
Volume 11 (2&3) 1998, pp. 299 { 321

Unfold/Fold Transformations of CCP Programs 1

Sandro Etalle

Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.

etalle@cs.unimaas.nl.

Maurizio Gabbrielli

Dipartimento di Informatica, Universit�a di Pisa, Corso Italia 40, 56125 Pisa, Italy.

gabbri@di.unipi.it.

Maria Chiara Meo

Universit�a di L'Aquila, Via Vetoio, Loc. Coppito, 67010 L'Aquila, Italy.

meo@univaq.it.

We introduce a transformation system for concurrent constraint programming

(CCP). We de�ne suitable applicability conditions for the transformations which

guarantee that the input/output CCP semantics is preserved also when distin-

guishing deadlocked computations from successful ones.

The system allows to optimize CCP programs while preserving their intended

meaning. Furthermore, since it preserves the deadlock behaviour of programs, it

can be used for proving deadlock freeness of a class of queries in a given program.

Keywords: Transformation, Concurrent Constraint Programming.

1. Introduction

Optimization techniques, in the case of logic-based languages, fall into two

main categories: on one hand, there exist methods for compile-time and low-

level optimizations such as the ones presented for constraint logic programs in

[11], which are usually based on program analysis methodologies (e.g. abstract

interpretation). On the other hand, we �nd source to source transformation

1 The three authors have simultaneously been researchers/visiting researchers at CWI, where
their research on transformations of constraint logic languages began. A preliminary ver-
sion of this paper appeared in [8].

299

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301666648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

techniques such as partial evaluation (see [17]) (which in the �eld of logic pro-

gramming is mostly referred to as partial deduction and is due to Komorowski

[13]), and more general techniques based on the unfold and fold or on the

replacement operation.

Unfold/fold transformation techniques were �rst introduced for functional

programs in [2], and then adapted to logic programming (LP) both for program

synthesis [3, 10], and for program specialization and optimization [13]. Tamaki

and Sato in [24] proposed a general framework for the unfold/fold transforma-

tion of logic programs, which has remained in the years the main historical

reference of the �eld, and has recently been extended to constraint logic pro-

gramming (CLP) in [1, 5, 15] (for an overview of the subject, see the survey

by Pettorossi and Proietti [18]). As shown by a number of applications, these

techniques provide powerful methods for the development and optimization of

large programs, and can be regarded as the basic transformations techniques,

which might be further adapted to be used for partial evaluation.

Despite a large literature in the �eld of sequential languages, unfold/fold

transformation sequences have hardly been applied to concurrent logic lan-

guages. Notable exceptions are the papers of Ueda and Fukurawa [25], Sahlin

[19], and of de Francesco and Santone [9] (the relations with this paper are

discussed in Section 5). This situation is partially due to the fact that the

non-determinism and the synchronization mechanisms present in concurrent

languages substantially complicate their semantics, thus complicating also the

de�nition of correct transformation systems. Nevertheless, as argued below,

transformation techniques can be be more useful for concurrent languages than

they already are for sequential ones.

In this paper we introduce a transformation system for concurrent con-

straint programming (CCP) [20, 21, 22]. This paradigm derives from replacing

the store-as-valuation concept of von Neumann computing by the store-as-

constraint model: Its computational model is based on a global store, which

consists of the conjunction of all the constraints established until that moment

and expresses some partial information on the values of the variables involved

in the computation. Concurrent processes synchronize and communicate asyn-

chronously via the store by using elementary actions (ask and tell) which can

be expressed in a logical form (essentially implication and conjunction [4]).

On the one hand, CCP enjoys a clean logical semantics, avoiding many of the

complications arising in the concurrent imperative setting; as argued in the

position paper [6] this aspect is of great help in the development of e�ective

transformation (and partial evaluation) tools. On the other hand, CCP ben-

e�ts from a number of existing implementations, an example being Oz [23];

thus, in contrast to other models for concurrency such as the �-calculus, in

this framework transformation techniques can be readily applied to practical

problems.

The transformation system we are going to introduce is originally inspired

by the system of Tamaki and Sato [24], on which it improves in three main ways:

�rstly, by taking full advantage of the exibility and expressivity of CCP, it

300

introduces a number of new important transformation operations, allowing op-

timizations that would not be possible in the LP or CLP context; secondly,

our system we managed to eliminate the limitation that in a folding operation

the folding clause has to be nonrecursive, a limitation which is present in vir-

tually all other unfold/fold transformation systems, this improvement possibly

leads to the use of new more sophisticated transformation strategies; �nally,

the applicability conditions we propose for the folding operation are now inde-

pendent from the transformation history, making the operation much easier to

understand and, possibly, to be implemented.

We will illustrate with a practical example how our transformation system

for CCP can be even more useful than its predecessors for sequential logic

languages. Indeed, in addition to the usual bene�ts, in this context the trans-

formations can also lead to the elimination of communication channels and of

synchronization points, to the transformation of non-deterministic computa-

tions into deterministic ones, and to the crucial saving of computational space.

It is also worth mentioning that the declarative nature of CCP allows us to

de�ne reasonably simple applicability conditions which ensure the correctness

of our system.

Our results show that the original and the transformed program have the

same input/output behaviour both for successful and for deadlocked deriva-

tions. As a corollary, we obtain that the original program is deadlock free i�

the transformed one is, and this allows to employ the transformation as an

e�ective tool for proving deadlock-freeness: if, after the transformation, we

can prove or see that the process we are considering never deadlocks (in some

cases the transformation simpli�es the program's behaviour so that this can be

immediately checked), then we are also sure that the original process does not

deadlock either.

This paper is organized as follows: in the next section we present the no-

tation and the necessary preliminary de�nitions, most of them regarding the

CCP paradigm. In Section 3 we de�ne the transformation system, which con-

sists of various di�erent operations and for this reason the section is divided in

a number of subsections. Section 4 states the main result, concerning the cor-

rectness of the transformation system, while Section 5 concludes by comparing

this paper to related work in the literature. Proof sketches are given in the

Appendix.

2. Preliminaries

The basic idea underlying CCP is that computation progresses via monotonic

accumulation of information in a global store. Information is produced by

the concurrent and asynchronous activity of several agents which can add a

constraint c to the store by performing the basic action tell(c). Dually, agents

can also check whether a constraint c is entailed by the store by using an ask(c)

action. This allows the synchronization of di�erent agents.

Concurrent constraint languages are de�ned parametrically wrt to the no-

301

tion of constraint system, which is usually formalized in an abstract way and is

provided along with the guidelines of Scott's treatment of information systems

(see [21]). Here, we consider a more concrete notion of constraint which is based

on �rst-order logic and which coincides with the one used for constraint logic

programming. This will allow us to de�ne the transformation operations in a

more comprehensible way, while retaining a su�cient expressive power. Thus a

constraint c is a �rst-order formula built by using prede�ned predicates (called

primitive constraints, which always include equality) over a computational do-

main D. Formally, D is a structure which determines the interpretation of the

constraints.

In the sequel, terms will be denoted by t; s; : : :, variables with X;Y;Z; : : :,

further, as a notational convention, ~t and ~X denote a tuple of terms and a tuple

of distinct variables, respectively. 9
�~X

c stands for the existential closure of c

except for the variables in ~X which remain unquanti�ed. The formulaD j= 9
�~X

c

states that 9
�~X

c is valid in the interpretation provided by D, i.e. that it is true

for every binding of the free variables of 9
�~X

c. The empty conjunction of

primitive constraints will be identi�ed with true. We also denote by Var(e) the

set of variables occurring in the expression e.

The notation and the semantics of programs and agents is virtually the

same one of [21]. In particular, the k operator allows one to express parallel

composition of two agents and it is usually described in terms of interleav-

ing, while non-determinism arises by introducing a (global) choice operatorPn
i=1 ask(ci) ! Ai: the agent

Pn
i=1 ask(ci) ! Ai nondeterministically selects

one ask(ci) which is enabled in the current store, and then behaves like Ai.

Thus, the syntax of CCP declarations and agents is given by the following

grammar:

Declarations D ::= � j p(~t) A j D;D

Agents A ::= stop j tell(c) j
Pn

i=1 ask(ci)! Ai jA k A j p(~t)

Processes Proc ::= D:A

where c and ci's are constraints. Note that, di�erently from [21], here we allow

terms as arguments to predicate symbols. Due to the presence of an explicit

choice operator, as usual we assume that each predicate symbol is de�ned by

exactly one declaration. A program is a set of declarations.

An important aspect for which we slightly depart from the usual formal-

ization of CCP regards the notion of locality. In [21] locality is obtained by

using the operator 9, and the behaviour of the agent 9X A is de�ned like the

one of A, with the variable X considered as local to it. Here we do not use

such an explicit operator: analogously to the standard CLP setting, locality is

introduced implicitly by assuming that if a process is de�ned by p(~X) A and

a variable Y occurs in A but not in ~X, then Y has to be considered local to A.

The operational model of CCP is described by a transition system T =

(Conf;!) where con�gurations (in) Conf are pairs consisting of a process and

a constraint (representing the common store), while the transition relation

302

R1 hD:tell(c); di ! hD:stop; c ^ di

R2 hD:
Pn

i=1 ask(ci)! Ai; di ! hD:Aj; di if j 2 [1; n] and D j= d! cj

R3
hD:A; ci ! hD:A0; c0i

hD:(A k B); ci ! hD:(A0 k B); c0i

hD:(B k A); ci ! hD:(B k A0); c0i

R4 hD:p(~t); ci ! hD:A k tell(~t = ~s); ci if p(~s) A 2 defnD(p)

Table 1. The (standard) transition system.

! � Conf � Conf is described by the (least relation satisfying the) rules R1-

R4 of Table 1 which should be self-explaining. Here and in the following we

assume given a program D and we denote by defnD(p) the set of variants
2 of

the de�nition in D for the predicate symbol p. Due to the presence of terms as

arguments to predicates symbols, di�erently from [21], in rule R4 parameter

passing is performed by an explicit tell action. We assume also the presence

of a renaming mechanism that takes care of using fresh variables each time a

declaration is considered3.

We denote by !� the reexive-transitive closure of the relation ! de�ned

by the transition system, and we denote by Stop any agent which contains only

stop and k constructs. A �nite derivation (or computation) is called successful if

it is of the form hD:A; ci !� hD:Stop; di 6! while it is called deadlocked if it is of

the form hD:A; ci !� hD:B; di 6! with B di�erent from Stop (i.e., B contains at

least one suspended agent). Note that we consider here the so called \eventual

tell" CCP, i.e. when adding constraints to the store (via tell operations) there

is no consistency check.

Using the transition system in Table 1 we de�ne the notion of observables

as follows. Here and in the sequel we say that a constraint c is satis�able i�

D j= 9 c.

Definition 2.1 (Observables) Let D:A be a CCP process. We de�ne

2 A variant of a declaration d is obtained by replacing the tuple ~X of all the variables
appearing in d for another tuple ~Y.

3 For the sake of simplicity we do not describe this renaming mechanism in the transition
system. The interested reader can �nd in [21, 22] various formal approaches to this problem.

303

O(D:A) = fhc; 9
�Var(A;c)d; ssi j c and d are satis�able, and there exists

a derivation hD:A; ci !� hD:Stop; dig

[

fhc; 9
�Var(A;c)d; ddi j c and d are satis�able, and there exists

a derivation hD:A; ci !� hD:B; di 6!;

B 6= Stopg

2

Thus what we observe are the results of �nite computations (if consistent),

abstracting from the values for the local variables in the results, and distin-

guishing the successful computations from the deadlocked ones (by using the

termination modes ss and dd, respectively). This provides the intended seman-

tics to be preserved by the transformation system: we will call a transforma-

tion correct if it maps a program into another one having the same observables;

given the above de�nition, this will allow us to compare with each other the

\deadlocks" and the \successes" of the original and the transformed programs.

3. The Transformation

In order to illustrate the application of our method we'll adopt a working

example. We consider an auction problem in which two bidders participate:

bidder a and bidder b; each bidder takes as input the list of the bids of the

other one and produces as output the list of his own bids. When one of the

two bidders wants to quit the auction, it produces in its own output stream the

token quit. This protocol is implemented by the following program AUCTION.

auction(LeftBids,RightBids)

bidder a([0jRightBids],LeftBids) kbidder b(LeftBids,RightBids)

bidder a(HisList, MyList)

(ask(9HisBid;HisList0 HisList = [HisBidjHisList'] ^ HisBid = quit) ! stop

+ ask(9HisBid;HisList0 HisList = [HisBidjHisList'] ^ HisBid 6= quit) !

tell(HisList = [HisBidjHisList']) k

make new bid a(HisBid,MyBid) k
(ask(MyBid = quit) ! tell(MyList = [MyBidjMyList']) k

broadcast(\a quits")

+ ask(MyBid 6= quit) ! tell(MyList = [MyBidjMyList']) k
tell(MyBid 6= quit) k
bidder a(HisList',MyList')))

plus an analogous de�nition for bidder b 4.

4 In the above program the agent tell(HisList = [HisBidjHisList']) is needed to bind the local
variables (HisBid, HisList') to the global one (HisList): In fact, as resulting from the oper-
ational semantics, such a binding is not performed by the ask agent. On the contrary the
agent tell(MyBid 6= quit) is redundant: We have introduced it in order to simplify the fol-
lowing transformations. Actually this introduction of redundant tells is a transformation
operation which is omitted here for space reasons.

304

Here, the agent make new bid a(HisBid,MyBid) is in charge of producing a new

o�er in presence of the competitor's o�er HisBid; the agent will produce MyBid

= quit if it evaluates that HisBid is too high to be topped, and decides to

leave the auction. Notice that in order to avoid deadlock, auction initializes the

auction by inserting a �ctitious zero bid in the input of bidder a.

3.1. Introduction of a new de�nition

The introduction of a new de�nition is virtually always the �rst step of a

transformation sequence. Since the new de�nition is going to be the main

target of the transformation operation, this step will actually determine the

very direction of the subsequent transformation, and thus the degree of its

e�ectiveness.

Determining which de�nitions should be introduced is a very di�cult task

which falls into the area of strategies. To give a simple example, if we wanted

to apply partial evaluation to our program with respect to a given agent A

(i.e. if we wanted to specialize our program so that it would execute the par-

tially instantiated agent A in a more e�cient way), then a good starting point

would most likely be the introduction of the de�nition p(~X) A, where ~X is

an appropriate tuple of variables and p is a new predicate symbol. Now, a

di�erent strategy would probably determine the introduction of a di�erent new

de�nition. For a survey of the other possibilities we refer to [18].
In this paper we are not concerned with the strategies, but only with the

basic transformation operations and their correctness: we aim at de�ning a
transformation system which is general enough so to be applied in combina-
tion with di�erent strategies. In order to simplify the terminology and the
technicalities, we assume that these new declarations are added once for all to
the original program before starting the transformation itself. Note that this
is clearly not restrictive. As a notational convention we call D0 the program
obtained after the introduction of new de�nitions. In the case of program AUC-
TION, we assume that the following new declarations are added to the original
program.

auction left(LastBid) tell(LastBid 6= quit) k bidder a([LastBidjBs],As) k bidder b(As,Bs).

auction right(LastBid) tell(LastBid 6= quit) k bidder a(Bs,As) k bidder b([LastBidjAs],Bs).

The agent auction left(LastBid) engages an auction starting from the bid LastBid

(which cannot be quit) and expecting the bidder \a" to be the next one in the

licit. The agent auction right(LastBid) is symmetric.

3.2. Unfolding

The �rst transformation we consider is the unfolding. This operation consists

essentially in the replacement of a procedure call by its de�nition. The syntax

of CCP agents allows us to de�ne it in a very simple way by using the notion

of context. A context, denoted by C[], is simply an agent with a \hole". C[A]

denotes the agent obtained by replacing the hole in C[] for the agent A, in the

obvious way.

305

Definition 3.1 (Unfolding) Consider a set of declarations D containing

d : H C[p(~t)]

u : p(~s) B

Then unfolding p(~t) in d consists in replacing d by

d0 : H C[B k tell(~s = ~t)]

in D. Here d is the unfolded de�nition and u is the unfolding one; d and u are

assumed to be renamed so that they do not share variables. 2

After an unfolding we often need to evaluate some of the newly introduced

tell's in order to \clean up" the resulting declarations. To this aim we introduce

the following operation. Here we assume that the reader is acquainted with

the notion of substitution and of (relevant) most general uni�er (see [14]). We

denote by e� result of the application of a substitution � to an expression e.

Definition 3.2 (Tell evaluation) A declaration

d : H C[tell(~s = ~t) k B]

is transformed by tell evaluation to

d0 : H C[B�]

where � is a relevant most general uni�er of s and t, and the variables in the

domain5 of � do not occur neither in C[] nor in H. 2

These applicability conditions can in practice be weakened by appropriately

renaming some local variables. In fact, if all the occurrences of a local variable

in C[] are in choice branches di�erent from the one the \hole" lies in, then we

can safely rename apart each one of these occurrences.

In our AUCTION example, we start working on the de�nition of auction right,

and we unfold the agent bidder b([LastBidjAs], Bs) and then we perform the

subsequent tell evaluations. The result of these operations is the following

program.

auction right(LastBid) tell(LastBid 6= quit) k

bidder a(Bs, As) k
(ask(9HisBid;HisList0 [LastBidjAs] = [HisBidjHisList'] ^ HisBid = quit) ! stop

+ ask(9HisBid;HisList0 [LastBidjAs] = [HisBidjHisList'] ^ HisBid 6= quit) !

tell([LastBidjAs] = [HisBidjHisList']) k
make new bid b(HisBid,MyBid) k
(ask(MyBid = quit) ! tell(Bs = [MyBidjBs']) k broadcast(\b quits")

+ ask(MyBid 6= quit) ! tell(Bs = [MyBidjBs']) k
tell(MyBid 6= quit) k
bidder b(HisList',Bs')))

5 We recall that, given a substitution �, the domain of � is the �nite set of variables fX j
X� 6= Xg.

306

Another new operation, similar to the one of unfolding, is the one of back-

ward instantiation.

Definition 3.3 (Backward Instantiation) Let D be a set of de�nitions

and

d : H C[p(~t)]

b : p(~s) tell(c) k B

be two de�nitions of D. Suppose also that c0 is a constraint such that D j=

c! c0. Then the backward instantiation of p(~t) in d via c0 consists in replacing

d by

d0 : H C[p(~t) k tell(c0) k tell(~t = ~s)]

(it is assumed here that d and b are renamed so that they have no variables in

common).

The operation can also be applied when b is not of the form p(~s) tell(c) k B

by considering c to be true. 2

Intuitively, this operation can be regarded as a \half-unfolding" for the follow-

ing reason: performing an unfolding is equivalent to applying a derivation step

to the atomic agent under consideration, here we don't quite do it, yet we carry

out (part of) the two �rst phases that the derivation step requires.

3.3. Guard Simpli�cation

A new important operation is the one which allows us to modify the ask guards

occurring in a program. Consider an agent of the form C[ask(c)! A+ask(d)!

B] and a given set of declarations. Let us call weakest produced constraint of C[]

the conjunction of all the constraints appearing in ask and tell actions which

certainly have to be evaluated before [] is reached (in the context C[]). Now,

if a is the weakest produced constraint of C[] and D j= a ! c then clearly we

can simplify the previous agent to C[ask(true)! A+ ask(d)! B]6. In general,

if a is the context constraint of C[], and for some constraint c0 we have that

D j= 9
�~z (a ^ c)$ (a ^ c0) (where ~z = Var(C;A)), then we can replace c with

c0. In particular, if we have that a ^ c is unsatis�able, then c can immediately

be replaced with false (the unsatis�able constraint). In order to formalize this

intuitive idea, we start with the following de�nition.

Definition 3.4. Let D be a (�xed) set of declarations, and s be a set of pred-

icates. Given an agent A, its weakest produced constraint (with respect to s),

is denoted by wpcs(A) and is de�ned by structural induction as follows:

6 Note also that in general the further simpli�cation to C[A + ask(d) ! B] is not correct,
while we can transform C[ask(true) ! A] into C[A].

307

wpcs(stop) = true

wpcs(tell(c)) = c

wpcs(A k B) = wpcs(A) ^ wpcs(B)

wpcs(
P

i ask(ci)! Ai) = true

wpcs(p(~t)) =

8<
:

wpc(s[fpg)(A) if p 62 s and

p(~t) A 2 defnD(p(
~t))

true if p 2 s

s contains then the set of predicates which should not be taken into considera-

tion. Given a context C[] and a set of predicate symbols s the weakest produced

constraint, of C[] (with respect to s) wpcs(C[]), is inductively de�ned as follows:

wpcs([]) = true

wpcs(C
0[] k B) = wpcs(B) ^ wpcs(C

0[])

wpcs(
Pn

i=1 ask(ci)! Ai) = cj ^ wpcs(C
0[]) where j 2 [1; n] and Aj = C0[]

Notice that the weakest produced constraint depends on the set of declarations

D under consideration. We are now ready to de�ne the operation of guard

simpli�cation.

Definition 3.5 (Guard Simplification) Let D be a set of declarations, and

d : H C[
Pn

i=1 ask(ci)! Ai]

be a declaration of D. Assume that for some constraints c01; : : : ; c
0
n we have

that for j 2 [1; n],

D j= 9
�~zj

(wpc;(C[]) ^ cj)$ (wpc;(C[]) ^ c0
j
) (where ~zj = Var(C;H;Aj)),

then we can replace d with

d0 : H C[
Pn

i=1 ask(c
0

i
)! Ai] 2

In our AUCTION example, we can consider the weakest produced constraint
of tell(LastBid 6= quit), and modify the subsequent ask constructs as follows

auction right(LastBid) tell(LastBid 6= quit) k
bidder a(Bs, As) k

ask(9HisBid;HisList0 [LastBidjAs] = [HisBidjHisList']

^ LastBid 6= quit ^ HisBid = quit) !

stop

+ ask(9HisBid;HisList0 [LastBidjAs] = [HisBidjHisList']) !

tell([LastBidjAs] = [HisBidjHisList']) k
: : :

Via the same operation, we can immediately simplify this to.

auction right(LastBid) tell(LastBid 6= quit) k bidder a(Bs, As) k

ask(false) ! stop

+ ask(true) ! tell([LastBidjAs] = [HisBidjHisList']) k
: : :

308

Branch Elimination and Conservative Guard Evaluation Notice that in the

above program, we have a guard ask(false) which of course will never be sat-

is�ed. The �rst important application of the guard simpli�cation operation

regards then the elimination of unreachable branches.

Definition 3.6 (Branch elimination) Let

d : H C[
Pn

i=1 ask(ci)! Ai]

be a declaration. Assume that n > 1 and that for some j 2 [1; n], we have that

cj � false, then we can replace d with

d0 : H C[(
Pj�1

i=1
ask(ci)! Ai) + (

Pn
i=j+1 ask(ci)! Ai)] 2

The condition that n > 1 ensures that we are not eliminating all the branches

(if we wanted to do so, and of course if we were allowed to, that is, if all the

guards are unsatis�able, then we could do so by replacing the whole choice with

a new special agent, say dead whose semantics would be of always deadlocking,

never a�ecting the constraint store).
By applying this operation to the above piece of example, we can eliminate

ask(false) ! stop, obtaining

auction right(LastBid) tell(LastBid 6= quit) k
bidder a(Bs, As) k
ask(true) ! tell([LastBidjAs] = [HisBidjHisList']) k

: : :

Now we don't see any reason for not eliminating the guard ask(true) altogether.

This can indeed be done via the following operation.

Definition 3.7 (Conservative Ask evaluation) Consider the declaration

d : H C[ask(true)! B]

We can transform d into the declaration

d0 : H C[B] 2

This operation, although trivial, is subject of debate. In fact, Sahlin in [19]

de�nes a similar operation, with the crucial distinction that the choice might

still have more than one branch, in other words, in the system of [19] one

is allowed to simplify the agent C[ask(true)! A + ask(b)! B] to the agent

C[A], even if b is satis�able. Ultimately, one is allowed to replace the agent

C[ask(true)! A + ask(true)! B] either with C[A] or with C[B], indi�erently.

Such an operation is clearly more widely applicable than the one we have

presented (hence the attribute \conservative" in the de�nition above) but is

bound to be incomplete, i.e. to lead to the loss of potentially successful branches.

Nevertheless, Sahlin argues that an ask evaluation such as the one de�ned above

is potentially too restrictive for a number of useful optimization. We agree with

309

the statement only partially, nevertheless, the system we propose will eventually

be equipped with a non-conservative guard evaluation operation as well (which

of course, if employed, will lead to weaker correctness results).
In our example program, the application of these branch elimination and

conservative ask evaluation leads to the following:

auction right(LastBid) tell(LastBid 6= quit) k

bidder a(Bs, As) k
tell([LastBidjAs] = [HisBidjHisList']) k
make new bid b(HisBid,MyBid) k

ask(MyBid = quit) ! tell(Bs = [quitjBs']) k broadcast(\b quits")

+ ask(MyBid 6= quit) ! tell(Bs = [MyBidjBs']) k
tell(MyBid 6= quit) k

bidder b(HisList',Bs')

Via a tell evaluation of tell([LastBidjAs] = [HisBidjHisList']), this simpli�es to:

auction right(LastBid) tell(LastBid 6= quit) k
bidder a(Bs, As) k

make new bid b(LastBid,MyBid) k
ask(MyBid = quit) ! tell(Bs = [quitjBs']) k broadcast(\b quits")

+ ask(MyBid 6= quit) ! tell(Bs = [MyBidjBs']) k

tell(MyBid 6= quit) k
bidder b(As,Bs')

3.4. Distribution

A crucial operation in our transformation system is the distribution, which

consists of bringing an agent inside a choice as follows: from the agent

A k
X

i

ask(ci)! Bi;

we want to obtain the agent
P

i ask(ci) ! (A k Bi). This operation was in-

troduced for the �rst time in the context of CLP in [7], and requires delicate

applicability conditions, as it can easily introduce deadlock situation: consider

for instance the following contrived program D.

p(Y) q(X) k (ask(X >= 0) ! tell(Y=0)

q(0) stop

In this program, the process D:p(Y) originates the derivation hD:p(Y); truei !�

hD:stop;Y = 0i. However, if we blindly apply the distribution operation to the
�rst de�nition we would change D into:

p(Y) ask(X >= 0) ! (q(X) k tell(Y=0))

and now we have that hD:p(Y); truei generates only deadlocking derivations.

This situation is avoided by demanding that the agent being distributed

will in any case not be able to produce any output before the choice is entered.

This is done using the following notions of required variable. Recall that we

denote by Stop any agent which contains only stop and k constructs.

310

Definition 3.8 (Required Variable) Let D:A be a process. We say that

D:A requires the variable X i�, for each satis�able constraint c such that D j=

9Xc $ c, hD:A; ci has at least one �nite derivation and moreover hD:A; ci !�

hD:A0; c0i implies that D j= 9
�~z c$ 9

�~z c0, where ~z = Var(A). 2

In other words, the process D:A requires the variable X if, in the moment

that the global store does not contain any information on X, then D:A cannot

produce any information which a�ect the variables occurring in A and has at

least one �nite derivation. Even though the above notion is not decidable in

general, in some cases it is easy to individuate required variables. For example

it is immediate to see that, in our program, bidder a(Bs, As) requires Bs: in fact

the derivation starting in bidder a(Bs, As) suspends (without having provided

any output) after one step and resumes only when Bs has been instantiated.

This example could be easily generalized. We can now give the formal de�nition

of the distribution operation.

Definition 3.9 (Distribution) Consider a declaration

d : H C[A k
Pn

i=1 ask(ci)! Bi]

The distribution of A in d yields as result the de�nition

d0 : H C[
Pn

i=1 ask(ci)! (A k Bi)]

provided that A requires a variable which does not occur in H nor in C. 2

The above applicability condition ensures that bringing A in the scope of

the ask(ci)'s will not introduce deadlocking derivations: In fact it is intuitively

clear that the fact that A requires a variable X implies, by de�nition, that A

can produce some output only in the moment that X is instantiated, but since

X does not occur in H nor in C, we have that this can only happen once the

choice is entered. Summarizing, the applicability conditions ensure that (in the

initial de�nition) A might produce an output only after the choice is entered.

This ensures that A cannot have an inuence on the choice itself, and can be

thus safely brought inside.

In our example, since the agent bidder a(Bs, As) requires the variable Bs,

which occurs only inside the ask guards, we can safely apply the distributive

operation. The result is the following program.

auction right(LastBid) tell(LastBid 6= quit) k make new bid b(LastBid,MyBid) k
ask(MyBid = quit) ! tell(Bs = [quitjBs']) k broadcast(\b quits") k

bidder a(Bs, As)

+ ask(MyBid 6= quit) ! tell(Bs = [MyBidjBs']) k
tell(MyBid 6= quit) k
bidder a(Bs, As) k

bidder b(As, Bs')

In this program we can now evaluate the construct tell(Bs = [MyBidjBs'])

obtaining (it is true that the variable Bs here occurs also elsewhere in the

311

de�nition, but since it occurs only on choice-branches di�erent than the one on

which the considered agent lies, we can assume it to be renamed):

auction right(LastBid) tell(LastBid 6= quit) k make new bid b(LastBid,MyBid) k
ask(MyBid = quit) ! tell(Bs = [quitjBs']) k broadcast(\b quits") k

bidder a(Bs, As)

+ ask(MyBid 6= quit) ! tell(MyBid 6= quit) k
bidder a([MyBidjBs'], As) k
bidder b(As, Bs')

Before we introduce the fold operation, let us clean up the program a bit
further: by properly transforming the agent bidder a(Bs, As) in the �rst ask
branch, we easily obtain:

auction right(LastBid) tell(LastBid 6= quit) k make new bid b(LastBid,MyBid) k
ask(MyBid = quit) ! tell(Bs = [quitjBs']) k broadcast(\b quits") k stop

+ ask(MyBid 6= quit) ! tell(MyBid 6= quit) k

bidder a([MyBidjBs'], As) k
bidder b(As, Bs')

The just introduced stop agent can now safely be removed.

3.5. Folding

The folding operation has a special rôle in the panorama of the transformation

operations. This is due to the fact that it allows to introduce recursion in

a de�nition, often making it independent from the previous de�nitions. As

previously mentioned, the applicability conditions that we use here for the

folding operation do not depend on the transformation history: we only require

that the declaration used to fold an agent appear in the initial program. We

now need the following.

Definition 3.10. A transformation sequence is a sequence of programs

D0; : : : ;Dn;

in which D0 is an initial program and each Di+1, is obtained from Di via one

of the following transformation operations: de�nition introduction, unfolding,

distribution, guard simpli�cation, branch elimination, conservative guard eval-

uation and folding.

We also need the notion of guarding context. Intuitively, a context C[] is

guarding if the \hole" appears in the scope of an ask guard7. Here � indicates

syntactic equality.

Definition 3.11 (Guarding Context) A context C[] is a guarding context

i�

C[] � C0[
Pn

i=1 ask(ci)! Ai] and Aj = C00[] for some j 2 [1; n]: 2

7 The scope of the ask guard in ask(c) ! A is A.

312

We can �nally give the de�nition of folding:

Definition 3.12 (Folding) Let D0; : : : ;Di, i � 0, be a transformation se-

quence. Consider two de�nitions.

d : H C[A] 2 Di
f : B A 2 D0

If C[] is a guarding context then folding A in d consists of replacing d by

d0 : H C[B] 2 Di+1

(it is assumed here that d and f are suitably renamed so that the variables they

have in common are only the ones occurring in A). 2

The reach of this operation is best shown via our example. We can now fold
auction left(MyBid) in the above de�nition, and obtain:

auction right(LastBid) tell(LastBid 6= quit) k make new bid b(LastBid,MyBid) k
ask(MyBid = quit) ! tell(Bs = [quitjBs']) k broadcast(\b quits")

+ ask(MyBid 6= quit) ! auction left(MyBid)

Now, by performing an identical optimization on auction left, we can also ob-
tain:

auction left(LastBid) tell(LastBid 6= quit) k make new bid a(LastBid,MyBid) k

ask(MyBid = quit) ! tell(Bs = [quitjBs']) k broadcast(\a quits")

+ ask(MyBid 6= quit) ! auction right(MyBid)

This part of the transformation shows in a striking way one of the main

bene�ts of the folding operation: the saving of synchronization points. Notice

that in the initial program the two bidders had to \wait" for each other. In

principle they were working in parallel, but in practice they were always acting

sequentially, since one always had to wait for the bid of the competitor. The

transformation allowed us to discover this sequentiality and to obtain an equiv-

alent program in which the sequentiality is exploited to eliminate all suspension

points, which are known to be one of the major overhead sources. Furthermore,

the transformation allows a drastic save of computational space. Notice that

in the initial de�nition the parallel composition of the two bidders leads to the

construction of two lists containing all the bids done so far. After the trans-

formation we have a de�nition which does not build the list any longer, and

which, by exploiting a straightforward optimization can employ only constant

space.

4. Correctness

Any transformation system must be useful (i.e. allow useful transformations

and optimization) and { most importantly { correct, i.e., it must guarantee

that the resulting program is in some sense equivalent to the one we have

started with. Having at hand a formal semantics for our paradigm, we de�nes

correctness as follows.

313

Definition 4.1 (Correctness) A transformation sequence D0; : : : ;Dn is

called

{ partially correct i� for each agent A we have that O(D0:A) � O(Dn:A)

{ complete i� for each agent A we have that O(D0:A) � O(Dn:A)

{ totally correct i� it is both partially correct and complete. 2

So a transformation is partially correct i� nothing is added to the semantics of

the initial program and is complete i� no semantic information is lost during

the transformation. We can now state the main result of this paper.

Theorem 4.2 (Total Correctness) Let D0; : : : ;Dn be a transformation

sequence. Then D0; : : : ;Dn is totally correct. 2

This theorem is originally inspired by the one of Tamaki and Sato for pure

logic programs [24], and has retained some of its notation. Of course the simi-

larities don't go much further, as demonstrated by the fact that in our transfor-

mation system the applicability conditions of folding operation do not depend

on the transformation history (while allowing the introduction of recursion),

and that the folding de�nitions are allowed to be recursive (the distinction

between Pnew and Pold of [24] is now superuous).

It is important to notice that { given the de�nition of observable we are

adopting (De�nition 2.1) { the initial program D0 and the �nal one Dn have ex-

actly the same successful derivation and the same deadlocked derivation. The

�rst feature (regarding successful derivations) is to some extent the one we

expect and require from a transformation, because it corresponds to the intu-

ition that Dn \produces the same results" of D0. Nevertheless, also the second

feature (preservation of deadlock derivation) has an important rôle. Firstly, it

ensures that the transformation does not introduce deadlock point, which is

of crucial importance when we are using the transformation for optimizing a

program. Secondly, this feature allows to use the transformation as a tool for

proving deadlock freeness (i.e., absence of deadlock). In fact, if, after the trans-

formation we can prove or or see that the process Dn:A does never deadlock,

then we are also sure that D0:A does not deadlock either.

5. Related Work

In the literature, there exist three papers which are relatively closely related

to the present one: de Francesco and Santone's [9], Ueda and Furukawa's [25],

and Sahlin's [19]: in [9] it is presented a transformation system for CCS ([16]),

in [25] it is de�ned a transformation system for Guarded Horn Clauses, while

in [19] it is presented a transformation system for AKL.

Common to all three cases is that our proposal improves on them by intro-

ducing new operations such as the distribution, the techniques for the simpli-

�cation of constraints, branch elimination and conservative guard evaluation

314

(though, some constraint simpli�cation is done in [19] as well). Because of this,

the transformation system we are proposing can be regarded as an extension

of the ones in the paper above. Notice that without the above-mentioned op-

erations the transformation of our example would not be possible. Further, we

provide a more exible de�nition for the folding operation, which allows the

folding clause to be recursive, and frees the initial program from having to be

partitioned in Pnew and Pold.

Other minor di�erences between our paper and [25, 19] are the following

ones. Compared to [25], our systems takes advantage of the greater exibil-

ity of the CCP (wrt GHC). For instance, we can de�ne the unfolding as a

simple body replacement operation without any additional applicability condi-

tion, while this is not the case for GHC. As previously mentioned, di�erently

from our case in [19] here it is considered a de�nition of ask evaluation which

allows to remove potentially selectable branches; the consequence is that the

resulting transformation system is only partially (thus not totally) correct. We

should mention that in [19] two preliminary assumptions on the \scheduling"

are made in such a way that this limitation is actually less constraining that

it might appear. In any case, as we already said, the extended version of this

transformation system will encompass an operation of non-conservative guard

expansion, analogous to the one of [19] (and which { if employed { will neces-

sarily lead to weaker correctness results).

Concluding, we want to mention that a previous work of the authors on the

subject is [7] which focuses primarily on CLP paradigm (with dynamic schedul-

ing), and is concerned with the preservation of deadlock derivation along a

transformation. In [7], for the �rst time, it was employed a transformation

system in order to prove absence of deadlock of a program (HAMMING). The

second part of [7] contains a sketch of a primitive version of an unfold/fold

transformation for CCP programs. Nevertheless, the system we are present-

ing here is (not only much more extended, but also) di�erent in nature from

[7]. This is clear if one compares the de�nitions of folding, which, it is worth

reminding, is the central operation in an Unfold/Fold transformation system.

In [7] this operation requires severe constraints on the initial program and ap-

plicability conditions which rely on the transformation history, while here the

only requirement is that the folding has to take place inside a guarding context,

which is a plain syntactic condition. As a consequence we have the following

{ This system is { generally speaking { of much broader applicability.

All limitations on the initial programs are dropped. Ultimately, the folding

de�nition is allowed to be recursive (which is really a step forward in the context

of folding operations which are themselves capable of introducing recursion). Of

course { being the two systems of di�erent nature { one can invent an example

transformation which is doable with the tools of [7] but not with the ones here

presented. We strongly believe that such cases regard contrived examples of

no practical relevances.

315

{ The folding operation presented here is much simpler.

This is of relevance given the fact that the complexity of applicability of the

folding operation has always been one of the major obstacle both in implement-

ing it and in making it accessible to a wider audience.

In particular, as opposed to virtually all fold operations which enable to

introduce recursion presented so far (the only exception being [9]), the applica-

bility of the folding operation does not depend on the transformation history,

(which has always been one of the \obscure sides" of it) but it relies on plain

syntactic criteria.

We also should mention that because of the structural di�erences, the proofs

for this paper are necessarily completely di�erent.

Moreover, we have introduced new operations. In particular the guard

simpli�cation (which brings along the branch elimination and the conservative

guard evaluation) is of crucial importance in order to have a transformation

system which allows fruitful optimizations. Concluding, another fundamental

operation for CCP { the distributive operation { has now simpler applicability

conditions, which help in checking it in a much more straightforward way.

References

1. N. Bensaou and I. Guessarian. Transforming Constraint Logic Programs.

In F. Turini, editor, Proc. Fourth Workshop on Logic Program Synthesis

and Transformation, 1994.

2. R.M. Burstall and J. Darlington. A transformation system for developing

recursive programs. Journal of the ACM, 24(1):44{67, January 1977.

3. K.L. Clark and S. Sickel. Predicate logic: a calculus for deriving programs.

In Proceedings of IJCAI'77, pages 419{120, 1977.

4. F.S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving con-

current constraint programs correct. ACM Transactions on Programming

Languages and Systems, 1998. to appear.

5. S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical

Computer Science, 166(1):101{146, 1996.

6. S. Etalle and M. Gabbrielli. Partial evaluation of concurrent constraint

languages. ACM Computing Surveys, September 1998.

7. S. Etalle, M. Gabbrielli, and E. Marchiori. A Transformation System for

CLP with Dynamic Scheduling and CCP. In ACM{SIGPLAN Symposium

on Partial Evaluation and Semantic Based Program Manipulation. ACM

Press, 1997.

8. S. Etalle, M. Gabbrielli, and M. C. Meo. Unfold/Fold Transformations

of CCP Programs. In Proc. 9th International Conference on Concurrency

Theory, pages 348{363. Springer-Verlag, 1998.

9. N. De Francesco and A. Santone. Unfold/fold transformation of concurrent

processes. In H. Kuchen and S.Doaitse Swierstra, editors, Proc. 8th Int'l

Symp. on Programming Languages: Implementations, Logics and Programs,

volume 1140, pages 167{181. Springer-Verlag, 1996.

316

10. C.J. Hogger. Derivation of logic programs. Journal of the ACM, 28(2):372{

392, April 1981.

11. N. J�rgensen, K. Marriot, and S. Michaylov. Some Global Compile-Time

Optimizations for CLP(R). In Proc. 1991 Int'l Symposium on Logic Pro-

gramming, pages 420{434, 1991.

12. T. Kawamura and T. Kanamori. Preservation of Stronger Equivalence in

Unfold/Fold Logic Programming Transformation. In Proc. Int'l Conf. on

Fifth Generation Computer Systems, pages 413{422. Institute for New Gen-

eration Computer Technology, Tokyo, 1988.

13. H. Komorowski. Partial evaluation as a means for inferencing data struc-

tures in an applicative language: A theory and implementation in the case

of Prolog. In Proc. Ninth ACM Symposium on Principles of Programming

Languages, pages 255{267. ACM, 1982.

14. J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation

{ Arti�cial Intelligence. Springer-Verlag, Berlin, 1987. Second edition.

15. M.J. Maher. A transformation system for deductive databases with perfect

model semantics. Theoretical Computer Science, 110(2):377{403, March

1993.

16. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

17. T Mogensen and P Sestoft. Partial evaluation. In A. Kent and J.G.

Williams, editors, Encyclopedia of Computer Science and Technology, vol-

ume 37, pages 247{279. M. Dekker, 1997.

18. A. Pettorossi and M. Proietti. Transformation of logic programs: Founda-

tions and techniques. Journal of Logic Programming, 19,20:261{320, 1994.

19. D. Sahlin. Partial Evaluation of AKL. In Proceedings of the First Interna-

tional Conference on Concurrent Constraint Programming, 1995.

20. V. A. Saraswat. Concurrent Constraint Programming Languages. PhD

thesis, Carnegie-Mellon University, January 1989.

21. V.A. Saraswat and M. Rinard. Concurrent constraint programming. In

Proc. of the Seventeenth ACM Symposium on Principles of Programming

Languages, pages 232{245. ACM, New York, 1990.

22. V.A. Saraswat, M. Rinard, and P. Panangaden. Semantics foundations

of concurrent constraint programming. In Proc. Eighteenth Annual ACM

Symp. on Principles of Programming Languages. ACM Press, 1991.

23. G. Smolka. The Oz programming model. In Jan van Leeuwen, editor,

Computer Science Today, number 1000 in LNCS. Springer-Verlag, 1995.

see www.ps.uni-sb.de/oz/.

24. H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs.

In Sten-�Ake T�arnlund, editor, Proc. Second Int'l Conf. on Logic Program-

ming, pages 127{139, 1984.

25. K. Ueda and K. Furukawa. Transformation rules for GHC Programs. In

Proc. Int'l Conf. on Fifth Generation Computer Systems, pages 582{591.

Institute for New Generation Computer Technology, Tokyo, 1988.

317

A. Appendix: Sketch of the Proofs

In this section we prove that our transformation system is totally correct. For

space reasons, proof are sketched. In what follows, we refer to a �xed trans-

formation sequence D0; : : : ;Dn. We start with the following result, concerning

partial correctness.

Proposition A.1 (Partial correctness) Let i 2 [1; n � 1]. If, for each

agent A, O(D0:A) = O(Di:A) then, for each agent A, O(Di:A) � O(Di+1:A).

Proof. By induction on the length of the derivations. 2

Definition A.2 (Weight) Let � be a derivation. We denote by wh(�) the

number of derivation steps in � which use rule R2. Given an agent A and a

pair of satis�able constraints c, d, we then de�ne the success weight ws(A; c; d)

of the agent A wrt the constraints c and d as follows

ws(A; c; d) = minfn j n = wh(�) and � is a derivation

hD0:A; ci !
� hD0:Stop; d

0i 6!

with 9
�Var(A;c)d

0 = 9
�Var(A;c)dg:

Note that, according to this de�nition, the success weight is computed by

considering successful derivations. The notion of weight, as well as the following

one of descent derivation, can be analogously de�ned for deadlocked derivations

as well, by simply replacing in the de�nition the agent Stop with a generic agent

B 6� Stop. Here { to keep the notation to a minimum { we sketch the part of

the demonstration relative to the success derivation; for this reason the above

weight is the only one we need.

In the total correctness proof we also make use of the concept of descent

derivations. Intuitively, these are derivations which can be split into two parts:

the �rst one, up to the �rst ask evaluation, is performed in the program Di
while the second one is carried out in D0.

Definition A.3 (Descent derivation) Let Di and D0 be two programs. We

call a derivation in Di [D0 a (successful) descent derivation if it has the form

hDi:A1; c1i !
� hDi:Am; cmi ! hD0:Am+1; cm+1i !

� hD0:Stop; cni 6!

where m 2 [1; n]8 and the following conditions hold:

(a) the �rst m� 1 derivation steps do not use rule R2;

(b) the m-th derivation step hDi:Am; cmi ! hD0:Am+1; cm+1i uses rule R2;

(c) ws(A1; c1; cn) > ws(Am+1; cm+1; cn). 2

This de�nition is inspired by the de�nition of descent clause of [12]; however,

here we use a di�erent notion of weight and di�erent conditions on them.

We need one �nal concept.

8 If m = n we can write indi�erently hDi:Stop; cni or hD0:Stop; cni to denote the last con-
�guration of the derivation.

318

Definition A.4. We call the program Di weight complete i�, for any agent

A and pair of constraints c, d, the following hold: if there exists a derivation

hD0:A; ci !
� hD0:B; di 6!

then there exists a descent derivation

hDi:A; ci !
� hD0:B

0; d0i 6!

where 9
�Var(A;c)d

0 = 9
�Var(A;c)d and B � Stop i� B0 � Stop. 2

So Di is weight complete if we can reconstruct the semantics of D0 by

using only (successful and deadlocked) descent derivations in Di [D0. We now

show that if Di is weight complete then no new observables lost during the

transformation (i.e., that the transformation is totally correct). This is the

content of the following.

Proposition A.5. If Di is weight complete then, for any agent A, O(D0:A) �

O(Di:A).

Proof. Recall that consider now only the case of successful derivations: the

one of deadlocked derivations is analogous and omitted. Assume that there

exists a (�nite, successful) derivation hD0:A; ci !
� hD0:Stop; di. We show, by

induction on the weight of (A; c; d), that there exists a derivation hDi:A; ci !
�

hDi:Stop; d
0i, where 9

�Var(A;c)d
0 = 9

�Var(A;c)d.

Base Case. If ws(A; c; d) = 0 then, since Di is weight complete, from De�nition

A.3 it follows that there exists a descent derivation in Di [D0 of the form

hDi:A; ci !
� hDi:Stop; d

0i where 9
�Var(A;c)d

0 = 9
�Var(A;c)d, rule R2 is not

used and therefore each derivation step is done in Di.

Inductive Case. Assume that ws(A; c; d) = n. Since Di is weight complete there

exists a descent derivation in Di [D0

� : hDi:A; ci !
� hD0:Stop; d

0i;

where 9
�Var(A;c)d

0 = 9
�Var(A;c)d. If rule R2 is not used in � then the proof

is the same as in the previous case. Otherwise � has the form

hDi:A; ci !
� hDi:Am; cmi ! hD0:Am+1; cm+1i !

� hD0:Stop; d
0i

where ws(A; c; d
0) > ws(Am+1; cm+1; d

0). Let �0 : hDi:A; ci !
� hDi:Am; cmi !

hDi:Am+1; cm+1i. By inductive hypothesis, there exists a derivation

�00 : hDi:Am+1; cm+1i !
� hDi:Stop; d

00i

where 9
�Var(Am+1;cm+1)

d00 = 9
�Var(Am+1;cm+1)

d0. Without loss of gener-

ality, we can assume that Var(�0) \ Var(�00) = Var(Am+1; cm+1) and hence

there exists a derivation hDi:A; ci !
� hDi:Stop; d

00i. Finally by our hypothe-

sis on variables, 9
�Var(A;c)d

00 = 9
�Var(A;c)(cm+1 ^ 9�Var(Am+1;cm+1)

d00) =

319

9
�Var(A;c)(cm+1^9�Var(Am+1;cm+1)

d0) = 9
�Var(A;c)d

0 = 9
�Var(A;c)d, which

concludes the proof. 2

We can now prove our main theorem, let us state it again.

Theorem 4.2 (Total Correctness) Let D0; : : : ;Dn be a transformation se-

quence. Then

{ D0; : : : ;Dn is totally correct.

Proof. (Sketch; again, recall that we are considering only successful deriva-

tions, and that the case of deadlocking ones is analogous). The proof proceeds

by showing simultaneously, by induction on i, that for i 2 [0; n]:

1. for any pair of constraints c, d and context C[], if def : p(~t) B is a

declaration in Di then there exists a constraint d
0 such that ws(C[B k tell(~s =

~t)]; c; d0) � ws(C[p(~s)]; c; d) and 9�Var(C[p(~s)])d = 9�Var(C[p(~s)])d
0.

Moreover, if i > 0, for any pair of constraints c, d and context C[], if

p(~t) B is a declaration in Di�1 and p(~t) B0 is in Di, then there exists a

constraint d0 such that ws(C[B
0]; c; d0) � ws(C[B]; c; d) and 9

�Var(C[p(~t)])
d =

9
�Var(C[p(~t)])

d0 (and analogously for the deadlock weights);

2. O(D0) = O(Di);

3. Di is weight complete.

Base case. We just need to prove that D0 is weight complete. Assume that

hc; d; ssi 2 O(D0:A). Then there exists a derivation

� : hD0:A; ci !
� hD0:Stop; d

0i 6! :

whose weight is minimal and where d = 9
�Var(A;c)d

0. It follows from De�nition

A.3 that � is a descent derivation.

Induction step. Assume that the thesis holds for i� 1 � 0. The proof of 1. is

done by considering various cases, according to the transformation performed

when moving from Di�1 to Di. We show here only the case in which this

operation is a backward instantiation (the other cases are similar or simpler).

Moreover, we consider the case of successful derivations only, as the case of

deadlocked ones is analogous.

Assume that the operation employed for obtaining Di from Di�1 is a backward

instantiation. Let:

{ def : p(~t) C0[q(~r)] and b : q(~v) tell(e) k B be declarations in Di�1,

{ e0 be constraint such that D j= e! e0 and

{ def 0 : p(~t) C0[q(~r) k tell(e0) k tell(~r = ~v)] is the result of the transforma-

tion (in Di).

320

We prove that for any C[], constraints c and d, there exists a constraint d0 such

that

ws(C[q(~r) k tell(e
0) k tell(~r = ~v)]; c; d0) � ws(C[q(~r)]; c; d)

and 9
�Var(C[p(~t)])d = 9

�Var(C[p(~t)])d
0. Then the thesis follows by inductive

hypothesis.

Notice that, since we are considering only successful derivations, by de�ni-

tion of Di�1, we have to consider only derivation

hDi�1:C[q(~r)]; ci !
� hDi�1:Stop; fi 6!

such that D j= f ! e ^ ~r = ~v (for the proof for the deadlock case we also have

to consider the situation in which the above implication does not hold). Then

since by de�nition D j= e! e0 and by inductive hypothesis O(D0) = O(Di�1),

we have that for any derivation

� = hD0:C[q(~r)]; ci !
� hD0:Stop; di 6!;

D j= d! e0 ^~r = ~v holds. Then there exists a derivation

�0 = hD0:C[q(~r) k tell(e
0) k tell(~r = ~v)]; ci !� hD0:Stop; d

0i 6!;

which performs exactly the same steps of the derivation � plus two tell actions

and such that 9
�Var(C[p(~t)])d = 9

�Var(C[p(~t)])d
0. Therefore we have wh(�) =

wh(�0) and, by de�nition of ws, that ws(C[q(~r)]; c; d) � ws(C[q(~r) k tell(e
0) k tell(~r =

~v)]; c; 9
�Var(C[p(~t)])d

0).

In order to prove 2. and 3. observe that, by induction hypothesis, we have

that O(D0) = O(Di�1), and that Di�1 is weight complete. From Propositions

A.1 and A.5 it follows that if Di is weight complete then O(D0) = O(Di). So

we simply have to prove that Di is weight complete. This follows easily by the

de�nition of descent derivation by using point 1. 2

321

