View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by CW!I's Institutional Repository

Formal Requirements Specification
for Command and Control Systems

Jaco van de Pol®)

(1) Eindhoven University of Technology
Dept. of Computing Science
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
Email: {jaco,hooman}@Qwin.tue.nl

Abstract

This paper presents am approach to formal require-
ments specification of embedded systems. The specific
demands of a specification for command and control
systems are addressed. The proposed method allows
various views of a system, like conventional methods.
The added value lies in the fact that the relationship
between the views is specified formally, and consistency
between views can be analyzed formally. As a case
study, we develop and analyze a formal requirements
specification for a subsystem of a realistic command
and control system. Specification and verification are
carried out using the language and proof checker of
PVS.

1 Introduction

Command and control systems. The general task
of a command and control system is to support a team
of operators in monitoring and controlling the envi-
ronment in order to accomplish a mission. Commonly,
these systems support tasks like navigation, observa-
tion, communication, defense, and training.

Command and control systems are equipped with
various sensors and actuators. Measurements from
the environment are continuously obtained via the sen-
sors and compiled into an abstract picture that reflects
the current state of the environment. This picture is
communicated to the team of operators. The system
supports the decision making process by tracking dif-
ferences between the perceived state and the required
state, and by proposing and analyzing corrective ac-
tions. These actions are then planned, by assigning a
time-frame and sufficient resources, and executed via
the actuators.

Command and control systems are typically large
and complex, whereas the standards on correctness,
reliability and availability are high. Hence it is a diffi-

Jozef Hooman(®

Edwin de Jong®

(2) Hollandse Signaalapparaten BV
Dept. of Applied System Research
P.O. Box 42, 7550 GD Hengelo
The Netherlands
Email: edejong@signaal.nl

cult and error-prone task to build such systems.

Needs. It is important to be able to manage the
time and costs needed to develop a particular system.
Too often fatal errors are detected on testing a system
that has been built already. In that case parts of the
development must be reiterated, which results in addi-
tional and usually unpredictable costs. Of course, the
damage of errors detected after delivery is even more
disastrous, encompassing severe economical as well as
social aspects. So it is preferable to detect errors at
an early stage of the development process, viz. in the
requirements specification phase.

Errors in the specification can also be detected by
analysis, but this requires that the specification is pre-
cise and unambiguous. Because informal specifica-
tions, which are written in natural language and il-
lustrated by diagrams, tend to be ambiguous and im-
precise, we think that a formal specification helps to
detect errors early.

Analysis of formal specifications, however, is very
time consuming. Formal methods are cost effective
for systems of industrial size under certain conditions
only. Firstly, tool support is needed, to make the anal-
ysis less labour intensive. Secondly, formal specifica-
tions must be modular, modifiable and extensible, in
order to allow for an iterative development of the spec-
ification. Finally, as argued by [7], formal methods
can only be cost effective if the resulting products are
reused.

On the other hand, [7] argues that formal specifi-
cation is essential for the success of reusing software
components, so this is another motivation for research
on formal specification.

Goal. The goal of our research is to compose a
method for formalizing and analyzing requirements
specifications of command and control systems, and
to evaluate this method on a realistic system.

https://core.ac.uk/display/301666615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Our approach. The good properties of informal
specifications should be maintained, especially their
readability and the possibility to have different views
of the same system, like in e.g. OMT [10].

In order to maintain readability, we propose to
interleave the formal and informal specification by
means of a “literate specification” style. To get a well-
structured specification, we follow the conventional
approach of presenting different views of a system,
viz. the information-, function- and control-model.
Having different views is an advantage especially if it
is clear how the various models interrelate. It is in-
dicated how consistency between these models can be
formally stated and verified. This is possible, because
we express the various models in the same formal lan-
guage.

To evaluate our approach, we formally specified and
analyzed the requirements for a subsystem of a real-
istic command and control system. The requirements
are derived from existing command and control sys-
tems. We used the formal language and proof checker
of PVS [8]. For the presentation of the literate speci-
fication we used a tool developed for literate program-
ming, viz. noweb [9].

Section 2 forms the main section of this paper. A
general approach for the formal specification and anal-
ysis of requirements is developed. The case study is
presented in Section 3. Finally, we will evaluate our
approach on the basis of the case study in Section 4.
The latter also mentions some related work.

2 Formal requirements specification

We will distinguish two activities: specification and
analysis of the requirements. These activities interact
in an iterative process, such that analysis leads to a
specification of enhanced quality.

The specification of the requirements consists of
building three views, or models: the information-,
function- and control-model. The information model
describes the static aspects of the system, whereas the
function- and control model describe the behavior. In
the function model, the various operations on the state
are defined. The control model specifies the actual in-
teraction with the system, and the order in which the
operations occur, in response to the input. In Sec-
tion 2.2 we describe these views in more detail.

For the analysis, we distinguish between verification
and validation. By wverification, the intrinsic quality of
the specification is addressed. Special attention will
be given to the verification that the various views fit
together. It cannot be verified however, whether the
intended system has been specified, because there is
no authoritative document against which the specifi-

cation can be checked; this check is the purpose of the
validation by domain experts. Section 2.3 addresses
both aspects of analysis.

2.1 Language and form of the specifica-
tion.

In order to relate the various views, there must be
one underlying formalism. For this reason, we have
chosen to use the same language for all models. This
can be weakened by using different languages that are
translated to a common underlying formal framework.
The second approach is followed by [13].

This language must be expressive enough to model
the various views. In order to find a lot of mistakes
automatically, we prefer a language with a strong typ-
ing discipline (in the sense that every expression must
have a unique type). Finally, the language must be
supported by tools, in order to make the analysis of
the specification practical.

We propose to develop a literate specification. This
means that informal and formal requirements are in-
terleaved. Intermediate documents also contain a list
of unsolved questions. An additional advantage of a
literate specification is, that it allows to circumvent the
rigid order imposed by formal languages. The specifi-
cation can now be presented in a top-down way.

2.2 Specification of the models.

Information model. The information model de-
scribes the static part of the specification. It can be
seen as an abstraction of the global state of the sys-
tem. In command and control systems, the informa-
tion model describes the abstract picture of the envi-
ronment.

Typically, the information model consists of a num-
ber of entities, together with certain relations between
them. A number of constraints can restrict the set of
allowed states. These constraints specify the invariant
properties that the state should have. For each entity,
its attributes are specified, by declaring their names
and the range of values they can take. Attributes can
have special properties, such as being optional.

Function model. The function model defines the
manipulations that change the state. These manip-
ulations can be seen as a relation between succeeding
states. The manipulations carry additional arguments,
representing the input to the system. Only when the
system is deterministic, the manipulations can be de-
scribed as functions.

Control model. The control model specifies the
interaction of the system, for example as the set of
valid sequences of atomic actions. We focus on input
actions. The interaction protocol induced by the set

of valid input sequences represents the assumptions
about the environment.

In addition, the control model specifies how the in-
put actions trigger the manipulations defined by the
function model. In this sense, the control model de-
fines in which order the manipulations shall be per-
formed. It also indicates the initial state.

Relationship between the models. We have in-
troduced three models: the information model, the
function model and the control model. We see these
models as complementary.

The function model describes possible manipula-
tions on states. The manipulations are also con-
strained by the information model, because the result-
ing state must satisfy the constraints of the informa-
tion model as well. Together these models form an
abstract data type: a data structure with a set of op-
erations.

The control model makes this abstract data type
into an abstract state machine. The allowed states
are defined by the information model. The accepted
input is defined by the control model. The input events
trigger transitions between the states, as defined by the
function model.

2.3 Analysis.

Verification. We show how consistency and inter-
nal completeness can be verified. With consistency we
mean that no contradictory requirements are given. A
necessary condition is that the various views are com-
patible (they allow a common system). Another nec-
essary condition is, that the specification is logically
consistent (falsum is not derivable). A specification
is internally complete if it deals with all cases that
can be foreseen by inspecting the specification. This
means among others that to any expected input there
is some specified next state. However, we don’t re-
quire that this state is deterministically specified, as
opposed to [4].

First of all, it must be checked whether the speci-
fication is well-formed, which can be done by parsing
and type-checking. This already reveals a lot of poten-
tial inconsistencies. In many typed formal languages,
type-correct theories containing definitions only (thus
excluding axioms), are even logically consistent.

The second possibility of verification is proving pu-
tative theorems [11]. These theorems can be seen as
new requirements, or as challenges to the specification.
The confidence in the specification is raised by proving
that they already follow from the specification.

It must also be proved, that the various views are
compatible, i.e. don’t put contradictory requirements.
This is checked by proving that a system satisfying all

requirements exists. By proving that the initial state
satisfies the constraints, we have a witness that the
information model in isolation is consistent. To show
that the information and function model are compati-
ble, we prove that for every state (satisfying the invari-
ants) and every input (satisfying some precondition),
there exists a next state, in accordance with the re-
quirements of both the information and the function
model. In order to show that the control model is
compatible with the other models, we translate this
precondition into assumptions on the input. It must
then be proved that the control model guarantees that
these assumptions indeed hold.

Note that also internal completeness is addressed
by this analysis, since for any valid input there is some
response.

Validation. Validation aims at making sure that the
specified system corresponds to the desired one. It is
mainly the task of the domain experts. The proposed
method supports validation of both informal and for-
mal requirements, because a well-structured, literate
specification is developed. Hence the information can
be accessed easily.

The formal specification can be validated by inspec-
tion. This is possible because the informal require-
ments serve as explanation and documentation of the
formal specification. This part of the validation en-
sures that the formalization has been carried out cor-
rectly.

The validation of the informal requirements is sup-
ported too. The central point here is the questionnaire.
The attempt to formalize requirements forces one to
address ambiguities and incompleteness. This usually
requires additional information from the domain ex-
perts. A second source of questions is the formal ver-
ification of the specification. Failure of type-checking
and non-provability of putative theorems often indi-
cate errors.

According to the answers to these questions, the in-
formal and/or formal requirements are updated. This
leads to an improved version of the requirements spec-
ification.

3 Specification and analysis of track
joining

We illustrate our method for formal specification
by a case study. As an example, we selected a compo-
nent of command and control systems, related to track
joining. We first briefly present the general problem
statement of track joining (3.1). Then we describe the
language and tools that were used (3.2). The specifi-
cation and analysis of the requirements along the lines
of Section 2 is presented in Sections 3.3-3.6.

Using our method, the specification was derived
from existing (informal) requirements specifications
for track joining. Below we cite from the literate spec-
ification that we developed. Rather than presenting
a polished final result, we report on an intermediate
stage and show how analysis can lead to an improved
specification.

3.1 Automatic track joining

A track is a description of a real-world object, re-
porting on e.g. measured position, velocity, accuracy
etc. Tracks occur on (at least) two levels:

e Sensor tracks, as reported by a sensor.
e Tactical tracks, as presented to the operator.

An object in the real world may be detected by var-
ious sensors. Since sensors are not perfect, this results
in slightly different sensor tracks. In order to present
a global and coherent picture, various sensor tracks
should be joined into a single tactical track, if they
represent the same real-world object. One of the tasks
of Tactical Track Management (TTM) is to derive and
maintain the set of tactical tracks.

Precisely one of the sensor tracks that are joined to
a particular tactical track (viz. that with the highest
accuracy) is responsible for reporting on the current
position, velocity and other attributes of the tactical
track.

The various sensors can initiate new sensor tracks,
and update or wipe existing sensor tracks; this is the
input to the system. TTM has no output actions. In-
stead, an abstract picture is built, containing the cur-
rent sets of sensor- and tactical tracks, and the join-
and responsibility relations between them. A similar
assumption on systems is made in [13].

3.2 PVS and noweb

In order to carry out the case study, a particular
formal language has to be chosen. To support the
case study mechanically, certain tools must be present.
We used PVS (Prototype Verification System) [8] as
a specification language equipped with an interactive
proof checker, and noweb [9] as a literate specification
tool.

PVS language. The language of PVS is based on
classical higher-order logic. This means that quantifi-
cation over functions, sets and properties is allowed,
leading to a great expressive power. The logic is
equipped with a type system. PVS has a rich variety
of types, e.g. numeric types (nat and real), enumer-
ated types ({red,white,blue}), pairs ([nat,booll),
functions ([real,nat->reall), subtypes ({x:nat|
p(x)}), record types ([# name:string, age:nat #])
and a scheme for defining abstract data types, such as

(recursive) trees.
A large library contains definitions of many general
concepts, like lists, sequences, induction, etc.

PVS system. A specification is parsed and type-
checked by the PVS system. Due to the typing rules
(especially subtyping), it is undecidable whether a the-
ory is type-correct. To overcome this, the type-checker
generates type-check conditions (TCCs) that are suf-
ficient for type-correctness.

Theorems raised by type-checking or by the user
can be interactively proved in the proof checker. The
user repeatedly applies the rules of higher-order logic,
in order to simplify the goal to be proved, until it is
trivial. This process is partly automated by built-in
strategies, like term rewriting, and decision procedures
for linear arithmetic and propositional logic.

Noweb. We use noweb as a literate specification
tool [9]. In combination with IATEX, noweb yields type-
set text and PVS code. The PVS code can also be
extracted, in order to formally analyze it.

PVS theories are split in chunks, which can be pre-
sented in any order. These chunks have labels and can
refer to each other. In the case study presented in the
next sections, text in type-writer font is PVS code.
The italic parts between angled brackets are ({labels)).

3.3 Information model

The information model describes the static struc-
ture and the invariant properties of the track database.
Using conventional methods, the informal specification
can be expressed by an ER-diagram as depicted in Fig-
ure 1.

Sensor
track

Tactical
track

Figure 1: ER-diagram for track joining

The diagram introduces two kinds of entities (sensor
and tactical tracks) and two relations between them
(the join- and responsibility-relation). The numbers
on the edges indicate cardinality constraints on the

({tdb.pvs)) =
track_database: THEORY
BEGIN
((Track definitions))
Data_structure: TYPE =
[# s_tracks: setof[Sens_track],
t_tracks: setof[Tac_track],
join: pred[[Sens_track,Tac_track]],
resp: pred[[Sens_track,Tac_track]]
#]
X,Y: VAR Data_structure
({Constraint definitions))
TDB: TYPE = {X | constraints(X)}
END track_database

({Constraint definitions)) =
s,s1,s2: VAR Sens_track
t: VAR Tac_track

constraintil(X) :bool = FORALL s,t:
resp(X) (s,t) => join(X)(s,t)
constraint2(X) :bool = FORALL s:
s_tracks(X) (s) => existsl! t: join(X)(s,t)
constraint3(X) :bool = FORALL si,s2:
s_tracks(X) (s1) & s_tracks(X)(s2) &
number (s1)=number(s2) => s1=s2

constraints(X) :bool =
constraintl(X) & constraint2(X) & ...

Figure 2: Topmost specification of track database

relations, e.g. a sensor track is responsible for at most
one tactical track.

Other types of constraints are usually stated in
accompanying text, like the constraint that a sensor
track can only be responsible for a tactical track if it
is joined to it. Typically, a data dictionary defines the
attributes of the entities, and the types of the various
attributes.

Formalization of the track database. The track
database is formally specified in two steps. First we
define a data structure, which roughly indicates what
the database looks like. Then the constraints are de-
fined as predicates on this data structure. A track
database (type TDB) is then defined as a data struc-
ture that satisfies the constraints.

The topmost part of the formalization is displayed
in Figure 2. This part corresponds to the ER-diagram
without the constraints. The data structure is de-
fined, as a record containing sets of sensor and tac-
tical tracks and the responsibility- and join-relations
between them (represented as predicates on pairs).

The conjunction of the constraints forms a predicate
on the data structure. In Figure 3 we present some of
the constraints. The first constraint expresses that
a responsible primitive track must be joined to the
corresponding tactical track. The second one expresses
a cardinality constraint in the ER-diagram in Figure 1:
every sensor track is joined to exactly one (indicated
by exists1!) tactical track. Finally, constraint three
states that track numbers are unique.

Entities. Figure 4 illustrates the definition of sensor
and tactical tracks. The types and the attributes of the
tracks are defined, respectively. Note that we declared
identity as optional. The type optional[t] is an

Figure 3: Constraint definitions

({Track definitions)) =
Source: TYPE+
Sens_number: TYPE+
Identity: TYPE =

{friend, hostile, pending, joker, faker}
Kinetic: TYPE = [# px,py,vx,vy: real #]
Max_accuracy: nat
Accuracy_level: TYPE =

{x:nat | 0 <= x & x <= Max_accuracy}
Sens_track: TYPE =
[# number: Sens_number,

source: Source,

identity: optional[Identity],

kinetics: Kinetic,

accuracy: Accuracy_level
#]
Tac_track: TYPE = ...

Figure 4: Types and attributes of tracks

abstract data type with type parameter t; we omitted
its definition. The elements of optional[t] are either
none (absent) or one(x), where x is of type t.

3.4 Function model

The function model introduces the manipulations
that change the track database. The external manipu-
lations consist of creating, updating and wiping sensor
tracks. Only a cross-section of the specification of the
manipulations will be given. As an illustration we con-
sider the requirements related to the creation of a new
sensor track into the track database. Requirements for
the other external manipulations are defined similarly.

Informally, the requirements can be stated as fol-

manipulations: THEORY
BEGIN

IMPORTING track_database
{{definition of distance_crit))
({definition of determine_resp))
({definition of new_tac_track))

no_conflict(idl,id2:Identity) :bool= TABLE
id1, id2 |[pending| friend |hostile] |

|pending | TRUE | TRUE | TRUE ||
|friend | TRUE | TRUE | FALSE ||
lhostile | TRUE | FALSE | TRUE ||
ENDTABLEY,~=========== === = m e~

join_criteria(s,t):bool =
distance_crit(kinetics(s) ,kinetics(t))
& no_conflict(identity(s),identity(t))

join_sens_track(s) (X,Y): bool =

EXISTS t:
t_tracks (X) (t)

& join_criteria(s,t)

& LET Z=X WITH [join:=add((s,t),join(X))]
IN determine_resp(t)(Z,Y)

new_sens_track(s) (X,Y) :bool =
LET Z=X WITH [s_tracks:=add(s,s_tracks(X))]
IN join_sens_track(s) (Z,Y)
OR new_tac_track(s) (Z,Y)
END manipulations

Figure 5: Part of the function model.

lows: If a new sensor track is inserted, it shall be ver-
ified whether it can be joined to an existing tactical
track. This must be done according to two criteria:

e the distance between the two tracks is within a
specified margin;

e the identity of the tracks is not conflicting (as de-
fined by the table in Figure 5).

If a tactical track satisfying these criteria exists, the
new sensor track is automatically joined to it, and the
responsibility relation is updated accordingly. Other-
wise a new tactical track must be created.

Note that this description refers to internal manip-
ulations, like joining a sensor track to a tactical track,
creating a new tactical track, and determining the re-
sponsible track. The various manipulations can be for-
malized in a rather straightforward manner. Part of
the formal function model is illustrated in Figure 5.

In the definition of new_sens_track(s), s is added

to the sensor tracks in state X, resulting in an inter-
mediate state Z. Note that s has not been joined to a
tactical track, so Z doesn’t satisfy constraint2. This
is repaired in the final state Y, by either joining s to
some existing tactical track, or by creating a new tac-
tical track and joining s to it (the specification of the
latter manipulation is not shown here).

The relationship join_sens_track(s) (X,Y) holds
if sensor track s is joined to some existing tactical
track t satisfying the join criteria. In that case, the
pair (s,t) is added to the join relation, and the re-
sponsible track is re-determined (which is not further
specified in this paper). Whether identities are non-
conflicting is defined by a table, a PVS construct that
is tested for completeness automatically, as explained
in Section 3.6.

3.5 Control model

The task of the control model is to define the inter-
action between the (sub)system and its environment.
In this case study, this boils down to defining the valid
sequences of input actions. We first define the atomic
actions as an abstract data type, with elements of
the form new(s), update(s) and wipe(s), for some
sensor track s. In all cases, the function arg returns
the sensor track s. The PVS theory containing the
control model starts with the following declarations:

i,j,k: VAR nat
input: VAR sequence[actions]

The input to TTM is represented by a sequence of
actions. Thus input (i) denotes the i‘" action, and
arg(input (i)) the corresponding sensor track.

A predicate present(input)(s,i):bool (sensor
track s exists after i actions of the input have oc-
curred) can be defined as follows: At some point j<i,
a track with s’s number is initiated and it is not wiped
for any j<k<i. The predicate valid(input) :bool
holds if all newly initiated tracks are not present, but
all updated and wiped tracks are.

The control model is linked to the information
and function model by defining an initial state and
a next-state relation. The initial_state:TDB con-
tains an empty set of sensor- and tactical tracks.
The higher-order function next_state, mapping ac-
tions to the corresponding relations in the function
model, is defined such that e.g. next_state(new(s))
= new_sens_track(s). Using these definitions, we can
define state(input) (i) (X) :bool, which is true of a
state X if it is reachable from the initial state by per-
forming the first i input actions.

3.6 Verification

Type-checking. The first formal check on the speci-
fication concerns type-correctness. PVS detects a type
error in the theory representing the function model
(cf. Figure 5): no_conflict expects arguments of type
Identity, but in the definition of the join_criteria
it gets arguments of type optional[Identity]. This
leads to a question for the domain experts, how the
no_conflict-criterion is to be interpreted in case iden-
tities are absent.

Recall that type-checking may introduce type-check
conditions. We show one of the TCCs automatically
generated by PVS, that needs careful consideration:

no_conflict_TCC: OBLIGATION FORALL id1l, id2:
idl = pending => NOT joker?(id2)

This TCC reveals an omission in the specification. It
is due to the fact that the TABLE defining the predicate
no_conflict (cf. Figure 5) is not exhaustive: the rows
and columns of joker and faker are missing. PVS
wants us to prove that these cases never occur. This
obligation cannot be fulfilled; the specification has to
be amended by extending the table.

Consistency between views. We now show how
consistency between the various views can be stated
and proved. From now on, X,Y only range over TDB,
i.e. data structures satisfying the constraints.

X,Y: VAR TDB |

As indicated in Section 2.3, compatibility of a ma-
nipulation with the information model is stated by the
formula FORALL X,s: EXISTS Y: R(s)(X,Y). This
formula expresses that in any state X satisfying the
constraints, the transition R with input s can be per-
formed leading to some state Y satisfying the con-
straints. However, this doesn’t hold for the manip-
ulation new_sens_track: adding a track with an ex-
isting number violates constraint3, which expresses
that numbers are unique. We are forced to think about
the necessary precondition for this manipulation. We
now get the following, which can be proved with some
effort in the PVS proof checker. The lemmata and the-
orems below are translated to their universal closure
implicitly.

precond(X,s) :bool =
NOT EXISTS si:
s_tracks(X) (s1) & number (s)=number(sl)

info_fun_compatible: LEMMA precond(X,s) =>
EXISTS Y: new_sens_track(s) (X,Y)

Of course, it must also be shown that assuming the
precondition is justified. This is done by proving that

given valid input (in the sense of the control model),
the assumption can be proved. Formally, this is stated
as follows (If after i actions of valid input we get a
new(s) action in state X, then the precondition holds):

precond_justified: LEMMA valid(input) &
new? (input(i)) & state(input) (i) (X)
=> precond(X,arg(input(i)))

After doing the same analysis for the other manip-
ulations, we can prove that for valid input, the system
is always in some specified state. The theorem below
can be proved by induction on i. The base case holds
since the initial configuration satisfies the constraints.
The induction step uses that the manipulations are
compatible with the information model.

views_compatible: THEOREM valid(input) =>
EXISTS X: state(input) (i) (X)

4 Concluding remarks

Evaluation. The case study showed us that our ap-
proach has certain benefits, but also that certain im-
provements are still needed. We mention some benefits
of our approach:

e Already the attempt to formalize brought about
a lot of good questions and conceptual clearness.

e Type checking automatically found forgotten
cases in the definition of tables, functions, etc.

e The control model forced us to give a clear bound-
ary of the system. Note that the function model
doesn’t make clear that join_sens_track is an
externally invisible manipulation.

e The invariants of the information model are a
means to control the system integrity. In the case
study for instance, moving the join criteria to-
wards the information model would imply that
they always hold, not only when the join-
manipulation is performed.

e The verification of compatibility between views
forced us to think about the assumptions made
on the environment. This led to the introduction
of preconditions.

Note that a formal analysis not only uncovers vari-
ous errors early, but in the end we have a guaran-
tee that the specification is non-ambiguous, internally
complete, and logical consistent and that the various
views are compatible.

The case study also revealed that certain improve-
ments are needed:

e Technically, the combination of PVS and noweb
is inconvenient. The PVS system works on the

extracted code, so feedback (e.g. type errors) is
directed to this code, instead of to the source
file. Similarly, since noweb generates the out-
put, it is not possible to use the IATEX pretty
printer of PVS. Also graphical notations, like
OMT-diagrams [10], should be supported by the
literate specification tool.

e More emphasis should be put on the control
model. Also output actions have to modeled, and
sequences of actions are not expressive enough in
general, although they were sufficient in this case
study.

e A clearer view is needed on the exact tests that
should be performed in the analysis. This should
result in a clearer description of internal complete-
ness and consistency.

Future work. Eventually, our research should lead
to a system-wide formal specification of command and
control systems, resulting in formal development. The
following issues still have to be addressed:

o System-wide specification. Other typical subsys-
tems of command and control systems must be
tried, e.g. the execution of corrective actions.
Moreover, special attention must be paid to the
composition of various components. Until now
only views of the same component are supported.

e Non-functional requirements. Important issues,
like real-time requirements, graceful degradation,
robustness and availability of the system are not
yet dealt with.

e Optimization Criteria. Optimization criteria oc-
cur frequently in command and control systems.
It is not easy to formalize that a system should
use/satisfy such criteria. The criteria themselves
can be stated of course, but note that in general,
we cannot require that a system finds the optimal
solution. Similarly, as signaled by [3], mere pref-
erences (as opposed to requirements) are hard to
formalize.

Related work. We refer to [1] for an overview of in-
dustrial applications of formal methods. In the papers
below, similar work is reported as in our paper.

A requirements specification for an aircraft collision
avoidance system is given in [6]. A single state-based
model is constructed in that paper, written in RSML
(Requirements State Machine Language). This model
expresses the black-box behavior of the system. Sev-
eral formal properties of the specification are automat-
ically verified in [4].

In [3], formal methods are used for specification,
design and verification of an air traffic control infor-

mation system. In that paper, ER-diagrams and data-
flow diagrams are translated into state- and operation-
specifications in VDM [5]. Concurrency requirements
are modeled separately. We share many of the author’s
findings concerning specification.

A formal requirements analysis for an avionics con-
trol system can be found in [2]. PVS is used there
to formulate functional and safety requirements. It is
formally verified whether the functional requirements
satisfy the safety requirements.

Acknowledgments. We like to thank Dieter Ham-
mer for his stimulating contribution to our project dis-
cussions and his comments on this paper.

References

[1] E.M. Clarke and J.M. Wing. Formal methods: State
of the art and future directions. ACM Computing Sur-
veys, 28(4):626-643, 1996.

[2] B. Dutertre and V. Stavridou. Formal requirements
analysis of an avionics control system. I[EEE Trans. on

SE, 23(5):267-278, 1997.

[3] A.Hall. Using formal methods to develop an ATC in-
formation system. IEEE Software, 13(2):66-76, 1996.

[4] M.P.E. Heimdahl and N.G. Leveson. Completeness
and consistency in hierarchical state-based require-

ments. [EEE Trans. on SE, 22(6):363-377, 1996.

[6] C.B. Jones. Systematic Software Development using
VDM. Prentice Hall, 2nd edition, 1990.

[6] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and
J.D. Reese. Requirements specification for process-
control systems. IEEE Trans. on SE, 20(9):684—707,
1994.

[7] B. Meyer. The next software breakthrough. IEEE
Computer, 30(7):113-114, 1997.

[8] S. Owre, J.M. Rushby, N. Shankar, and F. Von Henke.
Formal Verification of Fault-Tolerant Architectures:
Prolegomena to the Design of PVS. IEEE Trans. on
SE, 21(2):107-125, 1995.

[9] N. Ramsey. Literate programming simplified. [EEE
Software, 11(5):97-105, 1994.

[10] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and

W. Lorensen. Object-Oriented Modeling and Design.
Prentice Hall, Englewood Cliffs, 1991.

[11] J.M. Rushby. Formal methods and their role in the
certification of critical systems. Technical Report

CSL-95-01, CSL, 1995.

[12] J.M. Spivey. The Z Notation: A Reference Manual.
Prentice Hall, 2nd edition, 1992.

[13] P. Zave and M. Jackson. Where do operations come
from? A multiparadigm specification technique. IEEE
Trans. on SE, 22(7):508-528, 1996.

