
Formal Requirements Speci�cation

for Command and Control Systems

Jaco van de Pol��� Jozef Hooman��� Edwin de Jong���

��� Eindhoven University of Technology ��� Hollandse Signaalapparaten BV
Dept� of Computing Science Dept� of Applied System Research

P�O� Box ���� �	

 MB Eindhoven P�O� Box ��� ���
 GD Hengelo
The Netherlands The Netherlands

Email
 fjaco�hoomang�win�tue�nl Email
 edejong�signaal�nl

Abstract

This paper presents an approach to formal require�

ments speci�cation of embedded systems� The speci�c

demands of a speci�cation for command and control

systems are addressed� The proposed method allows

various views of a system� like conventional methods�

The added value lies in the fact that the relationship

between the views is speci�ed formally� and consistency

between views can be analyzed formally� As a case

study� we develop and analyze a formal requirements

speci�cation for a subsystem of a realistic command

and control system� Speci�cation and veri�cation are

carried out using the language and proof checker of

PVS�

� Introduction

Command and control systems� The general task
of a command and control system is to support a team
of operators in monitoring and controlling the envi�
ronment in order to accomplish a mission� Commonly�
these systems support tasks like navigation� observa�
tion� communication� defense� and training�

Command and control systems are equipped with
various sensors and actuators� Measurements from
the environment are continuously obtained via the sen�
sors and compiled into an abstract picture that re�ects
the current state of the environment� This picture is
communicated to the team of operators� The system
supports the decision making process by tracking dif�
ferences between the perceived state and the required
state� and by proposing and analyzing corrective ac�
tions� These actions are then planned� by assigning a
time�frame and su�cient resources� and executed via
the actuators�

Command and control systems are typically large
and complex� whereas the standards on correctness�
reliability and availability are high� Hence it is a di��

cult and error�prone task to build such systems�

Needs� It is important to be able to manage the
time and costs needed to develop a particular system�
Too often fatal errors are detected on testing a system
that has been built already� In that case parts of the
development must be reiterated� which results in addi�
tional and usually unpredictable costs� Of course� the
damage of errors detected after delivery is even more
disastrous� encompassing severe economical as well as
social aspects� So it is preferable to detect errors at
an early stage of the development process� viz� in the
requirements speci�cation phase�

Errors in the speci�cation can also be detected by
analysis� but this requires that the speci�cation is pre�
cise and unambiguous� Because informal speci�ca�
tions� which are written in natural language and il�
lustrated by diagrams� tend to be ambiguous and im�
precise� we think that a formal speci�cation helps to
detect errors early�

Analysis of formal speci�cations� however� is very
time consuming� Formal methods are cost e�ective
for systems of industrial size under certain conditions
only� Firstly� tool support is needed� to make the anal�
ysis less labour intensive� Secondly� formal speci�ca�
tions must be modular� modi�able and extensible� in
order to allow for an iterative development of the spec�
i�cation� Finally� as argued by ���� formal methods
can only be cost e�ective if the resulting products are
reused�

On the other hand� ��� argues that formal speci��
cation is essential for the success of reusing software
components� so this is another motivation for research
on formal speci�cation�

Goal� The goal of our research is to compose a
method for formalizing and analyzing requirements
speci�cations of command and control systems� and
to evaluate this method on a realistic system�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301666615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Our approach� The good properties of informal
speci�cations should be maintained� especially their
readability and the possibility to have di�erent views
of the same system� like in e�g� OMT ��
��

In order to maintain readability� we propose to
interleave the formal and informal speci�cation by
means of a �literate speci�cation� style� To get a well�
structured speci�cation� we follow the conventional
approach of presenting di�erent views of a system�
viz� the information�� function� and control�model�
Having di�erent views is an advantage especially if it
is clear how the various models interrelate� It is in�
dicated how consistency between these models can be
formally stated and veri�ed� This is possible� because
we express the various models in the same formal lan�
guage�

To evaluate our approach� we formally speci�ed and
analyzed the requirements for a subsystem of a real�
istic command and control system� The requirements
are derived from existing command and control sys�
tems� We used the formal language and proof checker
of PVS ���� For the presentation of the literate speci�
�cation we used a tool developed for literate program�
ming� viz� noweb ����

Section � forms the main section of this paper� A
general approach for the formal speci�cation and anal�
ysis of requirements is developed� The case study is
presented in Section �� Finally� we will evaluate our
approach on the basis of the case study in Section ��
The latter also mentions some related work�

� Formal requirements speci�cation

We will distinguish two activities
 speci�cation and
analysis of the requirements� These activities interact
in an iterative process� such that analysis leads to a
speci�cation of enhanced quality�

The speci�cation of the requirements consists of
building three views� or models
 the information��
function� and control�model� The information model
describes the static aspects of the system� whereas the
function� and control model describe the behavior� In
the function model� the various operations on the state
are de�ned� The control model speci�es the actual in�
teraction with the system� and the order in which the
operations occur� in response to the input� In Sec�
tion ��� we describe these views in more detail�

For the analysis� we distinguish between veri�cation
and validation� By veri�cation� the intrinsic quality of
the speci�cation is addressed� Special attention will
be given to the veri�cation that the various views �t
together� It cannot be veri�ed however� whether the
intended system has been speci�ed� because there is
no authoritative document against which the speci��

cation can be checked� this check is the purpose of the
validation by domain experts� Section ��� addresses
both aspects of analysis�

��� Language and form of the speci�ca�
tion�

In order to relate the various views� there must be
one underlying formalism� For this reason� we have
chosen to use the same language for all models� This
can be weakened by using di�erent languages that are
translated to a common underlying formal framework�
The second approach is followed by �����

This language must be expressive enough to model
the various views� In order to �nd a lot of mistakes
automatically� we prefer a language with a strong typ�
ing discipline �in the sense that every expression must
have a unique type�� Finally� the language must be
supported by tools� in order to make the analysis of
the speci�cation practical�

We propose to develop a literate speci�cation� This
means that informal and formal requirements are in�
terleaved� Intermediate documents also contain a list
of unsolved questions� An additional advantage of a
literate speci�cation is� that it allows to circumvent the
rigid order imposed by formal languages� The speci��
cation can now be presented in a top�down way�

��� Speci�cation of the models�

Information model� The information model de�
scribes the static part of the speci�cation� It can be
seen as an abstraction of the global state of the sys�
tem� In command and control systems� the informa�
tion model describes the abstract picture of the envi�
ronment�

Typically� the information model consists of a num�
ber of entities� together with certain relations between
them� A number of constraints can restrict the set of
allowed states� These constraints specify the invariant
properties that the state should have� For each entity�
its attributes are speci�ed� by declaring their names
and the range of values they can take� Attributes can
have special properties� such as being optional�

Function model� The function model de�nes the
manipulations that change the state� These manip�
ulations can be seen as a relation between succeeding
states� The manipulations carry additional arguments�
representing the input to the system� Only when the
system is deterministic� the manipulations can be de�
scribed as functions�

Control model� The control model speci�es the
interaction of the system� for example as the set of
valid sequences of atomic actions� We focus on input
actions� The interaction protocol induced by the set



of valid input sequences represents the assumptions
about the environment�

In addition� the control model speci�es how the in�
put actions trigger the manipulations de�ned by the
function model� In this sense� the control model de�
�nes in which order the manipulations shall be per�
formed� It also indicates the initial state�

Relationship between the models� We have in�
troduced three models
 the information model� the
function model and the control model� We see these
models as complementary�

The function model describes possible manipula�
tions on states� The manipulations are also con�
strained by the information model� because the result�
ing state must satisfy the constraints of the informa�
tion model as well� Together these models form an
abstract data type
 a data structure with a set of op�
erations�

The control model makes this abstract data type
into an abstract state machine� The allowed states
are de�ned by the information model� The accepted
input is de�ned by the control model� The input events
trigger transitions between the states� as de�ned by the
function model�

��� Analysis�

Veri�cation� We show how consistency and inter�
nal completeness can be veri�ed� With consistency we
mean that no contradictory requirements are given� A
necessary condition is that the various views are com�

patible �they allow a common system�� Another nec�
essary condition is� that the speci�cation is logically

consistent �falsum is not derivable�� A speci�cation
is internally complete if it deals with all cases that
can be foreseen by inspecting the speci�cation� This
means among others that to any expected input there
is some speci�ed next state� However� we don�t re�
quire that this state is deterministically speci�ed� as
opposed to ����

First of all� it must be checked whether the speci�
�cation is well�formed� which can be done by parsing
and type�checking� This already reveals a lot of poten�
tial inconsistencies� In many typed formal languages�
type�correct theories containing de�nitions only �thus
excluding axioms�� are even logically consistent�

The second possibility of veri�cation is proving pu�
tative theorems ����� These theorems can be seen as
new requirements� or as challenges to the speci�cation�
The con�dence in the speci�cation is raised by proving
that they already follow from the speci�cation�

It must also be proved� that the various views are
compatible� i�e� don�t put contradictory requirements�
This is checked by proving that a system satisfying all

requirements exists� By proving that the initial state
satis�es the constraints� we have a witness that the
information model in isolation is consistent� To show
that the information and function model are compati�
ble� we prove that for every state �satisfying the invari�
ants� and every input �satisfying some precondition��
there exists a next state� in accordance with the re�
quirements of both the information and the function
model� In order to show that the control model is
compatible with the other models� we translate this
precondition into assumptions on the input� It must
then be proved that the control model guarantees that
these assumptions indeed hold�

Note that also internal completeness is addressed
by this analysis� since for any valid input there is some
response�

Validation� Validation aims at making sure that the
speci�ed system corresponds to the desired one� It is
mainly the task of the domain experts� The proposed
method supports validation of both informal and for�
mal requirements� because a well�structured� literate
speci�cation is developed� Hence the information can
be accessed easily�

The formal speci�cation can be validated by inspec�
tion� This is possible because the informal require�
ments serve as explanation and documentation of the
formal speci�cation� This part of the validation en�
sures that the formalization has been carried out cor�
rectly�

The validation of the informal requirements is sup�
ported too� The central point here is the questionnaire�
The attempt to formalize requirements forces one to
address ambiguities and incompleteness� This usually
requires additional information from the domain ex�
perts� A second source of questions is the formal ver�
i�cation of the speci�cation� Failure of type�checking
and non�provability of putative theorems often indi�
cate errors�

According to the answers to these questions� the in�
formal and�or formal requirements are updated� This
leads to an improved version of the requirements spec�
i�cation�

� Speci�cation and analysis of track

joining

We illustrate our method for formal speci�cation
by a case study� As an example� we selected a compo�
nent of command and control systems� related to track
joining� We �rst brie�y present the general problem
statement of track joining ������ Then we describe the
language and tools that were used ������ The speci��
cation and analysis of the requirements along the lines
of Section � is presented in Sections ������	�



Using our method� the speci�cation was derived
from existing �informal� requirements speci�cations
for track joining� Below we cite from the literate spec�
i�cation that we developed� Rather than presenting
a polished �nal result� we report on an intermediate
stage and show how analysis can lead to an improved
speci�cation�

��� Automatic track joining

A track is a description of a real�world object� re�
porting on e�g� measured position� velocity� accuracy
etc� Tracks occur on �at least� two levels


� Sensor tracks� as reported by a sensor�
� Tactical tracks� as presented to the operator�

An object in the real world may be detected by var�
ious sensors� Since sensors are not perfect� this results
in slightly di�erent sensor tracks� In order to present
a global and coherent picture� various sensor tracks
should be joined into a single tactical track� if they
represent the same real�world object� One of the tasks
of Tactical Track Management �TTM� is to derive and
maintain the set of tactical tracks�

Precisely one of the sensor tracks that are joined to
a particular tactical track �viz� that with the highest
accuracy� is responsible for reporting on the current
position� velocity and other attributes of the tactical
track�

The various sensors can initiate new sensor tracks�
and update or wipe existing sensor tracks� this is the
input to the system� TTM has no output actions� In�
stead� an abstract picture is built� containing the cur�
rent sets of sensor� and tactical tracks� and the join�
and responsibility relations between them� A similar
assumption on systems is made in �����

��� PVS and noweb

In order to carry out the case study� a particular
formal language has to be chosen� To support the
case study mechanically� certain tools must be present�
We used PVS �Prototype Veri�cation System� ��� as
a speci�cation language equipped with an interactive
proof checker� and noweb ��� as a literate speci�cation
tool�

PVS language� The language of PVS is based on
classical higher�order logic� This means that quanti��
cation over functions� sets and properties is allowed�
leading to a great expressive power� The logic is
equipped with a type system� PVS has a rich variety
of types� e�g� numeric types �nat and real�� enumer�
ated types �fred�white�blueg�� pairs ��nat�bool���
functions ��real�nat��real��� subtypes �fx�nat�
p	x
g�� record types ��� name�string� age�nat ���
and a scheme for de�ning abstract data types� such as

�recursive� trees�
A large library contains de�nitions of many general

concepts� like lists� sequences� induction� etc�

PVS system� A speci�cation is parsed and type�
checked by the PVS system� Due to the typing rules
�especially subtyping�� it is undecidable whether a the�
ory is type�correct� To overcome this� the type�checker
generates type�check conditions �TCCs� that are suf�
�cient for type�correctness�

Theorems raised by type�checking or by the user
can be interactively proved in the proof checker� The
user repeatedly applies the rules of higher�order logic�
in order to simplify the goal to be proved� until it is
trivial� This process is partly automated by built�in
strategies� like term rewriting� and decision procedures
for linear arithmetic and propositional logic�

Noweb� We use noweb as a literate speci�cation
tool ���� In combination with LATEX� noweb yields type�
set text and PVS code� The PVS code can also be
extracted� in order to formally analyze it�

PVS theories are split in chunks� which can be pre�
sented in any order� These chunks have labels and can
refer to each other� In the case study presented in the
next sections� text in type�writer font is PVS code�
The italic parts between angled brackets are hhlabelsii�

��� Information model

The information model describes the static struc�
ture and the invariant properties of the track database�
Using conventional methods� the informal speci�cation
can be expressed by an ER�diagram as depicted in Fig�
ure ��

Q
Q
Q�

�
�
Q
Q
Q�

�
�

Q
Q
Q�

�
�
Q
Q
Q�

�
�

Sensor
track

is
joined
to

is
responsible

for

Tactical
track

� 


�

�


 or �

Figure �
 ER�diagram for track joining

The diagram introduces two kinds of entities �sensor
and tactical tracks� and two relations between them
�the join� and responsibility�relation�� The numbers
on the edges indicate cardinality constraints on the



hhtdb�pvsii �
track�database� THEORY

BEGIN

hhTrack de�nitionsii
Data�structure� TYPE 


�� s�tracks� setof�Sens�track��

t�tracks� setof�Tac�track��

join� pred��Sens�track�Tac�track���

resp� pred��Sens�track�Tac�track��

��

X�Y� VAR Data�structure

hhConstraint de�nitionsii
TDB� TYPE 
 fX � constraints	X
g

END track�database

Figure �
 Topmost speci�cation of track database

relations� e�g� a sensor track is responsible for at most
one tactical track�

Other types of constraints are usually stated in
accompanying text� like the constraint that a sensor
track can only be responsible for a tactical track if it
is joined to it� Typically� a data dictionary de�nes the
attributes of the entities� and the types of the various
attributes�

Formalization of the track database� The track
database is formally speci�ed in two steps� First we
de�ne a data structure� which roughly indicates what
the database looks like� Then the constraints are de�
�ned as predicates on this data structure� A track
database �type TDB� is then de�ned as a data struc�
ture that satis�es the constraints�

The topmost part of the formalization is displayed
in Figure �� This part corresponds to the ER�diagram
without the constraints� The data structure is de�
�ned� as a record containing sets of sensor and tac�
tical tracks and the responsibility� and join�relations
between them �represented as predicates on pairs��

The conjunction of the constraints forms a predicate
on the data structure� In Figure � we present some of
the constraints� The �rst constraint expresses that
a responsible primitive track must be joined to the
corresponding tactical track� The second one expresses
a cardinality constraint in the ER�diagram in Figure �

every sensor track is joined to exactly one �indicated
by exists��� tactical track� Finally� constraint three
states that track numbers are unique�

Entities� Figure � illustrates the de�nition of sensor
and tactical tracks� The types and the attributes of the
tracks are de�ned� respectively� Note that we declared
identity as optional� The type optional�t� is an

hhConstraint de�nitionsii �
s�s��s�� VAR Sens�track

t� VAR Tac�track

constraint�	X
�bool 
 FORALL s�t�

resp	X
	s�t
 
� join	X
	s�t


constraint�	X
�bool 
 FORALL s�

s�tracks	X
	s
 
� exists�� t� join	X
	s�t


constraint�	X
�bool 
 FORALL s��s��

s�tracks	X
	s�
 � s�tracks	X
	s�
 �

number	s�

number	s�
 
� s�
s�

���

constraints	X
�bool 


constraint�	X
 � constraint�	X
 � ���

Figure �
 Constraint de�nitions

hhTrack de�nitionsii �
Source� TYPE�

Sens�number� TYPE�

Identity� TYPE 


ffriend� hostile� pending� joker� fakerg
Kinetic� TYPE 
 �� px�py�vx�vy� real ��

Max�accuracy� nat

Accuracy�level� TYPE 


fx�nat � � �
 x � x �
 Max�accuracyg
Sens�track� TYPE 


�� number� Sens�number�

source� Source�

identity� optional�Identity��

kinetics� Kinetic�

accuracy� Accuracy�level

��

Tac�track� TYPE 
 ���

Figure �
 Types and attributes of tracks

abstract data type with type parameter t� we omitted
its de�nition� The elements of optional�t� are either
none �absent� or one	x
� where x is of type t�

��� Function model

The function model introduces the manipulations
that change the track database� The external manipu�
lations consist of creating� updating and wiping sensor
tracks� Only a cross�section of the speci�cation of the
manipulations will be given� As an illustration we con�
sider the requirements related to the creation of a new
sensor track into the track database� Requirements for
the other external manipulations are de�ned similarly�

Informally� the requirements can be stated as fol�



manipulations� THEORY

BEGIN

IMPORTING track�database

hhde�nition of distance critii
hhde�nition of determine respii
hhde�nition of new tac trackii

no�conflict	id��id��Identity
�bool
 TABLE

id�� id� ��pending� friend �hostile��

���������������������������������������

�pending � TRUE � TRUE � TRUE ��

�friend � TRUE � TRUE � FALSE ��

�hostile � TRUE � FALSE � TRUE ��

ENDTABLE�������������������������������

join�criteria	s�t
�bool 


distance�crit	kinetics	s
�kinetics	t



� no�conflict	identity	s
�identity	t



join�sens�track	s
	X�Y
� bool 


EXISTS t�

t�tracks	X
	t


� join�criteria	s�t


� LET Z
X WITH �join�
add		s�t
�join	X

�

IN determine�resp	t
	Z�Y


new�sens�track	s
	X�Y
�bool 


LET Z
X WITH �s�tracks�
add	s�s�tracks	X

�

IN join�sens�track	s
	Z�Y


OR new�tac�track	s
	Z�Y


END manipulations

Figure �
 Part of the function model�

lows
 If a new sensor track is inserted� it shall be ver�
i�ed whether it can be joined to an existing tactical
track� This must be done according to two criteria


� the distance between the two tracks is within a
speci�ed margin�

� the identity of the tracks is not con�icting �as de�
�ned by the table in Figure ���

If a tactical track satisfying these criteria exists� the
new sensor track is automatically joined to it� and the
responsibility relation is updated accordingly� Other�
wise a new tactical track must be created�

Note that this description refers to internal manip�
ulations� like joining a sensor track to a tactical track�
creating a new tactical track� and determining the re�
sponsible track� The various manipulations can be for�
malized in a rather straightforward manner� Part of
the formal function model is illustrated in Figure ��

In the de�nition of new sens track	s
� s is added

to the sensor tracks in state X� resulting in an inter�
mediate state Z� Note that s has not been joined to a
tactical track� so Z doesn�t satisfy constraint�� This
is repaired in the �nal state Y� by either joining s to
some existing tactical track� or by creating a new tac�
tical track and joining s to it �the speci�cation of the
latter manipulation is not shown here��

The relationship join sens track	s
	X�Y
 holds
if sensor track s is joined to some existing tactical
track t satisfying the join criteria� In that case� the
pair 	s�t
 is added to the join relation� and the re�
sponsible track is re�determined �which is not further
speci�ed in this paper�� Whether identities are non�
con�icting is de�ned by a table� a PVS construct that
is tested for completeness automatically� as explained
in Section ��	�

��	 Control model

The task of the control model is to de�ne the inter�
action between the �sub�system and its environment�
In this case study� this boils down to de�ning the valid
sequences of input actions� We �rst de�ne the atomic
actions as an abstract data type� with elements of
the form new	s
� update	s
 and wipe	s
� for some
sensor track s� In all cases� the function arg returns
the sensor track s� The PVS theory containing the
control model starts with the following declarations


i�j�k� VAR nat

input� VAR sequence�actions�

The input to TTM is represented by a sequence of
actions� Thus input	i
 denotes the ith action� and
arg	input	i

 the corresponding sensor track�

A predicate present	input
	s�i
�bool �sensor
track s exists after i actions of the input have oc�
curred� can be de�ned as follows
 At some point j�i�
a track with s�s number is initiated and it is not wiped
for any j�k�i� The predicate valid	input
�bool

holds if all newly initiated tracks are not present� but
all updated and wiped tracks are�

The control model is linked to the information
and function model by de�ning an initial state and
a next�state relation� The initial state�TDB con�
tains an empty set of sensor� and tactical tracks�
The higher�order function next state� mapping ac�
tions to the corresponding relations in the function
model� is de�ned such that e�g� next state	new	s



� new sens track	s
� Using these de�nitions� we can
de�ne state	input
	i
	X
�bool� which is true of a
state X if it is reachable from the initial state by per�
forming the �rst i input actions�



��
 Veri�cation

Type�checking� The �rst formal check on the speci�
�cation concerns type�correctness� PVS detects a type
error in the theory representing the function model
�cf� Figure ��
 no conflict expects arguments of type
Identity� but in the de�nition of the join criteria

it gets arguments of type optional�Identity�� This
leads to a question for the domain experts� how the
no conflict�criterion is to be interpreted in case iden�
tities are absent�

Recall that type�checking may introduce type�check
conditions� We show one of the TCCs automatically
generated by PVS� that needs careful consideration


no�conflict�TCC� OBLIGATION FORALL id�� id��

id� 
 pending 
� NOT joker�	id�


This TCC reveals an omission in the speci�cation� It
is due to the fact that the TABLE de�ning the predicate
no conflict �cf� Figure �� is not exhaustive
 the rows
and columns of joker and faker are missing� PVS
wants us to prove that these cases never occur� This
obligation cannot be ful�lled� the speci�cation has to
be amended by extending the table�

Consistency between views� We now show how
consistency between the various views can be stated
and proved� From now on� X�Y only range over TDB�
i�e� data structures satisfying the constraints�

X�Y� VAR TDB

As indicated in Section ���� compatibility of a ma�
nipulation with the information model is stated by the
formula FORALL X�s� EXISTS Y� R	s
	X�Y
� This
formula expresses that in any state X satisfying the
constraints� the transition R with input s can be per�
formed leading to some state Y satisfying the con�
straints� However� this doesn�t hold for the manip�
ulation new sens track
 adding a track with an ex�
isting number violates constraint�� which expresses
that numbers are unique� We are forced to think about
the necessary precondition for this manipulation� We
now get the following� which can be proved with some
e�ort in the PVS proof checker� The lemmata and the�
orems below are translated to their universal closure
implicitly�

precond	X�s
�bool 


NOT EXISTS s��

s�tracks	X
	s�
 � number	s

number	s�


info�fun�compatible� LEMMA precond	X�s
 
�

EXISTS Y� new�sens�track	s
	X�Y


Of course� it must also be shown that assuming the
precondition is justi�ed� This is done by proving that

given valid input �in the sense of the control model��
the assumption can be proved� Formally� this is stated
as follows �If after i actions of valid input we get a
new	s
 action in state X� then the precondition holds�


precond�justified� LEMMA valid	input
 �

new�	input	i

 � state	input
	i
	X



� precond	X�arg	input	i




After doing the same analysis for the other manip�
ulations� we can prove that for valid input� the system
is always in some speci�ed state� The theorem below
can be proved by induction on i� The base case holds
since the initial con�guration satis�es the constraints�
The induction step uses that the manipulations are
compatible with the information model�

views�compatible� THEOREM valid	input
 
�

EXISTS X� state	input
	i
	X


� Concluding remarks

Evaluation� The case study showed us that our ap�
proach has certain bene�ts� but also that certain im�
provements are still needed� We mention some bene�ts
of our approach


� Already the attempt to formalize brought about
a lot of good questions and conceptual clearness�

� Type checking automatically found forgotten
cases in the de�nition of tables� functions� etc�

� The control model forced us to give a clear bound�
ary of the system� Note that the function model
doesn�t make clear that join sens track is an
externally invisible manipulation�

� The invariants of the information model are a
means to control the system integrity� In the case
study for instance� moving the join criteria to�
wards the information model would imply that
they always hold� not only when the join�
manipulation is performed�

� The veri�cation of compatibility between views
forced us to think about the assumptions made
on the environment� This led to the introduction
of preconditions�

Note that a formal analysis not only uncovers vari�
ous errors early� but in the end we have a guaran�

tee that the speci�cation is non�ambiguous� internally
complete� and logical consistent and that the various
views are compatible�

The case study also revealed that certain improve�
ments are needed


� Technically� the combination of PVS and noweb

is inconvenient� The PVS system works on the



extracted code� so feedback �e�g� type errors� is
directed to this code� instead of to the source
�le� Similarly� since noweb generates the out�
put� it is not possible to use the LATEX pretty
printer of PVS� Also graphical notations� like
OMT�diagrams ��
�� should be supported by the
literate speci�cation tool�

� More emphasis should be put on the control
model� Also output actions have to modeled� and
sequences of actions are not expressive enough in
general� although they were su�cient in this case
study�

� A clearer view is needed on the exact tests that
should be performed in the analysis� This should
result in a clearer description of internal complete�

ness and consistency�

Future work� Eventually� our research should lead
to a system�wide formal speci�cation of command and
control systems� resulting in formal development� The
following issues still have to be addressed


� System�wide speci�cation� Other typical subsys�
tems of command and control systems must be
tried� e�g� the execution of corrective actions�
Moreover� special attention must be paid to the
composition of various components� Until now
only views of the same component are supported�

� Non�functional requirements� Important issues�
like real�time requirements� graceful degradation�
robustness and availability of the system are not
yet dealt with�

� Optimization Criteria� Optimization criteria oc�
cur frequently in command and control systems�
It is not easy to formalize that a system should
use�satisfy such criteria� The criteria themselves
can be stated of course� but note that in general�
we cannot require that a system �nds the optimal
solution� Similarly� as signaled by ���� mere pref�
erences �as opposed to requirements� are hard to
formalize�

Related work� We refer to ��� for an overview of in�
dustrial applications of formal methods� In the papers
below� similar work is reported as in our paper�

A requirements speci�cation for an aircraft collision
avoidance system is given in �	�� A single state�based
model is constructed in that paper� written in RSML
�Requirements State Machine Language�� This model
expresses the black�box behavior of the system� Sev�
eral formal properties of the speci�cation are automat�
ically veri�ed in ����

In ���� formal methods are used for speci�cation�
design and veri�cation of an air tra�c control infor�

mation system� In that paper� ER�diagrams and data�
�ow diagrams are translated into state� and operation�
speci�cations in VDM ���� Concurrency requirements
are modeled separately� We share many of the author�s
�ndings concerning speci�cation�

A formal requirements analysis for an avionics con�
trol system can be found in ���� PVS is used there
to formulate functional and safety requirements� It is
formally veri�ed whether the functional requirements
satisfy the safety requirements�

Acknowledgments� We like to thank Dieter Ham�
mer for his stimulating contribution to our project dis�
cussions and his comments on this paper�

References

��� E�M� Clarke and J�M� Wing� Formal methods� State
of the art and future directions� ACM Computing Sur�

veys� ��	
�����
�
�� �����

��� B� Dutertre and V� Stavridou� Formal requirements
analysis of an avionics control system� IEEE Trans� on

SE� ��	������
���� �����

��� A� Hall� Using formal methods to develop an ATC in�
formation system� IEEE Software� ��	�����
��� �����

�
� M�P�E� Heimdahl and N�G� Leveson� Completeness
and consistency in hierarchical state�based require�
ments� IEEE Trans� on SE� ��	������
���� �����

��� C�B� Jones� Systematic Software Development using

VDM� Prentice Hall� �nd edition� �����

��� N�G� Leveson� M�P�E� Heimdahl� H� Hildreth� and
J�D� Reese� Requirements speci�cation for process�
control systems� IEEE Trans� on SE� ��	�����

����
���
�

��� B� Meyer� The next software breakthrough� IEEE

Computer� ��	������
��
� �����

��� S� Owre� J�M� Rushby� N� Shankar� and F� Von Henke�
Formal Veri�cation of Fault�Tolerant Architectures�
Prolegomena to the Design of PVS� IEEE Trans� on

SE� ��	������
���� �����

��� N� Ramsey� Literate programming simpli�ed� IEEE

Software� ��	�����
���� ���
�

���� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� and
W� Lorensen� Object�Oriented Modeling and Design�
Prentice Hall� Englewood Cli�s� �����

���� J�M� Rushby� Formal methods and their role in the
certi�cation of critical systems� Technical Report
CSL������� CSL� �����

���� J�M� Spivey� The Z Notation� A Reference Manual�
Prentice Hall� �nd edition� �����

���� P� Zave and M� Jackson� Where do operations come
from� Amultiparadigm speci�cation technique� IEEE
Trans� on SE� ��	������
���� �����


