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ABSTRACT
The coordination language Reo offers a flexible framework for compositionally constructing
software systems out of components through connectors. These connectors not only connect
components with each other, but also exogenously coordinate the interactions between them.
The connectors themselves are compositionally built out of simpler connectors, where the
simplest connectors are a set of user-defined channels with well-defined behavior. Formal
semantics can be given to Reo using constraint automata and timed data streams. Constraint
automata can be seen as an extension of the finite automata, where the language accepted by
an automaton is specified by using timed data streams. In this thesis we describe the design
and implementation of a tool for constraint automata consisting of an editor and three
simulators. The constraint automata editor allows users to visually construct and modify
constraint automata. The first simulator for constraint automata acts as a language acceptor of
timed data streams. The second one simulates a constraint automaton as a Reo connector
where the input is defined as timed data streams. The third simulator simulates a constraint
automaton as a Reo connector where components are attached to. These components deliver
the input at real-time instead of using predefined timed data streams.
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Abstract

The coordination language Reo offers a flexible framework for compositionally
constructing software systems out of components through connectors. These con-
nectors not only connect components with each other, but also exogenously co-
ordinate the interactions between them. The connectors themselves are composi-
tionally built out of simpler connectors, where the simplest connectors are aset of
user-defined channels with well-defined behavior.
Formal semantics can be given to Reo using constraint automata and timed data
streams. Constraint automata can be seen as an extension of the finite automata,
where the language accepted by an automaton is specified by using timed data
streams.
In this thesis we describe the design and implementation of a tool for constraintau-
tomata consisting of an editor and three simulators. The constraint automata editor
allows users to visually construct and modify constraint automata. The firstsimu-
lator for constraint automata acts as a language acceptor of timed data streams. The
second one simulates a constraint automaton as a Reo connector where the input
is defined as timed data streams. The third simulator simulates a constraint au-
tomaton as a Reo connector where components are attached to. These components
deliver the input at real-time instead of using predefined timed data streams.
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Chapter 1

Introduction

In the first section of this chapter we give a short introduction to the background
of this thesis, the coordination language Reo and constraint automata, followed by
a description of the MSc project assignment and its motivation. Next, the workof
research related to ours is discussed. The following section describes our approach
to the MSc project. The chapter concludes with an overview of the remainderof
this thesis.

1.1 Background

The current methodology in software development is still based on a modularde-
sign, where an application consists of modules. These modules offer functionalities
via well-defined interfaces, which the modules use to refer directly to each other.
These direct references result in tight dependencies between the modules, which
prevent replacing a module without too much additional work or the reuse ofmod-
ules.
This in contrast to methodologies used in other, mature engineering disciplines,
such as electrical engineering, where it is common to build new applications out of
reusable components, which are easily replaceable.
The potential of such an approach is also recognized by the software development
community. This is the reason for the upcoming interest in software componentsin
the last decades. On the contrary to the tightly coupled approach discussed above,
it is expected from software components that they are independent fromeach other
and the application environment where they are deployed. A well-known definition
of software components is given by Szyperski [9]:

“Software components are binary units of independent production, ac-
quisition, and deployment that interact to form a functioning system.”

Reo[1] is a channel-based coordination language, which provides connectors for
connecting components. The simplest connector in Reo is a user-defined channel
with well-defined behavior. More complex connectors are compositionally built
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out of the simpler ones. The behavior of every connector imposes a specific coor-
dination pattern on the components that perform I/O operations through thatcon-
nector in such way that a component is unaware that it is being coordinatedtogether
with other components. Thus, Reo enables components to interact with each other,
while keeping their independency of each other.
It is shown that constraint automata[3] can be used as an operational model for
Reo connectors. The states of a constraint automaton represent the possible con-
figurations of a Reo connector (e.g. the content of a FIFO-channel), while the
transitions going out of a state express the possible data flows and its effect on the
configuration.

1.2 Objective and Motivation

The assignment of this MSc project is the design and implementation of a tool that
serves as an editor and simulator for constraint automata. This tool is useful for the
research on constraint automata, but also for the development of the coordination
language Reo itself, since constraint automata can act as an operational semantic
model for Reo.
A visual editor for constraint automata has certain advantages for the research on
constraint automata. It reduces, for example, the amount of work, because with
an editor it is possible to create constraint automata on the computer instead of
drawing them by hand on paper or the whiteboard. Visualizing a large constraint
automaton with many states is difficult, because one loses the overview easily.
Since in the editor the visual layout of a constraint automaton is not fixed, theuser
can rearrange the layout as he prefers. Therefore, dealing with large constraint
automata becomes simpler, especially in combination with an automatic layout
generator. Another useful feature of having an editor is the ability to saveand load
constraint automata to and from some persistent data storage, allowing the user to
continue previous work.
The behavior of a constraint automaton can be simulated by hand. However, this
approach can be quite time consuming, especially for large constraint automata.
Using a simulator saves a lot of time. Simulation by hand is also more prone to
error than doing this with a simulator. Hence, a simulator facilitates the research
on the behavior of complex constraint automata.
A simulator can serve as a tool for teaching and demonstration purposes. Figure
1.1 illustrates the position of the work of this MSc project within the overall tool
framework of Reo and constraint automata (labeled “CA simulator”).

1.3 Related work

Since the objective is to create a tool for constraint automata, which can be used
as an operational model for Reo connectors, the work of this thesis relates to
automata-based modeling theory and automata-based modeling tools.
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Figure 1.1: The overall tool frame work of Reo and constraint automata.
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Well-known automata-based modeling theories are I/O-automata, timed port au-
tomata and interface automata. The major differences and similarities are summa-
rized as follows[3]:

• Transitions in I/O-automata are labeled with action names, while transitions
in timed port automata and constraint automata are data-dependent. On the
contrary to timed port automata where transitions are labelled with specific
data values, constraint automata transitions are labelled with data constraints
(boolean expressions for the data values).

• I/O-automata and timed port automata follow a strictly time-synchronous
approach, while constraint automata do not. This difference becomes im-
portant when constraint automata are composed together. The composition
of the two constraint automata allows transitions when data occur at the in-
put/output ports that the resulting automaton inherits from only one of the
automata (because at that point in time, there is no suitable data on any of
its corresponding ports). Such transitions do not exist in the “one-to-many
composition” of timed port automata.

• Interface automata use the notion of input enabledness as I/O-automata and
timed port automata. Constraint automata do not have this notion. In fact,
they do not even distinguish between input and output ports.

Several tools exist for the different modeling theories. UPPAAL1, for example, is
an integrated tool environment for modeling, validation and verification of real-
time systems modeled as networks of timed automata. UPPAAL is quite extensive,
but an important drawback is the fact that the project is closed-source,which pre-
vents us from extending or modifying it to our needs.
There is also a project where simulation and verification tools are being imple-
mented for I/O automata2. However, there is no tool to construct and modify an
I/O-automata visually. Since it is our intension to build a visual editor for constraint
automata, this project is not useful for our purposes.
Some editor and simulator tools exist for finite automata. However, it is expected
that they are not useful to us, because it would require too much time to adapt them
for constraint automata.

1.4 Approach

First, we perform a literature study to acquire the background knowledgeon Reo
and constraint automata, and become familiar with the concepts and terminology.
Next, we analyze the assignment and its requirements, decomposing them and in-
vestigating potential problems. Finally, we describe the design and implementation
of the tool.

1http://http://www.uppaal.com/
2http://theory.csail.mit.edu/tds/ioa/
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1.5 Thesis Outline

The remainder of the thesis consists of 6 chapters, which are structured inthe
following way. Chapter 2 describes Reo, while chapter 3 introduces constraint au-
tomata. Chapter 4 discusses how constraint automata can be used as an operational
semantic model for Reo. Chapter 5 presents our analysis of the assignmentand its
requirements. Chapter 6 describes the design and implementation of the tool. In
chapter 7 we present our conclusions, summarizing our work, discussing in which
directions future work could be done and reflecting on the personal experiences.
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Chapter 2

Reo

Reo is a channel-based exogenous coordination language, which connect and co-
ordinate different activities through connectors. Complex connectors are compo-
sitionally built out of simpler ones. The most primitive connectors are a set of
channels with well-defined behavior provided by the user.
This chapter discusses Reo in detail. The first section introduces some basic con-
cepts of Reo, followed by an explanation about channels in Reo and the way they
connect components with each other. The next section demonstrates how tomake
more complex connectors composed of simple connectors by the join operation.
The following section describes the hide operation, an abstraction mechanism in
Reo. The last section shows some examples of Reo, demonstrating its expressive
power. The majority of this chapter is based on [1] and [4]

2.1 Basic Concepts

The emphasis in Reo is not on the computational entities it coordinates, but on
the connectors. A computational entity is referred to as a component instance.
A component instance consists of at least one active entity. How the internal of a
component instance is organized is not relevant for Reo. It can consist of processes,
threads or even agents. What is of importance is the inter-component-instance
communication that takes place.
A component instance has some ‘contact points’, which it can use to exchange
information with its environment. These contact points are referred to as the ports
of the component instance. These ports allow a component instance to connect to
Reo connectors. Reo connectors are explained in further detail in the following
sections. Furthermore, we assume that ports are unidirectional. A component
instance can use an input port to receive and an output port to send information.
In the Object Oriented world a difference is made between objects and classes.
A class is a blueprint of an object. It describes the structure and the behavior of
an object. An object itself is an instance of a class. The same analogy can be
applied to component instances. The blueprint of a component instance is called

7



Figure 2.1: Component instance with 4 ports.

component, an abstract type that describes the properties of its instances.

2.2 Channels

In Reo component instances are connected to each other through Reo connectors.
Such a connector is a composition of simpler connectors, where the most primitive
connector is a channel. A channel has two channel ends. There are two types of
channel ends, a source channel end and a sink channel end. Through the source
channel end a channel accepts data, while on the sink channel end dataleaves the
channel. Although the channel ends are directed, the channel itself does not have
to be directed. Thus, a channel can have two source channel ends, or two sink
channel ends. A channel can have a pattern, which acts as a filter that limitsthe set
of data items that is allowed to go through the channel.

Reo itself does not provide pre-defined channels. On the contrary, a user may
define own channels, as long as the behavior is well-defined. Although thisis
true, there are channel types from which it is expected that they will be part of a
‘standard library’, because they will be used regularly. We discuss several of these
channels in the next subsections.

2.2.1 Sync

A channel of type Sync has a source end and a sink end. Data items are only
transferred if simultaneously a write and a take operation take place at the source
end, respectively the sink end. Figure 2.2 shows a Sync channel.

Figure 2.2: Sync channel.
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2.2.2 SyncDrain

A SyncDrain is a channel where both channel ends are source ends.Write opera-
tions can take place at both end. However, the write operations can only succeed
simultaneously. All data items that are written are lost. The SyncDrain is depicted
in figure 2.3.

Figure 2.3: SyncDrain channel.

2.2.3 SyncSpout

The SyncSpout is the opposite of the SyncDrain. Instead of source ends, both
channel ends are sink ends. They both have the same synchronous character. Data
items are sent if both sides simultaneously want to take. The data items that are
transferred are random data items. It is possible to apply a pattern such that the
data items are selected from a restricted set, e.g. the numbers from the interval
[1, 10]. A SyncSpout is shown in figure 2.4.

Figure 2.4: SyncSpout channel.

2.2.4 FIFO and FIFOn

A FIFO channel has a source and a sink end, but also an unbounded buffer. The
source end always accepts data items, which are stored in the buffer. Take opera-
tions at the sink end succeed only if data items are available in the buffer. Thedata
items leaving the buffer are in FIFO order (in the same order as they enteredthe
buffer). On the contrary to the previous channel types, a FIFO channel is asynchro-
nous. The FIFO channel type is drawn as the Sync channel, but with a rectangle in
the middle representing the buffer (figure 2.5).

Figure 2.5: FIFO channel.

The FIFOn channel has, in contrast to FIFO, a bounded buffer. The name indicates
the buffer size, e.g. FIFO1 has a buffer of size 1. A FIFO or FIFOn channel can
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also be initialized with some data items already available in the buffer.

2.2.5 LossySync

A LossySync Channel has a source end and a sink end. The source end always
accepts a data item, but it is only transferred to the sink end if a take operationis
present. As long as write and take operations take place simultaneously, this type
of channel acts like a Sync channel. Otherwise the data item is lost. The LossySync
is depicted in figure 2.6.

Figure 2.6: LossySync channel.

2.3 Join

In the previous section a few primitive connectors, channels, with interesting be-
havior have been introduced. They are used to compositionally build more complex
connectors. These complex connectors are made by applying the Reo join opera-
tion. This is the joining of multiple channel ends at one node. Three types of nodes
can be distinguished: source nodes, sink nodes and mixed nodes.

2.3.1 Source node: replicate

A source node is a node where only source channel ends coincide. Figure 2.7
shows a source node where three source channel ends coincide. A write operation
at a source node succeeds only if all the source channel ends acceptthe data item.
The source node acts like a replicator.

Figure 2.7: Source node.
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Using figure 2.7 as an example, this means that a write operation at pointasucceeds
only if all the source channel ends of the channels indicated byb, c andd accept
the data item. If this situation occurs, then the data item is transferred to all source
channel ends.

2.3.2 Sink node: merge

If the channel ends that coincide at a node are all sink channel ends,then this node
is called a sink node. An example of a sink node is shown in figure 2.8. A data
item is only transferred if simultaneously a take and at least one write operation
take place. If data items are offered by multiple sink ends, then one of them is
chosen non-deterministically. The sink node acts like a merger.

Figure 2.8: Sink node.

2.3.3 Mixed node: replicate + merge

A mixed node is, as the name already indicates, a mixture of a source node and
a sink node. Thus, source channel ends coincide at a mixed node as well as sink
channel ends (figure 2.9). The behavior of a mixed node is the combinationof
a source node and sink node. Data items are only transferred if simultaneously at
least one sink node offers a data item and all the source nodes accept thisdata item.
If so, then this data item is transferred from the sink node to all the source nodes.
If multiple source nodes want to write, then one of them is non-deterministically
chosen. Thus, a mixed node acts like a replicator as well as a merger.
There is one important difference between mixed nodes and source and sink nodes.
Reo allows component instances to directly write to source nodes and directlytake
from sink nodes, but with mixed nodes this is not permitted.

2.4 Hide

Complex connectors can be built by composing the primitive channels using the
join operation. These connectors can be used to connect (the ports of)component
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Figure 2.9: Mixed node

instances with each other. After building such a connector, usually only theex-
ternal behavior is of interest, not how the internal of this connector is organized.
Therefore, Reo introduces an abstraction mechanism, the hide operation.

Figure 2.10: Hiding.

In figure 2.10 a connector is shown at the left side. By applying the hide operation,
the topology of the nodes (and edges) is hidden and cannot be modified anymore.
This results in a connector with a number of input and output ports, shown at the
right.

2.5 Examples

In this section a few examples demonstrate the expressive power of connector com-
position in Reo.

2.5.1 Asynchronous Drain

An AsyncDrain channel has two source channel ends and the data items written to
the channel are lost, similar to the SyncDrain, but on the contrary to the SyncDrain
the writes have to take place asynchronously. Such a channel can be defined by the
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user, but it is also possible to construct the AsyncDrain out of the already existing
channels (figure 2.11).

Figure 2.11: AsyncDrain channel.

2.5.2 Regulated Reads

Data items flowing from one component to another through a Sync channel can
easily be regulated using the construction illustrated in figure 2.12. Data items go
from a to b only if a take operation is present atc. For instance, a component
connected toc is able to regulate the flow froma to b. On the other hand, one can
say thatb also regulates the flow froma to c.

Figure 2.12: Regulated Reads through takes.

It is possible to use write operations instead of take operations to regulate the
flow. This can easily be accomplished by replacing one of the Sync channels by a
SyncDrain channel (figure 2.13).

2.5.3 Barrier Synchronization

A barrier synchronization, where all channels are only allowed to transfer data
items at the same time, can be realized in Reo using the construction shown in
figure 2.14. To accomplish the opposite, thus preventing synchronization between
the channels, the SyncDrain needs to be replaced by an AsyncDrain.
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Figure 2.13: Regulated Reads through writes.

Figure 2.14: Barrier Synchronization.

2.5.4 Exclusive and Inclusive Router

An exlusive router is depicted in figure 2.15. The behavior of an exlusive router is
such that a data item written toa is only transferred to eitherb or c, but never to
both.
The behavior of an inclusive router is such that a data item written toa flows tob,
or c or to both (figure 2.16).
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Figure 2.15: Exclusive Router.

Figure 2.16: Inclusive Router.
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Chapter 3

Constraint Automata

Automata are mathematical models, which are used to model operations of many
systems. In this chapter we look at automata as very simple computer programs.
These computer programs receive some input and can generate two possible out-
puts:

• ‘accept’, the input is accepted

• ‘reject’ , the input is rejected

This chapter discusses a special type of automata, the constraint automata,but first
a short introduction to a very basic automaton is given, the finite automaton. The
first section is based on [8], while the remainder of the chapter about the constraint
automata is mainly based on [3].

3.1 Finite Automata

The finite automata is one of the most basic and well-known automata. Figure 3.1
depicts a finite automaton.

Figure 3.1: Finite automaton.

The automaton is represented using a state diagram. The stateq1, which is indi-
cated by an arrow pointing at it from nowhere, is the initial state. The stateq2 with
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a double circle is the accept state. The arrows between the states are transitions.
The label on an arrow indicates on which input this transition takes place.
The finite automaton begins in the initial state and moves from state to state depen-
dent on the input it reads. The final state, the state in which the automaton is when
reading the last input, determines the output. If the final state is an accept state,
then the automaton produces the output ‘accept’, otherwise ‘reject’ is output. For
example, when the string ‘0100’ is fed to the automaton depicted in figure 3.1, it
goes through the following sequence of states:q1 q1 q2 q3 q2. Ending in stateq2,
which is an accept state, the automaton accepts the input.
A finite automaton is formally defined as a 5-tuple(Q,

∑

, δ, q0, F ), where

• Q is a finite non-empty set of states,

•
∑

is the alphabet, a finite set of symbols which act as the input for the
automaton.,

• δ : Q ×
∑

−→ Q is the transition function,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states.

SupposeA is the set that contains all strings automatonM accepts, then we callA
theaccepted languageof automatonM , also written asL (M) = A.

3.2 TDS-language

This section defines the notion of timed data streams, which act as the input for
constraint automata. They are also used to describe the language of constraint
automata, the TDS-language.

3.2.1 Stream

A stream is an infinite sequence over a set. LetV be the set of elements from which
the stream consists. Then the set of all streams is defined by:

V ω = {α |α : {0, 1, 2, ...} → V }

A stream and its elements are denoted as follows:

α = (α(0) , α(1) , α(2) , ...) where α (k) ∈ V for k ≥ 0

The first elementα(0) of the streamα is called the initial value ofα. The stream
derivativeα′ of α is defined as:

α′ = (α(1) , α(2) , α(3) , ...)
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Higher order derivativesα(k) are defined as follows:

α (0) = α

α(k+1) =
(

α(k)
)′

for k ≥ 0

The following equation can be derived with the previous definitions:

α(k) (n) = α (n + k) for k ≥ 0

3.2.2 Data Stream

Using the definition of streams, it is possible to define data streams and time
streams. A data stream is a sequence over a fixed, non-empty, finite setData,
where the elements of this setData are uninterpreted data elements. The setDS
of all data streams overData is defined as:

DS = Dataω

3.2.3 Time Stream

For time streams sequences over the setR+ are used,Rω
+. The non-negative real

numbers represent the time points. For convenience, the relations< and≤ are
defined fora, b ∈ R

ω
+ as follows:

a < b ≡ ∀n ≥ 0, a (n) < b (n)

a ≤ b ≡ ∀n ≥ 0, a (n) ≤ b (n)

All elements of a time stream are strictly smaller than their successor. Thus, the
time stream consists of increasing time moments. It is assumed that the time ele-
ments go to infinity. This assumption prevents the so-called Zeno paradox, where
infinite number of actions may take place within a finite time interval. The setTS
of all time streams is defined as:

TS =

{

a ∈ R
ω
+ | a < a′ and lim

k→∞
a (k) = ∞

}

3.2.4 Timed Data Stream

A timed data stream is defined as:

TDS = DS × TS

Thus, a timed data stream〈α, a〉 is a pair of streams, where data streamα ∈ DS
and time streama ∈ TS. The intuitive meaning of a TDS is that data element
α (n) occurs at time pointa (n).
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3.3 Defining Constraint Automata

3.3.1 Ports

Timed data streams are used as the input for constraint automata. The constraint au-
tomaton can have more than one input, on the contrary to finite automaton. There-
fore, a constraint automaton has one or more ports, which are identified bynames
from a name-setNames, e.g. Names = {A1, . . . , An}. Each port denoted in
Names is associated with a timed data stream.

3.3.2 Transitions

Constraint automata have transitions just like the finite automata, but in contrastto
finite automata, each transition of a constraint automaton is labeled with a pairN ,
g. N is a non-empty subset ofNames indicating which ports are active during the
transition, meaning at which ports data is being observed.g is a data constraint,
which imposes restrictions on the transition, on the data observed in the timed data
streams of the active ports.

3.3.3 Name-data-assignments

A name-data-assignment for∅ 6= N ⊆ Names is a functionδ : N → Data
assigning data items to names inN . Notations likeδ = [data (A) = dA : A ∈ N ]
are used to describe the assignment of a valuedA ∈ Data to any TDS-name
A ∈ N .

3.3.4 Data Constraints

Data constraints have the following grammar:

g ::= true | false | data(A) = d | g1 ∨ g2 | g1 ∧ g2

whereA ∈ Names andd ∈ Data. The notationDC (N, Data) (or DC) is
used to describe the set of data constraints. Often derived DC’s are used such as
data (A) 6= d anddata (A) = data (B), which respectively stands for

∨

d′∈Data\{d}

(

data (A) = d′
)

and
∨

d∈Data

(data (A) = d) ∧ (data (B) = d)

The satisfaction relation� is used for interpreting DC’s over name-data-assignments,
for example in the following way:

[data (A) = d1, data (B) = d2, data (C) = d1] � data (A) = data (C)

[data (A) = d1, data (B) = d2, data (C) = d1] 2 data (A) 6= data (B)

if d1 6= d2
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Satisfiability and validity, logical equivalence≡ and logical implication≤ of DCs
are defined as:

g1 ≡ g2 iff for all name-data-assignmentsδ: δ � g1 ⇐⇒ δ � g2

g1 ≤ g2 iff for all name-data-assignmentsδ: δ � g1 =⇒ δ � g2

3.3.5 Definition of Constraint Automata

A constraint automaton is formally defined as a tupleA = (Q,Names,−→, Q0)
where

• Q is a set of states,

• Names is a finite set of names, which is used to identify the ports,

• −→ is a subset ofQ × 2Names × DC × Q, called the transition relation,

• Q0 ⊆ Q is the set of initial states.

For convenience,(q, N, g, p) ∈−→ is written asq
N,g
−→ p. It is required that

(1) N 6= ∅ and (2) g ∈ DC (N, Data) .

Figure 3.2: Constraint automaton.

We explain the operational behavior of constraint automata using the constraint
automaton depicted in figure 3.2 as an example. This constraint automaton has
three portsA, B andC. It starts in its initial stateq1 and waits until data is observed
at some of its ports. Suppose data itemd1 occurs at portA and at portB, while the
other ports are not active, in this case portC. This event triggers to check the data

constraints of the transitionq1
N,g
−→ q2. Because[data (A) = d1, data (B) = d1] �

data (A) = data (B) holds, it moves to the stateq2.
If instead different data items would occur at portA and portB, for instance data
item d1 respectivelyd2, then no transitions were possible, because no data con-
straints could be fulfilled. This would cause the constraint automaton to reject.
Knowing this behavior the requirements (1) and (2) can be explained as follows.
Condition (1) says a transition can only take place if data occurs at at leastone of
its ports. Condition (2) states that the automaton can only put requirements on the
data that is being observed (not on data that may occur in the future).
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3.3.6 Deterministic vs Non-deterministic

The definition above allows for non-deterministic constraint automata. Suppose a
constraint automaton resides in stateq. Then for a nonempty subsetN of Names
and a given data-name-assignmentsδ, there may be several transitions

q
N,g1

−→ q1, q
N,g2

−→ q2, . . . with δ � gi, i = 1, 2, . . .

A constraint automaton is called deterministic if for every stateq, everyN and for
every name-data-assignmentδ there is at most one transition

q
N,g
−→ q′ with δ � g

A non-deterministic constraint automaton can always be transformed in a deter-
ministic constraint automaton that accepts the same language.

3.4 TDS-language and Constraint Automata

This section defines when a language is accepted by a constraint automaton. Con-
sider a constraint automatonA = (Q,N ,−→, Q0) with two ports A and B,
N = {A, B}. Further, the timed data streams〈α, a〉 and〈β, b〉 are associated with
respectively portA and portB. Then the language accepted by this automatonA

is defined as follows:

LTDS (A) =
⋃

q0∈Q0

LTDS (A, q0)

LTDS (A, q) denotes the language accepted by the stateq of the constraint automa-
ton A:

LTDS (A, q) = {(〈α, a〉 , 〈β, b〉) ∈ TDS × TDS | (〈α, a〉 , 〈β, b〉)

is a timed run for(A, q)}

(〈α, a〉 , 〈β, b〉) is called a timed run for(A, q) iff there exists a transitionq
N,g
−→ −q

such that

a0 < b0 ∧ N = {A} ∧ [data(A) = α0] � g ∧
(〈

α′, a′
〉

, 〈β, b〉
)

∈ LTDS

(

A,−q
)

,

or b0 < a0 ∧ N = {B} ∧ [data(B) = β0] � g ∧
(

〈α, a〉 ,
〈

β′, b′
〉)

∈ LTDS

(

A,−q
)

,

or a0 = b0 ∧ N = {A, B} ∧ [data(A) = α0, data(B) = β0] � g ∧
(〈

α′, a′
〉

,
〈

β′, b′
〉)

∈ LTDS

(

A,−q
)

The intuitive meaning of the definitions above is as follows. The data items that
appear as first are selected out of the data streams of the TDS. This is done using
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the order specified by the time stream of the TDS. Subsequently, these data items
are assigned to the associated ports, which thus become active. Next, the constraint
automaton tries to make a transition with the data items observed at the ports. If an
infinite sequence of such transitions exists (starting from one of the initial states),
then this timed data stream is accepted by the constraint automaton.

Figure 3.3: Constraint automaton (of a Sync channel).

Using the constraint automaton depicted in figure 3.3 as an example and call itA,
then the accepted TDS-language can be defined as
LTDS (A) = {(〈α, a〉 〈β, b〉) ∈ TDS | α = β ∧ a = b}

23



24



Chapter 4

Modeling Reo by Constraint
Automata

This chapter discusses how constraint automata can be used as an operational se-
mantic model for Reo. First, the relation between Reo channels and constraint
automata is explained. Followed by an explanation how the join and hide oper-
ation on Reo channels can be modeled in constraint automata. The last section
discusses the parameterized constraint automata, which simplify the notation of
the ordinary constraint automata.

4.1 Channels

Channels in Reo are related to constraint automata by the TDS-language. The next
subsection explains this relation in detail using the Sync channel as an example.
The following subsection shows the other basic channels, but less extensively.

4.1.1 Sync

The behavior of the Sync channel can be captured by a TDS-language. Data
items that occur at each channel end and their corresponding time points can be
‘recorded’ by a timed data stream. Suppose the timed data streams〈α, a〉 and
〈β, b〉 are used for respectively channel enda andb. The behavior of a Sync chan-
nel is such that data items are only transferred when simultaneously a write and
read operation take place. Thus, when a write operation of data elementd1 at the
source channel end at time pointt1 succeeds, the same data element will appear at
the other side instantaneously at time pointt1. Figure 4.1 illustrates how the timed
data streams look like.
The behavior of the channel holds for every data item that goes throughthe Sync
channel. Thusα (k) = β (k) anda (k) = b (k) for all k ≥ 0. In general the
behavior of the Sync channel can be described by the following TDS-language:

{(〈α, a〉 , 〈β, b〉) ∈ TDS × TDS |α = β ∧ a = b}
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Figure 4.1: Sync channel with Timed Data Stream.

This TDS-language is the accepted TDS-language of the constraint automaton de-
picted in figure 3.3.
Hence, a channel induces a TDS-language, which is again the acceptedTDS-
language of a certain constraint automaton. On the other hand, you can also say
that a constraint automaton describes the behavior of a channel. Note, however,
that constraint automata only speak about ports and do not distinguish between
input and output ports.

4.1.2 SyncDrain and SyncSpout

The TDS-language of the SyncDrain is the same as for the SyncSpout, because
both only care about the timing at which the data is observed and not the data
itself. The TDS-language is

{(〈α, a〉 , 〈β, b〉) ∈ TDS × TDS | a = b}

The constraint automata of both the channels are also the same (figure 4.2).

Figure 4.2: Constraint automaton for SyncDrain and SyncSpout.

4.1.3 FIFO1

The TDS-language of the FIFO1 channel is

{

(〈α, a〉 , 〈β, b〉) ∈ TDS × TDS | α = β ∧ a < b < a′
}
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To keep the constraint automaton of the FIFO1 channel simple, theData-set con-
sists only of one element (figure 4.3).

Figure 4.3: Constraint automaton for FIFO1.

4.1.4 LossySync

The TDS-language of the LossySync is as follows:

{(〈α, a〉 , 〈β, b〉) ∈ TDS × TDS | = β = L (α, a, b)}

L (α, a, b) =

{

α (0) • L (α′, a′, b′) if b (0) ≤ a (0) ≤ b (1)
L (α′, a′, b) otherwise

The corresponding constraint automaton is shown in figure 4.4.

Figure 4.4: Constraint automaton for LossySync.

4.2 Join

The join operation of Reo can be modeled at the constraint automata level. The
join of a source node with another node (of arbitrary type) is realized by aproduct
construction. The join of sink nodes is modeled using a merger.
However, at the constraint automata level not all types of nodes can be joined
together. This does not raise any problems, because the focus is at staticReo
connectors. Therefore, it can be assumed that complex connectors are built such
that the join operation is applied in a specific order. Thus, first the sink nodes are
joined and then the resulting node is joined with the source nodes.
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4.2.1 Product-construction

Suppose there are two Reo connectors that are modeled by the constraintautomata
A1 and A2 with respectively node-setsN1 and N2. A join operation need to be
performed at the node-pairs

〈

Bi, Bi

〉

∈ N1 × N2 for i = 1, . . . , k, where at least
one node of the node-pair is a source node. For simplification, it is assumedthat
the nodes are renamed such thatBi = Bi for i = 1, . . . , k and that the automata
do not have other common nodes. Thus, the join need to be performed at thenodes
B ∈ N1 ∩N2. The join can be performed at the constraint automata level using the
product-construction.
The product of the constraint automataA1 = (Q1, N ames1,−→1, Q0,1) andA2 =
(Q2, N ames2,−→2, Q0,2) is defined as follows:

A1 ⋊⋉ A2 = (Q1 × Q2, N ames1 ∪ N ames2,−→1, Q0,1 × Q0,2)

where−→ is defined as:

q1
N1,g1

−→1 p1, q2
N2,g2

−→2 p2, N1 ∩ N ames2 = N2 ∩ N ames1

〈q1, q2〉
N1∪N2,g1∧g2

−→ 〈p1, p2〉

q1
N,g
−→1 p1, N ∩ N ames2 = ∅

〈q1, q2〉
N,g
−→ 〈p1, q2〉

q2
N,g
−→1 p2, N ∩ N ames1 = ∅

〈q1, q2〉
N,g
−→ 〈q1, p2〉

Figure 4.5 illustrates how a FIFO2 is constructed out of two FIFO1 channelsby
the product-construction.
The join operation is also defined at the constraint automata language level. Sup-
pose there are two TDS-languagesL1 = l1 (A, B) with node-setN = {A, B} and
L2 = L2 (B, C) with node-setN = {B, C}), then the join is defined as:

L1 ⋊⋉ L2 = {(〈α, a〉 , 〈β, b〉 , 〈γ, c〉) : (〈α, a〉 , 〈β, b〉) ∈ L1 ∧ (〈β, b〉 , 〈γ, c〉) ∈ L2}

The correctness of the product can be proven, which states that the accepted TDS-
language of the product-automaton is equivalent to the join of accepted TDS-
languages of the constraint automata separately.

(a) LTDS (A1 ⋊⋉ A2) = LTDS (A1) ⋊⋉ LTDS (A2)

(b) If N ames1 = N ames2

thenLTDS (A1 ⋊⋉ A2) = LTDS (A1) ∩ LTDS (A2)

The proof is not given here, but can be found in [3].
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Figure 4.5: Join of two FIFO1 channels.

Figure 4.6: Merger
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4.2.2 Merger

Sink nodes cannot be joined directly as is done in the previous section. Instead an
intermediary ‘component’ is needed, a merger. The merger is shown in figure 4.6
along with the constraint automaton describing its behavior.
The join at the Reo level can be performed at the automata level by applying the
product-construction to the merger constraint automaton with two other constraint
automata that also contain the nodesA andB. If needed the node C can again
be joined with another sink node using the merger construction or it can be joined
with a source node to create a mixed node.

4.3 Hide

The hide operation in Reo makes the internal organization of a connector not ob-
servable anymore from the outside. For TDS-languages this is realized byex-
istential quantification. Thus, hiding of a name (node)C in a TDS-language
L (C, A1, . . . , An) means that existential quantification over thisC-component
needs to be applied. For instance, hiding the nameC in the language
L = L (C, A, B) is realized as:

∃C [L] = {(〈α, a〉 , 〈β, b〉) : ∃TDS 〈γ, c〉 with (〈γ, c〉 , 〈α, a〉 , 〈β, b〉) ∈ L}

At the constraint automata level hiding removes all information about a certain
port. Suppose the portC needs to be hidden, then the hiding operation for con-
straint automata is as follows. LetA = (Q, N ames,−→, Q0) be a constraint au-
tomaton andC ∈ N ames. Then the constraint automaton after hiding is defined
as

∃C [A] = (Q, N ames \ {C} ,−→C , Q0,C)

Let ∗ be the transition relation such thatq  ∗ p if and only if there exists a finite
path

q
{C},g1

−→1 q1
{C},g2

−→1 q2
{C},g3

−→1 . . .
{C},gn

−→1 qn

whereqn = p andg1, . . . , gn are satisfiable. Then the setQ0,C of initial states is
as follows

Q0,C = Q0 ∪ {p ∈ Q : q0  
∗ p for someq0 ∈ Q0}

The transition relation−→C is given by

q  ∗ p, p
N,g
−→ r, N = N \ {C} 6= ∅, g = ∃C [g]

q
N,g
−→C r

where∃C [g] =
∨

d∈Data g [data (C) /d]. g [data (C) /d] denotes the data con-
straint where all occurrences ofdata(C) in g are syntactically replaced byd. This
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comes down to replacing every atomdata(C) = d′ with true if d = d′ and with
false if d 6= d′.
The correctness of hiding can be proven, which says how the relation between
constraint automata and TDS-languages is affected by hiding:

(a) ∃C [LTDS (A)] ⊆ LTDS (∃C [(A)])

(b) If A is finite and does not contain a cycle

q0
{N1},g1

−→ q1
{N2},g2

−→ . . .
{Nk},gk

−→ qk whereg1, . . . , gk are satisfiable

andC /∈ N1 ∪ . . . ∪ Nk then∃C [LTDS (A)] = LTDS (∃C [A])

The proof can be found in [3].

Hiding can be intuitively explained as follows. First, the transition relationq  ∗ p
is defined. This transition relation denotes all states that are reachable from stateq
using transitions depending only on the data observed at portC.
If hiding of C takes place, then every statep indicated byq  ∗ p can automatically
be reached from stateq, because the guards of these transitions only depend on data
observed at portC. However, these guards are not taking into account anymore,
because of the hiding ofC.
If stateq is an initial state, then every statep indicated byq  ∗ p becomes an
initial state, because they can automatically be reached. Therefore, the set of initial
states of the resulting constraint automata after hiding is extended with these states.
A transition from stateq to r in the resulting constraint automata is possible when
a certain statep can be automatically entered fromq (because of the hiding) and a
transition fromp to r exists where in this transition all occurrences related to port
C are removed or replaced.
Figure 4.5 shows the constraint automaton for a FIFO2 channel created by join-
ing two constraint automata of FIFO1 channels. Figure 4.7 shows the constraint
automaton of the FIFO2 channel after hiding portC.

4.4 Parameterized Constraint Automata

In the previous examples of the constraint automata, the data items of the setData
were not taken into account. This was done to keep the constraint automata simple.
If these data items were modeled, then this could have led to a constraint automaton
with a huge number of states. To show how the size of theData set influences the
number of states, we use the constraint automaton of the FIFO1 channel asan
example.
Figure 4.8 depicts the constraint automaton of the FIFO1 channel where just one
type of data item is allowed to go through the channel. The setData consists of
one data itemd1. Stateq1 represents the channel when the buffer is empty. The
situation where the buffer contains a data itemd1 is represented by stateq2.
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Figure 4.9 shows the constraint automaton of the same FIFO1 channel, but inthis
case two data items are allowed to go through the channel. The setData consists
of the data itemsd1 andd2. The statesq1 andq2 represents the same situation as
before. However, an extra state is added. This stateq3 represents the buffer when
it contains data itemd2. Thus, for each data item a state is needed to represent
the content of the buffer. This could result in a huge number of states, especially
when this constraint automaton is to be joined with others. To prevent such a state
explosion, the parameterized constraint automaton is introduced.
The parameterized constraint automaton uses state variables. In the situationof
the FIFO1 channel, one state with a state variablex could be used to model the
content of the buffer, instead of using multiple states where each state represents
the content of the buffer with another data item (figure 4.10).
A parameterized constraint automaton is formally defined as a tuple

P = (Loc, V ar, v, N ames, , Loc0, init)

where

• Loc is a set of locations,

• Loc ⊆ Loc is a set of initial locations,

• V ar is a set of variables,

• v : Loc → 2V ar assigns to any location a (possibly empty) set of variables,

• init is a function that assigns to any initial locationl ∈ Loc0 a condition for
the variables.

v (l) denotes the variable set of a locationl. For the constraint automaton illus-
trated in figure 4.10,v (q2) = {x} states thatx is a state variable of locationq2. q1

having no state variables is denoted byv (q1) = {}.

The transition from locationl to l is denoted asl
N,h
 X l where

• l andl are locations,

• N is a name-set, a non-empty subset ofN ames,

• h a (parameterized) data constraint forN with the form “dA = expr” where
expr is an operation onData, dB for B ∈ N and the variablesx ∈ v (l).
For instance,dA = d1 + d

B
+ x,

• X is a function that assigns a nameA ∈ N to each variablex ∈ v
(

l
)

\ v (l)

and possibly to the variables inv
(

l
)

∩ v (l). Intuitively X (x) = A stands
for the assignmentx := dA.

32



Figure 4.7: Hide of port C after the join of two FIFO1 channels.

33



Figure 4.8: Constraint automaton of FIFO1 channel with one data item.

Figure 4.9: Constraint automaton of FIFO1 channel with two data items.

Figure 4.10: Parameterized constraint automaton of FIFO1 channel.
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Chapter 5

Requirements and Analysis

This chapter collects and structures the requirements that the constraint automata
editor and the simulator have to meet. In order to do this, we first analyse the
assignment. Hereafter we look into existing tools and try to see which operating
systems need to be supported and which programming language is best suited.
Next, we decompose the functionality of the tool into several smaller parts. We
analyze the parts and their dependencies. We investigate the possible solutions of
the potential problems we have identified thus far. All this is done as a preparation
for the next phase, the design and implementation.

5.1 MSc Assignment

The assignment of this MSc thesis is to design and implement a tool, which consists
of two parts:

• an editor for constraint automata,

• a simulator for constraint automata.

With the constraint automata editor the user should be able to construct a con-
straint automaton visually. The user should then be able to simulate the constraint
automaton with the simulator.
We distinguish three different kinds of simulators. The first simulator acts as a
language acceptor of timed data streams. This means that at every time point ofthe
timed data streams a transition should be made. Otherwise the simulator rejects the
input. We call this simulator “TDS-Language Acceptor Simulator”.
The second simulator uses constraint automata to simulate the behavior of Reo
connectors. The input of a connector is specified by timed data streams. This
simulator will be called “Reo Connector Simulator with TDS”.
The third simulator behaves like the second simulator, but instead of using timed
data streams as input the user should be able to attach ‘components’ to the sim-
ulator. These components then generate the input for the simulator at real-time
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by calling standard Reo operations (e.g. take, write) on the I/O ports of the con-
straint automata simulator. We call this simulator “Reo Connector Simulator with
Components”.

5.2 Existing Reo and Constraint Automata Tools

Currently two tools exist for Reo and constraint automata, SAFA1 and Swiss
Watch1. SAFA is a tool for converting Reo circuits to constraint automata. The
programming language used to implement this tool is Java. Furthermore, XML
is used to provide persistent data structures for both Reo circuits and constraint
automata.
The second tool, Swiss Watch, is an editor for constraint automata, but it is still
in an early development stage. The tool has difficulties, for example visualizing
transitions from a state to itself in a convenient way. The constraint automata editor
to be implemented should have a better GUI than Swiss Watch.
Swiss Watch does not validate the input of state names and data constraints, which
can lead to a corrupt constraint automaton. This should be handled in a better way
by the constraint automata editor to be developed.
Besides the editor functionality Swiss Watch is able to perform the join and hide
operation on constraint automata. Like the SAFA tool, Swiss Watch is programmed
in Java and uses XML to provide the persistent data structure for constraint au-
tomata.

5.3 Operating System and Programming Language

The standard operating systems deployed at the computers at CWI are MS Win-
dows and Linux. Some people use the Mac operating system. In order to support as
many platforms as possible a suitable programming language is needed. The most
obvious programming language is Java, because a Java Virtual Machine exists for
all these operating systems.
The existing Reo and constraint automaton tools are already implemented in Java.
To keep the possibility that in the future some features of these tools will be inte-
grated with the tools developed during this MSc project, it seems best to use Java.
If Java would be chosen as the programming language the choice remains which
version of Java would be best. Java 1.5, which is the latest version, seemsa good
candidate as it has a lot of new useful features compared to the previousversion. It
supports, for example, generics, typesafe enumeration and autoboxing.
Another important addition is the java.util.concurrent package. This package (and
its subpackages) contains a lot of classes that make it much easier to develop mul-
tithreaded applications. This can especially be useful for the “Reo Connector Sim-
ulator with Components” as it is expected that this will be multithreaded.

1For more information contact Marjan Sirjani (Marjan.Sirjani@cwi.nl).
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5.4 Global overview

On the basis of the assignment we decompose the desired tool into 6 main subsys-
tems:

• Integrated Tool GUI (IT-GUI),

• Constraint Automata Editor (CA-Editor),

• TDS-Language Acceptor Simulator (TDSLAS),

• Reo Connector Simulator with TDS (RCSwTDS),

• Reo Connector Simulator with Components (RCSwC),

• Constraint Automaton Engine (CA-Engine).

Figure 5.1 shows the structure of these subsystems together with their dependen-
cies. In the following sections we discuss the structure of these systems.

5.4.1 Integrated Tool GUI (IT-GUI)

The Integrated Tool GUI is the graphical user interface of the overall tool. Through
the IT-GUI the user will be able to open:

• the CA-Editor,

• the TDSLAS,

• the RCSwTDS,

• the RCSwC.

The IT-GUI offers flexibility to the user, because the user can edit and simulate
a constraint automaton within the same tool. Without an integrated environment
the user has to save the constraint automaton to a file from the constraint automata
editor application and load it into a constraint automata simulator application.

To simulate multiple constraint automata simultaneously, we could join all the con-
straint automata to be simulated into one constraint automaton (figure 5.2.a). How-
ever, the join could lead to a state explosion. To prevent this, the simulator should
act on each constraint automaton individually (figure 5.2.b). To supportthis, the
tool needs a multiple document interface (MDI), such that multiple constraint au-
tomata can be loaded into the tool. Each document window contains a CA-Editor,
where the user can edit and modify a constraint automaton.

Java provides all the packages to create a MDI application. However, to implement
the whole MDI application using these packages will be quite time consuming,
because you still have to “glue” everything together by yourself.
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Figure 5.1: Overview of the tool. Dashed arrows indicate dependencies.
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Figure 5.2: (a) Simulating constraint automata by simulating the joined constraint
automaton. (b) Simulating constraint automata by simulating each constraint au-
tomaton individually.
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A better alternative is the Java MDI Application Framework1. This framework
provides a skeleton for MDI applications, therefore simplifying the development of
a MDI application. It is expected that using this framework will save a considerable
amount of time. The features of the Java MDI Application Framework are:

• A framework which offers the standard functionality that is expected from
MDI applications and which simplifies MDI application development.

• GUI implementation using Swing, including a full-featured user interface
with menus, toolbars, status bars, file selectors, dialogs, ...

• Data-Action-View paradigm: Data and View are separated. Action objects
are used to synchronize them.

• Support for multiple views per document.

• Support for nested views as well as nested data objects.

• Modular File I/O system for loading, saving and exporting documents.

• Undo/Redo functionality.

• Clipboard functions (cut, copy, paste).

• Printing subframework with preview capability.

• Internationalization support using ResourceBundles.

5.4.2 Constraint Automaton Model (CAM)

The Constraint Automaton Model represents a constraint automaton at the software
level. It contains the data structures to store:

• the topology of a constraint automaton, e.g. states and transitions,

• properties of states, e.g state name,

• properties of transitions, e.g. data constraints.

The CAM provides the following methods to modify the data structures:

• add and remove states,

• add and remove transitions,

• modify state properties,

• modify transition properties.

1http://jmdiframework.sourceforge.net/
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5.4.3 CA-Editor

The CA-Editor allows the user to construct and modify a constraint automaton
visually. The user should be able to:

• add and remove states,

• add and remove transitions,

• modify state properties,

• modify transition properties.

Through the IT-GUI the user is able to open the CA-Editor. When the CA-Editor
is started, it creates an empty CAM and shows the GUI CA-Editor. The sequence
diagram depicted in figure 5.3 shows the interactions within the CA-Editor.

Figure 5.3: Sequence diagram of the user starting the GUI CA-Editor through the
IT-GUI.

The GUI CA-Editor is the graphical user interface of the CA-Editor, therefore re-
sponsible for visualizing the CAM on the screen as a state diagram. All actions
executed in the GUI-CA Editor are propagated to and handled by the CA-Editor
Control.
The CA-Editor Control is responsible for that all actions executed in the GUI CA-
Editor are reflected in the CAM, such that the visual representation of the constraint
automaton is always consistent with the corresponding data representationin the
CAM (figure 5.4).
The consistency should also hold when actions are performed on the CAM.Thus,
if the CAM is changed programmatically, it notifies the GUI CA-Editor such that
it updates the visual representation accordingly (figure 5.5).

Since a constraint automaton can be visualized as a graph, graph visualization li-
braries can be used to implement the GUI of the editor. Several non-commercial
libraries exist:
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Figure 5.4: Sequence diagram of the user adding a state through the GUI CA-
Editor.

Figure 5.5: Sequence diagram of the CAM programmatically being changed.
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• JGraph2,

• Grappa3 which is a Java library of a subset of GraphViz4,

• JHotDraw5.

Another option is to use an already existing automata editor/simulator and adapt it
to our needs. The following editors/simulators exist for finite automaton that have
a decent GUI: JFLAP6 and Visual Automata Simulator7.
JFLAP does not visualize multiple transitions between two states well, because
the lines representing the transitions coincide with each other. Both JFLAP and
Visual Automata Simulator do not have automatic layout generation for states and
transitions. To adapt the current applications and implement these functionalities
may prove difficult, especially because they were not built with these features in
mind in the first place.
JGraph, Grappa and JHotDraw are all capable of visualizing multiple transitions
between two states, since one can programmatically ensure that the lines represent-
ing the transitions do not coincide.
Another possibility is to use a generator. Grace8 is a generator for graph editors
in Java. One specifies a mapping from the model domain to the graph domain,
for example “classes A and B represent nodes” and “classes X and Y represent
edges”. With such specifications Grace generates an editor. The generated editor
itself makes sure that the corresponding model is always consistent with allthe
actions performed in the graphical user interface (and vice versa).
Adapting existing application may prove too difficult, because of some of the re-
quirements, e.g. automatic layout generation, multiple document interface. The
graph visualization libraries support the implementation of the GUI CA-Editor,
but one still has to implement the CA-Editor Control, which can be quite time con-
suming. Therefore, Grace seems the most promising approach, becauseGrace is
able to generate the GUI CA-Editor and the CA-Editor Control as well.

5.4.4 Layout Engine

The GUI CA-Editor depends on the Layout Engine to automatically layout the
states and transitions. This feature is especially useful when loading a constraint
automaton into the editor from a file, because the file format does not keep the
screen positions.
The GUI CA-Editor passes the CAM to the Layout Engine. Using the topology
stored in the CAM, the Layout Engine calculates and sets the positions of the states

2http://www.jgraph.com/
3http://www.research.att.com/ john/Grappa/
4http://www.graphviz.org/
5http://www.jhotdraw.org/
6http://www.cs.duke.edu/˜rodger/tools/jflap/
7http://www.cs.usfca.edu/˜jbovet/vas.html
8http://www.doclsf.de/grace/
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and the transitions (figure 5.6).

Figure 5.6: Sequence diagram of user starting the automatic layout.

Of all the graph visualization libraries discussed in section 5.4.3, only JGraph and
Grappa have access to a layout engine. The JGraph library has a built-inlayout
engine. Grappa does not have a built-in layout engine, but it has methodsto exter-
nally call the Graphviz layout engine. If we choose, for the implementation ofthe
GUI CA-Editor, a library or solution other than JGraph and Grappa, then we could
use the layout functionality of JGraph or Graphviz externally. This will however
be less convenient and will result in a longer implementation time, because internal
data structures have to be converted to and from the data structures of JGraph or
Graphviz.

5.4.5 Load/Save Constraint Automaton Model (LSCAM)

The GUI CA-Editor depends on the LSCAM to load and save constraint automata
to and from some persistent data storage (figure 5.7 and figure 5.8 respectively).
The user has access to the LSCAM subsystem through the Integrated Tool GUI.

Since the existing tools for Reo and constraint automata use XML to provide the
persistent data structure for constraint automata, it is required that the same Con-
straint Automaton XML (CA-XML) will be used within our MSc project. Besides
this, XML has the following advantages:

• XML allows a developer to create his own data structures

• XML is text-based, thus easier to read and to document.

• tools, e.g. parsers, are widely available for handling XML

• it is possible to validate XML using for example an XML Schema

The programming language Java has defined a Java API for XML Processing,
JAXP. Since Java 1.4 the Xerces implementation of JAXP is included in the Java

44



Figure 5.7: Sequence diagram of the user loading a constraint automaton from a
file.

Figure 5.8: Sequence diagram of the user saving a constraint automaton toa file.
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library. Therefore, no third party library is necessary to handle XML if Java is
used.
For saving, the GUI CA-Editor passes the corresponding CAM of the constraint
automaton it is currently visualizing to the LSCAM. Subsequently the LSCAM
converts the CAM to CA-XML and saves the CA-XML to a file (figure 5.8).
By loading, the LSCAM uses the CA-XML file to build the CAM and returns this
to the GUI CA-Editor, which then visualizes the CAM on the screen (figure 5.7).

5.4.6 TDS-Language Acceptor Simulator (TDSLAS)

The “TDS-Language Acceptor Simulator” behaves like a standard automatasimu-
lator, a language acceptor. The user creates or loads timed data streams and speci-
fies through which ports they are fed to the simulator. The TDSLAS tries to accept
a timed data tuple of the timed data streams and moves to the next constraint au-
tomaton state. A timed data tuple is accepted when the TDSLAS is able to make a
transition with this tuple. If a timed data tuple is not accepted, the TDSLAS rejects
the input and stops (figure 5.9).

Figure 5.9: The TDS-language Acceptor Simulator.

The implementation of the TDSLAS is straight forward. Given a constraint au-
tomaton and timed data streams, the TDSLAS checks whether a timed run exists.
At each time stept the TDSLAS creates a set of name-data-assignments of the
time data tuples at time pointt of the timed data streams. The TDSLAS accepts a
time data tuple when an outgoing transition from the current state is possible with
the corresponding set of name-data-assignments. If so, the TDSLAS updates the
current state and continues with time stept + 1, otherwise the TDS-language is
rejected.
The TDSLAS relies on the CA-Engine to provide the following functionalities:

• return all initial states,

• return all outgoing transitions from a specific state,

• evaluate (the data constraints of) a transition against a set of name-data-
assignments.

The CA-Engine is discussed in further detail in section 5.4.13.
Through the IT-GUI the user is able to start the TDSLAS. First, the TDSLASCon-
trol is created. Subsequently, the TDSLAS Control creates and shows the graphical
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user interface of the simulator, the GUI TDSLAS. This process is shown in the se-
quence diagram depicted in figure 5.10.

Figure 5.10: Sequence diagram of the user starting the TDSLAS.

All the actions that the user performs in the GUI TDSLAS are propagated to and
handled by the TDSLAS Control. Through the GUI TDSLAS the user is able to
edit (figure 5.11), save and load (figure 5.16 and 5.17) timed data streams.

Figure 5.11: Sequence diagram of the user editing the timed data streams through
the GUI TDSLAS.

The user is able to start the simulation and interact with the simulator through the
GUI TDSLAS (figure 5.12).

5.4.7 Reo Connector Simulator with TDS (RCSwTDS)

The “Reo Connector Simulator with TDS” simulates a constraint automaton as a
Reo connector where the input is specified by timed data streams. The behavior of
the RCSwTDS resembles the behavior of a Reo connector in two ways.
First, the RCSwTDS does not reject the input if a timed data tuple is not accepted.
The RCSwTDS delays not accepted timed data tuples and combines them with the
timed data tuples of the next step. The combination of all time data tuples is the
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Figure 5.12: Sequence diagram of the user interacting with the TDSLAS.

‘observed’ time data tuple. This process continues until the ‘observed’ timedata
tuple becomes such that a transition can be made. This behavior is just like a Reo
connector, which delays write or take operations until the conditions becomesuch
that these pending operations can be completed. Figure 5.13 illustrates a runof
timed data streams for the constraint automaton shown in figure shown in figure
4.6.

Second, in the RCSwTDS the ports of a constraint automaton can act as input
ports or as output ports. The user creates or loads timed data streams and specifies
through which input ports they are fed to the RCSwTDS. Using the data at the
input ports the RCSwTDS tries to make transitions and generates the data for the
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TDS Observed TDS
A B C A B C

0 d1 0 d1 not accepted
1 d2 1 d1 d2 not accepted
2 d1 2 d1 d2 d1 accepted:data(A) = data(C)
3 3 d0 not accepted
4 d2 4 d2 d2 accepted:data(B) = data(C)

Figure 5.13: A RCSwTDS run of timed data streams with the ‘merger’ constraint
automaton.

output ports (figure 5.14).

Figure 5.14: The Reo Connector Simulator with TDS.

The main difficulty with this simulator is that, in contrast to Reo connectors, con-
straint automata do not distinguish between input and output ports. The ‘input’
ports of the constraint automaton can be fed with timed data streams, but the timed
data streams at the ‘output’ ports need to be generated by the RCSwTDS using
the input data and the data constraints. However, the data constraint of a transition
is a propositional formula that only states under which conditions a transition is
allowed, but it does not say how data items are assigned/transferred from one port
to another.
To overcome this difficulty, we use a different perspective to look at this problem.
Timed data streams are given to the simulator as input, but the timed data streams
can be incomplete, they contain ‘gaps’. The simulator tries to complete the timed
data stream using the data constraints to generate the missing data items. These
gaps can be interpreted as pending take operations, while the data items filling the
gaps can be seen as the data for completion of these take operations (figure 5.15).
The CA-Engine should provide the service to generate the missing data items dur-
ing evaluation of the data constraints. Further, the RCSwTDS needs the sameser-
vices from the CA-Engine as the TDSLAS. The CA-Engine is discussed in further
detail in section 5.4.13.
The user is able to start the RCSwTDS through the IT-GUI. First, the RCSwTDS
Control is created. Subsequently, the RCSwTDS Control creates and shows the
GUI RCSwTDS. Through the GUI RCSwTDS the user is able to edit, save andload
timed data streams, start and interact with the simulator. The TCSwTDS Control
handles all the actions the user performs in the GUI RCSwTDS. The sequence
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Figure 5.15: The RCSwTDS interpreting the completion of take operations in Reo
as the completion of incomplete timed data stream in constraint automata.

diagrams of the RCSwTDS are omitted, because they are similar to the ones of the
TDSLAS.

5.4.8 Timed Data Stream Model (TDSM)

The Timed Data Stream Model represents a timed data stream at the software level.
Both TDSLAS and RCSwTDS depend on the TDSM. The TDSM provides the
following methods for editing and accessing the timed data streams:

• add and remove time data tuples,

• return data from a time pointt.

5.4.9 Load/Save Timed Data Stream (LSTDS)

The TDSLAS and the RCSwTDS depend on the Load/Save Timed Data Stream to
load and save timed data streams to and from some persistent data storage. The
user has access to the LSTDS subsystem through the GUI TDSLAS and GUI RC-
SwTDS.
By loading, the LSTDS builds the TDSM using the TDS file and returns the TDSM
to the TDSLAS or RCSwTDS (figure 5.16).
TDSLAS and RCSwTDS pass the TDSM to be saved to the LSTDS, which saves
the TDSM to a file (figure 5.17).

Because it was required that XML will be used for constraint automata, XML
will also be used to provide persistent data structure for timed data streams (TDS-
XML).

5.4.10 Reo Connector Simulator with Components (RCSwC)

The Reo Connector Simulator with Components behaves as the RCSwTDS, but
it does not use ‘predefined’ timed data streams as input. Instead the user attaches
components to the simulator (figure 5.18). The components try to perform takeand
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Figure 5.16: Sequence diagram of the user loading the timed data streams.

Figure 5.17: Sequence diagram of the user saving the timed data streams.

Figure 5.18: The Reo Connector Simulator with Components.

write operations on the ports. These pending operations can be interpreted as dy-
namically created ‘timed data streams’. The RCSwC tries to complete these pend-
ing operations based on the underlying constraint automaton. Figure 5.19 depicts
a sequence diagram that shows how the simulator interacts with the components.
Here the same problem arises as with the RCSwTDS, a constraint automaton does
not distinguish between input and output ports. We use the same approachas
with the RCSwTDS, interpreting the completion of take operations in Reo as the
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Figure 5.19: Sequence diagram of the interaction between the RCSwC and the
components.

completion of incomplete timed data stream in constraint automata (figure 5.20).

Figure 5.20: The RCSwC interpreting the completion of take operations of com-
ponents in Reo as the completion of incomplete timed data stream in constraint
automata.
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Through the IT-GUI the user is able to start the RCSwC. First, the RCSwC Control
is created. Subsequently, the RCSwC Control creates and shows the GUIRC-
SwC. Through the GUI RCSwC the user is able to load components and constraint
automata, and connect component ports with constraint automaton ports. Allthe
interactions of the user with the GUI RCSwC are propagated to and handled by the
RCSwC Control.

5.4.11 Component

The components and component instances in the context of the RCSwC are re-
spectively implemented as classes and objects in Java. An API should be provided
that allows the objects to send and receive data to and from the simulated Reo
connector.
Due to the compilation process of Java classes this approach is not flexible,there-
fore it is recommended to use a scripting language for implementing the behavior
of the simulated components. The approach of using scripted components does
not necessarily interfere with the approach of components written in Java.A Java
object can be used as a wrapper around a scripting engine. This way it ispos-
sible to support ‘Java’-components as well as scripted components. Additionally
this approach enables the support of multiple scripting languages (by creating an
appropiate wrapper for each language).
Many scripting engines written in Java exist. The following is by no means an
exhaustive list:

• Rhino9, a JavaScript engine,

• Jython10, a Python engine for Java,

• Jess11, a rule engine for the scripting language Jess for Java,

• Beanshell12, a scripting engine for Java,

• JRuby13, a Ruby engine for Java.

5.4.12 Load Component

The Load Component loads a component from some persistent data storage into
the memory. The user is able to access Load Component through the GUI RCSwC
(figure 5.21).

9http://www.mozilla.org/rhino/
10http://www.jython.org/
11http://herzberg.ca.sandia.gove/jess/
12http://www.beanshell.org/
13http://jruby.sourceforge.net/
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Figure 5.21: Sequence diagram of the user loading a component from a file.

5.4.13 Constraint Automaton Engine (CA-Engine)

The Constraint Automaton Engine depends on a CAM to provide the following
functionalities needed by a simulator:

• return all the initial states,

• return all outgoing transitions from a certain state,

• evaluate data constraints with a set of name-data-assignments.

The CA-Engine is separated from the simulators such that different kind of simu-
lators can be build using the same engine.

Figure 5.22: Sync channel and the corresponding constraint automaton

In the following we address the issue that constraint automata do not distinguish
between input and output. Suppose the Sync channel is to be simulated by a con-
straint automaton (figure 5.22). If port A is associated with a timed data stream,
then the timed data stream of port B should be generated by the constraint automa-
ton. However, the data constraintdata (A) = data (B) is a propositional formula
and not an assignment. Thus, the constraint automaton itself is not directional, as
it does not say anything how data items flow through the Reo connector.
The constraint automaton engine should be able to handle this situation. If port A
and B are active, but only at port A a data item is present, then a data item should be
assigned to port B such that the data constraintdata (A) = data (B) is evaluated
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to true. One apparent solution is to treat the data constraints in a Prolog like manner
where free variables are bound to values when possible.
Several Java libraries exist that act as an interface to Prolog, e.g. InterProlog14,
K-Prolog15, JPL16. Since we strive for a platform independent application, we do
not prefer this approach, because the Prolog engine itself is not a Javaapplication.
Prolog libraries that are completely written in Java are, for example, JIProlog17,
jProlog18 and Prolog Cafe19. JIProlog is not an option since it is a commercial
library. jProlog is a very outdated library from 1997 and is not mature enough
(some of the files are marked as version 0.1). The latest release of PrologCafe
is version 0.9.1 on 24th February 2004. Therefore, Prolog Cafe seemsthe most
promising library.

5.5 Requirements for the IT-GUI

We summarize the following refined requirements to the IT-GUI. The user should
be able to:

• openmultipleCA-Editors,

• start the TDSLAS,

• start the RCSwTDS,

• start the RCSwC.

5.6 Requirements for the CA-Editor

We summarize the following refined requirements to the CA-Editor. The user
should be able to:

• add and remove states,

• add and remove transitions,

• modify state properties, e.g. state names,

• modify transition properties, e.g. data constraints,

• save and load constraint automata to and from XML,

• automatically layout the constraint automaton on the screen.

14http://www.declarativa.com/interprolog/
15http://www.kprolog.com/
16http://www.swi-prolog.org/packages/jpl/
17http://www.ugosweb.com/jiprolog/
18http://www.cs.kuleuven.ac.be/ bmd/PrologInJava/
19http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/
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5.7 Requirements for the TDSLAS

We summarize the following refined requirements to the TDSLAS. The user should
be able to:

• create timed data streams,

• save and load timed data stream to and from TDS-XML files,

• simulate a constraint automaton with timed data streams.

5.8 Requirements for the RCSwTDS

We summarize the following refined requirements to the RCSwTDS. The user
should be able to:

• create timed data streams,

• save and load timed data stream to and from TDS-XML files,

• simulate a constraint automaton with incomplete timed data streams

• generate the complete timed data streams.

5.9 Requirements for the RCSwC

We summarize the following refined requirements to the RCSwC. The user should
be able to:

• load and execute components,

• connect component-ports to Reo-connector-ports,

• simulate a constraint automaton as a Reo connector while components are
writing and reading to the simulated Reo connector.

Additionally, the following should be provided with the simulator:

• an Java API for implementing components,

• support for components written in a scripting language.
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5.10 Requirements for the CA-Engine

We summarize the following requirements to the CA-Engine. The CA-Engine
should be able to:

• return all initial states,

• return all outgoing transitions from a certain state,

• evaluate data constraints against a set of name-data-assignments in a Prolog
like manner.
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Chapter 6

Design and Implementation

In this chapter we discuss the design and implementation of the tool and elaborate
on the technological choices we made. We present the software architecture of
the tool using the Unified Modeling Language (UML). The number of classes and
methods is usually too large to view in one class diagram. Therefore, we display
the tool architecture using several class diagrams and in each class diagram we
show only the relevant classes and methods.

6.1 Programming Language

We choose Java as the programming language, because applications writtenin Java
can run on both MS Windows and Linux, the standard operating systems deployed
within the CWI.
The choice for Java helps the later integration of the features of the already existing
Reo and constraint automaton tools (also written in Java) with our tool.
We choose for Java version 1.5, because this version has many new expressive
language features compared with the previous versions and better support for the
development of multithreaded applications, as discussed in section 5.3.

6.2 Architectural Overview

In this section we present a high level introduction to the software architecture of
the tool. The tool is decomposed in the following main packages:

• cwi.reo.itgui, contains the classes for the Integrated Tool GUI,

• cwi.reo.caeditor, contains the classes for the CA-Editor,

• cwi.reo.tdslas, contains the classes for the TDS Language Acceptor
Simulator,

• cwi.reo.rcswtds, contains the classes for the Reo Connector Simulator with
TDS,
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• cwi.reo.rcswc, contains the classes for the Reo Connector Simulator with
Components,

• cwi.reo.caengine, contains the classes for the CA-Engine.

These packages and their dependencies are shown in the UML packagediagram in
Figure 6.1. The decomposition of the tool into packages corresponds closely to the
decomposition shown in figure 5.1.

Figure 6.1: The UML package diagram of the tool.

6.3 CA-Editor

In this section we discuss how the CA-Editor is designed and implemented. The
classes for the CA-Editor are located in thecwi.reo.caeditor package, which is
again decomposed into several subpackages. The decomposition is depicted in the
UML package diagram in figure 6.2.

• cwi.reo.caeditor.cam, contains the classes for the Constraint Automaton
Model (CAM).

• cwi.reo.caeditor.gui, contains the classes for the GUI CA-Editor.

• cwi.reo.caeditor.layoutengine, contains the classes for the Layout Engine.

• cwi.reo.caeditor.dcparser, contains the classes for parsing strings
representing data constraints.

• cwi.reo.caeditor.namesparser, contains the classes for parsing strings
representing names (of a names set).
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Figure 6.2: The UML package diagram of the CA-Editor.

6.3.1 CAM

In this subsection we discuss the design and implementation of the CAM. All the
classes for the CAM are located in thecwi.reo.caeditor.campackage.

Constraint automaton

The data structures representing a constraint automaton are shown in the class dia-
gram in figure 6.3. The following classes have been defined:

• ConstraintAtomaton, represents the overall constraint automaton,

• Transition , represents a transition,

• State, represents a state.

To be able to model a state as an initial state, we introduce the following classes:

• InitialTransition , eachStateobject that is the target state ofInitialTransi-
tion is an initial state,

• InitialState , acts as the source state forInitialTransition .

Figure 6.4 shows the relation between the components of a constraint automaton
and the classes representing the constraint automaton.

We generalize the two state and two transition classes by introducing the abstract
classesAbstractState and AbstractTransition . This providesConstraintAu-
tomaton with a generic view such that it can work with different state and tran-
sition classes without having to recognize the exact individual subtype.

Using this design for constraint automata, we can easily extend toward the para-
meterized constraint automaton. States in parameterized constraint automata have
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Figure 6.3: The class diagram of the data structures representing a constraint au-
tomaton.

Figure 6.4: Relation between the components of a constraint automaton and the
classes representing the constraint automaton.
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state variables and transitions are labeled with assignments for these state vari-
ables. Extending the current design to support parameterized constraint automata
can easily be realized by adding extra information to the classes.

Figure 6.5: The class diagram of the constraint automaton classes and the listener
interfaces.

The constraint automaton, transition and state classes implement the Observerde-
sign pattern[6], which allows them to notify others about changes, e.g. theaddition
or removal of states, the modification of transition properties. The IT-GUI,for ex-
ample, needs to get notified of changes in the constraint automaton, becausethe
save button (for saving constraint automata) becomes only enabled when the con-
straint automaton has been changed. The following listener interfaces aredefined:

• ConstraintAutomatonListener, listener interface forConstraintAutoma-
ton,

• TransitionListener , listener interface forTransition ,

• StateListener, listener interface forState.

The class diagram in figure 6.5 shows the relations between the constraint au-
tomaton classes and the listener interfaces. The sequence diagram in figure 6.6
illustrates the interaction between aConstraintAutomaton object and a concrete
ConstraintAutomatonListener.

Data Constraint

The data structures representing a data constraint are shown in the classdiagram in
figure 6.7. Each operator that can occur in a data constraint formula is represented
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Figure 6.6: The sequence diagram showing the interaction between a
ConstraintAutomaton object and a concreteConstraintAutomatonListener.

Figure 6.7: The class diagram of data constraint formulae.
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by a class:

• DCFormulaEqual, represents the equal operator,

• DCFormulaNotEqual, represents the not equal operator,

• DCFormulaNot, represents the not operator,

• DCFormulaAnd , represents the and operator,

• DCFormulaOr , represents the or operator.

There is separate class for representing the empty data constraint formula, DCFor-
mulaEmpty.
The equal and not equal operators have operands that are terms. The following
types of terms have been defined:

• DCTermName, represents the name of a name-data-assignment,

• DCTermDataString, represents a data item of type string.

Data constraint formulae can be both individual data constraint formulae (e.g.DC-
FormulaEqual) and compositions of data constraint formulae (e.g.DCFormu-
laAnd). By applying the Composite design pattern[6], introducing the abstract
classDCFormula, we can treat all data constraint formula objects in the compos-
ite structure uniformly, since the abstract class allows us to ignore the difference
between individual and compositions of data constraint formulae.

To be able to add new types of terms easily in the future, we define the inter-
faceDCTerm that is placed betweenDCFormulaEqual, DCFormulaNotEqual
and concrete term classes. The interfaceDCTerm provides a generic view, which
enables introducing new types of terms without having to recognize the exact indi-
vidual subtype.

With these classes an abstract syntax tree can be build that represents a data con-
straint formula. An example is shown in figure 6.8.

Figure 6.8: The abstract syntax tree of a data constraint formula.

To perform operations on the abstract syntax tree, we apply the Visitor design
pattern[6]. This design pattern offers the flexibility of defining new operations
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over a structure without changing the structure itself. TheDCVisitor defines the
interface of a visitor for a data constraint formula. Figure 6.9 depicts the sequence
diagram showing how a concreteDCVisitor object traverses an abstract syntax tree
of DCFormula andDCTerm objects.

Figure 6.9: The sequence diagram showing the interaction between aDCVisitor
and someDCFormula andDCTerm objects.

Names set

The classNamesSetrepresents a set of names. It is part ofConstraintAutomaton
andTransition .

6.3.2 LSCAM

The class responsible for loading and saving a constraint automaton to and from a
CA-XML file is CAXMLFileIOModule . It has access to all the classes of the
CAM. The structure and relations are depicted in figure 6.10. TheCAXML-
FileIOModule class is part of thecwi.reo.caeditor.campackage.
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Figure 6.10: The class diagram of theCAXMLFileIOModule

6.3.3 GUI CA-Editor and CA-Editor Control

In this subsection we discuss how the GUI CA-Editor and CA-Editor Controlare
designed and implemented. All the classes, interfaces and subpackages implement-
ing the GUI CA-Editor and the CA-Editor Control are located in
thecwi.reo.caeditor.guipackage:

• graceeditorpackage,

• gracefigurespackage,

• ConstraintAutomatonView class,

• ConstraintAutomatonViewListener interface,

• PropertySheetclass.

The class diagram in figure 6.11 shows an overview ofcwi.reo.caeditor.guipack-
age.

graceeditor package

For the implementation of GUI CA-Editor and CA-Editor Control we choose for
Grace, because Grace is able to generate both on the basis of a specification (as
discussed in section 5.4.3). Hence, Grace generates a graph editor thatis able to:

• visualize a constraint automaton on the screen,

• maintain consistency between the visual representation and the data repre-
sentation of a constraint automaton.
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Figure 6.11: The class diagram of GUI CA-Editor

The specification consists of three parts. First, one has to describe the mapping
from the application domain to the graph domain, thus the mapping from classes to
graph, nodes and edges. In order for the Grace editor classes to recognize the roles
of the application domain classes as such and to interact with them, the application
domain classes need to implement the interfacesGraph, Node, Edge. Figure 6.12
shows how this is done for the classes of the CAM.
Second, the presentation style needs to be specified, a description how each compo-
nent of the graph domain is visualized on the screen (figure 6.13). Graceprovides
the developer with a set offigures, e.g. boxes and circles for nodes, straight lines
and Bezier curves for edges. This set also contains figures for displaying text, e.g.
labels for nodes and edges.
Third, the interactions must to be specified, describing the behavior of the editor
when it interacts with the user. For example, clicking with the mouse on a node,
subsequently dragging to and releasing on another node should create an edge be-
tween those nodes. The complete specification language of Grace can be found in
[7]. All the Grace generated classes are placed in thegraceeditorpackage.

gracefigures package

The basic set of figures that Grace provides for specifying the presentation style
does not suffice to express constraint automata. For example, a transitioncan have
multiple data constraint formulae, which we want to visualize as an edge label
where each data constraint formula is on a separate line, while Grace only supports
single line edge labels. Therefore, we extend this set with the packagegracefigures
containing the following custom figures:

• multiline text label for nodes,

• multiline text label for edges,

• concatenated Bezier curves figure for edges.
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Figure 6.12: Integration of the application domain classes with the Grace editor
classes.

Figure 6.13: The specification of the GUI CA-Editor
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Grace provides a Bezier curve figure for edges, but this figure only consists of
one single Bezier curve. The custom edge figure that we implement supports one
Bezier curve, but also supports multiple concatenated Bezier curves. The concate-
nated Bezier curves figure for edges is added, because we plan to useGraphviz
as the layout engine and Graphviz describes the layout of an edge by one or more
Bezier curves.

ConstraintAutomatonView

The Grace generated editor does not have scrolling abilities. TheConstraintAu-
tomatonView class extends the Grace generated editor and adds scrolling abilities
to the editor. Thus, if part of the visualized constraint automaton is placed outside
the viewing area, then a scrollbar appears, which the user can move to change the
viewing area.

ConstraintAutomatonViewListener

The ConstraintAutomatonView can be in different states, e.g. ‘add state’, ‘add
transition’ or remove state. To allowConstraintAutomatonView to notify others
about changes of its state, we apply the Observer design pattern[6], introducing the
listener interfaceConstraintAutomatonViewListener. Mainly the IT-GUI will
listen to these changes to update itself to show the user in which state the editor
currently is, e.g. whether it is in an “add state” or “add transition” state.

PropertySheet

ThePropertySheetclass is a panel that can be used to show the properties of con-
straint automata, states and transitions, e.g. state name, transition data constraints.
Through thePropertySheetthe user can also modify these properties.

6.3.4 Input Parsers

TheDCParserandNamesParserpackage contains all the classes for parsing data
constraints and names respectively. Parsing is the conversion of input tointernal
data structures. In our case we need to parse:

1. a data constraint string to an abstract syntax tree ofDCFormula,

2. a names string to aNamesSetobject.

Instead of implementing these two parsers, we use a parser generator, a tool that
reads a description of a language and converts it to a program that can read and
analyze that language. JavaCC1 is a popular parser generator for use with Java
applications. In addition to the description of the language, the actions that need to

1http://javacc.dev.java.net/
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digraph agraph
{

rankdir=LR;
node [shape = circle];
A -> B;

}

(a)

digraph agraph
{

graph [rankdir=LR];
node [label=“\N”, shape=circle];
graph [bb=“0,0,112,38”];
A [pos=“19,19”, width=“0.53”, height=“0.53”];
B [pos=“93,19”, width=“0.53”, height=“0.53”];
A -> B [pos=“e,74,19 38,19 46,19 55,19 64,19”];

}
(b)

Figure 6.14:(a) DOT file without layout information.(b) DOT file with layout
information.

be taken when a certain sequence is recognized should be specified. These actions
create a abstract syntax tree ofDCFormula (1) or aNamesSetobject (2).

6.3.5 Layout Engine

For the implementation of the GUI CA-Editor, we use a graph visualization library
that has no built-in layout engine. Therefore, we use Graphviz as the external
layout engine. Graphviz is open source graph visualization software, which has
several graph layout programs. We make use of the graph layout program dot,
which makes layouts for directed graphs.dot takes description of a graph in a sim-
ple text language, called theDOT language, as input. Subsequently,dot generates
the layout for this graph by reproducing the input along with layout information
(figure 6.14).
Grappa is a Java graph drawing package, which can be seen as a portof a subset of
Graphviz to Java. Grappa is able to read graphs described in theDOT language.

Figure 6.15: The class diagram of the Layout Engine.
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Figure 6.15 shows the class diagram of the Layout Engine. The classDotLay-
outEngine, located in the packagecwi.reo.caeditor.layoutengine, is the imple-
mented Layout Engine that makes use of thedot layout program of Graphviz. Fig-
ure 6.16 shows how theDotLayoutEngine globally works:

1. translate the CAM data structures to aDOT file,

2. call thedot layout program which adds layout information to theDOT file,

3. read theDOT file using Grappa,

4. extract the layout information from the Grappa data structures and apply it
to the layout of the states and transitions of the constraint automaton in the
GUI CA-Editor.

Figure 6.16: The layout process of theDotLayoutEngine

6.4 IT-GUI

For the implementation of the Integrated Tool GUI we use the Java MDI Applica-
tion Framework. This framework provides a skeleton for MDI applications,there-
fore reducing the development time of a MDI application.
The use of the Java MDI Application Framework is based on the Factory Method
design pattern [6]. In this design pattern a framework defines abstract classes and
also maintains the relationships between objects. To create an application-specific
implementation, one just has to subclass the abstract classes of the framework.
Figure 6.17 shows how the subclassing is done for our tool. These classes are
located in thecwi.reo.itgui package. The description of the classes is given below:

• CAEditorMain , the main class of the tool,

• CAEditorMainWindow , the main window of the tool,

• CAEditorCommands, handles all commands which can be triggered by
users,
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Figure 6.17: The class diagram of the Integrated Tool GUI.

• CAEditorData , contains the data of a document, thus a constraint automa-
ton (therefore it contains theConstraintAutomaton class),

• CAEditorView , responsible for viewing the data of a document (therefore
it contains theConstraintAutomatonView class),

• CAEditorActionConverter , responsible for handling the undo, redo, copy,
cut and paste command,

• CAEditorResources, manages all the resources of the tool (e.g. icons, prop-
erty file),

• CAEditorFileIOModule , responsible for loading and saving (therefore it
depends on theCAXMLFileIOModule ),

• CAFileFormat , represents the file format,

• CAFileIOException, the exceptions which can occur during loading or sav-
ing.

Figure 6.18 illustrates how the IT-GUI looks like and shows which classes the
components of the IT-GUI correspond to.

6.5 CA-Engine

In this section we discuss the implementation of the CA-Engine. The first two
requirements of the CA-Engine as described in section 5.10 are quite trivial,easy
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Figure 6.18: The screenshot of the IT-GUI showing the correspondence with the
classes.
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to realize. However, the third requirement, evaluating data constraints in a Prolog
like manner, is hard to implement from scratch.
To implement the third requirement we use Prolog Cafe, a Prolog to Java translator
system. It is able to convert Prolog source code to Java source code. Hence, we
create a Prolog program that evaluates data constraints against a set ofname-data-
assignments, while binding free variables to values when possible. With Prolog
Cafe we translate this Prolog program to a Java program, which we can usein the
tool.
The classes, interfaces and subpackages of the CA-Engine are located in the
cwi.reo.caenginepackage (figure 6.19):

• CAEngine, implements the requirements of CA-Engine as defined in section
5.10,

• NameDataAssignment, represents a name-data-assignment,

• NDASet, represents a set of name-data-assignments,

• Data, the interface for data objects used inNameDataAssignment,

• DataWrapper, which implements theData interface, can be used to wrap
an object such that the object can be used inNameDataAssignment,

• PrologDCChecker, checks data constraints using the to-Java-translated Pro-
log program,

• prologdccheckerpackage, contains all the to-Java-translated source code of
the Prolog program.

6.6 TDSLAS

In this section we discuss the design and implementation of the TDSLAS. Using
the requirements of the TDSLAS described in section 5.7, the TDSLAS can be
decomposed into the following:

• a timed data stream editor part (TDS-Editor), where the user is able to edit,
save and load timed data stream,

• a simulator part, where the user simulates a constraint automaton with timed
data streams.

In the next subsections the TDS-Editor and the simulator part are discussed sepa-
rately.
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Figure 6.19: The class diagram of the CA Engine.

6.6.1 Model-View-Controller Design Pattern

For the design and implementation of the GUI we often apply the Model-View-
Controller (MVC) design pattern[6]. The MVC design pattern decomposesan
application in the following three objects:

• the model, which contains the data of the application,

• the view, responsible for displaying the model on the screen,

• the controller, which handles the interactions the user performs with the ap-
plication and changes the data of the model accordingly.

The MVC decouples the model and view by applying the Observer design pattern[6],
where the view is the observer of the model. Whenever the data of the model
changes, it notifies its observers. Figure 6.20 illustrates the basic Model-View-
Controller relationships.

6.6.2 TDSM and LSTDS

Since the TDSLAS acts as a language acceptor simulator, it only needs to simulate
a constraint automaton with timed data streams where the data consists of strings,
timed stringdata streams. The data structure representing such a timed string-
data stream is theTimedStringDataStream class. TheTSDSXMLFileIOMod-
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Figure 6.20: The basic Model-View-Controller relationships.

ule class handles the loading and saving of a timed stringdata stream from and to a
TSDS-XML file. The class diagram is shown in figure 6.21.

6.6.3 GUI TDS-Editor

Through the GUI TDS-Editor the user is able to edit, save and load timed data
streams. In the GUI TDS-Editor a table is shown where each column of the table
represents a timed stringdata stream associated with a constraint automaton port.
A screenshot of the GUI TDS-Editor is shown in Figure 6.22.
For the GUI TDS-Editor we apply the MVC design pattern[6]. Figure 6.23 shows
the class diagram of the TDS-Editor and which part of the MVC design pattern the
classes correspond to.

• PortsTimedStringDataStreams, associates timed stringdata streams with
ports.

• TimedStringDataStreamsEditorModel, the model of the TDS-Editor.

• TimedStringDataStreamsEditorModelListener, the listener interface for
TimedStringDataStreamsEditorModel.

• PortsTimedStringDataStreamsTableModel, the adapter class between
PortsTimedStringDataStreamsand the table which shows the ports and
the associated timed string data streams.

• TimedStringDataStreamsEditorView, the view of the TDS-Editor.
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Figure 6.21: The class diagram ofTimedStringDataStream and TSDSXML-
FileIOModule .

Figure 6.22: Screenshot of the GUI TDS-Editor.
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• TimedStringDataStreamsEditorControl, the controller of the TDS-Editor.

Figure 6.23: The class diagram of the TDS-Editor of the TDSLAS.

The table shown in the GUI TDS-Editor, implemented by aJTable (from the
Java Swing library), shows the data ofPortsTimedStringDataStreams. How-
ever, the interface ofPortsTimedStringDataStreamsis not the interfaceJTable
expects. By applying the Adapter design pattern[6], the classPortsTimedString-
DataStreamsTableModelconverts thePortsTimedStringDataStreamsinterface
into an interfaceJTable expects. PortsTimedStringDataStreamsTableModel
acts as a model whereJTable gets its data from, but the actual data comes from
PortsTimedStringDataStreams. Changes inPortsTimedStringDataStreamsare
reflected inJTable and vice versa.

79



6.6.4 TDS-Editor Control

TheTimedStringDataStreamsEditorControl is the controller object, which han-
dles the following interactions with the user:

• insert timed stringdata tuples

• delete timed stringdata tuples

• save timed stringdata streams

• load timed stringdata streams

TheTimedStringDataStreamsEditorControl performs these operations directly
on TimedStringDataStream and PortsTimedStringDataStreams. Because of
the adapter classPortsTimedStringDataStreamsTableModelthese changes are
reflected in the timed stringdata streams table in the GUI TDS-Editor.

6.6.5 GUI TDSLAS

In the simulator part of the TDSLAS the user simulates a constraint automaton
by ‘stepping’ through the constraint automaton, going from one state to another
dependent on the timed data streams. At each step the simulator lists the enabled
transitions (the possible transitions), which depends on the current constraint au-
tomaton state and timed data streams, from which the user chooses one for the
next step. A trace log is available, showing the history of the steps. The following
classes are defined:

• EnabledTransitions, represents the enabled transitions,

• Trace, represents the trace history.

For the GUI of the simulator part we apply the MVC design pattern[6]. Figure
6.24 shows the class diagram and which part of the MVC design pattern the classes
correspond to.

• TraceModel, the model forTrace containing theTraceTableModel.

• TraceTableModel, the adapter class betweenTraceModel and the table
which shows the trace history,.

• EnabledTransitionsModel, the model ofEnabledTransitions containing
theEnabledTransitionsTableModel.

• EnabledTransitionsTableModel, the adapter class betweenEnabledTran-
sitionsand the table which shows the enabled transitions.

• TDSLASModel, the model of the simulator part.

• TDSLASModelListener, the listener interface forTDSLASModel.
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• TDSLASView, the view of the simulator part.

• TDSLASControl , the controller of the simulator part.

• CAEngineModel, contains the CAEngine and keeps track of the current
state, selected transition and last transition made during the simulation.

Figure 6.24: The class diagram of the simulator part of the TDSLAS.

For the overall GUI TDSLAS we integrate the GUI TDS-Editor and the GUI of
the simulator part and show them together in one window. Figure 6.25 shows a
screenshot of the GUI TDSLAS. The class diagram depicted in figure 6.26shows
the implementation.

• TDSLASFrame, the window which contains the GUI of the TDS-Editor
and the simulator.
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• TDSLASMain , the main class which starts and initializes the TDSLAS.

Figure 6.25: The screenshot of the GUI TDSLAS showing the correspondence
with the classes.

6.6.6 TDSLAS Control

The TDSLAS Control is implemented byTDSLASMain andTDSLASControl .
TDSLASMain is the main class that starts and initializes the TDSLAS. The user
is able to accessTDSLASMain through the IT-GUI.
TheTDSLASControl is the controller object, which handles the interactions the
user performs with the simulator part. Since it is also responsible for changing the
data of the model object (the trace log, the enabled transitions table), theTDSLAS-
Control is the one which actually performs the simulation.
TheTDSLASControl interacts with the user and performs the simulation as fol-
lows:

1. The user starts the simulation.

2. TheTDSLASControl fills the enabled transitions table with the initial tran-
sitions.

3. The user selects one of the initial transition and makes a step.

4. TheTDSLASControl steps to the state indicated by the selected initial tran-
sition (this state becomes the ‘current state’).

5. TheTDSLASControl clears and fills the enabled transitions table as fol-
lows:
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Figure 6.26: The class diagram of the integration of the TD-Editor and simulator.
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(a) use the CA-Engine to retrieve the outgoing transitions from the current
state

(b) get the timed stringdata streams from TDS-Editor

(c) create a set of name-data-assignments with the timed stringdata streams
for time pointt

(d) use the CA-Engine to evaluate each transition with this set of name-
data-assignments

(e) each transition which is possible (according to the evaluation), is added
to the enabled transitions table

6. The user selects a transition of the enabled transitions table and makes a step.

7. TheTDSLASControl updates its current state with the state indicated by
the selected transition.

8. Steps 5, 6 and 7 are repeated until the enabled transitions table becomes
empty such that no transition can be selected by the user at step 6 (the con-
straint automaton rejects the timed stringdata streams).

6.6.7 Simulation Coloring

During the simulation the TDSLAS goes from one constraint automaton state to an-
other state dependent on the timed data streams and the transitions the user chooses.
The simulation can be made visible in the GUI CA-Editor, for example, by indi-
cating the current state using colors. To realize this we apply the Observerdesign
pattern[6] onCAEngineModel and introduce the following classes:

• CAEngineModelListener, the listener interface forCAEngineModel,

• CAColorControl , which implements theCAEngineModelListener inter-
face and changes the colors inConstraintAutomatonView.

The class diagram is shown in figure 6.27.

6.7 RCSwTDS

Looking at the requirements of RCSwTDS described in section 5.8, we decompose
the functionality of RCSwTDS as follows:

• a timed data stream editor part (TDS-Editor), where the user is able to edit,
save and load timed data stream,

• a simulator part, where the user can simulate a constraint automaton with
(incomplete) timed data streams.

For the TDS-editor we reuse the TDS-Editor of the TDSLAS, because theyare
equivalent.
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Figure 6.27: The class diagram ofCAEngineModelListener andCAColorCon-
trol .

6.7.1 GUI RCSwTDS

The simulation part of the RCSwTDS is very similar to the TDSLAS. Like with
the TDSLAS, the user simulates a constraint automaton by stepping through the
constraint automaton. At each step the RCSwTDS shows the possible transitions
from which the user chooses one for the next step. The RCSwTDS also has a trace
log showing the history of the previous steps. Thus, for the simulation part many
classes of the TDSLAS can be reused.
In addition to the TDSLAS, the RCSwTDS needs to show the ‘observed time
stringdata tuple’ of each time step. For this we use the TDS-Editor, but we dis-
able the editing of timed stringdata streams. By reusing the TDS-Editor, it is not
necessary to implement another table. Figure 6.28 shows a screenshot ofthe GUI
RCSwTDS.
For the GUI RCSwTDS we apply the MVC design pattern[6]. The class diagram
is depicted in figure 6.29.

• RCSwTDSModel, the model of the simulator part.

• RCSwTDSModelListener, the listener interface forRCSwTDSModel.

• RCSwTDSView, the view of the simulator part.

• RCSwTDSControl, the controller of the simulator part.

• RCSwTDSFrame, the window which contains the GUI of the TDS-Editor
and the simulator.

• RCSwTDSMain, responsible for starting and initializing the RCSwTDS.
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Figure 6.28: The screenshot of the GUI RCSwTDS showing the correspondence
with the classes.

Figure 6.29: The class diagram of RCSwTDS
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6.7.2 RCSwTDS Control

The RCSwTDS Control is implemented byRCSwTDSMain andRCSwTDSCon-
trol . The classRCSwTDSMain is the main class that starts and initializes the
RCSwTDS. The user is able to accessRCSwTDSMain through the IT-GUI.
TheRCSwTDSControl is the controller object, which handles the interactions the
user performs with the simulator part. Since it also responsible for changingthe
data of the model object (the trace log, the observed timed stringdata streams,the
enabled transitions table), theRCSwTDSControl is the one which actually does
the simulation.
The RCSwTDSControl interacts with the user and performs the simulation as
follows:

1. The user starts the simulation.

2. The RCSwTDSControl fills the enabled transitions table with the initial
transitions.

3. The user selects one of the initial transition and makes a step.

4. TheRCSwTDSControl steps to the state indicated by the selected initial
transition (this state becomes the ‘current state’).

5. TheRCSwTDSControl clears and fills the enabled transitions table as fol-
lows:

(a) use the CA-Engine to retrieve the outgoing transitions from the current
state

(b) get the timed stringdata streams from TDS-Editor

(c) create a set of name-data-assignments with the timed stringdata streams
for time pointt

(d) combine this set of name-data-assignments with the delayed name-
data-assignments of the previous step

(e) add the combined set of name-data-assignments to the table showing
the observed timed stringdata streams in the GUI RCSwTDS

(f) use the CA-Engine to evaluate each transition with the combined set of
name-data-assignments

(g) each transition which is possible (according to the evaluation), is added
to the enabled transitions table

6. The user selects a transition of the enabled transitions table and makes a step.

7. TheRCSwTDSControl updates its current state with the state indicated by
the selected transition.

8. Steps 5, 6 and 7 are repeated.
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6.7.3 Simulation Coloring

Like the TDSLAS the simulation of a constraint automaton in the RCSwTDS can
be visualized by coloring the states and transitions in the GUI CA-Editor. Since
we reuse the classCAEngineModel of TDSLAS, the other classes responsible for
the coloring can also be reused (see subsection 6.6.7).

6.8 RCSwC

In this section we discuss the design and implementation of the RCSwC.

6.8.1 GUI RCSwC

Through the GUI RCSwC the user is able to:

• load Reo components into the application,

• load constraint automata into the application as Reo connectors,

• connect Reo component ports with Reo connector ports,

• start/stop the simulation.

After a component has been loaded into the application, the ports of this component
are shown in a table in the GUI RCSwC. The same applies for constraint automata.
Next, the user can select a component port and a connector port and connect them.
Figure 6.30 shows a screenshot of the GUI RCSwC.

Figure 6.30: Screenshot of the GUI RCSwC.
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The MVC design pattern[6] is applied for the GUI RCSwC. The class diagram is
depicted in figure 6.31.

• ComponentPort, represents a component port.

• ReoConnectorPort, represents a Reo connector port.

• RCSwCModel, the model of the RCSwC, which contains the data such as
the loaded components ports, loaded Reo connector ports and the connec-
tions made (between components ports and Reo connector ports).

• ComponentPortsTableModel, the adapter class betweenRCSwCModel
and the table which shows the component ports.

• ReoConnectorPortsTableModel, the adapter class betweenRCSwCModel
and the table which shows the Reo connector ports.

• MappingTableModel, the adapter class betweenRCSwCModeland the ta-
ble which shows the connections between component ports and Reo connec-
tor ports.

• RCSwCView, the view of the RCSwC.

• RCSwCControl, the controller of the RCSwC.

• RCSwCMain, the main class which starts and initializes the RCSwC.

6.8.2 Load Component and Component

The class responsible for loading a Reo component into the application is the
classComponentXMLLoadModule . TheComponentXMLLoadModule reads
a Component-XML file where the binary name or the location of a class is spec-
ified. The Component-XML file can also contain extra information that can be
used for initialization of the component. The class is loaded into the memory by
theMultiClassLoader. If the loaded class implements theComponent interface,
then an object is instantiated from this class, which acts as a component instance.
TheComponent interface allows the following:

• pass the Component-XML file to the component instance for initialization,

• get/set the name of the component instance,

• retrieve names of the output ports and input ports,

• connect (disconnect)Sink andSourceobjects to (from) input portname (out-
put portnames).
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Figure 6.31: The class diagram of GUI RCSwC.

Through theSink andSourceobjects the component instance is able to perform
take and write operations with its environment. However, all the objects which
pass through theSink and Source have to implement theData interface. Fig-
ure 6.32 shows the class diagram of the classes that are located in the packages
cwi.reo.rcswc.componentandcwi.reo.rcswc.core.
Some standard components have already been implemented. These components
are located in the packagecwi.reo.rcswc.component.std:

• Taker, a component which allows the user to perform take operations on a
port,

• Writer , a component which allows the user to perform write operations on
port,

• FIFO1, a component which acts as a FIFO1 buffer,

• PythonComponent, a component which enables the support for the script-
ing language Python.

The implementation of the Jython component is discussed in subsection 6.8.3.

6.8.3 Python Component

The Python component is implemented by the classPythonComponent, which
acts as wrapper around a Python interpreter. For the Python interpreterwe use
Jython, which is a pure Java implementation of the scripting language Python.
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Figure 6.32: The class diagram of Load Component and Component.

When a Python component is instantiated, it creates a Python interpreter, loads
the source code of the Python program into the interpreter and executes the source
code. The source code is contained in the Component-XML file, which is given to
the component instance during initialization.
To allow the Python program to perform write and take operations, a proxyis
loaded into the Python interpreter environment, thePythonComponentProxy.
Through this proxy a Python program is able to retrieveSink andSourceobjects by
input and output portnames. However, these objects cannot be used directly within
the interpreter environment, therefore the proxy puts a wrapper aroundthem with
PythonSinkWrapper andPythonSourceWrapper before it returns them to the
Python program (figure 6.33).
Through thePythonSinkWrapper andPythonSourceWrapper the Python pro-
gram is able to perform write and take operations. However, Python data objects
cannot just leave the interpreter environment. ThePythonSourceWrapperwraps
the Python data objects with thePythonDataWrapper before they leave the inter-
preter environment.

6.8.4 RCSwC Control

The RCSwTDS Control is implemented byRCSwCMain andRCSwCControl.
The classRCSwCMain is the main class that starts and initializes the RCSwC.
The user is able to accessRCSwCMain through the IT-GUI.
TheRCSwCControl handles the following interactions the user performs with the
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Figure 6.33: The Python component.

application:

• load Reo components into the application,

• load constraint automata into the application as Reo connectors,

• connect/disconnect component ports with Reo connector ports,

• start/stop the simulation.

Load Reo Components

The loading of Reo components is delegated to Load Component, which is dis-
cussed in subsection 6.8.2. After the loading, the ports of the component areshown
in a table in the GUI RCSwC.

Load Constraint Automaton as Reo Connector

When the user loads a constraint automaton into the RCSwC, aReoConnector-
SimulationEngine object is created for this constraint automaton. TheReoCon-
nectorSimulationEngine is the class that is responsible for simulating the con-
straint automaton as a Reo connector. After the loading the ports of the constraint
automaton are shown in a table in the GUI RCSwC.

Connect Component Ports and Connector Ports

A component port is not directly connected to a connector port, but this is done
with a Sink or Sourceobject that acts as an intermediary. ASink object is used if
the connector port is an input port and aSourceobject in case of an output port.
Hence, a component has no knowledge to which connector it is connectedand vice
versa.
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The simulation of a connector is based on a constraint automaton. Since a con-
straint automaton does not distinguish between input and output ports, the simu-
lated Reo connector, theReoConnectorSimulationEngine, also does not distin-
guish between these. To accommodate this theSink andSourceare generalized
by the abstract classChannelEnd. Figure 6.34 shows the class diagram.

Figure 6.34: The class diagram showing the connection between components and
connectors.

Simulation

When the user starts the simulation, all the loaded components and loaded Reo
connector simulators are executed, each by a separate thread. During the execution
the components perform write and take operations to the connectedSourceand
Sink objects. TheReoConnectorSimulationEngineimmediately goes to sleep
and waits until an operation is being performed at one of its connectedChannel-
End.
TheSource, Sink andReoConnectorSimulationEnginehave mutex locks, which
are used to synchronize the threads and prevent corrupt situations. Adescription
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of how the components,Sink, Source, andReoConnectorSimulationEnginein-
teract with each other is given below:

1. A component performs a write (take) operation to its Source (Sink) object.

2. TheSource(Sink) tries to acquire the read-write-lock of theReoConnector-
SimulationEngine. The read-write-lock prevents that multipleSourceand
Sink objects try to wake theReoConnectorSimulationEngine(see the next
step).

3. TheSource(Sink) wakes theReoConnectorSimulationEngineand goes to
sleep.

4. The awakenedReoConnectorSimulationEngineacquires all the locks of
the ChannelEnd objects it is connected to. This prevents that aChannel-
End continues its work when it wakes up while theReoConnectorSimula-
tionEngine is still busy (see step 8).

5. TheReoConnectorSimulationEngineevaluates the data of itsChannel-
End objects by checking whether a transition is possible in the constraint
automaton.

6. TheReoConnectorSimulationEnginechanges the data of eachChannel-
End if the data of thisChannelEndwas involved in a transition.

7. TheReoConnectorSimulationEnginereleases all the locks of itsChannel-
End objects and wakes them.

8. The awakenedSource(Sink) tries to acquire its own lock. This prevents that
aSource(Sink) continues its work when it wakes up while theReoConnec-
torSimulationEngine is still busy (see step 4).

9. TheSource(Sink) releases its own lock and returns (the data) to the com-
ponent (where the operation originated from).

6.8.5 Simulation Coloring

Each connector that is being simulated in the RCSwC is based on a constraint
automaton that is being viewed in the CA-Editor. Hence, the simulation of a con-
nector can be made visible by coloring the states in the constraint automaton in the
GUI-CA-Editor, just like the TDSLAS and RCSwTDS. To accommodate this we
apply the Observer design pattern[6] on theReoConnectorSimulationEngine:

• ReoConnectorSimulationEngineListener, the listener interface for
ReoConnectorSimulationEngine,

• CAColorControl , which implements the
ReoConnectorSimulationEngineListenerinterface and changes the colors
in ConstraintAutomatonView.
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The class diagram is depicted in figure 6.35.

Figure 6.35: The class diagram ofReoConnectorSimulationEngineListenerand
CAColorControl .
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Chapter 7

Conclusions

In this chapter we summarize our contributions and the MSc project. We briefly
give some ideas how our work could be extended or could benefit other projects.
Finally, the author reflects on the personal experiences.

7.1 Contributions

The main contribution of this MSc project is a tool for constraint automata, con-
sisting of an editor and three simulators. The constraint automata editor allows the
user to visually construct and modify constraint automata. The editor is capable of
saving and loading constraint automata to and from files, which allows the user to
continue previous work, parses input, which prevents the user from creating cor-
rupt constraint automata, and contains a layout engine for the visual representation
of the states and transitions.
The first simulator is the “TDS-Language Acceptor Simulator”, which is able to
check the acceptance of a TDS-language for a constraint automaton. The sec-
ond simulator, the “Reo Connector Simulator with TDS”, is able to simulate a
constraint automaton as a Reo connector where the input is given as timed data
streams. This simulator allows one to study the behavior of Reo connectors in
non-real-time. The third simulator is the “Reo Connector Simulator with Compo-
nents”, which is able to simulate a constraint automaton as a Reo connector with
components attached to it. An API has been provided for implementing arbitrary
software components that can be attached to the simulator, including support for
scripting components in Python. We believe that our tool is the first that contains a
complete visual editor and simulators for constraint automata.
Since constraint automata do not distinguish between input and output, we could
not directly determine values for output from given input. This functionalityis
required for simulating constraint automata as Reo connectors. We illustratedhow
take operations in Reo can be interpreted as the completion of incomplete timed
data streams in constraint automata. Hereby we encountered an issue with the
data constraints: they are propositional formulae, not assignments. We solved
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this issue by using Prolog-style backward-chaining during evaluation of constraint
automaton transitions to bind proper values to the variables representing output
ports in the constraint automatons data constraints.
The tool has a modular design, such that many parts can be reused, replaced or
improved in the future. The design of our tool can easily be extended towards
parameterized constraint automata.

7.2 Summary

Before we started with the MSc project, we performed a literature study to acquire
the background knowledge on Reo and constraint automata and become familiar
with the concepts and terminology.
The actual execution of the MSc project started with the requirements and analysis
of the assignment. The requirements of the assignment were analyzed and decom-
posed into several smaller subrequirements. Each subrequirement was analyzed
again and, where necessary, decomposed into even smaller subrequirements.
Next, we explored which options were available for the implementation each sub-
requirement. For example, the GUI of the constraint automata editor can be im-
plemented by making use of a graph visualization library, such as JGraph orJHot-
Draw, but another more sophisticated option would be Grace, a generatorfor graph
editors.
In the design and implementation phase all the options of each subrequirement
were examined and the most suitable option for this subrequirement (and forthe
overall project) was chosen. For example, from JGraph, JHotDraw and Grace, we
selected Grace, because the generated editor is not only able to visualize constraint
automata, but also able to keep the consistency between the visual representation
of a constraint automaton and its data representation.
The tool has a modular design, such that in the future parts of the tool can easily
be replaced or reused.
To conclude, all the requirements of the assignment were realized and the complete
tool has been delivered, consisting of:

• a constraint automata editor,

• a timed data stream language acceptor simulator,

• a Reo connector simulator with timed data streams,

• a Reo connector simulator with components.

7.3 Future Work

The tool Swiss Watch is a visual editor for constraint automata, but it is still in
an early development stage. Besides the editor functionality, Swiss Watch is able
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to perform the join and hide operation on constraint automata. Our constraint au-
tomata editor is more mature than Swiss Watch, but it does not have the join and
hide features, because these functionalities did not concern this assignment. Since
both are written in Java, our tool could relatively easily be improved with these
features of Swiss Watch by integrating them together.
A feature that can be added to our tool is the support for parameterized constraint
automata. This is useful, because parameterized constraint automata allow usto
describe (more) complex behavior in a compact way (see section 4.4).
Another direction would be extending the current tool towards timed constraint
automata[2], an extended version of constraint automata where time constraints
are added on transitions. Timed constraint automata can be used to describeReo
channels whose behavior involves temporal constraints. For instance, aFIFO1
channel that automatically loses a data item from its buffer when the data item has
stayed in the buffer longer thant units of time.
Currently the simulators block the constraint automata editor when they are run-
ning, preventing the user from modifying the constraint automaton while it is being
simulated. An interesting extension to our tool would be allowing the user to pause
the simulation, modify the constraint automaton through a set of special operations
and then continue the simulation. This would facilitate the research in dynamic
reconfiguration of Reo connectors[5], which is about reconfiguringa connector at
run time while components are still connected to it. This subject is of importance,
because dynamically reconfiguring a connector could lead to a corrupt situation,
where the coordinating connector exposes undesirable behavior.
Since our tool is designed in a modularized way, many parts can be reused.For
example, the constraint automata engine, which is able to evaluate data constraints
in a Prolog like manner, could be used in other constraint automata projects, such
as model checking tools. The same applies for the names parser and the datacon-
straint parser.

7.4 Personal Experience

For the last ten months I worked on this MSc project, which included a literature
study, analysis of requirements, design and implementation of the tool and writing
of the thesis. The project was conducted at the CWI in Amsterdam. Although the
traveling from The Hague to Amsterdam and back was hard, I enjoyed working
there, because of its international environment with researchers from all kind of
nationalities. For the most part I worked autonomously and independently onthe
project, but I had two supervisors, Nikolay Diakov of CWI and Kees Pronk from
TU Delft, who guided me through the overall process.
During the literature study I experienced reading papers about a new subject and
how to acquire the knowledge needed for a project. Next, I analysed the require-
ments and decomposed them into subrequirements. For the implementation of each
subrequirement I searched and evaluated which technique was the most appropi-
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ate. During the analysis of requirements I tried to foresee the potential areas that
could cause problems later on and look for the best way to deal with them. The
analysis of requirements phase was personally the most interesting phase,because
it required me to think out of the box in order to come up with an elegant solution
for each problem.
During the design and implementation of the tool I did not use UML often nor did
I document a lot. Keeping UML diagrams and documentation consistent with the
actual progress of the project requires a lot of time. Since the project was not that
big and consisted only of one person, I did not find that having UML diagrams and
documentation benefit against the extra time it requires to create them. The only
documentation I kept was a list of the work I did and the problems I encountered
during the project, which served as input for my written report, this thesis. Iused
UML only in complex situations where a lot of classes were involved. This was
especially the case during the design and implementation of the graphical user
interfaces. However, I found out that I did not have enough experience with UML
modeling certain situations. Nikolay Diakov helped me to improve on this aspect.
After the design and implementation I did create the UML diagrams and docu-
mentation and included them in my thesis, because they were necessary for the
developers who would work on the tool after me. The writing of the thesis was
difficult for me, not only because of the lack of experience with writing in English,
but also with scientific writing in general. Luckily, during the writing process I
got the support from both my supervisors. However, I do think that the TU Delft
should pay more attention to this during student projects in general, if they want
to prepare future researchers, because writing academic papers is animportant and
time-consuming part of the job. Another difficulty I experienced was choosing the
right level of detail for the thesis. Should the thesis be a high level document where
only the concepts are clarified or a low level document where even the implemen-
tation is explained?
During the project I dealt with two supervisors. Nikolay Diakov, who was my
daily supervisor and therefore more involved in the project, was able to support
me throughout the project and gave constructive critisism where necessary. Kees
Pronk was less involved in the beginning, but became more involved during the
writing of the thesis. Since he was less involved in the project, he could easily spot
the gaps and holes in the thesis that might confuse the general reader.
I found this project very interesting, because it required me to use the knowledge
acquired at TU Delft, but the project also gave me opportunity to improve my
knowledge, to work in an international environment at a highly valued research
institute and to gain experience with scientific writing. Finally, I want to conclude
that I am very glad how the project proceeded and very content with the end result.
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Appendix A

User’s Manual

This tutorial gives an introduction to the tool, which consists of:

• the Constraint Automata Editor,

• the Timed Data Stream Language Acceptor Simulator (TDSLAS),

• the Reo Connector Simulator with Timed Data Streams (RCSwTDS),

• the Reo Connector Simulator with Components (RCSwC).

First, the installation of the tool is explained and how to run it. Then we continue
to the constraint automata editor where a small constraint automaton will be cre-
ated as an example. Next, we proceed to the different simulators and explainhow
constraint automata are being simulated using the example.

A.1 Installation

A.1.1 System Requirements

The tool requires an operating system with Java Runtime Environment (JRE)ver-
sion 5 or above. The JRE is supported by several operating systems, e.g. Windows,
Linux and Solaris. It can be downloaded fromhttp://www.java.com/.
The graph layout programdot must be installed and reachable via the PATH envi-
ronment variable (reachable from any directory).dot is part of Graphviz, which is
open source graph visualization software. Graphviz has several graph layout pro-
grams and is supported by Windows, Linux and Apple. It can be downloaded from
http://www.graphviz.org/.

A.1.2 Installing and Running

The tool’s binaries are shipped as compressed zip or tar archive. Whenuncom-
pressed you get the following files and directory structure:
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.\ConstraintAutomataEditor andSimulators.jar the executable file

.\lib contains the libraries
the tool depends on

The tool can be started from the command line as follows:
java -jar Constraint Automata Editor and Simulators.jar

A.2 Constraint Automata Editor

When you start the tool, you see a window with a workspace area and on topthe
usual menu bar and tool bar. In the workspace area constraint automaton docu-
ments can be viewed, each in a separate document window. At the bottom of a
document window there is a properties pane where you can see and modifythe
properties of a constraint automaton. The menu bar and tool bar provide the con-
trols you need to work with documents. Some of the controls are only accessible
if a document is opened.

Figure A.1: The workspace area.

Menu Bar

In the menu bar you can perform the following actions:

• File

New: Creates a new empty constraint automaton document.

Open: Opens a constraint automaton document from a CA-XML file.
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Open Recent: Shows the 10 last documents which have been opened.

Save: Saves a constraint automaton document to a CA-XML file.

Save as: Saves a constraint automaton document to a CA-XML file under
a specific name.

Close: Closes the current.

Quit: Shuts down the application.

• Edit

Edit State/Transition/CA: Puts the application in the edit-mode. In this
mode the layout and properties of states, transitions and the constraint
automaton can be modified.

Add State: Puts the application in the ‘add state’-mode. In this mode a state
can be added.

Add Transition: Puts the application in the ‘add transition’-mode. In this
mode a transition can be added.

Remove State/Transition: Puts the application in the remove-mode. In this
mode a state or transition can be removed.

Perform Layout: rearranges the layout of states and transitions of a con-
straint automaton.

• Windows

Tile: tiles the document windows.

Cascade: cascades the document windows.

Tool Bar

The tool bar provides the following controls (figure A.1):

• A: Creates a new empty constraint automaton document.

• B: Opens a constraint automaton document from a CA-XML file.

• C: Saves a constraint automaton document to a CA-XML file.

• D: Saves a constraint automaton document to a CA-XML file under a specific
name.

• E: Closes the current document window.

• F: Shuts down the application.

• G: Puts the application in the edit-mode. In this mode the layout and prop-
erties of states, transitions and the constraint automaton can be modified.
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• H: Puts the application in the ‘add state’-mode. In this mode a state can be
added.

• I : Puts the application in the ‘add transition’-mode. In this mode a transition
can be added.

• J: Puts the application in the remove-mode. In this mode a state or transition
can be removed.

• K : Rearranges the layout of the states and transitions of the constraint au-
tomaton.

• L : Opens the TDSLAS

• M : Opens the RCSwTDS.

• N: Opens the RCSwC.

A.2.1 Add State

To add a state to the constraint automaton perform the following steps:

1. Put the application in the ‘add state’-mode.

2. Left mouse click on a empty place inside the document window. At this spot
the new state will created.

3. The application automatically returns to the edit-mode.

A state becomes an initial state when an initial transition points towards it. See
subsection A.2.3 how to create an initial transition

A.2.2 Modify State Properties

The state name is the only property of a state. To modify the state name perform
the following steps:

1. Put the application in the edit-mode.

2. Left mouse click on the state of which the name needs to be changed. The
properties pane will show the state name.

3. Modify the state name in the properties pane.

4. Left mouse click on the Save button in the properties pane to save the changes.

A state name may only contain letters, numbers, hyphens and underscores.
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A.2.3 Add Transition

Transition

To add a transition between two states perform the following steps (figure A.2):

1. Put the application in the ‘add transition’-mode

2. Choose a state, the source state, by pressing down on it and holding theleft
mouse click.

3. Without releasing move the mouse to a state, the target state.

4. Release the mouse on the target state. This creates a transition from the
source state to the target state. If the source state and target state are the
same, then a transition will be created from a state to itself.

5. The application automatically returns to the edit-mode.

Figure A.2: Create a transition between two states.

Initial Transition

To create an initial transition perform the following steps:

1. Put the application in the ‘add transition’-mode.

2. Press down on a empty place inside the document window and hold the left
mouse click.

3. Without releasing move the mouse to a state.

4. Release the mouse on this state. This creates an initial transition towards the
state. The state becomes an initial state.

5. The application automatically returns to the edit-mode.
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Precedence Operator
1 ( ) parenthesis
2 ! unary not
3 == equal

!= not equal
4 && Boolean AND
5 || Boolean OR

Table A.1: The operators that can be used in data constraints and their precedence.

Term
data(<port name>) represents the data which is assigned to<port name>

"<string>" represents a stringdata constant

Table A.2: The terms that can be used in data constraints.

A.2.4 Modify Transition Properties

The properties of a transition are the port names and the data constraints. To modify
properties of a transition perform the following steps:

1. Put the application in the edit-mode.

2. Left mouse click on the transition of which the properties need to be changed.
The properties pane will show the transition properties.

3. Modify the transition properties in the properties pane.

4. Left mouse click on the Save button in the properties pane to save the changes.

A port name may only contain letters, numbers, hyphens and underscores. To enter
multiple port names separate them by commas.
A data constraint is a propositional formula. Multiple data constraints can be en-
tered by separating them by new lines. Table A.1 lists the operators (and their
precedence) that can be used in a data constraint. Table A.2 shows the terms which
are allowed in a data constraint. Here are some examples of a data constraints:
data(A)==data(B)
data(A)=="d1"
!(data(A)==data(B) && data(A)=="d1")

A.2.5 Modify Constraint Automaton Properties

The constraint automaton has one property, the port names. To modify the port
names of the constraint automaton perform the following steps:

1. Put the application in the edit-mode.
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2. Left mouse click on empty place inside the document window. The proper-
ties pane will show the port names of the constraint automaton.

3. Modify the port names in the properties pane.

4. Left mouse click on the Save button in the properties pane to save the changes.

A port name may only contain letters, numbers, hyphens and underscores. To enter
multiple port names separate them by commas.

A.2.6 Perform Layout

The layout of the states and transitions can be changed.

Move State

To move the states perform the following steps:

1. Put the application in the edit-mode.

2. Choose a state by pressing down on it and holding the left mouse click.

3. Without releasing move the mouse to another location. The state will follow
the mouse movements.

4. Release the mouse on the desired location.

Move Transition

In the constraint automaton editor a transition is drawn as an arrow. This arrow can
consist of one or more segments. To divide a segment into two segments perform
the following steps (figure A.3):

1. Put the application in the edit-mode.

2. Left mouse click on the transition which needs to be divided.

3. Right mouse click on the segment of the arrow which needs to be divided.A
popup menu will be shown.

4. Select ‘Subdivide Curve Segment’ in the popup menu. The segment will be
divided in two.

After a segment is divided into two segments a point will be shown which connects
the two segments. This point can also be moved as follows (figure A.4):

1. Put the application in the edit-mode.

2. Left mouse click on the transition which needs to be divided.
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Figure A.3: Subdivide a segment of the arrow representing a transition.

3. Press down on the point which needs to be moved and hold the left mouse
click.

4. Without releasing move the mouse to another location. The point will follow
the mouse movements.

5. Release the mouse on the desired location.

Figure A.4: Move a point connecting two segments to another location.

Such a point can also be deleted, which causes the two segments to become one
segment again. To do this follow these steps (figure A.5):

1. Put the application in the edit-mode.

2. Left mouse click on the transition which needs to be divided.

3. Right mouse click on the point which needs to be deleted. A popup menu
will be shown.

4. (a) Select ‘Delete Point’ in the popup menu. The two segments connected
by this point will become one segment.
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(b) Select ‘Delete All Points’ in the popup menu. All the points of the
segments of the arrow are deleted which causes the arrow to consist of
one segment again.

Figure A.5: Delete a point which causes the two segments to become one again.

Each segment of the arrow can be in two modes: a Bezier mode and a straight
mode. To select the mode for a segment do as follows:

1. Put the application in the edit-mode.

2. Left mouse click on the transition which needs to be divided.

3. Right mouse click on the segment of which the mode needs to be changed.
A popup menu will be shown.

4. (a) Select ’Bezier Mode’ in the popup menu. The segment will become a
Bezier curve.

(b) Select ‘Straight Mode’ in the popup menu. The segment will become
a straight line.

When a segment is in the Bezier mode two controls are shown as little black
squares. By moving these controls the shape of Bezier curve can be controlled.
Perform the follow steps to move these controls (figure A.6):

1. Put the application in the edit-mode.

2. Left mouse click on the transition of which the shape needs to be changed.
When a segment is in Bezier mode, the two controls will become visible.

3. Press down on the control which needs to be moved and hold the left mouse
click.

4. Without releasing move the mouse to another location. The control will
follow the mouse movements.

5. Release the mouse on the desired location.
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Figure A.6: Move a control which causes the segments to change shape.

Automatic Layout

To perform automatic layout of the states and transitions of the constraint automa-
ton click the ‘Perform Layout’ button on the tool bar (buttonK , see figure A.1).

A.2.7 Exercise

In this subsection we create a small constraint automaton as an example. The
constraint automaton will be one describing the behavior of a Sync channel(see
subsection 4.1.1). This example will be used again in the next sections explaining
the simulators.
To create the Sync channel constraint automaton perform the following steps:

1. Create a new empty constraint automaton document.

2. Change the port names of the constraint automaton to:A, B.

3. Add a state.

4. Create a transition from the state to itself.

5. Change the port names of the transition to:A, B.

6. Change the data constraint of the transition to:data(A)==data(B).

7. Save the constraint automaton document to a CA-XML file.

Figure A.7 shows how the result should look like after performing these steps.

A.3 Timed Data Stream Language Acceptor Simulator

To start the TDSLAS select the document window of the constraint automaton
(in the constraint automaton editor) that needs to be simulated and click on the
TDSLAS button at the toolbar (buttonL , see figure A.1).
When you start the TDSLAS a window will be shown which consists of two parts
(figure A.8):

• the simulator part (left),

• the timed data stream editor part (right).
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Figure A.7: A constraint automaton describing the behavior of a Sync channel.

Figure A.8: A screenshot of the TDSLAS.
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A.3.1 Timed Data Stream Editor

The timed data stream editor consists mainly of a table, which shows the timed
data streams. The second column of the table shows the time. In the first column
there is an arrow which will indicate the current time step during the simulation.
The other columns represents timed data stream, each associated with a port of the
constraint automaton. The timed data streams can directly be edited through the
table.
The four buttons at the bottom of the timed data stream editor do the following:

• Load: Loads a timed data stream into the editor from a TDS-XML file and
associates it with the constraint automaton port indicated by the pulldown
menu.

• Save: Saves the timed data stream indicated by the pulldown menu to a TDS-
XML file.

• Insert: Inserts a row into the timed data stream tableafter the selected row.

• Delete: Deletes the row which is selected in the timed data stream table.

A.3.2 Simulator

The simulator part has two tables:

• the trace table, showing the history of the steps made during the simulation.

• the enabled transitions table, showing the transitions which are possible for
a step.

The three buttons at the bottom of the simulator part do the following:

• Start: Starts the simulation with the timed data streams in the timed data
stream editor.

• Step: Performs a simulation step if possible.

• Reset: Stop the simulation and resets the trace table and the enabled transi-
tions table.

A.3.3 Exercise

In this subsection we simulate the constraint automaton of the example created in
subsection A.2.7 in the TDSLAS.

1. Load the constraint automaton of the example into the constraint automaton
editor.

2. Start the TDSLAS.
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3. Create timed data streams such as shown in figure A.8.

4. Start the simulation. The enabled transitions table shows which transitions
can be made.

5. Perform a simulation step. The step selected in the enabled transitions table
will be made and added to the trace table. The enabled transitions table is
again refilled with the possible transitions for the next step.

Step 5 will be repeated until no next step can be made, because the enabledtransi-
tions table is empty, which means that no transitions are possible.
By selecting a step in the trace table you can perform this step again. You caneven
select another transition for this step from the enabled transitions table.
The simulation is also visualized using colors in the constraint automaton that is
viewed in a document window of the constraint automaton editor. The selected
transition of the enabled transitions table is colored orange. The current state is
colored green. The last transition made is colored yellow.

A.4 Reo Connector Simulator with Timed Data Streams

To start the RCSwTDS select the document window of the constraint automaton
(in the constraint automaton editor) which needs to be simulated and click on the
RCSwTDS button at the toolbar (buttonM , see figure A.1).
When you start the RCSwTDS a window will be shown which consists of two parts
(figure A.9):

• the simulator part (left and bottom right),

• the timed data stream editor part (upper right).

The timed data stream editor is equivalent with the timed stream editor of the TD-
SLAS (see subsection A.3.1).

A.4.1 Simulator

The simulator part is almost equivalent with the simulator part of the TDSLAS.
The first difference is the table shown in the bottom right of the window. Thistable
shows the observed timed data streams during the simulation.
Second, the RCSwTDS tries to complete incomplete timed data streams. An in-
complete entry in a timed data stream can be created with the string “\read” (see
figure A.9).

A.4.2 Exercise

In this subsection we simulate the constraint automaton of the example created in
subsection A.2.7 in the RCSwTDS.
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Figure A.9: A screenshot of the RCSwTDS.

1. Load the constraint automaton of the example into the constraint automaton
editor.

2. Start the RCSwTDS.

3. Create timed data streams such as shown in figure A.9.

4. Start the simulation. The enabled transitions table shows which transitions
can be made. It also shows the completed timed data tuple.

5. Perform a simulation step. The step selected in the enabled transitions table
will be made and added to the trace table. The enabled transitions table is
again refilled with the possible transitions for the next step. The observed
timed data streams table is updated for the current observed data.

By selecting a step in the trace table you can perform this step again. You caneven
select another transition for this step from the enabled transitions table.
The simulation is also visualized using colors in the constraint automaton that is
viewed in a document window of the constraint automaton editor. The selected
transition of the enabled transitions table is colored orange. The current state is
colored green. The last transition made is colored yellow.

A.5 Reo Connector Simulator with Components

To start the RCSwC click on the RCSwC button at the toolbar (buttonN, see fig-
ure A.1). This button is only enabled when constraint automaton documents are
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opened in the constraint automaton editor.
When you start the RCSwC a window will be shown which consists of mainly
three tables(figure A.10):

• a component ports table, showing the loaded components and the ports of
these components,

• a connector ports table, showing the loaded constraint automaton (which will
act as connectors) and the ports of these constraint automata,

• a connections table, showing the connections made between component ports
and connector ports.

Figure A.10: A screenshot of the RCSwC.

A description of what the buttons do is given below.

• Load Component: Loads a component into the RCSwC from a Component-
XML file.

• Load Reo Connector: Loads a constraint automaton as a connector into the
RCSwC. Only the constraint automata which are opened in the constraint
automaton editor can be loaded.
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• Connect: Connects a component port with a connector port.

• Disconnect: Disconnects a component port from a connector port.

• Start: Starts the simulation.

• Stop: Stops the simulation.

A.5.1 Implementing Components

To implement a component you need to create a Java class that implements the
Component interface from thecwi.reo.rcswc.componentpackage. Through this
interface the RCSwC is able to communicate with the component and pass the
SourceandSink objects through which the component can perform write and take
operations.

A component is loaded into the RCSwC through a Component-XML file, which
contains the location of the component. The location can be given by the path to
the class file. This path can be absolute or relative to the Component-XML file,for
example:
<?xml version="1.0"encoding="TF-8">
<component>
<classfile>Taker.class</classfile>
</component>

Instead of specifying the path, the binary name of the class can be given.However,
in this case the class needs to be reachable from the classpath. An example isgiven
below.
<?xml version="1.0"encoding="TF-8">
<component>
<classname>
cwi.reo.rcswc.component.std.Taker
</classname>
</component>

The following standard components have already been implemented:

• Taker: A component which can be used to perform take operations. The
binary name iscwi.reo.rcswc.component.std.Taker.

• Writer: A component which can be used to perform write operations. The
binary name iscwi.reo.rcswc.component.std.Writer.

• FIFO1: A component which acts a FIFO1 channel. The binary name is
cwi.reo.rcswc.component.std.FIFO1.
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• Python component: This component will be explained in subsection A.5.2.
The binary name is
cwi.reo.rcswc.component.std.PythonComponent.

A.5.2 Implementing Python Components

The Python component can be used to load components written in the scripting
language Python. The source code of the Python component needs to bespecified
in the Component-XML file and also the input and output port names that are going
to be used.
The Python component is able to perform take and write operations throughsinks
and sources. These sinks and sources can be requested by thecomponentProxyas
follows:

• componentProxy.getInputPort("X"): Returns the sink connected
to port “X” (if not connected it returns null).

• componentProxy.getOutputPort("Y"): Returns the source con-
nected to port “Y” (if not connected it returns null).

An example of a Component-XML file for a Python component is given below.
<?xml version="1.0" encoding="UTF-8"?>
<component>
<classname>
cwi.reo.rcswc.component.std.PythonComponent
</classname>
<inputports><name>X</name></inputports>
<outputports><name>Y</name></outputports>
<pythoncode>portX = componentProxy.getInputPort("X")
portY = componentProxy.getOutputPort("Y")
print portX.take()
portY.write("foo")</pythoncode>
</component>

A.5.3 Exercise

In this subsection we simulate the Sync channel constraint automaton of the exam-
ple created in subsection A.2.7 in the RCSwC.

1. Create two CA-XML files of the constraint automaton of the example.

2. Load both constraint automata into the constraint automaton editor.

3. Start the RCSwC.

4. Create a Component-XML file for the following components (see subsection
A.5.1):

119



(a) Taker

(b) Writer

(c) FIFO1

5. Load a Taker component in to the RCSwC and give it the name “Taker”.

6. Load a Writer component in to the RCSwC and give it the name “Writer”.

7. Load a FIFO1 component in to the RCSwC and give it the name “FIFO1”.

8. Load both constraint automata into the RCSwC and give them the names
“Sync-1”, “Sync-2”. The RCSwC will simulate these constraint automata as
Sync channels.

9. Connect the component ports and the connector ports as shown in figure
A.10

10. Start the simulation. The RCSwC simulates the configuration of the compo-
nents and connectors as shown in figure A.11.

Figure A.11: The configuration of the components and connectors.
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Appendix B

Developer’s Manual

The programming language used for the tool is Java 1.5, which can be downloaded
from http://java.sun.com/. The tool is developed using NetBeans. This
is an open source Java IDE from Sun, which can be downloaded fromhttp:
//www.netbeans.org/. If one is interested in the source code of the tool, it
is recommended to use NetBeans. However, this is not necessary.
The global structure of the directory containing the source code is as follows:
.\images some images
.\lib the external libraries
.\lib\Grace Grace, the graph editor generator
.\lib\Grappa Grappa, used for reading dot-files
.\lib\JavaCC JavaCC, the parser generator
.\lib\JMDIFrameWork Java MDI Application Framework,

used for making Multiple Document
Interface applications

.\lib\Jython Jython, a pure java implementation
of the programming language Python

.\lib\PrologCafe PrologCafe, a translator system which
translates prolog-source-files to
java-source-files

.\nbproject the NetBeans project files

.\src the Java source files

.\src spec files the specification files from
which java-files are generated

.\src spec files\DataConstraintChecker the prolog program used to check the
dataconstraints of transitions

.\src spec files\DCParser the specification files of the
DataConstraint Parser

.\src spec files\Grace the specification files of the graph
editor

.\src spec files\NameSetParser the specification files of the NameSet
Parser
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