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In this paper we consider the standard Galerkin finite element method applied to
singularly perturbed convection-diffusion problems in 2D. Their discretizations
are based on piecewise bilinears on a Shishkin mesh with total number of points
O(N?). Discretization error estimates of order O(N ') in Ly norm, which hold
uniformly in ¢, are provided. The theoretical results are supported by numeri-
cal results for both, the standard Galerkin and the streamline upwind diffusion,
methods on a Shishkin mesh. This a priori adapted mesh gives good results for
exponential and parabolic layers. Nevertheless, the use of Shishkin meshes to
solve problems with interior and more complicated layers, the location of which
is unknown a priori, is still questionable. In this case we use the black box tool
- a posteriori adapted meshes obtained by some adaptive refinement procedure
combined with a special discretization method to get a high order of accuracy.
The advantages and disadvantages of a priori — and a posteriori — adaptive re-
finement techniques are illustrated by numerical experiments in 2D.

1. INTRODUCTION
We consider the convection-diffusion problem (1.1) with boundary conditions

(1.2),

Lou=—eAu+b -Vu+cu=f, x €QCR, (1.1)
Ou

u=0,xel_, 6—n:g,XEF1:BQ/F_:F+UFO. (1.2)
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The solution is driven by the vector field b, and ' = {x € I',b-n < 0},
'y ={xel,b-n>0},To={xeTl, b -n=0}are the corresponding inflow,
outflow and characteristic parts of I', the boundary of €.

Here 2 is a bounded convex domain of polygonal type and b, f are given
sufficiently smooth functions in Q. The singular perturbation parameter &,
0 < e <1 is used to measure the relative amount of diffusion to convection.
The function g is given on I'y and n is the outward normal vector on this part
of the boundary. Further, we assume

E(nelg(c — 1divb) > ¢y > 0. (1.3)

Under this condition it can be shown that (1.1), (1.2) has a unique solution in
HA(Q).

In practice, (1.3) can always be satisfied by a proper variable transformation of
u. The assumption on homogeneous Dirichlet boundary conditions are made
just to simplify the presentation, because a linear transformation v = u_ + u,
where u_ represents any given inhomogeneous boundary condition on I'_, leads
to homogeneous boundary conditions for w.

The major problem in the numerical solution of (1.1) is to find a numerical
approximation scheme which is uniformly accurate in € and with a solution cost
which does not grow with €. The standard Galerkin finite element scheme on a
uniform mesh does not belong to this class. Moreover, it is numerically unstable
and gives an oscillating approximate solution unless the finite element mesh is
extremely fine. Furthermore, the pointwise error is not necessarily reduced by
successive uniform refinement of the mesh in contrast to solving nonsingularly
perturbed problems. Recently, three books [9], [10], [14] appeared about the
numerical solution of singularly perturbed problems.

The introduction of specially adapted (a priori or a posteriori) meshes in
the layer region(s) overcomes these difficulties. Bakhvalov was the first using a
uniform mesh outside the layer(s) and specially graded mesh at the layer(s), see
[5]. Then, Shishkin [16] introduced piecewise equidistant meshes and showed
that one can also obtain uniform convergence in the layer. These Shishkin
meshes combined with standard Galerkin (SG) or streamline upwind diffusion
(SUPD) finite elements discretization are the focus of our paper. It is orga-
nized as follows. In Section 2, the uniform convergence in € of the SG method
applied to problems with exponential layers is analyzed. In Section 3, we do
similar analysis of problems with parabolic layer. The uniform L;—norm er-
ror estimates, obtained in these sections are of optimal order O(N~!). The
SUPD method is introduced in Section 4. Several numerical experiments on
Shishkin meshes as well as some illustrations concerning the necessity of using
a posteriori adapted meshes for more general problems are given in Section 5.

NOTATION 1. Throughout the paper we denote with C' a gemeric constant in-
dependent of € and the mesh parameters.

NoOTATION 2. We denote by (.,.) and .|| the usual L2(Q) product and Lo-
norm.
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DEFINITION 1.1. The weighted energy norm is defined by

el = el Vall* + flul*.

2. CONVERGENCE ANALYSIS OF PROBLEMS WITH EXPONENTIAL LAYERS.
L>— NORM ERROR ESTIMATES

We consider the problem (1.1) in @ = (0,1)? with homogeneous boundary
conditions on I'" and the additional assumption that

b = (b1,b2) > (B1,52) > (0,0). (2.1)

Exponential boundary layers occur then at the outflow boundary 'y = {z =
1Uy = 1}. Condition (2.1) excludes the occurrence of internal and parabolic
boundary layer(s). To avoid also layers caused by data incompatibility at the
corners of the unit square the zero-order compatibility conditions should be
imposed,

f(0,0) = f(0,1) = £(1,0) = f(1,1) = 0, (2.2)

which ensure that u(z,y) € C2(Q), for more details see [8]. Roos [13] assumes
in addition the first-order compatibility conditions at the corner (0,0) of the
unit square

f(0,0) = f,(0,0) =0, (2.3)

and deduces Theorem 2.1, which plays important role in the estimate of certain
derivatives of u(z,y). Similar estimates are also given in [2].

THEOREM 2.1. Let b and f be sufficiently smooth and assume that f satisfies
(2.2), (2.8). Then, the solution u of (1.1) has the representation u = ug + v,
where ug s the smooth part and

Ot ug(z,y)
Oxi oy’

e

and v = v + ve + v12, where

v (z,y)

T < CeTlean(=ph (1 = )/2),

0" vy (2, y)

Sy | < Ceexp(—Pa(1 —y)/e),

8i+j U12 (.’I}, y)
oxidy’

for all (x,y) € Q and 0 <i+j< 2.

| < Ce= D eap(— By (1 — z)fe)exp(—Ba(1 — y)/e),

The variational formulation of (1.1) is: find u € Hg(2) such that
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a(u,v) = (f,v), forallv € Hy(9), (2.4)

where H{ () is the usual Sobolev space of functions satisfying homogeneous
Dirichlet boundary conditions and a(u,v) is the corresponding bilinear form

a(u,v) = e(Vu, Vo) + (b - Vu,v) + (cu, v).
Based on Green’s formula and (1.3) we obtain
a(u,u) > e(Vu, Vu) + co(u,u) > min{1, co}|||ul|?,
thus
a(u,u) > C|llull. (2.5)

We use the standard Galerkin finite element method on a Shishkin mesh to
discretize (2.4). Let V¥V be a finite element subspace of H}(Q2) consisting of
piecewise bilinear functions {¢; ;(z,y)}1;_; on Q that vanish on Q. The finite
element approximation u” € VIV of u satisfies

a(u,p) = (f,p), forall pe V. (2.6)

The uniqueness of u” is guaranteed by (2.5). Subtracting (2.6) from (2.4), we
obtain the orthogonal relation,

a(u—u™ o) =0, forall vV € VN, (2.7)

The Shishkin mesh is defined by a tensor product of two one-dimensional piece-
wise equidistant meshes. Let /N, and IV, be the points in z— and y—direction,
correspondingly. Then, we set

1 2 1 2
2, ﬂl 2’ ﬂ2
and call 1 -7, and 1 — 7, the transition points from the coarse to the fine mesh
in the corresponding directions. The coarse and fine meshsizes are defined by

Ty = min{ eln N, }, Ty = min{ eln Ny},

H, =(1-1)/(N:/2), Hy =(1-1y)/(Ny/2),
he = 72 /(N2 /2), hy =1y/(Ny/2),

and written formally
Qp = Qea UQyp, where
Qc,x = {xz =iH,,i :Oa---aNm/Q}a (28)

Qo ={i =1—74 + (i = Ny /2ha,i = Ny J2+1,..., N, }.
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Analogously, €2, is defined. Then, the piecewise equidistant Shishkin mesh in
Qis Qpy = Qp x Q. It is coarse on [0,1 — 7] x [0,1 — 7] and much finer near
I';. Observe that very long stretched elements are used in the layer regions.

For notational simplicity we assume that N, = N, = N in the rest of the
section. Further, we derive an estimate for |Ju — u'v||.

NOTATION 3. u! denotes the bilinear interpolant to u on our mesh.
DEFINITION 2.1. Q. =[0,1 —7,;] x [0,1 — 7] and Qf = Q,,/Qe.

THEOREM 2.2. Let u be the solution of (2.4) and u™ be the standard Galerkin
solution of (2.6). Then, we have

lu —u™|| < ONL.

PRrROOF. The coercivity (2.5) of the bilinear form and the relation (2.7) give,

Ollu’ —u™||? <a(u! —uM,u! —u™)=a(u! —u,u’ —u™) + a(u — u™,u! —u®)

=a(u’ —u,u’ —um).

Using the Green’s formula we obtain,
a(u’ —u,u’ —uN) = (V' —u), V' —u) + (b -V —u),u’ —u?)

teu’ —u,uf —uN) =

e(V(u! —u), V(u! —u)) = (u! —u,b-V(u! —u™))+ (c—divb)(u! —u,u! —ul).
Let us consider each term separately. In the estimate of the first term we shall

use that «” and u! are piecewise bilinears and then on each rectangle 7 € ,,,
(u! —ul), and (u! —u®), do not depend on x and y, respectively. Therefore,

(u! —u™),p and (uf — uN)yy are zero on each 7. Then,
1 x;
|E((UI —u)x,(ul —UN)ac)| — ’ /( Z / E(uI _u)m(u,l _uN)wda:)dy <
1<i<N,
1
/(5 st =zl = <
0 1<i<N
1
Cell! ~ ulla| 3 [ = uM).ay <
1<i<N Y
1
CeN|lu' — ulloo.0 /u —uM),dydz| <
0
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N !~ ulloo 0|0 —u™),

Similarly, we have

le((u” = u)y, (u" —uN),)| < C'2N|u’ — ulloo.ae'?[|(u" — u™),|l.
For the third term we obtain,

|(c = divb)(u’ —u,u’ —u™)| < le = divb|lw,ollu’ - ul|[lu’ - u™]]

< Ollu’ — ullo,0llu’ — w]l.
M. STYNES and E. O’RIORDAN prove in [17] (Theorem 4.2), that
luf = |0 < CN"21n” N. (2.9)

They essentially use Theorem 2.1 and the facts that e %17/ = N~2 and
e P2mv/e = N—2, Hence,
le(V(u! —u), V(u! —u™)) + (¢ — divb) (u! —u,u! —u™)| <
CE2(lw! = uM)oll+I(u’ = uM)y )+l = uNDllu’ — ullsg < (2.10)
CN2In® NJu! —u?|]. '

Finally, we consider the second term of a(u! — u,u! — u™).

(" = u,b- V(' —u™)| < lu’ = ull, b V(@ —u)q,

Qe

Hl! =l [ 10 Vit~ u¥)ldg.
Qy
In Q. we have an equidistant coarse mesh and the standard inverse inequality

holds, i.e.,

- V(' —uV)la, < CNfu’ - u" |,

therefore,

lu” = ulla.lb - V(u" = u™)lle, < OCNTN|ju" = u"lo, < ON7lu" — u™]|.

Qe
Using the Cauchy-Schwarz inequality and (2.9),
o' = ullesy, [ 1b- V(' = uMldy
Qs
< Cllu’ = ulloo,0, (area )2V (u! — ™))l <
C(N721In® N)(eln N)Y/?||V(u! - uMlo, < ONju! — o™
The factor N~ (In N)?/2 above is less than 1 for all N. Summing up,
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(! = u,b- V(! — )| < ON 7! —u]). (2.11)
Based on (2.10) and (2.11) we obtain,

llu’ = u™|I* < ON 2 Nfllu’ — w¥|l| + ON~*lju’ — u™]],

thus,
" — M| <ON
Then,
llu = u™|| < flu = uf || + flu" = ™| < Cllu = ul[loo + [llu’ —u™|| <
CN72In®N +CN~!,
which completes the proof. |

REMARK 2.1. The uniform in € error estimate in Lo-norm is the highest order
possible for the standard Galerkin method and it cannot be improved using the
Aubin-Nitsche trick.

3. CONVERGENCE ANALYSIS OF PROBLEMS WITH PARABOLIC LAYERS. Lo—
NORM ERROR ESTIMATES

We consider the problem (1.1) in © = (0,1)? with velocity vector b = (0,b),
where b > 0 and boundary conditions

le:O = Oa U’lxil =91,
(3.1)
Uly:l) =0, Uly:l = 92,

where g1 and g» are smooth and continuous at the corner points.
Let ug be the solution of the reduced problem

b(UO)y +cup = f(way)7 on Q: UOlyzO = 07

which is called Cauchy problem and if b is a constant it has the solution

O

Y
wo = yeap(sy) [ f,2Jeapl(~52)dz,
0

which is smooth without any additional assumption on the data at the corner
(0,0) in contrast with the solution of the reduced equation in the case of expo-
nential layer.

In general, u has a boundary layer along = 0. Introducing = % €[0,1//7]

the layer correction w(n,y) satisfies,

—Wyy + bwy + cw = 0, on 2, (3.2)
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w|y—o =0, wly—0 = —uo(0,y) =(y)- (3.3)

The equation (3.2) with the boundary conditions (3.3) form an initial boundary
value problem of parabolic type, so at £ = 0 we say that we have a parabolic
layer.

The exact solution of (3.2)&(3.3) has the integral representation

oo

1 t? bn? cn?
= — Iy — 25 ewp(— =L )dt. 3.4
win) = 2= [ ea=5) - G)ean(~G) (34)
N
If v(0) = 7/(0) = 0 then gj/g” is uniformly bounded in Q U d9. In the case
~'(0) # 0, gj;;’ has a singularity at the origin.

We define g1 = (up + w)|g=1 and g» = (ug + w)|y=1 in order to exclude the
development of a second parabolic layer at x = 1 and an exponential layer at
y = 1. In this way we avoid an overlap of parabolic and exponential layers at the
outflow corners (0,1) and (1,1) and make the asymptotic structure u,s = uo+w
much more simple.

For the sake of completeness we mention here the well known lemma presented
in papers concerning the asymptotic expansion of solution of problem with
parabolic layer.

LEMMA 3.1. There exists a positive constants C' independent of € such that
0z, 9) — tas(@,m)| < Ce,  for all (z,) € 2UHD.
S. Shih and R.Kellogg prove in [15] the following corollary.

COROLLARY 3.1. (Corollary of Theorem 3.8 in [15]) There exist two positive
constants C and m independent of € such that

1A
Owny)| o mmn g 10, (3.5)
oyt
8*'w(n,y) m :
W S Ce T’, 220,1,

for all (n,y) € [0,1/y/¢] x [0, 1].

Since g—z = /¢ we obtain the estimate

Fw(z,y)
ox?

| < Ce te™™®/VE for all (z,y) € Q, (3.6)

which is the key to the correct choice of the transition point between the coarse
and the fine mesh. Because of the boundary conditions (3.1) the solution u
belongs to

H; () ={uec H(Q);u=gonT},
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where g is defined by (3.1). H,(Q) is not a linear space but for any fixed
u* € H,(Q) we can write

H; () ={ue H' (Q);t=u+u",uec Hy(Q)},
and define
(f*,’U) = (f7 U) - G(U*,’U).
Then the variational formulation is: find u € HZ(Q) such that
a(u,v) = (f*,v), forallve Hy(Q), (3.7)
where
a(u,v) = e(Vu, Vv)+ (buy, v) +(cu, v) = e(Vu, Vv) — (u, bvy) +(cu, v).(3.8)

We use the standard Galerkin finite element method on a Shishkin mesh to
discretize (3.7). The finite element approximation u”¥ € V& of u satisfies

a(uN,cp) = (f*,p), forall p e VN, (3.9)

Similarly to the previous section we have a coercivity bound of type (2.5) and
an orthogonal relation as (2.7).

The Shishkin mesh is defined as follows. Let we have IV, and N, points in z—
and y—direction, correspondingly. Then, we set

1 2
Ty = mm{i, E\/ElnNm}

and call 7, the transition point from the fine to the coarse mesh in the z—direction.

REMARK 3.1. The constant m in the definition of T, does not have a fized value
since the e stimate (3.6) is used, where m is an arbitrary positive constant.

The coarse and fine meshsizes are defined by

Hy = (1—13)/(N2/2), Hy =1/Ny,
ha :Tx/(Nm/Q)a

and written formally
Oy ={y; =jHy,j=0,..,Ny}, Dy = Qe UQs,, where
Qo ={2; =ih,, i =0,...,N;/2}, (3.10)
Qeog={2i=7p+({ — Ny /2)H,,i = N /2+1,...,N,}.

Then, the Shishkin mesh in Q is Q,, = Q, x Q,. It is coarse on [7,,1] x [0, 1]
and much finer near £ = 0 in the x— direction.

For notational simplicity we assume that N, = N, = N in the rest of the
section. Further, we derive an estimate for |Ju — u®V||.
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DEFINITION 3.1. Q. = [7, 1] x [0,1] and Qf = gy, / Q.

THEOREM 3.1. Let u be the solution of (3.7) and u’ be the standard Galerkin
solution of (3.9). Then, we have

llu —u™|| < ONTH

PROOF. The coercivity of the bilinear form a(.,.) and the orthogonal equality
give,

Ollu! —u|? < e(V(u! —u), V(u! —u)) = (u! —u, b(u! —u™), ) +e(u! —u, u! —u™).
Following the proof of Theorem 2.2 we get an estimate similar to (2.10), i.e.,
le(V(u' —u), V(u" —u™)) +c(u! —u,u’ —u™)| < CN72In? N||lu’ — ™.

Here we have used that |Ju—u!||.o < CN~21n* N, the proof of which is based on
estimates (3.5) &(3.6), the choice of h, and the fact that e Vi <e Vi =N72
for z € [7,,1].

I I _yN)

The second term of the bilinear form a(u’ — u,u’ —u"") is bounded by

(! = w, bu” = uN)y | < Jlu” = ullo.|b(u” = uN)yflo.

Qe

Hla! = w10~ )l
Qy

In the y—direction we have an equidistant coarse mesh with meshsize H,, = 1/N
and the standard inverse inequality holds, i.e.,

I =il (g y < NI =¥ )
%) %)

Therefore,

lu’ = ullg,[Ib(u” = u™)yllo. < CNTHlu® —u]]

Qe

and

llu’ —ullc.0, /Ib(uI—UN)yIde < Offu’ ~ulloo,2, (area ) /2| (u’ —u™)y llo, <

Qs
C(N 210’ N)(veln N)2N|ju! = uN|lq, < ONu! = u®]|.
The factor £'/*(In N')>/? above is a small constant when ¢ — 0. Summing up,
(" = u,b(u! —u™),)] < ONllu! —u™]].
Analogously to the end of the proof of Theorem 2.2 we obtain
lu —u™|| < ONL.
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4. STREAMLINE UPWIND DIFFUSION METHOD

The streamline upwind diffusion (SUPD) method was introduced by Hughes
and Brooks [6] and its behavior on uniform meshes is studied by many authors,
but on nonuniform meshes, in particular Shishkin meshes, it is unknown. Re-
cently, the paper [18] by M. Stynes and L. Tobiska gave the first analysis of
the error dependence on the user-chosen parameter 7y specifying the Shishkin
mesh.

The SUPD method for solving (1.1)&(1.2) can be formulated as a Petrov-
Galerkin method with special test functions or as a standard Galerkin method
for the third order problem,

Lou—V-((E-b)Leu)=f-V-((d-b)f) (4.1)

with properly chosen boundary conditions. Here § = (d1,ds) is the streamline
diffusion method parameter and (d - b) is a pointwise vector multiplication, i.e,
(6 - b) = (61b1,d2b2). The bilinear form corresponding to (4.1) is

asp(u,v) = a(u,v) + bsp(u,v) = (f,v) + (f, (4 - b) - V),

where
a(u,v) = e(Vu, Vo) + (b - Vu,v) + (cu, v), (4.2)
bsp(u,v) = (Leu, (0 -b) - V). (4.3)

Let o be an arbitrary rectangle from our Shishkin mesh. We rewrite bsp(., .)
in the form

bsp(u,v) = Y (/V-(—sVu)((é-b)-Vv)d(H-
o€,
Voo (4.4)
/(b Vu+c)((é-b)- Vv)da).

a

Note that u € H?(Q) implies that V-(eVu) € La(Q), however, if we consider the
finite element space V¥ and u™ € V¥ we have in general V- (eVu”) & Ly (1)
as VN ¢ H?(Q). Hence, the Galerkin finite element formulation must be based
on (4.2)&(4.4). Thus, the finite element approximation u” of u satisfies

a(w,v) + bsp@,v) = (f,v) + (f,(8-b) - Vo), forallveVN. (4.5)
A standard way of stabilizing (4.5) is to choose
d1 = width(o)/(2b1 (P1)), d2 = height(o)/(2b2(FP2)), (4.6)

where P, and P, are the middle points in the z— and the y—direction of o.
Now we note that if u?V is piecewise bilinear then V - (Vu®) is zero on each o

and the first term of ESD(., .) in (4.4) vanishes. The second term of ESD(., )
corresponds to a diffusion term along the streamline direction of b. This term is
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not derived by an artificial streamline diffusion method, i.e., by a perturbation
of the equation (1.1). Instead, we have embedded (1.1) into (4.1) and the
righthand side has been changed accordingly. An analysis of this method on a
uniform mesh can be found in [1], [7], [11]. Estimates on arbitrary and Shishkin
meshes in one dimensional case are given in [18].

The SUPD method has the following advantages compared to the classical
Galerkin method:

(i) There are no or only minor oscillations due to the stabilization effect of the
streamline upwind diffusion term;

(i) It gives a coercive form uniformly bounded in e and the resulting matrix is
positive definite, which is a valuable property for an iterative solver;

(iii) The order of convergence is O(N~3/2) on a uniform mesh;

The last property is not theoretically proven yet on a Shishkin mesh in 2D but
the numerical calculations of ||.||oo and ||.|| norms of the error, presented in the
next section, are good evidence of that.

5. NUMERICAL RESULTS

B Y )
B
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Ficure 1. Exact solution (5.2), FIGURE 2. Velocity field of (5.1).
e=1075.

In this section we shall consider three numerical examples. The first one has
two exponential boundary layers while the second one has only one parabolic
layer. The third example illustrates a case when the Shishkin mesh fails and a
posteriori adapted mesh is needed.

Since our problems are nonsymmetric and ill-conditioned, see Tables 2 and 6,
we use GCG-MR solver preconditioned by (M)ILU factorization, as presented
in [4].
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Discretization error (u-uh) Discretization error (u-u)

x-axis
y-axis y-axis

(a) Uniform mesh, h =272, e = (b) Uniform mesh, h =272, e =
1075, || u — up, ||oo= 2.5782 1075, || u — up, |Joo= 0.166112

FIGURE 3. Discretization error of: (a) Standard Galerkin, (b) SUPD method.

o o1 0z 03 04 05 06 07 08 03 1

FIGURE 4. Contour lines of (5.2). FI1GURE 5. Shishkin mesh

5.1. Exponential layer
We consider the problem

—eAu+bVu +cu = f, x € Q=(0,1)% (5.1)

Ul{;)Q = 07

where e € [1078,107%],c=1,b = [?(1 - ?m), ?(1 - ?y)], see Figure 2,

and f(z) is such that the exact solution is:

u(e,y) = zy(1 - eap(~ )1 - exp(~+ 1)) 62
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I N aspect ratio
[z anston ponoassszes NN N f s
| h — T
oo YN 2]~ 2153
, o 20 |~ 2439
7N:25‘ transition point=0.99933063 <H ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 25 ~ 2987
:N:Z‘\trans\llon point=0.99946451 %‘ ‘ ‘ ‘ ‘ ‘ ‘ 24 ~ 3734

0.9978 0.998 0.9982 0.9984 0.9986 0.9988 0.999 0.9992 0.9994 0.9996 0.9998 1
FIGURE 6. The positions of the transition points for ¢ = 10~° and different

N and the corresponding aspect ratios of the rectangular elements used in the
layer regions.

4
X
"
)
"

Y

)

Y

A

1
W
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(a) Shishkin mesh, N = 32, e = (b) Shishkin mesh, N = 32, e =
1075, || u — up, |loo= 0.109488 1075, || u — up ||oo= 0.037212

FIGURE 7. Discretization error of: (a) Standard Galerkin, (b) SUPD method.

The righthand side satisfies the compatibility conditions (2.2), (2.3).

Problem (5.1) is characterized by the existence of exponential boundary layers
at x = 1 and y = 1, see Figure 1. These layers cause serious instabilities in
the standard Galerkin (SG) finite element scheme on a uniform mesh result-
ing in oscillatory numerical solution, see Figure 3(a). The amplitude of the
oscillations turns out to depend on the height and width of the layers. The
streamline upwind diffusion method (SUPD) is much more stable. There are
no oscillations, see Figure 3(b) but is does not converge on a sequence of refined
uniform meshes as long as N ! > ¢ in contrast with nonsingular problems.
In order to overcome these difficulties we use the Shishkin mesh defined by
(2.8). The numbers of points used in both directions are equal to N. In prac-
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tice, this a priori refined mesh follows the contour lines of the exact solution,
compare Figure 5 with Figure 4. The positions of the transition point for fixed
e = 107 and different N are illustrated in Figure 6. It slowly moves to the
smooth part of the solution when the number of points doubles, which is an
advantage of the Shishkin mesh from an approximation point of view but a
disadvantage when a solver such as a multi-grid method will be applied. The
parameters of the Shishkin mesh - coarse- (H), fine- (h) meshsizes and their
ratio are given in Table 1.

Our matrices obtained by standard Galerkin FE discretization on a Shishkin
mesh are very ill-conditioned and a powerful solver like GCG-MR precondi-
tioned by ILU is required. From Table 2 we see that their condition numbers
are consistent with theoretical condition number estimate O(e~!(N/In N)?),
provided by Roos [12]. This large order is significantly improved by (M)ILU
preconditioner.

All numerical results described below are obtained by either SG or SUPD
method using a Shishkin mesh. The pointwise errors of both methods for
€ = 107°% and N = 32 are plotted in Figure 7(a)&(b). We see that there are
now no oscillations and both methods perform much better than on a uniform
mesh as far as the error amplitude is concerned. The largest error still origi-
nates in the layer regions despite of the fact that a very fine mesh is introduced
there.

The computed Lg giscrete — and co— norms of discretization error (u — up,) are
provided in Tables 3 and 4 for ¢ € [107?,107%] and number of points in one
direction N € [2%,25,25,27]. The first 4 columns of each table concerns the SG
method while the next 4 columns the SUPD method. The diffusion parameter
0 is defined by (4.6). In practice, it means that extra diffusion is added mainly
outside the layer regions and the amount introduced inside them is negligible
since h < H. The numerical results in Tables 3 show very clearly, first, the
convergence uniformly in ¢, and second, the consistency with the theoretical
rate of convergence estimates O(N 1) and close to O(N~3/2), respectively for
SG and SUPD method. Based on the results in Table 4 we can say that these
two important properties of the L,—norm of the discretization error hold even
for its co— norm, a fact which is not theoretically proven yet. In practice, we
get even better results than the theoretical analysis shows.

5.2. Parabolic layers
We consider the problem

—cAu+uy, = f, x €0 =(0,1)% (5.3)

le:O = Oa U’lxil =91,

uly:[) - 07 uly:l = g2,
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The parameters of the Shishkin mesh

I N =27 T N — 20
[l H [ h [ H/h_ | H [ R H/h
e=10"3 1.21653e-01 3.34681e-03 36 6.04082e-02 2.09176e-03 29
e = 10_4 1.24665e-01 3.34681e-04 372 6.22908e-02 2.09176e-04 298
e =100 1.24967e-01 3.34681e-05 3734 6.24791e-02 2.09176e-05 2987
e =100 1.24997e-01 3.34681e-06 37348 6.24979e-02 2.09176e-06 29878
£ = 10_7 1.25000e-01 3.34681e-07 373489 6.24998e-02 2.09176e-07 298791
=108 1.25000e-01 3.34681e-08 3734898 6.25000e-02 2.09176e-08 2987918

M I N = 2F | N =27
I [l H [ h [ H/h_ | H [ R H/h
£ = 10_3 2.99949e-02 1.25505e-03 24 1.48929e-02 7.32115e-04 20
£ = 1074 3.11245e-02 1.25505e-04 248 1.55518e-02 7.32115e-05 212
e =100 3.12374e-02 1.25505e-05 2489 1.56177e-02 7.32115e-06 2133
£ = 10_6 3.12487e-02 1.25505e-06 24898 1.56243e-02 7.32115e-07 21341
e=10"" 3.12499e-02 1.25505e-07 248992 1.56249e-02 7.32115e-08 213422
=108 3.12500e-02 1.25505e-08 2489932 1.56250e-02 7.32115e-09 2134227

TABLE 1. H - coarse meshsize, h - fine meshsize, H/h - aspect ratio of the
rectangular elements used in the layer regions

N=32 N=64

€ cond(A) [ e I(N/InN)? cond(A) [ e I(N/InN)?
103 || 2.085073¢+03 | 85252876104 || 6.225454e+03 | 2.368135e+05
T0-7 || 1.735536e+04 | 85252876105 || 5.448806e+04 | 2.368135e+06
10 7 || 1.726450e+05 | 8.525287e+06 || 5.322059e+05 | 2.368135e+07
100 1.725283e+06 8.525287e+4-07 5.311899e+06 2.368135e+4-08
10—7 1.725163e+07 8.525287e4-08 5.310761e+07 2.368135e+4-09
10~ 1.725151e+-08 8.525287e+09 5.310647e+4-08 2.368135e+10

TABLE 2. Exponential layer, Condition numbers of SG FE matrices on a

Shishkin mesh.

where ¢ € [107%,107%], g1 and g» will be specified later and f(z) is such that
the exact solution is (see Figure 8):

) = =1 emp(—@m»emp(wy),

The solution u has a representation v = ug + w, where ug = %emp(wy) is
the smooth part satisfying the reduced problem

1
(uo)y = Vmexp(my),  onQ,  wugly—o = 7
and w = —%exp(—\/?x)exp(ﬂ'y) is the solution of initial boundary value

problem of parabolic type

—EWge + wy = 0, on €,

268



SG, Shishkin mesh

ce,N > 16 | 32 | 64 | 128
10~ 0.086148 | 0.037776 | 0.016026 | 0.006740
10-° 0.072972 | 0.030865 | 0.012703 | 0.005202
106 0.068727 | 0.028657 | 0.011652 | 0.004715
107 0.067379 | 0.027958 | 0.011319 | 0.004562
108 0.066953 | 0.027737 | 0.011214 | 0.004513
1079 0.066818 | 0.027667 | 0.011180 | 0.004498

SUPD, Shishkin mesh

clL,N>] 16 [ 32 | 6 | 128
101 0.015093 | 0.005532 | 0.001971 [ 0.000931
105 0.012536 | 0.004568 | 0.001567 | 0.000720
105 0.011736 | 0.004251 | 0.001437 [ 0.000653
10=7 0.011484 | 0.004150 | 0.001396 [ 0.000631
108 0.011405 | 0.004118 | 0.001383 | 0.000625
107 0.011380 | 0.004108 | 0.001378 [ 0.000623

TABLE 3. Exponential layer, || v — up |12, giscrete

SG, Shishkin mesh

e, N 16 | 32 | 64 | 128
10~4 0.281740 | 0.109467 | 0.034321 | 0.010757
10-5 0.281955 | 0.109488 | 0.034318 | 0.010758
106 0.281977 | 0.109490 | 0.034318 | 0.010758
107 0.281979 | 0.109490 | 0.034318 | 0.010758
10—8 0.281979 | 0.109491 | 0.034318 | 0.010758
10—9 0.281979 | 0.109491 | 0.034318 | 0.010758

SUPD, Shishkin mesh

e, N> 16 [ 32 [ 64 [ 128
10-7 0.103861 | 0.037295 | 0.016829 | 0.005995
10°° 0.103709 | 0.037212 | 0.016804 | 0.005989
10°° 0.103694 | 0.037203 | 0.016802 | 0.005989
10-7 0.103693 | 0.037203 | 0.016802 | 0.005989
1078 0.103693 | 0.037202 | 0.016802 | 0.005989
107" 0.103693 | 0.037202 | 0.016802 | 0.005989

TaBLE 4. Exponential layer, || u — up ||oo

wly:O = 0, wleO = _UO(an)'

Along the line = 0 there is a parabolic layer. We define g1 = (ug+w)|,=1 and
g2 = (up + w)|y=1 in order to exclude the development of a second parabolic

layer at * = 1 and an exponential layer at y = 1.

We discretize (5.3) using SG and SUPD methods on Shishkin mesh (3.10). The
numbers of points used in both directions are equal to N. The distance 7 of the
transition point from the parabolic layer is presented in Table 5. The condition
numbers of the SG matrices are given in Table 6. They are proportional to the
number vVe—1(N/In N)? computed in 2nd and 4th columns of the same table.
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FiGURE 8. Exact solution, ¢ = 1076,

7 =min{1/2,\/eIn N}
VEMNN\ [ N=16 | N=32 | N=64 | N=128 [ N=256 | N =512
e=10"3 ] 0.087677 | 0.109596 | 0.131515 | 0.153435 | 0.175354 | 0.197273
e=10"7 ][ 0.027726 | 0.034657 | 0.041589 | 0.048520 | 0.055452 | 0.062383
e=10""° ] 0.008768 | 0.010960 | 0.013152 | 0.015343 | 0.017535 | 0.019727
e =10"5 ][ 0.002773 | 0.003466 | 0.004159 | 0.004852 | 0.005545 | 0.006238
e=10"" ] 0.000877 | 0.001096 | 0.001315 | 0.001534 | 0.001754 | 0.001973

TABLE 5. The transition point is of distance 7 from the parabolic layer

From the arising graphs of the SG and SUPD pointwise discretization errors
we can draw the conclusion that the Shishkin mesh is very efficient as far as
the reduction of the error is concerned but it is not optimal with respect to
the number of points introduced. The parabolic layer has a different nature
compared with the exponential layer and its width varies from 0 to O(y/e),
thus the layer region has a curved boundary. In practice, the Shishkin mesh
covers the rectangle circumscribing the layer region and remains insensitive to
the variation of the width because of its limited adaptivity, which follows by
its construction.

The computed Ly gjscrete— and oo— norms of discretization error (u — up)
are provided in Tables 7 and 8. The numerical results clearly show a uniform

N=16 N=32

€ cond(A) | Ve—I(N/InN)? cond(A) | VEe—I(N/InN)?
10— 6.160691e+4-02 3.330190e+4-03 1.053108e+-03 8.525287e+03
10-5 1.904352e+03 1.053099e+04 3.330218e+4-03 2.695933e+4-04
10-° 5.928196e4-03 3.330190e+-04 1.053108e+04 8.525287e+4-04
10—7 1.863741e+04 1.053099e4-05 3.330218e+-04 2.695933e+05
108 5.882288e+-04 3.330190e+4-05 1.053108e+-05 8.525287e+05
1079 1.858991e+05 1.053099e+06 3.330218e+4-05 2.695933e+4-06

TABLE 6. Parabolic layer, Condition numbers of SG FE matrices on a Shishkin

mesh.
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convergence. Moreover, we see that the standard Galerkin solution u™ ap-

proximates v to almost N ~3/2 order in Ly— (even co—) norm, which is better
than our theoretical analysis shows. However, see the results in [1], illustrating
instances when this order arises.

In case of parabolic layer, the SUPD scheme introduces extra diffusion only
in the direction of the nonzero velocity component, i.e. in y-direction if b =
[0, Const]. The diffusion parameter is defined by (4.6) and in our case is § =
H, /2, where H, = 1/N. Observe that we do not have coarse and fine meshsizes
in y— direction. Since the SUPD scheme does not add stabilization term in
x—direction, where the parabolic layer is located, we cannot expect an essential
improvement of the error amplitude in contrast with the exponential layer.
The numerical results in Tables 7, 8 are good illustrations of this fact. The
SUPD methods gives smaller errors than SG method but the difference is not
substantial.

SG, Shishkin mesh
e, N> 16 [ 32 [ 64 [ 128
101 0.178645 | 0.054223 | 0.011846 [ 0.003165
105 0.191508 | 0.068764 | 0.023046 | 0.006324
10°° 0.189778 | 0.069273 | 0.024923 | 0.008714
10-7 0.187336 | 0.068199 | 0.024590 | 0.008822
10-8 0.185700 | 0.067390 | 0.024208 | 0.008666
107 0.184723 | 0.066899 | 0.023964 [ 0.008551
SUPD, Shishkin mesh
e, N> 16 [ 32 [ 64 [ 128
101 0.109573 | 0.030462 | 0.013946 [ 0.005230
105 0.113318 | 0.031845 | 0.013546 | 0.004965
10°° 0.112597 | 0.031451 | 0.013228 | 0.004791
10-7 0.111731 | 0.031037 | 0.013012 | 0.004675
10-8 0.111160 | 0.030776 | 0.012879 | 0.004604
107 0.110819 | 0.030624 | 0.012800 [ 0.004562

TABLE 7. Parabolic layer, || v — up |12, giscrete

5.8. Special layer
We consider the problem

—eAu+bVu + cu = f, x €Q=(0,1)% (5.5)

ulm:O - 0, ul:t:l - ]-7
uly:O = 0, Uly:l = ]-7

where ¢ € [1077,107%], ¢ =1, b = [(1 —z)2, (1 —y)?] and f(z) is such that the
exact solution is:
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SG, Shishkin mesh
celL,LNo>J 16 [ 32 | 64 | 128
10-1 0.125372 | 0.051399 [ 0.020237 [ 0.007148
105 0.131183 | 0.052356 | 0.020753 | 0.007381
105 0.131818 | 0.052629 | 0.020899 | 0.007470
10=7 0.132329 | 0.052705 | 0.020934 | 0.007488
108 0.133818 | 0.052728 | 0.020944 | 0.007492
107 0.134290 | 0.052735 | 0.020946 | 0.007493
SUPD, Shishkin mesh
e, N> 16 [ 32 | 6 | 128
10-1 0.124525 | 0.038127 [ 0.013630 [ 0.005560
105 0.126846 | 0.038409 | 0.013590 | 0.005625
105 0.127162 | 0.038631 | 0.013544 | 0.005619
10=7 0.127218 | 0.038678 | 0.013527 | 0.005614
108 0.127232 | 0.038691 | 0.013521 | 0.005612
107 0.127236 | 0.038694 | 0.013519 | 0.005611

TABLE 8. Parabolic layer, || v — up ||oo

(1-2)*(1 —y)°

- ), (Figure 9). (5.6)

u(z,y) = exp(—

The contour lines of (5.6) illustrated in Figure 11&12 show that the width of the
layer as well as its position in Q varies when e decreases. For ¢ € [1074,1071]
we have a typical interior layer which gradually localizes as boundary layer
along the lines £ = 1,y = 1 when € — 0. First, the motion of the layer in
the domain makes the construction of the proper Shishkin mesh problematic.
Second, the width of the layer around the corner (1,1) is greater than the
one at the corners (1,0), (0,1) due to dispersion. This is in contrast with its
steepness. That is why our trial to use Shishkin mesh constructed in the same
way as for exponential/parabolic layers of width O(g)/O(y/€) ended up with
an easily explainable result, illustrated in Figure 13 - the largest error occurs
in the subdomain wider than O(y/¢), which is not covered by the Shishkin
mesh. On the other hand, a construction of a Shishkin mesh covering this
subdomain leads to waste of computational effort and memory resources due
to introduction of too many unnecessary points around the corners (1,0) and
(0,1).
In an attempt to obtain a mesh which corresponds to the behavior of the
solution we use a posteriori adaptive refinement based on a defect-correction
technique. In Figure 14 , 15, 16 the corresponding discretization error, the final
graded and patched mesh, which follows the contour lines of the exact solution
and a zoom of the adaptive mesh are shown. The maximal values of |ep]|, at
each step of adaptive refinement are given in column 4 of Table 9. More details
about the adaptive refinement procedure used here are given in [3].
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Adaptive refinement
#level | #points | min(h) | || u — up ||

0 289 1/16 —

1 708 1/32 0.025979
2 2007 1/64 0.013073
3 4391 1/128 0.004451
4 10007 1/256 0.001294
5 15957 1/512 0.000351

TABLE 9. Discretization error after 5 levels of refinement, e = 107°.

Velocity field, v=[(1-x?, (1-y)]
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FIGURE 9. Exact solution (5.6), FIGURE 10. Velocity field of
e=10"". (5.5).

6. CONCLUSIONS

It has been demonstrated that the Shishkin meshes are very efficient in reduc-
tion of the error for both exponential and parabolic layers but they are not
optimal with respect to the number of points in the latter case. We showed
that the standard Galerkin finite element method converges uniformly in the
perturbation parameter €, of optimal order O(N ') in Ls—norm, where the
total number of points is O(N?2). The numerical results clearly illustrate this
fact. The experiments with streamline upwind diffusion method on Shishkin
mesh show that it gives higher order of approximation, better stability and
matrix properties, so that the iterative solver converges faster than in the case
of the standard Galerkin method. The necessity of using adaptive refinement
techniques based on stable methods as a defect-correction method and care-
fully chosen a posteriori error estimators was well demonstrated by the last
numerical example.
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