certain
derivatives of u�x� y�� Similar estimates are also given in ����

Theorem ���� Let b and f be su�ciently smooth and assume that f satis�es
�����	 ���
�� Then	 the solution u of ����� has the representation u 
 u� � v	
where u� is the smooth part and����

����
�����i�ju��x� y��xi�yj

����
����
���� � C�

and v 
 v� � v� � v��	 where����
����
�����i�jv��x� y��xi�yj

����
����
���� � C��iexp��	���� x�����

����
����
�����i�jv��x� y��xi�yj

����
����
���� � C��jexp��	���� y�����

����
����
�����i�jv���x� y��xi�yj

����
����
���� � C���i�j�exp��	���� x����exp��	���� y�����

for all �x� y� � 
 and � � i� j� ��

The variational formulation of ����� is� �nd u � H�
� �
� such that

���



a�u� v� 
 �f� v�� for all v � H�
� �
�� �����

where H�
� �
� is the usual Sobolev space of functions satisfying homogeneous

Dirichlet boundary conditions and a�u� v� is the corresponding bilinear form

a�u� v� 
 ��ru�rv� � �b � ru� v� � �cu� v��

Based on Green�s formula and ����� we obtain

a�u� u� � ��ru�ru� � c��u� u� � minf�� c�gkjukj��

thus

a�u� u� � Ckjukj�� �����

We use the standard Galerkin �nite element method on a Shishkin mesh to
discretize ������ Let V N be a �nite element subspace of H�

� �
� consisting of
piecewise bilinear functions f
i�j�x� y�gNi�j�� on 
 that vanish on �
� The �nite

element approximation uN � V N of u satis�es

a�uN � 
� 
 �f� 
�� for all 
 � V N � �����

The uniqueness of uN is guaranteed by ������ Subtracting ����� from �����	 we
obtain the orthogonal relation	

a�u�uN � vN � 
 �� for all vN � V N � �����

The Shishkin mesh is de�ned by a tensor product of two one�dimensional piece�
wise equidistant meshes� Let Nx and Ny be the points in x� and y�direction	
correspondingly� Then	 we set

�x 
 minf�
�
�
�

	�
� lnNxg� �y 
 minf�

�
�
�

	�
� lnNyg�

and call �� �x and �� �y the transition points from the coarse to the �ne mesh
in the corresponding directions� The coarse and �ne meshsizes are de�ned by

Hx 
 ��� �x���Nx���	 Hy 
 ��� �y���Ny���	
hx 
 �x��Nx���	 hy 
 �y��Ny���	

and written formally


x 
 
c�x � 
f�x� where


c�x 
 fxi 
 iHx� i 
 �� ���� Nx��g� �����


f�x 
 fxi 
 �� �x � �i�Nx���hx� i 
 Nx�� � �� ���� Nxg�

���



Analogously	 
y is de�ned� Then	 the piecewise equidistant Shishkin mesh in

 is 
xy 
 
x 	
y� It is coarse on ��� �� �x�	 ��� �� �y � and much �ner near
��� Observe that very long stretched elements are used in the layer regions�

For notational simplicity we assume that Nx 
 Ny 
 N in the rest of the
section� Further	 we derive an estimate for ku� uNk�
Notation �� uI denotes the bilinear interpolant to u on our mesh�

Definition ���� 
c 
 ��� �� �x�	 ��� �� �y� and 
f 
 
xy�
c�

Theorem ���� Let u be the solution of ����� and uN be the standard Galerkin
solution of ���
�� Then	 we have

ku� uNk � CN���

Proof� The coercivity ����� of the bilinear form and the relation ����� give	

CkjuI � uNkj��a�uI � uN� uI � uN�
a�uI � u� uI � uN � � a�u� uN� uI � uN�


a�uI � u� uI � uN��

Using the Green�s formula we obtain	

a�uI � u� uI � uN� 
 ��r�uI � u��r�uI � uN �� � �b � r�uI � u�� uI � uN �

�c�uI � u� uI � uN� 


��r�uI�u��r�uI�uN����uI�u�b �r�uI�uN����c�divb��uI�u� uI�uN��

Let us consider each term separately� In the estimate of the �rst term we shall
use that uN and uI are piecewise bilinears and then on each rectangle � � 
xy	
�uI �uN �x and �uI �uN�y do not depend on x and y	 respectively� Therefore	
�uI � uN �xx and �uI � uN�yy are zero on each � � Then	

j���uI � u�x� �u
I � uN�x�j 


����
����
����

�Z
�

�
X

��i�N

xiZ
xi��

��uI � u�x�u
I � uN �xdx�dy

����
����
���� �

����
����
����

�Z
�

�
X

��i�N
��uI � u�jxixi���uI � uN �x�dy

����
����
���� �

C�kuI � uk���

����
����
���� X
��i�N

�Z
�

�uI � uN�xdy

����
����
���� �

C�NkuI � uk���

����
����
����

�Z
�

�Z
�

�uI � uN �xdydx

����
����
���� �

���



C����NkuI � uk����
���k�uI � uN �xk�

Similarly	 we have

j���uI � u�y� �u
I � uN �y�j � C����NkuI � uk����

���k�uI � uN �yk�
For the third term we obtain	

j�c� divb��uI � u� uI � uN�j � kc� divbk���kuI � ukkuI � uNk

� CkuI � uk���kuI � uNk�
M� Stynes and E� O�Riordan prove in ���� �Theorem ����	 that

kuI � uk��� � CN�� ln�N� �����

They essentially use Theorem ��� and the facts that e����x�� 
 N�� and
e����y�� 
 N��� Hence	

j��r�uI � u��r�uI � uN�� � �c� divb��uI � u� uI � uN �j �

C������k�uI � uN �xk�k�uI � uN�yk��kuI � uNk�kuI � uk��� �
CN�� ln�NkjuI � uNkj�

������

Finally	 we consider the second term of a�uI � u� uI � uN ��

j�uI � u�b � r�uI � uN��j � kuI � uk�ckb � r�uI � uN�k�c

�kuI � uk���f

Z
�f

jjjb � r�uI � uN�jjjd
f �

In 
c we have an equidistant coarse mesh and the standard inverse inequality
holds	 i�e�	

kb � r�uI � uN �k�c � CNkuI � uNk�c �
therefore	

kuI � uk�ckb � r�uI � uN �k�c � CN��NkuI � uNk�c � CN��kjuI � uNkj�

Using the Cauchy�Schwarz inequality and �����	

kuI � uk���f

Z
�f

jjjb � r�uI � uN�jjjd
f

� CkuI � uk���f �area
f �
���kr�uI � uN ��k�f �

C�N�� ln�N��� lnN����kr�uI � uN�k�f � CN��kjuI � uNkj�
The factor N���lnN�	�� above is less than � for all N � Summing up	

���



j�uI � u�b � r�uI � uN ��j � CN��kjuI � uNkj� ������

Based on ������ and ������ we obtain	

kjuI � uNkj� � CN�� ln�NkjuI � uNkj� CN��kjuI � uNkj�

thus	
kjuI � uNkj � CN���

Then	

ku� uNk � ku� uIk� kuI � uNk � Cku� uIk� � kjuI � uNkj �

CN�� ln�N � CN���

which completes the proof� �

Remark ���� The uniform in � error estimate in L��norm is the highest order
possible for the standard Galerkin method and it cannot be improved using the
Aubin�Nitsche trick�

�� Convergence analysis of problems with parabolic layers� L��
norm error estimates

We consider the problem ����� in 
 
 ��� ��� with velocity vector b 
 ��� b�	
where b � � and boundary conditions

ujjjx�� 
 �� ujjjx�� 
 g��

ujjjy�� 
 �� ujjjy�� 
 g��
�����

where g� and g� are smooth and continuous at the corner points�
Let u� be the solution of the reduced problem

b�u��y � cu� 
 f�x� y�� on 
� u�jjjy�� 
 ��

which is called Cauchy problem and if b is a constant it has the solution

u� 

�

b
exp�

c

b
y�

yZ
�

f�x� z�exp��c

b
z�dz�

which is smooth without any additional assumption on the data at the corner
��	�� in contrast with the solution of the reduced equation in the case of expo�
nential layer�
In general	 u has a boundary layer along x 
 �� Introducing � 
 xp

�
� ��� ��

p
��

the layer correction w��� y� satis�es	

�w�� � bwy � cw 
 �� on 
� �����

���



wjjjy�� 
 �� wjjj��� 
 �u���� y� 
 
�y�� �����

The equation ����� with the boundary conditions ����� form an initial boundary
value problem of parabolic type	 so at x 
 � we say that we have a parabolic
layer�
The exact solution of ����������� has the integral representation

w��� y� 

�p
��

�Z
��
p

�y
b

exp�� t�

�
�
�y � b��

�t�
�exp��c��

�t�
�dt� �����

If 
��� 
 
���� 
 � then ��w
�y� is uniformly bounded in 
 � �
� In the case


���� 

 �	 ��w
�y� has a singularity at the origin�

We de�ne g� 
 �u� � w�jjjx�� and g� 
 �u� � w�jjjy�� in order to exclude the
development of a second parabolic layer at x 
 � and an exponential layer at
y 
 �� In this way we avoid an overlap of parabolic and exponential layers at the
out�ow corners ��	�� and ��	�� and make the asymptotic structure uas 
 u��w
much more simple�
For the sake of completeness we mention here the well known lemma presented
in papers concerning the asymptotic expansion of solution of problem with
parabolic layer�

Lemma ���� There exists a positive constants C independent of � such that

ju�x� y�� uas�x� y�j � C�� for all �x� y� � 
 � �
�

S� Shih and R�Kellogg prove in ���� the following corollary�

Corollary ���� �Corollary of Theorem 
�� in ����� There exist two positive
constants C and m independent of � such that����

����
�����iw��� y��yi

����
����
���� � Ce�m�� i��	�	�	 �����

����
����
������iw��� y����i

����
����
���� � Ce�m�� i��	�	

for all ��� y� � ��� ��
p
��	 ��� ���

Since �x
�� 


p
� we obtain the estimate����

����
������w�x� y��x�

����
����
���� � C���e�mx�

p
�� for all �x� y� � 
� �����

which is the key to the correct choice of the transition point between the coarse
and the �ne mesh� Because of the boundary conditions ����� the solution u
belongs to

H�
g �
� 
 fu � H��
��u 
 g on �g�

���



where g is de�ned by ������ H�
g �
� is not a linear space but for any �xed

u� � H�
g �
� we can write

H�
g �
� 
 feu � H��
�� eu 
 u� u�� u � H�

� �
�g�
and de�ne

�f�� v� 
 �f� v� � a�u�� v��

Then the variational formulation is� �nd u � H�
� �
� such that

a�u� v� 
 �f�� v�� for all v � H�
� �
�� �����

where

a�u� v� 
 ��ru�rv���buy� v���cu� v� 
 ��ru�rv���u� bvy���cu� v�������

We use the standard Galerkin �nite element method on a Shishkin mesh to
discretize ������ The �nite element approximation uN � V N of u satis�es

a�uN � 
� 
 �f�� 
�� for all 
 � V N � �����

Similarly to the previous section we have a coercivity bound of type ����� and
an orthogonal relation as ������
The Shishkin mesh is de�ned as follows� Let we have Nx and Ny points in x�
and y�direction	 correspondingly� Then	 we set

�x 
 minf�
�
�
�

m

p
� lnNxg

and call �x the transition point from the �ne to the coarse mesh in the x�direction�
Remark ���� The constantm in the de�nition of �x does not have a �xed value
since the e stimate �
�
� is used	 where m is an arbitrary positive constant�

The coarse and �ne meshsizes are de�ned by

Hx 
 ��� �x���Nx���	 Hy 
 ��Ny	
hx 
 �x��Nx���	

and written formally


y 
 fyj 
 jHy� j 
 �� ���� Nyg� 
x 
 
c�x � 
f�x� where


f�x 
 fxi 
 ihx� i 
 �� ���� Nx��g� ������


c�x 
 fxi 
 �x � �i�Nx���Hx� i 
 Nx�� � �� ���� Nxg�
Then	 the Shishkin mesh in 
 is 
xy 
 
x 	
y� It is coarse on ��x� ��	 ��� ��
and much �ner near x 
 � in the x� direction�

For notational simplicity we assume that Nx 
 Ny 
 N in the rest of the
section� Further	 we derive an estimate for ku� uNk�

���



Definition ���� 
c 
 ��x� ��	 ��� �� and 
f 
 
xy�
c�

Theorem ���� Let u be the solution of �
��� and uN be the standard Galerkin
solution of �
���� Then	 we have

ku� uNk � CN���

Proof� The coercivity of the bilinear form a��� �� and the orthogonal equality
give	

CkjuI�uNkj�� ��r�uI�u��r�uI�uN����uI�u� b�uI�uN�y��c�u
I�u� uI�uN��

Following the proof of Theorem ��� we get an estimate similar to ������	 i�e�	

j��r�uI � u��r�uI � uN�� � c�uI � u� uI � uN�j � CN�� ln�NkjuI � uNkj�
Here we have used that ku�uIk� � CN�� ln�N 	 the proof of which is based on

estimates ����� ������	 the choice of hx and the fact that e
�mxp

� � e
�m�xp

� 
 N��

for x � ��x� ���
The second term of the bilinear form a�uI � u� uI � uN� is bounded by

j�uI � u� b�uI � uN�y j � kuI � uk�ckb�uI � uN �yk�c

�kuI � uk���f

Z
�f

jjjb�uI � uN �yjjjd
f �

In the y�direction we have an equidistant coarse mesh with meshsizeHy 
 ��N
and the standard inverse inequality holds	 i�e�	

k�uI � uN �yk��
�

c


f

��
�
� CNkuI � uNk��

�

c


f

��
�
�

Therefore	
kuI � uk�ckb�uI � uN�yk�c � CN��kjuI � uNkj

and

kuI�uk���f

Z
�f

jjjb�uI�uN �yjjjd
f � CkuI�uk���f �area
f �
���k�uI�uN�yk�f �

C�N�� ln�N��
p
� lnN����NkuI � uNk�f � CN��kjuI � uNkj�

The factor ���
�lnN�	�� above is a small constant when �� �� Summing up	

j�uI � u� b�uI � uN �y�j � CN��kjuI � uNkj�
Analogously to the end of the proof of Theorem ��� we obtain

ku� uNk � CN���

����



�� Streamline upwind diffusion method

The streamline upwind di�usion �SUPD� method was introduced by Hughes
and Brooks ��� and its behavior on uniform meshes is studied by many authors	
but on nonuniform meshes	 in particular Shishkin meshes	 it is unknown� Re�
cently	 the paper ���� by M� Stynes and L� Tobiska gave the �rst analysis of
the error dependence on the user�chosen parameter �� specifying the Shishkin
mesh�
The SUPD method for solving ����������� can be formulated as a Petrov�
Galerkin method with special test functions or as a standard Galerkin method
for the third order problem	

L�u�r � ��� � b�L�u� 
 f �r � ��� � b�f� �����

with properly chosen boundary conditions� Here � 
 ���� ��� is the streamline
di�usion method parameter and �� �b� is a pointwise vector multiplication	 i�e	
�� � b� 
 ���b�� ��b��� The bilinear form corresponding to ����� is

aSD�u� v� 
 a�u� v� � bSD�u� v� 
 �f� v� � �f� �� � b� � rv��

where

a�u� v� 
 ��ru�rv� � �b � ru� v� � �cu� v�� �����

bSD�u� v� 
 �L�u� �� � b� � rv�� �����

Let � be an arbitrary rectangle from our Shishkin mesh� We rewrite bSD��� ��
in the form

ebSD�u� v� 

X

���xy

���Z
�

r � ���ru���� � b� � rv�d��
Z
�

�b � ru� c���� � b� � rv�d�
���
�

�����

Note that u � H��
� implies thatr���ru� � L��
�	 however	 if we consider the
�nite element space V N and uN � V N we have in general r � ��ruN� 
� L��
�
as V N 
� H��
�� Hence	 the Galerkin �nite element formulation must be based
on ������������ Thus	 the �nite element approximation uN of u satis�es

a�uN � v� �ebSD�uN � v� 
 �f� v� � �f� �� � b� � rv�� for all v � V N � �����

A standard way of stabilizing ����� is to choose

�� 
 width������b��P���� �� 
 height������b��P���� �����

where P� and P� are the middle points in the x� and the y�direction of ��
Now we note that if uN is piecewise bilinear then r � �ruN � is zero on each �

and the �rst term of ebSD��� �� in ����� vanishes� The second term of ebSD��� ��
corresponds to a di�usion term along the streamline direction of b� This term is

���



not derived by an arti�cial streamline di�usion method	 i�e�	 by a perturbation
of the equation ������ Instead	 we have embedded ����� into ����� and the
righthand side has been changed accordingly� An analysis of this method on a
uniform mesh can be found in ���	 ���	 ����� Estimates on arbitrary and Shishkin
meshes in one dimensional case are given in �����
The SUPD method has the following advantages compared to the classical
Galerkin method�

�i� There are no or only minor oscillations due to the stabilization e�ect of the
streamline upwind di�usion term�

�ii� It gives a coercive form uniformly bounded in � and the resulting matrix is
positive de�nite	 which is a valuable property for an iterative solver�

�iii� The order of convergence is O�N����� on a uniform mesh�

The last property is not theoretically proven yet on a Shishkin mesh in �D but
the numerical calculations of k�k� and k�k norms of the error	 presented in the
next section	 are good evidence of that�

�� Numerical results
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Figure �� Velocity �eld of ������

In this section we shall consider three numerical examples� The �rst one has
two exponential boundary layers while the second one has only one parabolic
layer� The third example illustrates a case when the Shishkin mesh fails and a
posteriori adapted mesh is needed�
Since our problems are nonsymmetric and ill�conditioned	 see Tables � and �	
we use GCG�MR solver preconditioned by �M�ILU factorization	 as presented
in ����
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���� Exponential layer

We consider the problem

���u� bru� cu 
 f� x � 
 
 ��� ���� �����

ujjj�� 
 ��

where � � ������ ���
�	 c 
 �	 b 
 �
p
�
� �� �

p
�
� x��

p
�
� �� �

p
�
� y��	 see Figure �	

and f�x� is such that the exact solution is�

u�x� y� 
 xy��� exp���� x

�
����� exp���� y

�
��� �����
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The righthand side satis�es the compatibility conditions �����	 ������
Problem ����� is characterized by the existence of exponential boundary layers
at x 
 � and y 
 �	 see Figure �� These layers cause serious instabilities in
the standard Galerkin �SG� �nite element scheme on a uniform mesh result�
ing in oscillatory numerical solution	 see Figure ��a�� The amplitude of the
oscillations turns out to depend on the height and width of the layers� The
streamline upwind di�usion method �SUPD� is much more stable� There are
no oscillations	 see Figure ��b� but is does not converge on a sequence of re�ned
uniform meshes as long as N�� 
 � in contrast with nonsingular problems�
In order to overcome these di�culties we use the Shishkin mesh de�ned by
������ The numbers of points used in both directions are equal to N � In prac�

���



tice	 this a priori re�ned mesh follows the contour lines of the exact solution	
compare Figure � with Figure �� The positions of the transition point for �xed
� 
 ���	 and di�erent N are illustrated in Figure �� It slowly moves to the
smooth part of the solution when the number of points doubles	 which is an
advantage of the Shishkin mesh from an approximation point of view but a
disadvantage when a solver such as a multi�grid method will be applied� The
parameters of the Shishkin mesh � coarse� �H�	 �ne� �h� meshsizes and their
ratio are given in Table ��
Our matrices obtained by standard Galerkin FE discretization on a Shishkin
mesh are very ill�conditioned and a powerful solver like GCG�MR precondi�
tioned by ILU is required� From Table � we see that their condition numbers
are consistent with theoretical condition number estimate O�����N� lnN���	
provided by Roos ����� This large order is signi�cantly improved by �M�ILU
preconditioner�
All numerical results described below are obtained by either SG or SUPD
method using a Shishkin mesh� The pointwise errors of both methods for
� 
 ���	 and N 
 �� are plotted in Figure ��a���b�� We see that there are
now no oscillations and both methods perform much better than on a uniform
mesh as far as the error amplitude is concerned� The largest error still origi�
nates in the layer regions despite of the fact that a very �ne mesh is introduced
there�
The computed L��discrete� and �� norms of discretization error �u� uh� are
provided in Tables � and � for � � ������ ���
� and number of points in one
direction N � ��
� �	� ��� �
�� The �rst � columns of each table concerns the SG
method while the next � columns the SUPD method� The di�usion parameter
� is de�ned by ������ In practice	 it means that extra di�usion is added mainly
outside the layer regions and the amount introduced inside them is negligible
since h� H � The numerical results in Tables � show very clearly	 �rst	 the
convergence uniformly in �	 and second	 the consistency with the theoretical
rate of convergence estimates O�N��� and close to O�N�����	 respectively for
SG and SUPD method� Based on the results in Table � we can say that these
two important properties of the L��norm of the discretization error hold even
for its �� norm	 a fact which is not theoretically proven yet� In practice	 we
get even better results than the theoretical analysis shows�

���� Parabolic layers

We consider the problem

���u� uy 
 f� x � 
 
 ��� ���� �����

ujjjx�� 
 �� ujjjx�� 
 g��

ujjjy�� 
 �� ujjjy�� 
 g��
�����

���



The parameters of the Shishkin mesh
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Table �� H � coarse meshsize	 h � �ne meshsize	 H�h � aspect ratio of the
rectangular elements used in the layer regions
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Table �� Exponential layer	 Condition numbers of SG FE matrices on a
Shishkin mesh�

where � � ������ ���
�	 g� and g� will be speci�ed later and f�x� is such that
the exact solution is �see Figure ���

u�x� y� 

�p
�
��� exp��

r
�

�
x��exp��y��

The solution u has a representation u 
 u� � w	 where u� 

�p
	
exp��y� is

the smooth part satisfying the reduced problem

�u��y 

p
�exp��y�� on 
� u�jjjy�� 
 �p

�
�

and w 
 � �p
	
exp��p	

� x�exp��y� is the solution of initial boundary value

problem of parabolic type

��wxx � wy 
 �� on 
�

���
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Table �� Exponential layer	 k u� uh kL�� discrete
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Table �� Exponential layer	 k u� uh k�

wjjjy�� 
 �� wjjjx�� 
 �u���� y��
Along the line x 
 � there is a parabolic layer� We de�ne g� 
 �u��w�jjjx�� and
g� 
 �u� � w�jjjy�� in order to exclude the development of a second parabolic
layer at x 
 � and an exponential layer at y 
 ��
We discretize ����� using SG and SUPD methods on Shishkin mesh ������� The
numbers of points used in both directions are equal to N � The distance � of the
transition point from the parabolic layer is presented in Table �� The condition
numbers of the SG matrices are given in Table �� They are proportional to the
number

p
����N� lnN�� computed in �nd and �th columns of the same table�
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Table �� The transition point is of distance � from the parabolic layer

From the arising graphs of the SG and SUPD pointwise discretization errors
we can draw the conclusion that the Shishkin mesh is very e�cient as far as
the reduction of the error is concerned but it is not optimal with respect to
the number of points introduced� The parabolic layer has a di�erent nature
compared with the exponential layer and its width varies from � to O�

p
��	

thus the layer region has a curved boundary� In practice	 the Shishkin mesh
covers the rectangle circumscribing the layer region and remains insensitive to
the variation of the width because of its limited adaptivity	 which follows by
its construction�

The computed L��discrete� and �� norms of discretization error �u� uh�
are provided in Tables � and �� The numerical results clearly show a uniform
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Table �� Parabolic layer	 Condition numbers of SG FE matrices on a Shishkin
mesh�
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convergence� Moreover	 we see that the standard Galerkin solution uN ap�
proximates u to almost N���� order in L�� �even ��� norm	 which is better
than our theoretical analysis shows� However	 see the results in ���	 illustrating
instances when this order arises�

In case of parabolic layer	 the SUPD scheme introduces extra di�usion only
in the direction of the nonzero velocity component	 i�e� in y�direction if b 

��� Const�� The di�usion parameter is de�ned by ����� and in our case is � 

Hy��� where Hy 
 ��N � Observe that we do not have coarse and �ne meshsizes
in y� direction� Since the SUPD scheme does not add stabilization term in
x�direction	 where the parabolic layer is located	 we cannot expect an essential
improvement of the error amplitude in contrast with the exponential layer�
The numerical results in Tables �	 � are good illustrations of this fact� The
SUPD methods gives smaller errors than SG method but the di�erence is not
substantial�
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Table 	� Parabolic layer	 k u� uh kL�� discrete

��
� Special layer

We consider the problem

���u� bru� cu 
 f� x � 
 
 ��� ���� �����

ujjjx�� 
 �� ujjjx�� 
 ��
ujjjy�� 
 �� ujjjy�� 
 ��

where � � ����
� �����	 c 
 �	 b 
 ����x��� ��� y��� and f�x� is such that the
exact solution is�
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Table 
� Parabolic layer	 k u� uh k�

u�x� y� 
 exp�� ��� x����� y��

�
�� �Figure ��� �����

The contour lines of ����� illustrated in Figure ����� show that the width of the
layer as well as its position in 
 varies when � decreases� For � � ����
� �����
we have a typical interior layer which gradually localizes as boundary layer
along the lines x 
 �� y 
 � when � � �� First	 the motion of the layer in
the domain makes the construction of the proper Shishkin mesh problematic�
Second	 the width of the layer around the corner ��	�� is greater than the
one at the corners ��	��	 ��	�� due to dispersion� This is in contrast with its
steepness� That is why our trial to use Shishkin mesh constructed in the same
way as for exponential parabolic layers of width O����O�

p
�� ended up with

an easily explainable result	 illustrated in Figure �� � the largest error occurs
in the subdomain wider than O�

p
��	 which is not covered by the Shishkin

mesh� On the other hand	 a construction of a Shishkin mesh covering this
subdomain leads to waste of computational e�ort and memory resources due
to introduction of too many unnecessary points around the corners ��	�� and
��	���
In an attempt to obtain a mesh which corresponds to the behavior of the
solution we use a posteriori adaptive re�nement based on a defect�correction
technique� In Figure �� 	 ��	 �� the corresponding discretization error	 the �nal
graded and patched mesh	 which follows the contour lines of the exact solution
and a zoom of the adaptive mesh are shown� The maximal values of jehj	 at
each step of adaptive re�nement are given in column � of Table �� More details
about the adaptive re�nement procedure used here are given in ����

���



Adaptive re�nement
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Table �� Discretization error after � levels of re�nement	 � 
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�� Conclusions

It has been demonstrated that the Shishkin meshes are very e�cient in reduc�
tion of the error for both exponential and parabolic layers but they are not
optimal with respect to the number of points in the latter case� We showed
that the standard Galerkin �nite element method converges uniformly in the
perturbation parameter �	 of optimal order O�N��� in L��norm	 where the
total number of points is O�N��� The numerical results clearly illustrate this
fact� The experiments with streamline upwind di�usion method on Shishkin
mesh show that it gives higher order of approximation	 better stability and
matrix properties	 so that the iterative solver converges faster than in the case
of the standard Galerkin method� The necessity of using adaptive re�nement
techniques based on stable methods as a defect�correction method and care�
fully chosen a posteriori error estimators was well demonstrated by the last
numerical example�

Acknowledgments The authors would like to thank the participants at the
workshop !Numerical Solution of Thin Layer Phenomena!	 held at CWI	 Am�
sterdam	 November �����	 ����	 for many helpful discussions and advises� The

���



0 0.5 1
0

0.2

0.4

0.6

0.8

1

e=10
−2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

e=10
−3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

e=10
−5

0 0.5 1
0

0.2

0.4

0.6

0.8

1

e=10
−7

Figure ��� Contour lines of
����� �

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e=10−5

Figure ��� Zoom of Figure ��
for � 
 ���	�

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.005

0.01

0.015

0.02

Figure ��� � 
 ���		
Discretization error of SG on
Shishkin mesh	 N 
 ��	
k u� uh k�
 ��������

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

2

4

x 10
−4

Figure ��� Discretization er�
ror k u� uh k�
 �������� after
� levels of adaptive re�nement�

authors appreciate the help of Alexander Padiy in the implementation of the
numerical results�

References

�� O� Axelsson
 I� Gustafsson ������� Quasioptimal �nite element approx�
imations of �rst order hyperbolic and of convection dominated convection�
di�usion problems� Anal� and Numer� Approaches to Asymptotic Problems
in Analysis	 �O� Axelsson
 L�S� Frank and A� van der Sluis	 eds��
North Holland	 ���"����

�� O� Axelsson
 M� Nikolova ������� Adaptive re�nement for convection�
di�usion problems based on a defect�correction technique and �nite di�er�
ence method� Computing	 ��	 �"���

���



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure ��� Final mesh

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure ��� Zoom of the mesh

�� O� Axelsson
 M� Nikolova ������� Avoiding slave points in adaptive re�
�nement procedure for convection�di�usion problems in �D� Report #����	
July ����	 University of Nijmegen	 the Netherlands	 submitted to Comput�
ing�

�� O� Axelsson
 M� Nikolova ������� A GCGMR method with variable
preconditioners and a relation between residuals of GCGMR and GCGOR
methods	 Communications in Applied Analysis	 �	 ���"����

�� A�S� Bakhvalov ������� On the optimization of methods for solv�
ing boundary value problems with boundary layers� J�Vychisl�Math�i
Math�Fysika	 �	 ���"���	 �in Russian��

�� T� Hughes and A� Brooks ������� A multidimensional upwind scheme
with no crosswind di�usion	 in AMD ��	 Finite element methods for con�
vection dominated �ows	 T�J� Hughes �ed��	 ASME	 New York�

�� C� Johnson and U� N�avert ������� An analysis of some �nite element
methods for advection di�usion problems� Anal� and Numer� Approaches
to Asymptotic Problems in Analysis �O� Axelsson
 L�S� Frank and A�
van der Sluis	 eds��	 North Holland	 ��"����

�� H� Han
 R� Kellogg ������� Di�erentiability properties of solution of the
equation ����u� ru 
 f in a square� SIAM J� Math�Anal� ��	 ���"����

�� J� Miller
 E�O� Riordan
 G� Shishkin ������� Fitted numerical methods
for singular perturbation problems � error estimates in the maximum norm
for linear problems in one and two dimensions� World Scienti�c	 Singapore�

��� K�W� Morton ������Numerical solution of convection�di�usion problems�
Chapman and Hall	 London�

��� U� N�avert ������� A �nite element method for convection�di�usion prob�
lems� Ph�D� Thesis	 Chalmers University of Technology	 G$oteborg	 Sweden�

��� H��G� Roos ������� A note on the conditioning of upwind schemes on
Shishkin meshes	 IMA J� Numer� Anal� �		 ���"����

��� H��G� Roos ������� A priori estimates	 asymptotic expansions and
Shishkin decompositions� Report MATH�NM������	 Technische Universit%at
Dresden	 December�

���



��� H��G� Roos
 M� Stynes
 L� Tobiska	 ������� Numerical methods for
singularly perturbed di�erential equations� Springer	 Heidelberg�

��� S� Shih
 R�Kellogg ������� Asymptotic analysis of a singular perturba�
tion problem	 SIAM J� Math� Anal� ��	 ����"�����

��� G� Shishkin ������� Grid approximation of singularly perturbed elliptic
and parabolic equations� Second doctoral thesis	 Keldysh Institute	 Russian
Academy of Science	 Moscow �in Russian��

��� M� Stynes
 E�O� Riordan ������� A uniform convergent Galerkin
method on a Shishkin mesh for a convection�di�usion problem� J� Math�
Anal� Appl� ���	 ��"���

��� M� Stynes
 L� Tobiska ������� Analysis of streamline di�usion type
methods on arbitrary and Shishkin meshes� Report �	 University College
Cork	 Ireland�

���


