Centrum voor Wiskunde en Informatica

REPORTRAPPORT

SIEIN]

Software Engineering

f Software ENgineering

EN Design and implementation of an editor and simulators
for constraint automata in the context of Reo

Hok Kwan Kan

ReporT SEN-E0512 Novemeer 2005



CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research [NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-orienfed structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA|
Software Engineering (SEN)
Modelling, Analysis and Simulation [MAS]

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-369X



Design and implementation of an editor and
simulators for constraint automata in the context of
Reo

ABSTRACT

The coordination language Reo offers a flexible framework for compositionally constructing
software systems out of components through connectors. These connectors not only connect
components with each other, but also exogenously coordinate the interactions between them.
The connectors themselves are compositionally built out of simpler connectors, where the
simplest connectors are a set of user-defined channels with well-defined behavior. Formal
semantics can be given to Reo using constraint automata and timed data streams. Constraint
automata can be seen as an extension of the finite automata, where the language accepted by
an automaton is specified by using timed data streams. In this thesis we describe the design
and implementation of a tool for constraint automata consisting of an editor and three
simulators. The constraint automata editor allows users to visually construct and modify
constraint automata. The first simulator for constraint automata acts as a language acceptor of
timed data streams. The second one simulates a constraint automaton as a Reo connector
where the input is defined as timed data streams. The third simulator simulates a constraint
automaton as a Reo connector where components are attached to. These components deliver
the input at real-time instead of using predefined timed data streams.

1998 ACM Computing Classification System: D.1.7,0.2.2,0.2.6,D.2.11,D.3.4,1.6.8

Keywords and Phrases: constraint automata, simulators, visual programming, modular design, Reo

Note: The author carried out this work at CWI as an assignment for a Masters degree in Computer Science at the Delft
University of Technology






Design and Implementation of an Editor and
Simulators for Constraint Automata in the Context
of Reo

Hok Kwan Kan

fuDelft (am

Delft University of Technology Centrum voor Wiskunde en Informatica






Design and Implementation of an Editor and
Simulators for Constraint Automata
in the Context of Reo

Master’s Thesis in Computer Science

Software Engineering group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Hok Kwan

18th October 2005



Author
Hok Kwan Kan
Title
Design and Implementation of an Editor and Simulators for Constraint
Automata in the Context of Reo
MSc presentation
31st October 2005

Graduation Committee
Prof. Dr. A. van Deursen (chair) Delft University of Technology
Prof. Dr. F. Arbab Centrum voor Wiskunde en Informatica
Dr. N.K. Diakov Centrum voor Wiskunde en Informatica
Ir. C. Pronk Delft University of Technology



Abstract

The coordination language Reo offers a flexible framework for compasitip
constructing software systems out of components through connectogse Ton-
nectors not only connect components with each other, but also exagjgrum-
ordinate the interactions between them. The connectors themselves arescompo
tionally built out of simpler connectors, where the simplest connectors seeat
user-defined channels with well-defined behavior.

Formal semantics can be given to Reo using constraint automata and timed data
streams. Constraint automata can be seen as an extension of the finite automata
where the language accepted by an automaton is specified by using timed data
streams.

In this thesis we describe the design and implementation of a tool for constuaint
tomata consisting of an editor and three simulators. The constraint automata edito
allows users to visually construct and modify constraint automata. Theifinst

lator for constraint automata acts as a language acceptor of timed data sfféams
second one simulates a constraint automaton as a Reo connector wheguthe in

is defined as timed data streams. The third simulator simulates a constraint au-
tomaton as a Reo connector where components are attached to. Thesaeeoispo
deliver the input at real-time instead of using predefined timed data streams.






Acknowledgments

This thesis reports on the results of the MSc project | carried out at fte&e En-
gineering group of the Computer Science department at Delft Univerkitgan-
nology. The work was conducted within the SEN3 Group at CWI in Amsterdam.
CWI stands for Centrum voor Wiskunde en Informatica, which is the NdtirRaa
search Institute for Mathematics and Computer Science in the Netherlands. Th
SEN3 Group at CWI performs research in the area of coordination dayegu

| learned about the coordination language Reo from a guest lecturemreliby
Prof. Dr. F. Arbab at the TU Delft. Reo immediately caught my interest, lsxau
of its simplicity and expressiveness. When offered the opportunity to dojagb

at CWI on constraint automata, which are related to Reo, | took it after little con
sideration.

Before continuing with my MSc thesis, | would like to use this opportunity to
thank a few people. | would like to thank my daily supervisor at the CWI Dr..N.K
Diakov for his support and answering my questions throughout this M§eqi.

| would like to thank my supervisor at the TU Delft Ir. C. Pronk for his patien

and constructive comments on my thesis. My thanks also go to Prof. DrbBbAr

for this opportunity to work on this subject and to the people of the SEN3pgrou
who made my stay at the CWI an enjoyable and interesting time. Next, | would
like to thank my friends who gave me the needed distractions at set times. Last
but certainly not least, | would like to thank my family for their support during my
years at the university.

Hok Kwan Kan

Delft, The Netherlands
18th October 2005



Vi



Contents

Preface v
1 Introduction 1
1.1 Background . . .. ... .. .. ... .. 1
1.2 Objective and Motivation . . . . ... ... ... ......... 2
1.3 Relatedwork . . . ... ... .. .. ... ... ... 2
1.4 Approach . .. ... .. .. . . ... 4
15 ThesisOutline . . .. ... .. .. ... ... ... ... ... 5
2 Reo 7
21 BasicConcepts . .. .. .. .. . ... 7
22 Channels . ... ... . ... ... 8
221 SYynC ... e 8
222 SyncDrain . ... ... ... .. ... 9
2.2.3 SyncSpout . ... .. 9
224 FIFOandFIF® . ... ... ... ... ......... 9
225 LOSSySyNC . .. .. ... 10
2.3 Join ..o e 10
2.3.1 Source node: replicate . . . . ... ... ... .. 10
2.3.2 Sinknode:merge . . . . ... ... 11
2.3.3 Mixed node: replicate+merge . . . . . . ... ... ... 11
24 Hide . . . . . . e 11
25 Examples . . . .. 12
2.5.1 AsynchronousDrain .. ... ............... 12
252 RegulatedReads ... ................... 13
2.5.3 Barrier Synchronization . . ... ... .......... 13
2.5.4 Exclusive and Inclusive Router. . . . . ... ... .... 14
3 Constraint Automata 17
3.1 FiniteAutomata . . . . . . ... ... ... ... 17
3.2 TDS-language . . . . . . . ... 18
3.21 Stream . .. .. ... 18
3.22 DataStream. .. .. .. ... .. ... 19

Vii



3.2.3 TimeStream . . . . . . .. 19

3.24 TimedDataStream . . .. ... .. ... ... ...... 19
3.3 Defining Constraint Automata . . . . ... ... ......... 20
331 Ports . ... 20
3.3.2 Transitions . . . . .. .. ... 20
3.3.3 Name-data-assignments . . .. .............. 20
3.34 DataConstraints . . . ... ... ... .. ........ 20
3.3.5 Definition of Constraint Automata . . . . ... ... ... 21
3.3.6 Deterministic vs Non-deterministic . . . . . ... .. .. 22
3.4 TDS-language and Constraint Automata . . . . .. .. ... ... 22
Modeling Reo by Constraint Automata 25
41 Channels . .. ... .. ... .. 25
4.1.1 SYNC . . .o 25
4.1.2 SyncDrainand SyncSpout . . .. ... ... ....... 26
413 FIFOL1. .. ... . . . e 26
414 LOSSYSYNC . . . . . . o 27
4.2 JOIN . ... e e e e 27
4.2.1 Product-construction . . . . ... ... ... ... ... 28
422 Merger . . . ... 30
43 Hide . . . . ... 30
4.4 Parameterized Constraint Automata . . . . .. ... ....... 31
Requirements and Analysis 35
5.1 MScAssignment . . . ... ... 35
5.2 Existing Reo and Constraint Automata Tools . . . . . .. .. ... 36
5.3 Operating System and Programming Language . . ... .. ... 36
5.4 Globaloverview . . . . . .. ... .. 37
5.4.1 Integrated ToolGUI(IT-GUI) . .. ... ... ...... 37
5.4.2 Constraint Automaton Model (CAM) . . .. .. ... .. 40
543 CA-Editor. . ... ... .. ... 41
544 LayoutEngine .. ......... ... .. .. ..., 43
5.4.5 Load/Save Constraint Automaton Model (LSCAM) . . . . 44
5.4.6 TDS-Language Acceptor Simulator (TDSLAS) . . . . .. 46
5.4.7 Reo Connector Simulator with TDS (RCSwWTDS) . . . . . 47
5.4.8 Timed Data Stream Model (TDSM) . . . .. .. .. ... 50
5.4.9 Load/Save Timed Data Stream (LSTDS) . ... ... .. 50
5.4.10 Reo Connector Simulator with Components (RCSwC) .. 50
54.11 Component . . . . .. . .. . . .. .. 53
5.4.12 LoadComponent . . . . . .. .. ... ... 53
5.4.13 Constraint Automaton Engine (CA-Engine) . . . . . . .. 54
5.5 RequirementsforthelIT-GUI . . . ... ... ........... 55
5.6 Requirements for the CA-Editor . . . .. ... ... ....... 55
5.7 Requirementsforthe TDSLAS . . . . . .. .. ... ... .... 56

viii



5.8 Requirementsforthe RCSWTDS . . .. .. ... ... ...... 56

5.9 Requirementsforthe RCSWC . ... ... ... ......... 56
5.10 Requirements forthe CA-Engine . . . . . ... ... ... .... 57
Design and Implementation 59
6.1 Programminglanguage. . ... .. ... ... ... .. ..... 59
6.2 Architectural Overview . . . . . . ... ... ... ... ..... 59
6.3 CA-Editor . . . .. ... ... 60
6.3.1 CAM . . . . e 61
6.3.2 LSCAM. . . . . .. . . .. 66
6.3.3 GUI CA-Editor and CA-Editor Control . . . . ... ... 67
6.3.4 InputParsers . . .. .. .. ... .. .. .. .. ... 70
6.3.5 LayoutEngine .. .. .. .. .. ... ... .. ..., 71
6.4 IT-GUI . .. . . . . e 72
6.5 CA-Engine . ... . . . . . ... 73
6.6 TDSLAS . . . . . . . e 75
6.6.1 Model-View-Controller Design Pattern . . . . . .. ... 76
6.6.2 TDSMandLSTDS . ... ... .. ... ... ...... 76
6.6.3 GUITDS-Editor . . ... ... .. ... .. ....... 77
6.6.4 TDS-EditorControl . . . ... ... ... ........ 80
6.6.5 GUITDSLAS . .. ... .. .. .. . .. ... 80
6.6.6 TDSLASControl . . . . ... ... ... .. ....... 82
6.6.7 Simulation Coloring . . . . ... ... ... ....... 84
6.7 RCSWTDS . .. .. . . . . e 84
6.7.1 GUIRCSWTDS . . ... ... .. .. . ... ...... 85
6.7.2 RCSwTDSControl . . . . ... ... ... ... ..... 87
6.7.3 SimulationColoring . . . .. ... ... ... ...... 88
6.8 RCSWC . . .. . . . . e 88
6.8.1 GUIRCSWC . ... ... .. .. . ... ..., 88
6.8.2 Load Componentand Component . . .. .. .. .. ... 89
6.8.3 PythonComponent . . .. .. .. ... ... ....... 90
6.8.4 RCSwCControl . ... .................. 91
6.8.5 Simulation Coloring . . . . ... ... ... ... ..., 94
Conclusions 97
7.1 Contributions . . . . ... .. 97
7.2 SUMMANY . . . o e e 98
7.3 FutureWork . . . . .. ... e 98
7.4 Personal Experience. . . . . . .. ... e 99
User’s Manual 103
Al Installation . .. ... ... ... ... 103
A.1.1 System Requirements . . ... ... ........... 103
A.1.2 InstalingandRunning . . . ... ... .......... 103

4



A.2 Constraint Automata Editor . . . . . . . . ... ... ... ..., 104

A21 AddState . .. ... ... ... .. ... 106
A.2.2 Modify State Properties . . . . ... ... ... ..... 106
A.2.3 AddTransition . ... .. ... ... ... ........ 107
A.2.4 Modify Transition Properties . . . . . .. ... ... ... 108
A.2.5 Modify Constraint Automaton Properties . . . . . .. .. 108
A.2.6 PerformlLayout. . ... ... ... .. ... ....... 109
A27 Exercise. .. .. .. ... ... 112
A.3 Timed Data Stream Language Acceptor Simulator . . . . . . . .. 112
A.3.1 Timed Data Stream Editor . . . . ... ... ... .... 114
A3.2 Simulator . . . ... 114
A3.3 Exercise. . ... ... . ... 114
A.4 Reo Connector Simulator with Timed Data Streams . . . . . . .. 115
A4l Simulator . .. ... 115
A42 EXxercise. . . .. .. .. .. 115
A.5 Reo Connector Simulator with Components . . . . . .. .. ... 116
A5.1 Implementing Components . . . . . ... ... ...... 118
A.5.2 Implementing Python Components . . . . .. ... ... 119
AB53 Exercise. . ... .. .. ... ... 119
B Developer's Manual 121



Chapter 1

Introduction

In the first section of this chapter we give a short introduction to the brackgl

of this thesis, the coordination language Reo and constraint automata,gdllmw
a description of the MSc project assignment and its motivation. Next, the efork
research related to ours is discussed. The following section desctibaproach
to the MSc project. The chapter concludes with an overview of the remadrider
this thesis.

1.1 Background

The current methodology in software development is still based on a matkdar
sign, where an application consists of modules. These modules offé¢iciaidies

via well-defined interfaces, which the modules use to refer directly to etheln. o
These direct references result in tight dependencies between thdesogthich
prevent replacing a module without too much additional work or the reuswdf
ules.

This in contrast to methodologies used in other, mature engineering discjplines
such as electrical engineering, where it is common to build new applicatidia$ ou
reusable components, which are easily replaceable.

The potential of such an approach is also recognized by the softwastdment
community. This is the reason for the upcoming interest in software compdnents
the last decades. On the contrary to the tightly coupled approach didalsses,

it is expected from software components that they are independeneiomother
and the application environment where they are deployed. A well-knofumitien

of software components is given by Szyperski [9]:

“Software components are binary units of independent production, ac-
quisition, and deployment that interact to form a functioning system.”

Reo[1] is a channel-based coordination language, which providewectors for
connecting components. The simplest connector in Reo is a user-defiaedet
with well-defined behavior. More complex connectors are compositionally built



out of the simpler ones. The behavior of every connector imposes #dispeor-
dination pattern on the components that perform 1/O operations throughahat
nector in such way that a component is unaware that it is being coordiogtettier
with other components. Thus, Reo enables components to interact withteach o
while keeping their independency of each other.

It is shown that constraint automata|3] can be used as an operational food
Reo connectors. The states of a constraint automaton represent $itdepoen-
figurations of a Reo connector (e.g. the content of a FIFO-channéli)e whe
transitions going out of a state express the possible data flows and itsceffée
configuration.

1.2 Objective and Motivation

The assignment of this MSc project is the design and implementation of a tool that
serves as an editor and simulator for constraint automata. This tool id fesehe
research on constraint automata, but also for the development of thdireimn
language Reo itself, since constraint automata can act as an operagiomaitc
model for Reo.

A visual editor for constraint automata has certain advantages for tearofson
constraint automata. It reduces, for example, the amount of workubeaaith

an editor it is possible to create constraint automata on the computer instead of
drawing them by hand on paper or the whiteboard. Visualizing a largdraamts
automaton with many states is difficult, because one loses the overview easily.
Since in the editor the visual layout of a constraint automaton is not fixedistire

can rearrange the layout as he prefers. Therefore, dealing with ¢angstraint
automata becomes simpler, especially in combination with an automatic layout
generator. Another useful feature of having an editor is the ability to siagtdoad
constraint automata to and from some persistent data storage, allowingthe us
continue previous work.

The behavior of a constraint automaton can be simulated by hand. HowEser
approach can be quite time consuming, especially for large constraint gatoma
Using a simulator saves a lot of time. Simulation by hand is also more prone to
error than doing this with a simulator. Hence, a simulator facilitates the research
on the behavior of complex constraint automata.

A simulator can serve as a tool for teaching and demonstration purposgse F

1.1 illustrates the position of the work of this MSc project within the overall tool
framework of Reo and constraint automata (labeled “CA simulator”).

1.3 Related work

Since the objective is to create a tool for constraint automata, which caseoe u
as an operational model for Reo connectors, the work of this thesis gdtate
automata-based modeling theory and automata-based modeling tools.

2



-

| \

[ % ‘ Generaf Generates
\

! | [ g

‘ | “Reo view” visual | Refers to | “Reo circuit” I/ Code \

\ | specification P~ specification generator? \

I oout (XML) (XML) nput ’

| snf:narios ‘ : |

Input | N o |

| (structure) Input | |
\ \J

| rates N |

| \ | [ Programming ‘

language

| ( Reo simulator ] : \ geen(:ezrgtAor \ tem%lat%s? \

| (with animation), ‘ | (hidefjoin) PN Y

! | Input ! PN h

| CA (behavior) input/ | Generates | ‘

| simulator \ \ |
\

\ \ \

‘ generates | ‘ CA /ﬁ( 77777 _
| ‘ specification

| ‘ ! (XML) |

\ ‘ \ J

| \J ‘

I | Scenario || P N

| [Simulation || Simulated

| trace behavior | |

(visual?) | Model checker %
N\ o — Input properties

Output

Y

Model checker
results report

-~

Figure 1.1: The overall tool frame work of Reo and constraint automata.



Well-known automata-based modeling theories are I/O-automata, timed port au-
tomata and interface automata. The major differences and similarities are summa-
rized as follows[3]:

e Transitions in I/O-automata are labeled with action names, while transitions
in timed port automata and constraint automata are data-dependent. On the
contrary to timed port automata where transitions are labelled with specific
data values, constraint automata transitions are labelled with data constraints
(boolean expressions for the data values).

e |/O-automata and timed port automata follow a strictly time-synchronous
approach, while constraint automata do not. This difference becomes im-
portant when constraint automata are composed together. The composition
of the two constraint automata allows transitions when data occur at the in-
put/output ports that the resulting automaton inherits from only one of the
automata (because at that point in time, there is no suitable data on any of
its corresponding ports). Such transitions do not exist in the “one-tgrman
composition” of timed port automata.

¢ Interface automata use the notion of input enabledness as I/O-automata and
timed port automata. Constraint automata do not have this notion. In fact,
they do not even distinguish between input and output ports.

Several tools exist for the different modeling theories. UPPAAbLr example, is

an integrated tool environment for modeling, validation and verification aif re
time systems modeled as networks of timed automata. UPPAAL is quite extensive,
but an important drawback is the fact that the project is closed-sowtgeh pre-
vents us from extending or modifying it to our needs.

There is also a project where simulation and verification tools are being imple-
mented for 1/0O automata However, there is no tool to construct and modify an
I/O-automata visually. Since itis our intension to build a visual editor for camtr
automata, this project is not useful for our purposes.

Some editor and simulator tools exist for finite automata. However, it is expected
that they are not useful to us, because it would require too much time tothdap

for constraint automata.

1.4 Approach

First, we perform a literature study to acquire the background knowleddeeo

and constraint automata, and become familiar with the concepts and terminology.
Next, we analyze the assignment and its requirements, decomposing therm and in
vestigating potential problems. Finally, we describe the design and implementation
of the tool.

http://http://www.uppaal.com/
2http://theory.csail.mit.edu/tds/ioa/



1.5 Thesis Outline

The remainder of the thesis consists of 6 chapters, which are structutbd in
following way. Chapter 2 describes Reo, while chapter 3 introducegredmsau-
tomata. Chapter 4 discusses how constraint automata can be used asatinrgle
semantic model for Reo. Chapter 5 presents our analysis of the assigamddtg
requirements. Chapter 6 describes the design and implementation of the tool. In
chapter 7 we present our conclusions, summarizing our work, disgussivhich
directions future work could be done and reflecting on the personatiexges.






Chapter 2

Reo

Reo is a channel-based exogenous coordination language, whichct@mu co-
ordinate different activities through connectors. Complex connecters@ampo-
sitionally built out of simpler ones. The most primitive connectors are a set of
channels with well-defined behavior provided by the user.

This chapter discusses Reo in detail. The first section introduces soinebas
cepts of Reo, followed by an explanation about channels in Reo and ththe
connect components with each other. The next section demonstrates hakeo
more complex connectors composed of simple connectors by the join operation
The following section describes the hide operation, an abstraction megchamis
Reo. The last section shows some examples of Reo, demonstrating itssexpres
power. The majority of this chapter is based on [1] and [4]

2.1 Basic Concepts

The emphasis in Reo is not on the computational entities it coordinates, but on
the connectors. A computational entity is referred to as a component iastanc
A component instance consists of at least one active entity. How the ihtéraa
component instance is organized is not relevant for Reo. It can tofipi®cesses,
threads or even agents. What is of importance is the inter-componente@astan
communication that takes place.

A component instance has some ‘contact points’, which it can use to myeha
information with its environment. These contact points are referred to aotke p

of the component instance. These ports allow a component instance &ctomn
Reo connectors. Reo connectors are explained in further detail in tbeifog
sections. Furthermore, we assume that ports are unidirectional. A contpone
instance can use an input port to receive and an output port to semchatfon.

In the Object Oriented world a difference is made between objects aneslass
A class is a blueprint of an object. It describes the structure and thevibelod

an object. An object itself is an instance of a class. The same analogy can be
applied to component instances. The blueprint of a component instanaleid ¢

7



—>
<—

Component instance

Figure 2.1: Component instance with 4 ports.

component, an abstract type that describes the properties of its instances

2.2 Channels

In Reo component instances are connected to each other through iRextos.
Such a connector is a composition of simpler connectors, where the mostyimiti
connector is a channel. A channel has two channel ends. There atgpes of
channel ends, a source channel end and a sink channel endighhitee source
channel end a channel accepts data, while on the sink channel erldalets the
channel. Although the channel ends are directed, the channel itsslhdbbave
to be directed. Thus, a channel can have two source channel entig) sink
channel ends. A channel can have a pattern, which acts as a filter thathiengist

of data items that is allowed to go through the channel.

Reo itself does not provide pre-defined channels. On the contraryeranuay
define own channels, as long as the behavior is well-defined. Althouglisthis
true, there are channel types from which it is expected that they will deopa
‘standard library’, because they will be used regularly. We discugsakof these
channels in the next subsections.

2.2.1 Sync

A channel of type Sync has a source end and a sink end. Data itemslare on
transferred if simultaneously a write and a take operation take place atuhmeso
end, respectively the sink end. Figure 2.2 shows a Sync channel.

2» @——————P @b

Figure 2.2: Sync channel.



2.2.2 SyncDrain

A SyncDrain is a channel where both channel ends are source \&fids.opera-
tions can take place at both end. However, the write operations can @ugexl
simultaneously. All data items that are written are lost. The SyncDrain is depicted
in figure 2.3.

a@ P - &

Figure 2.3: SyncDrain channel.

2.2.3 SyncSpout

The SyncSpout is the opposite of the SyncDrain. Instead of source both
channel ends are sink ends. They both have the same synchromoasteh Data
items are sent if both sides simultaneously want to take. The data items that are
transferred are random data items. It is possible to apply a pattern sudhaha
data items are selected from a restricted set, e.g. the numbers from thelinterva
[1, 10]. A SyncSpout is shown in figure 2.4.

2 @Q——al—Pp—— b

Figure 2.4: SyncSpout channel.

2.2.4 FIFO and FIFOn

A FIFO channel has a source and a sink end, but also an unbountfed Fhe
source end always accepts data items, which are stored in the buffteropara-
tions at the sink end succeed only if data items are available in the buffedatae
items leaving the buffer are in FIFO order (in the same order as they eritered
buffer). On the contrary to the previous channel types, a FIFO @iénasynchro-
nous. The FIFO channel type is drawn as the Sync channel, but witeagde in
the middle representing the buffer (figure 2.5).

Figure 2.5: FIFO channel.

The FIFQh channel has, in contrast to FIFO, a bounded buffer. The name inglicate
the buffer size, e.g. FIFO1 has a buffer of size 1. A FIFO or FileBannel can

9



also be initialized with some data items already available in the buffer.

2.2.5 LossySync

A LossySync Channel has a source end and a sink end. The sodaveays
accepts a data item, but it is only transferred to the sink end if a take opeisation
present. As long as write and take operations take place simultaneouslypinis ty
of channel acts like a Sync channel. Otherwise the data item is lost. ThgSyogs

is depicted in figure 2.6.

Figure 2.6: LossySync channel.

2.3 Join

In the previous section a few primitive connectors, channels, with integelsén
havior have been introduced. They are used to compositionally build monglen
connectors. These complex connectors are made by applying the Repéoaz o
tion. This is the joining of multiple channel ends at one node. Three typesiaefn
can be distinguished: source nodes, sink nodes and mixed nodes.

2.3.1 Source node: replicate

A source node is a node where only source channel ends coincidere g/
shows a source node where three source channel ends coincidéefAperation
at a source node succeeds only if all the source channel ends Heeelpta item.
The source node acts like a replicator.

Figure 2.7: Source node.

10



Using figure 2.7 as an example, this means that a write operation atysioteeds
only if all the source channel ends of the channels indicateb, lyandd accept
the data item. If this situation occurs, then the data item is transferred to atkesour
channel ends.

2.3.2 Sink node: merge

If the channel ends that coincide at a node are all sink channel tetisthis node

is called a sink node. An example of a sink node is shown in figure 2.8. A data
item is only transferred if simultaneously a take and at least one write operatio
take place. If data items are offered by multiple sink ends, then one of them is
chosen non-deterministically. The sink node acts like a merger.

a

Figure 2.8: Sink node.

2.3.3 Mixed node: replicate + merge

A mixed node is, as the name already indicates, a mixture of a source node and
a sink node. Thus, source channel ends coincide at a mixed noddl @s simk
channel ends (figure 2.9). The behavior of a mixed node is the combiration
a source node and sink node. Data items are only transferred if simulsyabu
least one sink node offers a data item and all the source nodes accelatthiem.

If so, then this data item is transferred from the sink node to all the sowaesn

If multiple source nodes want to write, then one of them is non-deterministically
chosen. Thus, a mixed node acts like a replicator as well as a merger.

There is one important difference between mixed nodes and sourcanamubdes.
Reo allows component instances to directly write to source nodes and disdaly
from sink nodes, but with mixed nodes this is not permitted.

2.4 Hide

Complex connectors can be built by composing the primitive channels using the
join operation. These connectors can be used to connect (the poctangbonent

11



Figure 2.9: Mixed node

instances with each other. After building such a connector, usually onlgxhe
ternal behavior is of interest, not how the internal of this connector isnizgd.
Therefore, Reo introduces an abstraction mechanism, the hide operation.

hiding

Figure 2.10: Hiding.

In figure 2.10 a connector is shown at the left side. By applying the hideatipn,
the topology of the nodes (and edges) is hidden and cannot be modifieubiny
This results in a connector with a number of input and output ports, shothe a
right.

2.5 Examples

In this section a few examples demonstrate the expressive power ofotono@m-
position in Reo.

2.5.1 Asynchronous Drain

An AsyncDrain channel has two source channel ends and the data itétes W
the channel are lost, similar to the SyncDrain, but on the contrary to thedsgimc
the writes have to take place asynchronously. Such a channel cafireddsy the

12



user, but it is also possible to construct the AsyncDrain out of the alreddting
channels (figure 2.11).

o e

Figure 2.11: AsyncDrain channel.

2.5.2 Regulated Reads

Data items flowing from one component to another through a Sync charmel ca
easily be regulated using the construction illustrated in figure 2.12. Data items go
from a to b only if a take operation is present at For instance, a component
connected te is able to regulate the flow fromto b. On the other hand, one can
say that also regulates the flow fromto c.

a ’b

Figure 2.12: Regulated Reads through takes.

It is possible to use write operations instead of take operations to regulate the
flow. This can easily be accomplished by replacing one of the Sync clsamna
SyncDrain channel (figure 2.13).

2.5.3 Barrier Synchronization

A barrier synchronization, where all channels are only allowed to teardsdta
items at the same time, can be realized in Reo using the construction shown in
figure 2.14. To accomplish the opposite, thus preventing synchronizatareen

the channels, the SyncDrain needs to be replaced by an AsyncDrain.

13



Figure 2.13: Regulated Reads through writes.

a ’b

C > d
Figure 2.14: Barrier Synchronization.

2.5.4 Exclusive and Inclusive Router

An exlusive router is depicted in figure 2.15. The behavior of an exdusiuter is
such that a data item written tois only transferred to eithdy or ¢, but never to
both.

The behavior of an inclusive router is such that a data item writtexflamws tob,
or c or to both (figure 2.16).

14



Figure 2.15: Exclusive Router.

Figure 2.16: Inclusive Router.

15



16



Chapter 3

Constraint Automata

Automata are mathematical models, which are used to model operations of many
systems. In this chapter we look at automata as very simple computer programs.
These computer programs receive some input and can generate twulgoss

puts:

e ‘accept’, the input is accepted
e ‘reject’, the input is rejected

This chapter discusses a special type of automata, the constraint autiou &itsf

a short introduction to a very basic automaton is given, the finite automaten. Th
first section is based on [8], while the remainder of the chapter aboubtistraint
automata is mainly based on [3].

3.1 Finite Automata

The finite automata is one of the most basic and well-known automata. Figure 3.1
depicts a finite automaton.

Figure 3.1: Finite automaton.

The automaton is represented using a state diagram. Thegstathich is indi-
cated by an arrow pointing at it from nowhere, is the initial state. The giatdth

17



a double circle is the accept state. The arrows between the states ait@otrans

The label on an arrow indicates on which input this transition takes place.

The finite automaton begins in the initial state and moves from state to state depen-
dent on the input it reads. The final state, the state in which the automatoeiis wh
reading the last input, determines the output. If the final state is an acctpt sta
then the automaton produces the output ‘accept’, otherwise ‘reject’ isipoUutpr
example, when the string ‘0100’ is fed to the automaton depicted in figure 3.1, it
goes through the following sequence of statgsy: ¢2 g3 g2. Ending in stateys,

which is an accept state, the automaton accepts the input.

A finite automaton is formally defined as a 5-tup@, > _, 4, qo, F'), where

e () is a finite non-empty set of states,

e > is the alphabet, a finite set of symbols which act as the input for the
automaton.,

e §:Q x>, — Qis the transition function,
e gy € QQ is the initial state,
e F' C () isthe set of accepting states.

Suppose is the set that contains all strings automaddraccepts, then we call
theaccepted languagef automatonV/, also written ag (M) = A.
3.2 TDS-language

This section defines the notion of timed data streams, which act as the input for
constraint automata. They are also used to describe the language thitins
automata, the TDS-language.

3.2.1 Stream

A stream is an infinite sequence over a set. Wdte the set of elements from which
the stream consists. Then the set of all streams is defined by:

VY ={a|a:{0,1,2,...} -V}
A stream and its elements are denoted as follows:
a=(a(0),a(l),a(2),...) where «a (k) eV fork >0

The first elementy(0) of the streamu is called the initial value ofv. The stream
derivativea’ of « is defined as:



Higher order derivativea(*) are defined as follows:

a(0) = «
/
akth = (a(k)) fork >0

The following equation can be derived with the previous definitions:

od®(n)=a(n+k) fork>0

3.2.2 Data Stream

Using the definition of streams, it is possible to define data streams and time
streams. A data stream is a sequence over a fixed, non-empty, finifeu&et
where the elements of this sBlata are uninterpreted data elements. Thel3ét

of all data streams ovdpata is defined as:

DS = Data”

3.2.3 Time Stream

For time streams sequences over thelsetare usedR% . The non-negative real
numbers represent the time points. For convenience, the relaticarsd < are
defined fora,b € R¥ as follows:

a<b =Vn>0,a(n)<b
a<b =YVn>0,a(n)<b(n)

~—

(n

All elements of a time stream are strictly smaller than their successor. Thus, the
time stream consists of increasing time moments. It is assumed that the time ele-
ments go to infinity. This assumption prevents the so-called Zeno paradexre wh
infinite number of actions may take place within a finite time interval. Th@'set

of all time streams is defined as:

TS:{aeRﬁ|a<a'and lim a(k:):oo}

k—oo
3.2.4 Timed Data Stream
A timed data stream is defined as:
TDS =DSxTS

Thus, a timed data streafn, a) is a pair of streams, where data streane DS
and time streana € T'S. The intuitive meaning of a TDS is that data element
a (n) occurs at time point (n).

19



3.3 Defining Constraint Automata

3.3.1 Ports

Timed data streams are used as the input for constraint automata. Thaichasts
tomaton can have more than one input, on the contrary to finite automaton- There
fore, a constraint automaton has one or more ports, which are identifieanbgs
from a name-setVames, e.g. Names = {A;,...,A,}. Each port denoted in
Names is associated with a timed data stream.

3.3.2 Transitions

Constraint automata have transitions just like the finite automata, but in cawotrast
finite automata, each transition of a constraint automaton is labeled with & pair

g. N is a non-empty subset @f ames indicating which ports are active during the
transition, meaning at which ports data is being obseryeis. a data constraint,
which imposes restrictions on the transition, on the data observed in the timed data
streams of the active ports.

3.3.3 Name-data-assignments

A name-data-assignment for# N C Names is a functioné : N — Data
assigning data items to namesih Notations liked = [data (A) =da : A € N|
are used to describe the assignment of a valyec Data to any TDS-name
AeN.

3.3.4 Data Constraints

Data constraints have the following grammar:
g == true| false | data(A) =d | g1V g2 | g1 A g2

where A € Names andd € Data. The notationDC (N, Data) (or DC) is
used to describe the set of data constraints. Often derived DC’s edesush as
data (A) # d anddata (A) = data (B), which respectively stands for

\/  (data(Ad)=d') and \/ (data(A)=d)A (data(B)=d)
d’e€Data\{d} deData

The satisfaction relation is used for interpreting DC’s over name-data-assignments,
for example in the following way:

[data (A) = dy,data (B) = da, data (C)
[data (A) = dy,data (B) = da, data (C)

| E data(A) = data(C)
| ¥ data(A) # data (B)
if dy # do

=d
:dl

20



Satisfiability and validity, logical equivalence and logical implication< of DCs
are defined as:

g1 = go iff for all name-data-assignmends 0F g1 <= 0F g
g1 < g2 iff for all name-data-assignmends 0F g1 = dF g

3.3.5 Definition of Constraint Automata

A constraint automaton is formally defined as a tugle- (Q, Names, —, Qo)
where

e () is a set of states,
e Names is afinite set of names, which is used to identify the ports,
e — isasubset of) x oNames o DO x Q, called the transition relation,

e Qo C Q isthe set of initial states.

For convenience(q, N, g,p) €— is written asq Ny, p. It is required that
(1) N #0and(2)g € DC (N, Data) .

{A, B}
data(A) = data(B)

&

Figure 3.2: Constraint automaton.

We explain the operational behavior of constraint automata using the aionistr
automaton depicted in figure 3.2 as an example. This constraint automaton has
three portsd, B andC. It starts in its initial statg; and waits until data is observed

at some of its ports. Suppose data itéhoccurs at pord and at port3, while the

other ports are not active, in this case p@rtThis event triggers to check the data

constraints of the transition Mg q2. Becausédata (A) = dy,data (B) = di| E

data (A) = data (B) holds, it moves to the statg.

If instead different data items would occur at pdrand portB, for instance data
item d1 respectivelyd2, then no transitions were possible, because no data con-
straints could be fulfilled. This would cause the constraint automaton to reject.
Knowing this behavior the requirements (1) and (2) can be explainedlawgo
Condition (1) says a transition can only take place if data occurs at aleasif

its ports. Condition (2) states that the automaton can only put requirements on th
data that is being observed (not on data that may occur in the future).

21



3.3.6 Deterministic vs Non-deterministic

The definition above allows for non-deterministic constraint automata. Sepgpo
constraint automaton resides in staté hen for a nonempty subsat of NVames
and a given data-name-assignmentthere may be several transitions

N N . .
¢ -Bq,q=Bq, ... withdEg, i=1,2, ...

A constraint automaton is called deterministic if for every statevery N and for
every hame-data-assignmerthere is at most one transition

q X% o with 6 = ¢

A non-deterministic constraint automaton can always be transformed in a dete
ministic constraint automaton that accepts the same language.

3.4 TDS-language and Constraint Automata

This section defines when a language is accepted by a constraint auto@aien
sider a constraint automatoa = (Q,N,—, Qo) with two ports A and B,
N = {A, B}. Further, the timed data strearfis, a) and((3, b) are associated with
respectively portd and portB. Then the language accepted by this automaton
is defined as follows:

Lrps (2) = | Lrps (2, q)
q0€Qo0
Lrps (4, q) denotes the language accepted by the gtafehe constraint automa-
ton 4:

Lrps (A,q) = {({a,a),(B,b)) € TDS x TDS | ((a,a), (5,b))
is a timed run for(4, q)}

({(a, @), (B,b)) is called a timed run fot4, ¢) iff there exists a transition N —q
such that
ap < by A N ={A} N[data(A) = agl F g A

(<O£/7 a’l> ) <ﬂ7 b>) € Lrps (ﬂ, 7(]) )

or by <ap A N ={B}Aldata(B) = fo] E g A
((a,a),(6,)) € Lrps (4, ),

or ap=by A N ={A,B} A[data(A) = ap,data(B) = o] F g A
(<Ct/, CL/> ) <ﬁ,a b/>) € LTDps (/qa _Q)

The intuitive meaning of the definitions above is as follows. The data items that
appear as first are selected out of the data streams of the TDS. Thisisisiog

22



the order specified by the time stream of the TDS. Subsequently, these da ite
are assigned to the associated ports, which thus become active. Nexnst@int
automaton tries to make a transition with the data items observed at the ports. If an
infinite sequence of such transitions exists (starting from one of the initigisjta
then this timed data stream is accepted by the constraint automaton.

» B}
= data(B)

Figure 3.3: Constraint automaton (of a Sync channel).
Using the constraint automaton depicted in figure 3.3 as an example and4all it

then the accepted TDS-language can be defined as
Lrps (A) = {((ov,a) (3,0)) € TDS | a = 3 Na = b}

23



24



Chapter 4

Modeling Reo by Constraint
Automata

This chapter discusses how constraint automata can be used as aionpkesa-
mantic model for Reo. First, the relation between Reo channels and cohstrain
automata is explained. Followed by an explanation how the join and hide oper-
ation on Reo channels can be modeled in constraint automata. The last section
discusses the parameterized constraint automata, which simplify the notation of
the ordinary constraint automata.

4.1 Channels

Channels in Reo are related to constraint automata by the TDS-languageexth
subsection explains this relation in detail using the Sync channel as an lexamp
The following subsection shows the other basic channels, but less igetgns

4.1.1 Sync

The behavior of the Sync channel can be captured by a TDS-langu2gta
items that occur at each channel end and their corresponding time painke ca
‘recorded’ by a timed data stream. Suppose the timed data stréams and

(B, by are used for respectively channel endndb. The behavior of a Sync chan-
nel is such that data items are only transferred when simultaneously a wdite an
read operation take place. Thus, when a write operation of data eleimanthe
source channel end at time potatsucceeds, the same data element will appear at
the other side instantaneously at time peintFigure 4.1 illustrates how the timed
data streams look like.

The behavior of the channel holds for every data item that goes thithegBync
channel. Thusy(k) = §(k) anda (k) = b(k) for all & > 0. In general the
behavior of the Sync channel can be described by the following TDS:kge:

{({a;a),{B,b)) e TDS x TDS |a= 3 Na=b}

25



2@ o

o ({J) =dy MNa ({]) =1y B ({]) =dy Nb (U) =1
a(l)y=d Aa(l) =t A1) =di Ab(1) =t

on) =d, ;\ a(n) =iy, Bn)=d, ﬁ- b(n)=t,

Figure 4.1: Sync channel with Timed Data Stream.

This TDS-language is the accepted TDS-language of the constraint datodea
picted in figure 3.3.

Hence, a channel induces a TDS-language, which is again the acCHpgd
language of a certain constraint automaton. On the other hand, you casasls
that a constraint automaton describes the behavior of a channel. Nuoteydrp
that constraint automata only speak about ports and do not distinguiskdretw
input and output ports.

4.1.2 SyncDrain and SyncSpout

The TDS-language of the SyncDrain is the same as for the SyncSpoat)deec
both only care about the timing at which the data is observed and not the data
itself. The TDS-language is

{({a,a), (B,b)) € TDS x TDS | a = b}

The constraint automata of both the channels are also the same (figure 4.2).

A, B

Figure 4.2: Constraint automaton for SyncDrain and SyncSpout.

4.1.3 FIFO1
The TDS-language of the FIFO1 channel is

{({a,a),(B,b)) e TDS x TDS |a=BAa<b<a}

26



To keep the constraint automaton of the FIFO1 channel simpld)tlie-set con-
sists only of one element (figure 4.3).

Al
data(A)=d

{B}
data(B)=d

Figure 4.3: Constraint automaton for FIFO1.

4.1.4 LossySync
The TDS-language of the LossySync is as follows:
{({a,a) ,(3,b) € TDS x TDS | = = L(a,a,b)}
[ a(0)eL(a/,d,b) ifb(0) <a(0)<b(1)
L a,b) = { L(d/,d,b) otherwise
The corresponding constraint automaton is shown in figure 4.4.

{A) o’ (A, B}
| ; //data(A) = data(B)

Figure 4.4: Constraint automaton for LossySync.

4.2 Join

The join operation of Reo can be modeled at the constraint automata level. The
join of a source node with another node (of arbitrary type) is realizedgrpduct
construction. The join of sink nodes is modeled using a merger.

However, at the constraint automata level not all types of nodes canirie jo
together. This does not raise any problems, because the focus is atRstatic
connectors. Therefore, it can be assumed that complex connecdosidrsuch

that the join operation is applied in a specific order. Thus, first the sinkshacke
joined and then the resulting node is joined with the source nodes.

27



4.2.1 Product-construction

Suppose there are two Reo connectors that are modeled by the corattamata

4, and 4, with respectively node-sety; and ;. A join operation need to be
performed at the node-pai(s3;, B;) € Ay x AL fori = 1,...,k, where at least
one node of the node-pair is a source node. For simplification, it is assiivaed
the nodes are renamed such tlat= B, for i = 1,..., k and that the automata

do not have other common nodes. Thus, the join need to be performechatkbe

B € A4 NA.. The join can be performed at the constraint automata level using the
product-construction.

The product of the constraint automata= (Q1, Nlamesi, —1, Qo,1) andA, =

(Q2, Namesa, —2, Qo 2) is defined as follows:

A1 X A = (Q1 X Q2, Names; U Namesa, —1, Q0,1 X Qo2)
where— is defined as:

N1,91 Na,g2
g1 —>1 p1,q2 —2 p2, N1 N Namesy = Na N Names;

N1UN2,91Ag2
) —

(g1, g2 p1,P2)

N,
1 =4 p1, N N Namess = ()

N7
(g1, 32) =2 (p1, qa)

q2 i‘5]1 p2, N N Names; =0
N’
<Q1»CI2> _9} <Q1’p2>
Figure 4.5 illustrates how a FIFO2 is constructed out of two FIFO1 charyels
the product-construction.
The join operation is also defined at the constraint automata language leyel. S
pose there are two TDS-languadges= [, (A4, B) with node-set\| = {4, B} and
Ly = Lo (B, C) with node-set\l = { B, C'}), then the join is defined as:

Ly x Ly = {(<O‘7a> ) </87 b> ) <7’ C>) : ((a,a> > </87 b>) € Li A <<57b> ) <% C>) S LQ}

The correctness of the product can be proven, which states thatdieted TDS-
language of the product-automaton is equivalent to the join of accepted TDS
languages of the constraint automata separately.

(@  Lrps (A1 X A) = Lrps (A1) X Lrps (A2)
(b) If Alames1 = Namess
thenLrps (A1 X A2) = Lrps (A1) N Lrps (A2)

The proof is not given here, but can be found in [3].

28



= %/[_C}\
(Ch = »* B}
I
I product automata
[ &}
qla = pl g2
& &
B} A FEY
[, B}
L&}

Figure 4.5: Join of two FIFO1 channels.

Merger

C

@, t 3,0
data(A) = data(C) data(B) = data(C)

Figure 4.6: Merger

29



4.2.2 Merger

Sink nodes cannot be joined directly as is done in the previous sectidaathan
intermediary ‘component’ is needed, a merger. The merger is shown i fgar
along with the constraint automaton describing its behavior.

The join at the Reo level can be performed at the automata level by applgng th
product-construction to the merger constraint automaton with two other aoristr
automata that also contain the nodésind B. If needed the node C can again
be joined with another sink node using the merger construction or it can kesljoin
with a source node to create a mixed node.

4.3 Hide

The hide operation in Reo makes the internal organization of a connec¢tobno
servable anymore from the outside. For TDS-languages this is realized-by
istential quantification. Thus, hiding of a name (nodeg)in a TDS-language
L(C,A,,...,A,) means that existential quantification over tldliscomponent
needs to be applied. For instance, hiding the néhiie the language
L=L(C,A,B)isrealized as:

3C[L) = {({a,a) , (8,)) : ITDS (y,¢) with (7,0}, () , (3,b)) € L}

At the constraint automata level hiding removes all information about a certain
port. Suppose the poff' needs to be hidden, then the hiding operation for con-
straint automata is as follows. Lat= (Q, Alames, —, Qo) be a constraint au-
tomaton and” € Alames. Then the constraint automaton after hiding is defined
as

30 [4] = (Q, Names \ {C}, — ¢, Qo.c)

Let~~* be the transition relation such that~* p if and only if there exists a finite
path

{C}g1 {C},g2 {C}l.gs {C}.gn
q — qQ —1 ... —1

1491 —1 n

whereg, = p andgy, ..., g, are satisfiable. Then the s@p ¢ of initial states is
as follows

Qo,c = QoU{p € Q:q ~" pforsomeg € Qo}
The transition relation— ¢ is given by

g~ p,p % N =N\ {C} # 0,5 =3C|g]

Njg
q—cr

where3C' [g] = V jcpate 9 [data (C) /d]. g[data (C) /d] denotes the data con-
straint where all occurrences @dta(C') in g are syntactically replaced lay This

30



comes down to replacing every atafata(C) = d’ with true if d = d’ and with
falseif d # d'.

The correctness of hiding can be proven, which says how the relativrebe
constraint automata and TDS-languages is affected by hiding:

(@ 3C[Lrps (A)] € Lrps (3C[(A)])
(b) If 4is finite and does not contain a cycle

N, Na}, Nebs -
o kg ANedee  ANbOE L nereq L g, are satisfiable

andC ¢ Ny U...U N then3C [Lrps (2)] = Lrps (3C [4])
The proof can be found in [3].

Hiding can be intuitively explained as follows. First, the transition relagienr™ p

is defined. This transition relation denotes all states that are reachablstiitey
using transitions depending only on the data observed atjort

If hiding of C' takes place, then every statendicated byy ~~* p can automatically

be reached from statg because the guards of these transitions only depend on data
observed at porf’. However, these guards are not taking into account anymore,
because of the hiding @f.

If stateq is an initial state, then every stapeindicated byg ~~* p becomes an
initial state, because they can automatically be reached. Thereforet tiensizal
states of the resulting constraint automata after hiding is extended with thiese sta
A transition from state to » in the resulting constraint automata is possible when
a certain state can be automatically entered frajr{(because of the hiding) and a
transition fromp to » exists where in this transition all occurrences related to port
C are removed or replaced.

Figure 4.5 shows the constraint automaton for a FIFO2 channel createihb

ing two constraint automata of FIFO1 channels. Figure 4.7 shows the @onstr
automaton of the FIFO2 channel after hiding port

4.4 Parameterized Constraint Automata

In the previous examples of the constraint automata, the data items of thetset
were not taken into account. This was done to keep the constraint autampte. s

If these data items were modeled, then this could have led to a constraint automato
with a huge number of states. To show how the size ofthén set influences the
number of states, we use the constraint automaton of the FIFO1 chanael as
example.

Figure 4.8 depicts the constraint automaton of the FIFO1 channel whemengis
type of data item is allowed to go through the channel. Thedxkgt: consists of

one data itemi;. Stateq; represents the channel when the buffer is empty. The
situation where the buffer contains a data itéms represented by staig.

31



Figure 4.9 shows the constraint automaton of the same FIFO1 channel,thist in
case two data items are allowed to go through the channel. THeagetconsists

of the data itemgl; andd,. The stateg; andg, represents the same situation as
before. However, an extra state is added. This gtatepresents the buffer when

it contains data itena,. Thus, for each data item a state is needed to represent
the content of the buffer. This could result in a huge number of statpeciedly
when this constraint automaton is to be joined with others. To prevent suatea s
explosion, the parameterized constraint automaton is introduced.

The parameterized constraint automaton uses state variables. In the sitfation
the FIFO1 channel, one state with a state variabtmuld be used to model the
content of the buffer, instead of using multiple states where each statsees
the content of the buffer with another data item (figure 4.10).

A parameterized constraint automaton is formally defined as a tuple

? = (Loc,Var,v, Names, ~, Locy, init)
where
e Locis a set of locations,
e Loc C Locis a set of initial locations,

Var is a set of variables,

e v : Loc — 2V assigns to any location a (possibly empty) set of variables,

init is a function that assigns to any initial locatibe Locg a condition for
the variables.

v (1) denotes the variable set of a locatibnFor the constraint automaton illus-
trated in figure 4.10y (¢2) = {=} states that: is a state variable of locatiap. ¢
having no state variables is denotedbly;; ) = {}.

The transition from locatiofto [ is denoted as ]Xfx [ where
e [ and! are locations,
e N is a name-set, a non-empty subsefafmes,

e h a (parameterized) data constraint fémwith the form “d 4 = expr” where
expr is an operation oata, dg for B € N and the variables € v (I).
Forinstanceds = dy +d,, + x,

e X is a function that assigns a namec N to each variable € v (1) \ v (1)
and possibly to the variables in() N v (1). Intuitively X (z) = A stands
for the assignmerit := d 4.

32



[ A}
qla | pl g2

[T}

8

[B} [B}

[2, B}

(2, B}

(B}

Figure 4.7: Hide of port C after the join of two FIFO1 channels.

33



1A}
data(A) = d,

{B}
data(B) = d

Figure 4.8: Constraint automaton of FIFO1 channel with one data item.

1A}
data(A)=d,

Figure 4.9: Constraint automaton of FIFO1 channel with two data items.

Al
x 1= data(A)

{B}
data(B) = x

Figure 4.10: Parameterized constraint automaton of FIFO1 channel.

34



Chapter 5

Requirements and Analysis

This chapter collects and structures the requirements that the constraimizda
editor and the simulator have to meet. In order to do this, we first analyse the
assignment. Hereafter we look into existing tools and try to see which operating
systems need to be supported and which programming language is best suited
Next, we decompose the functionality of the tool into several smaller parts. We
analyze the parts and their dependencies. We investigate the possible sabfition
the potential problems we have identified thus far. All this is done as a ptapar

for the next phase, the design and implementation.

5.1 MSc Assignment

The assignment of this MSc thesis is to design and implement a tool, which consists
of two parts:

e an editor for constraint automata,
e a simulator for constraint automata.

With the constraint automata editor the user should be able to construct a con-
straint automaton visually. The user should then be able to simulate the canstrain
automaton with the simulator.

We distinguish three different kinds of simulators. The first simulator acts as a
language acceptor of timed data streams. This means that at every time pbnt of
timed data streams a transition should be made. Otherwise the simulator rejects the
input. We call this simulator “TDS-Language Acceptor Simulator”.

The second simulator uses constraint automata to simulate the behavior of Reo
connectors. The input of a connector is specified by timed data streanis. Th
simulator will be called “Reo Connector Simulator with TDS”.

The third simulator behaves like the second simulator, but instead of using timed
data streams as input the user should be able to attach ‘components’ to the sim-
ulator. These components then generate the input for the simulator at real-time

35



by calling standard Reo operations (e.g. take, write) on the 1/O ports ofotite ¢
straint automata simulator. We call this simulator “Reo Connector Simulator with
Components”.

5.2 Existing Reo and Constraint Automata Tools

Currently two tools exist for Reo and constraint automata, SAdiAd Swiss

Watcht. SAFA is a tool for converting Reo circuits to constraint automata. The
programming language used to implement this tool is Java. Furthermore, XML
is used to provide persistent data structures for both Reo circuits arstia@ion
automata.

The second tool, Swiss Watch, is an editor for constraint automata, buttill is s
in an early development stage. The tool has difficulties, for example vigualiz
transitions from a state to itself in a convenient way. The constraint autontitta e

to be implemented should have a better GUI than Swiss Watch.

Swiss Watch does not validate the input of state names and data constrhiots, w
can lead to a corrupt constraint automaton. This should be handled in aviejte

by the constraint automata editor to be developed.

Besides the editor functionality Swiss Watch is able to perform the join and hide
operation on constraint automata. Like the SAFA tool, Swiss Watch is progrdmme
in Java and uses XML to provide the persistent data structure for ciomsdra
tomata.

5.3 Operating System and Programming Language

The standard operating systems deployed at the computers at CWI areitMS W
dows and Linux. Some people use the Mac operating system. In ordertorsap

many platforms as possible a suitable programming language is needed. Tthe mos
obvious programming language is Java, because a Java Virtual Macistefer

all these operating systems.

The existing Reo and constraint automaton tools are already implemented.in Java
To keep the possibility that in the future some features of these tools will be inte-
grated with the tools developed during this MSc project, it seems best tovsse Ja

If Java would be chosen as the programming language the choice remaats wh
version of Java would be best. Java 1.5, which is the latest version, segoasl
candidate as it has a lot of new useful features compared to the preeimisn. It
supports, for example, generics, typesafe enumeration and autoboxing.

Another important addition is the java.util.concurrent package. This padieagl

its subpackages) contains a lot of classes that make it much easier topdeneio
tithreaded applications. This can especially be useful for the “Reo @Ctom@&im-

ulator with Components” as it is expected that this will be multithreaded.

'For more information contact Marjan Sirjani (Marjan.Sirjani@cwi.nl).

36



5.4 Global overview

On the basis of the assignment we decompose the desired tool into 6 mais-subsy
tems:

¢ Integrated Tool GUI (IT-GUI),

e Constraint Automata Editor (CA-Editor),

e TDS-Language Acceptor Simulator (TDSLAS),

e Reo Connector Simulator with TDS (RCSwTDS),

e Reo Connector Simulator with Components (RCSwC),

e Constraint Automaton Engine (CA-Engine).
Figure 5.1 shows the structure of these subsystems together with theiddepen
cies. In the following sections we discuss the structure of these systems.
5.4.1 Integrated Tool GUI (IT-GUI)

The Integrated Tool GUI is the graphical user interface of the overll Tdrough
the IT-GUI the user will be able to open:

¢ the CA-Editor,
e the TDSLAS,

e the RCSWTDS,
e the RCSwC.

The IT-GUI offers flexibility to the user, because the user can edit andlate

a constraint automaton within the same tool. Without an integrated environment
the user has to save the constraint automaton to a file from the constraimisdaito
editor application and load it into a constraint automata simulator application.

To simulate multiple constraint automata simultaneously, we could join all the con-
straint automata to be simulated into one constraint automaton (figure 5.2.a). How
ever, the join could lead to a state explosion. To prevent this, the simulatoidsho
act on each constraint automaton individually (figure 5.2.b). To suppisitthe

tool needs a multiple document interface (MDI), such that multiple constraint a
tomata can be loaded into the tool. Each document window contains a CA-Editor,
where the user can edit and modify a constraint automaton.

Java provides all the packages to create a MDI application. However, terimept

the whole MDI application using these packages will be quite time consuming,
because you still have to “glue” everything together by yourself.

37



CA-Editor
cul » Layout Engine
CA-Editor
— > Constraint Automaton
v _ Model
CA-Editor |~ L)
,,,,,, — !
Control i
______________________________________ Load/Save Constraint
Automaton
TDSLAS
fffff L »  TDSLASContol || M
GUI TDSLAS | SN
\ Load/Save
. 4 Timed Data Stream
Integrated
Tool i EEQI]Ail;e
GUI
RCSWTDS /{  Timed Data
GUI RCSWTDS Strea Model
v / P
—]-»| RCSwTDS Control |-~
I »l
RCSwC
GUI RCSwC
4
v
————— - RCSwC Control B
! x
v v
Load N
Component Component
Figure 5.1: Overview of the tool. Dashed arrows indicate dependencies.

38



Constraint Automaton Constraint Automaton

Simulator Simulator
, simulates
simulates
simulates

Figure 5.2: (a) Simulating constraint automata by simulating the joined constraint
automaton. (b) Simulating constraint automata by simulating each constraint au-
tomaton individually.

39



A better alternative is the Java MDI Application FrameworkThis framework
provides a skeleton for MDI applications, therefore simplifying the devakg of
a MDI application. Itis expected that using this framework will save a cemalule
amount of time. The features of the Java MDI Application Framework are:

o A framework which offers the standard functionality that is expected from
MDI applications and which simplifies MDI application development.

e GUI implementation using Swing, including a full-featured user interface
with menus, toolbars, status bars, file selectors, dialogs, ...

e Data-Action-View paradigm: Data and View are separated. Action objects
are used to synchronize them.

e Support for multiple views per document.

e Support for nested views as well as nested data objects.

e Modular File 1/0 system for loading, saving and exporting documents.
¢ Undo/Redo functionality.

e Clipboard functions (cut, copy, paste).

e Printing subframework with preview capability.

e Internationalization support using ResourceBundles.

5.4.2 Constraint Automaton Model (CAM)

The Constraint Automaton Model represents a constraint automaton afttvare
level. It contains the data structures to store:

¢ the topology of a constraint automaton, e.g. states and transitions,
e properties of states, e.g state name,
e properties of transitions, e.g. data constraints.

The CAM provides the following methods to modify the data structures:
e add and remove states,
e add and remove transitions,
e modify state properties,

e modify transition properties.

http://jmdiframework.sourceforge.net/

40



5.4.3 CA-Editor

The CA-Editor allows the user to construct and modify a constraint automaton
visually. The user should be able to:

e add and remove states,
e add and remove transitions,
e modify state properties,
e modify transition properties.

Through the IT-GUI the user is able to open the CA-Editor. When the CiteEd
is started, it creates an empty CAM and shows the GUI CA-Editor. The seque
diagram depicted in figure 5.3 shows the interactions within the CA-Editor.

aUser IT-GUI

new CA-Editor Control
CA-Editor Control

-
new CAM
‘m

new GUI CA-Editor
GUI CA-Editor
pass CAM
I
show GUI CA-Editor ;U

| open anew CA document |
I

Figure 5.3: Sequence diagram of the user starting the GUI CA-Editorghrthe
IT-GUI.

The GUI CA-Editor is the graphical user interface of the CA-Editor, tfoeeere-
sponsible for visualizing the CAM on the screen as a state diagram. All actions
executed in the GUI-CA Editor are propagated to and handled by the @arEd
Control.

The CA-Editor Control is responsible for that all actions executed in the@GAJ
Editor are reflected in the CAM, such that the visual representation obtistraint
automaton is always consistent with the corresponding data represeiiatiemn
CAM (figure 5.4).

The consistency should also hold when actions are performed on the THM,

if the CAM is changed programmatically, it notifies the GUI CA-Editor such that
it updates the visual representation accordingly (figure 5.5).

Since a constraint automaton can be visualized as a graph, graph visoaliza

braries can be used to implement the GUI of the editor. Several non-comimerc
libraries exist:

41



aUser GUI CA-Editor CA-Editor Control

O
>

1
|
add state }

i
|
|
I
|

add state i

add state

notify change

update visual representation

Figure 5.4. Sequence diagram of the user adding a state through the &UI C
Editor.

O

anObject AM GUI CA-Editor

add state

T
|
|
|
|

» !

|
|
I
|
|
notify change |

update visual representation

Figure 5.5: Sequence diagram of the CAM programmatically being changed.

42



e JGraph,
e Grappa® which is a Java library of a subset of Graph/iz
e JHotDraw.

Another option is to use an already existing automata editor/simulator and adapt it
to our needs. The following editors/simulators exist for finite automaton tivat ha

a decent GUI: JFLAPand Visual Automata Simulatr

JFLAP does not visualize multiple transitions between two states well, because
the lines representing the transitions coincide with each other. Both JFLAP an
Visual Automata Simulator do not have automatic layout generation for stades an
transitions. To adapt the current applications and implement these furitieana
may prove difficult, especially because they were not built with these &star
mind in the first place.

JGraph, Grappa and JHotDraw are all capable of visualizing multiple tramsitio
between two states, since one can programmatically ensure that the liressergpr

ing the transitions do not coincide.

Another possibility is to use a generator. Gfhiea generator for graph editors

in Java. One specifies a mapping from the model domain to the graph domain,
for example “classes A and B represent nodes” and “classes X amghrésent
edges”. With such specifications Grace generates an editor. Theageheditor

itself makes sure that the corresponding model is always consistent witheall
actions performed in the graphical user interface (and vice versa).

Adapting existing application may prove too difficult, because of some of the re
quirements, e.g. automatic layout generation, multiple document interface. The
graph visualization libraries support the implementation of the GUI CA-Editor,
but one still has to implement the CA-Editor Control, which can be quite time con-
suming. Therefore, Grace seems the most promising approach, bé&samcseis

able to generate the GUI CA-Editor and the CA-Editor Control as well.

5.4.4 Layout Engine

The GUI CA-Editor depends on the Layout Engine to automatically layout the
states and transitions. This feature is especially useful when loadingsaraian
automaton into the editor from a file, because the file format does not keep the
screen positions.

The GUI CA-Editor passes the CAM to the Layout Engine. Using the topology
stored in the CAM, the Layout Engine calculates and sets the positions aéths s

2http://www.jgraph.com/
Shttp://www.research.att.com/ john/Grappa/
*http://www.graphviz.org/
Shttp://www.jhotdraw.org/
Shttp:/ivww.cs.duke.edu/rodger/tools/jflap/
"http://www.cs.usfca.edu/ jbovet/vas.html
8http://www.doclsf.de/grace/

43



and the transitions (figure 5.6).

GUI CA-Editor Layout Engine

! layout )

|
|
layout CAM |
|

calculate positions of the states and transitions

set positions of the states and transitions

Figure 5.6: Sequence diagram of user starting the automatic layout.

Of all the graph visualization libraries discussed in section 5.4.3, only hGuag
Grappa have access to a layout engine. The JGraph library has a daibint
engine. Grappa does not have a built-in layout engine, but it has metthegter-
nally call the Graphviz layout engine. If we choose, for the implementatidheof
GUI CA-Editor, a library or solution other than JGraph and Grappa, theenould

use the layout functionality of JGraph or Graphviz externally. This will besv

be less convenient and will result in a longer implementation time, becausesintern
data structures have to be converted to and from the data structuresaphJ&
Graphviz.

5.4.5 Load/Save Constraint Automaton Model (LSCAM)

The GUI CA-Editor depends on the LSCAM to load and save constrainteaito
to and from some persistent data storage (figure 5.7 and figure 5.&tiespg.
The user has access to the LSCAM subsystem through the Integrate@dUbo

Since the existing tools for Reo and constraint automata use XML to provide the
persistent data structure for constraint automata, it is required thatrtiree Gan-
straint Automaton XML (CA-XML) will be used within our MSc project. Besides
this, XML has the following advantages:

¢ XML allows a developer to create his own data structures

e XML is text-based, thus easier to read and to document.

e tools, e.g. parsers, are widely available for handling XML

e itis possible to validate XML using for example an XML Schema

The programming language Java has defined a Java API for XML Fiages
JAXP. Since Java 1.4 the Xerces implementation of JAXP is included in the Java

44



‘ IT-GUI H LSCAM ‘ Layout Engine

open CAfile | 1
I

open file

read file

new CAM
4’“

|
add states, transitions etc !

return CAM
e

new GUI CA-Editor with CAM as datamodel
GUI CA-Editor

i
layout CAM
calculate positions of the states and transitions

set positions of the states and transitions

Figure 5.7: Sequence diagram of the user loading a constraint automanora f
file.

<

aUser IT-GUI GUI CA-Editor LSCAM A

save CA to file :

i
I
get CAM |

I

I

1

I

i i
return CAM :
:

I

save CAM to file 1
I

>

return states and transitionsU

> write CAM to file

|
|
L
|
|
|
|
|
|
|
|
|
}
} get states and transitions
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 5.8: Sequence diagram of the user saving a constraint automatdireto

45



library. Therefore, no third party library is necessary to handle XMLaifalis
used.

For saving, the GUI CA-Editor passes the corresponding CAM of thetcaint
automaton it is currently visualizing to the LSCAM. Subsequently the LSCAM
converts the CAM to CA-XML and saves the CA-XML to a file (figure 5.8).

By loading, the LSCAM uses the CA-XML file to build the CAM and returns this
to the GUI CA-Editor, which then visualizes the CAM on the screen (figurg 5.7

5.4.6 TDS-Language Acceptor Simulator (TDSLAS)

The “TDS-Language Acceptor Simulator” behaves like a standard aut@inata

lator, a language acceptor. The user creates or loads timed data strebspeain

fies through which ports they are fed to the simulator. The TDSLAS tries &pacc

a timed data tuple of the timed data streams and moves to the next constraint au-
tomaton state. A timed data tuple is accepted when the TDSLAS is able to make a
transition with this tuple. If a timed data tuple is not accepted, the TDSLAS rejects
the input and stops (figure 5.9).

{A, B}

<@, a>—» ‘ _ accept /
data(A)=data(B) @ » .
<B, b>—» A ®) reject

Figure 5.9: The TDS-language Acceptor Simulator.

The implementation of the TDSLAS is straight forward. Given a constraint au
tomaton and timed data streams, the TDSLAS checks whether a timed run exists.
At each time stegg the TDSLAS creates a set of hame-data-assignments of the
time data tuples at time pointof the timed data streams. The TDSLAS accepts a
time data tuple when an outgoing transition from the current state is possible with
the corresponding set of name-data-assignments. If so, the TDSLd&agthe
current state and continues with time step 1, otherwise the TDS-language is
rejected.

The TDSLAS relies on the CA-Engine to provide the following functionalities:

o return all initial states,
e return all outgoing transitions from a specific state,

e evaluate (the data constraints of) a transition against a set of name-data-
assignments.

The CA-Engine is discussed in further detail in section 5.4.13.
Through the IT-GUI the user is able to start the TDSLAS. First, the TDSCAS-
trol is created. Subsequently, the TDSLAS Control creates and shewsaphical

46



user interface of the simulator, the GUI TDSLAS. This process is showreiagh
guence diagram depicted in figure 5.10.

aUser IT-GUI

I start TDSLAS |
1

new TDSLAS Control

TDSLAS Control

pass GUI CA-Editor

new GUI TDSLAS
GUI TDSLAS

show GUI TDSLAS Jj

Figure 5.10: Sequence diagram of the user starting the TDSLAS.

All the actions that the user performs in the GUI TDSLAS are propagateddo a
handled by the TDSLAS Control. Through the GUI TDSLAS the user is able to
edit (figure 5.11), save and load (figure 5.16 and 5.17) timed data streams.

aUser GUITDSLAS TDSLAS Control TDSM

edit TDS |
p |

T
|
edit TDS :

N

|
|
|
[
:
|
: edit
|
|
|
|
|
I

»

U

Figure 5.11: Sequence diagram of the user editing the timed data streanghthrou
the GUI TDSLAS.

The user is able to start the simulation and interact with the simulator through the
GUI TDSLAS (figure 5.12).

5.4.7 Reo Connector Simulator with TDS (RCSwWTDS)

The “Reo Connector Simulator with TDS” simulates a constraint automaton as a
Reo connector where the input is specified by timed data streams. Thedyedfav

the RCSwWTDS resembles the behavior of a Reo connector in two ways.

First, the RCSwWTDS does not reject the input if a timed data tuple is not adcepte
The RCSwWTDS delays not accepted timed data tuples and combines them with the
timed data tuples of the next step. The combination of all time data tuples is the

47



aUser GUI TDSLAS TDSLAS Control || GUI CA-Editor TDSM

istart simulation |
L |

|
|
|
start |
1

get CAM

new CA Engine

CAEngine

i
pass CAM :

get initial states

return initial states

show initial states

select inital state ;

update current state

get outgoing transition from current state

return transitions

select transition!

*[loop]

Figure 5.12: Sequence diagram of the user interacting with the TDSLAS.

‘observed’ time data tuple. This process continues until the ‘observed’datee
tuple becomes such that a transition can be made. This behavior is just like a Re
connector, which delays write or take operations until the conditions besoote

that these pending operations can be completed. Figure 5.13 illustratesof run
timed data streams for the constraint automaton shown in figure shown in figure
4.6.

Second, in the RCSWTDS the ports of a constraint automaton can act ds inpu
ports or as output ports. The user creates or loads timed data streanmpeeaifie¢ s
through which input ports they are fed to the RCSwTDS. Using the data at the
input ports the RCSWTDS tries to make transitions and generates the data for th

48



TDS Observed TDS
A|B|C A | B C
0| dy 0| d; not accepted
1 do 1|d | do not accepted
2 dy 2|dy | d2| di accepteddata(A) = data(C)
3 3 dy not accepted
4 da 4 dy | dy  accepteddata(B) = data(C)

Figure 5.13: A RCSwTDS run of timed data streams with the ‘merger’ constraint
automaton.

output ports (figure 5.14).

(A8 P (50)

= data(B)

Figure 5.14: The Reo Connector Simulator with TDS.

The main difficulty with this simulator is that, in contrast to Reo connectors, con-
straint automata do not distinguish between input and output ports. The'‘inp
ports of the constraint automaton can be fed with timed data streams, but the timed
data streams at the ‘output’ ports need to be generated by the RCSwWTRS usin
the input data and the data constraints. However, the data constrainbo&ditm

is a propositional formula that only states under which conditions a transition is
allowed, but it does not say how data items are assigned/transferreaf® port

to another.

To overcome this difficulty, we use a different perspective to look at ttablpm.
Timed data streams are given to the simulator as input, but the timed data streams
can be incomplete, they contain ‘gaps’. The simulator tries to complete the timed
data stream using the data constraints to generate the missing data items. These
gaps can be interpreted as pending take operations, while the data items féling th
gaps can be seen as the data for completion of these take operatiores ffithir.

The CA-Engine should provide the service to generate the missing data items du
ing evaluation of the data constraints. Further, the RCSWTDS needs thessame
vices from the CA-Engine as the TDSLAS. The CA-Engine is discussadthner

detail in section 5.4.13.

The user is able to start the RCSwWTDS through the IT-GUI. First, the RCSVT
Control is created. Subsequently, the RCSWTDS Control creates amd she
GUIRCSwWTDS. Through the GUI RCSWTDS the user is able to edit, savimadd
timed data streams, start and interact with the simulator. The TCSwTDS Control
handles all the actions the user performs in the GUI RCSWTDS. The seguen

49



A
A (o:',a)%- 9 ) .
o, @ 3 Y ) 1 G, b
B CURN By @Y S S )

Figure 5.15: The RCSwWTDS interpreting the completion of take operationsdn Re
as the completion of incomplete timed data stream in constraint automata.

diagrams of the RCSwWTDS are omitted, because they are similar to the ones of the
TDSLAS.

5.4.8 Timed Data Stream Model (TDSM)

The Timed Data Stream Model represents a timed data stream at the softweare le
Both TDSLAS and RCSwTDS depend on the TDSM. The TDSM provides the
following methods for editing and accessing the timed data streams:

e add and remove time data tuples,

e return data from a time poirt

5.4.9 Load/Save Timed Data Stream (LSTDS)

The TDSLAS and the RCSwTDS depend on the Load/Save Timed Data Stream to
load and save timed data streams to and from some persistent data storage. Th
user has access to the LSTDS subsystem through the GUI TDSLAS andGU
SwTDS.

By loading, the LSTDS builds the TDSM using the TDS file and returns the TDSM
to the TDSLAS or RCSWTDS (figure 5.16).

TDSLAS and RCSwWTDS pass the TDSM to be saved to the LSTDS, whicls save
the TDSM to a file (figure 5.17).

Because it was required that XML will be used for constraint automatal. XM
will also be used to provide persistent data structure for timed data stre®ss (T
XML).

5.4.10 Reo Connector Simulator with Components (RCSwC)

The Reo Connector Simulator with Components behaves as the RCSwWTDS, but
it does not use ‘predefined’ timed data streams as input. Instead thettasiea
components to the simulator (figure 5.18). The components try to perforramsake

50



aUser GUI TDSLAS TDSLAS Control LSTDS

open TDS file i

|
|
open TDS file |
|

open file

read file

new TDSM
TDSM

]
add time data tuples :
I

return TDSM

Figure 5.16: Sequence diagram of the user loading the timed data streams.

aUser GUI TDSLAS TDSLAS Control LSTDS TDSM

save TDS to file |
I

I
|
save TDS to file |
|

save TDSM to file

get time data tuples

return time data tuples

write TDSM to TDS file

Figure 5.17: Sequence diagram of the user saving the timed data streams.

write (Wi (01- 0-) \‘&

Component X

G, ke [3
o’ {A, B} B . >> k. > Component ¥
data(A) = data(B)

Figure 5.18: The Reo Connector Simulator with Components.

write operations on the ports. These pending operations can be interpsethy-
namically created ‘timed data streams’. The RCSwC tries to complete these pend-
ing operations based on the underlying constraint automaton. Figure &pidg

a sequence diagram that shows how the simulator interacts with the components
Here the same problem arises as with the RCSwTDS, a constraint automaton do
not distinguish between input and output ports. We use the same apmsach
with the RCSwTDS, interpreting the completion of take operations in Reo as the

51



aUser GUI RCSwC RCSwC Control GUI CA-Editor

I start simulation |

|
|
R L l
|
|

start

i
I
I
I
i
get CAM !
return CAM

new CA Engine

CA Engine
pass CAM

I N

|
new Component Writer }
.

Component Writer

new Component Taker
1

Component Taker
start thread

T

write operation

take bperation

create NDA set using data observed at the portsi
|

get outgoing transitions from current state

!

return outgoing transitions

evaluate transitions with NDA set |
|

>
return evaluations, e.g. allowed transitio

> select transition

complete write operation

Figure 5.19: Sequence diagram of the interaction between the RCSwC and th
components.

completion of incomplete timed data stream in constraint automata (figure 5.20).

A
wirite (v adY =4 \ —=> .0} | e S
Component X 4 ’ {A, B} ) —»¢ Component Y
(2, h)—4 data(A) = data(B)4 B% (B, b)
B

Figure 5.20: The RCSwC interpreting the completion of take operations of com-
ponents in Reo as the completion of incomplete timed data stream in constraint
automata.

52



Through the IT-GUI the user is able to start the RCSwC. First, the RCSwifr@o
is created. Subsequently, the RCSwC Control creates and shows thRGUI
SwC. Through the GUI RCSwC the user is able to load components andaiohstr
automata, and connect component ports with constraint automaton portheAll
interactions of the user with the GUI RCSwC are propagated to and hangdtked b
RCSwC Control.

5.4.11 Component

The components and component instances in the context of the RCSwe€-are r
spectively implemented as classes and objects in Java. An API shouldviggelro

that allows the objects to send and receive data to and from the simulated Reo
connector.

Due to the compilation process of Java classes this approach is not flédrke,

fore it is recommended to use a scripting language for implementing the behavior
of the simulated components. The approach of using scripted compon&sts do
not necessarily interfere with the approach of components written in Aayava
object can be used as a wrapper around a scripting engine. This wagads-s
sible to support ‘Java’-components as well as scripted componentstiokadly

this approach enables the support of multiple scripting languages (byngea
appropiate wrapper for each language).

Many scripting engines written in Java exist. The following is by no means an
exhaustive list:

¢ Rhind, a JavaScript engine,

Jythort®, a Python engine for Java,

Jess$!, arule engine for the scripting language Jess for Java,

Beanshell?, a scripting engine for Java,

JRuby®, a Ruby engine for Java.

5.4.12 Load Component

The Load Component loads a component from some persistent dataesitai@ag
the memory. The user is able to access Load Component through the GUIRCS
(figure 5.21).

Shttp:/ivww.mozilla.org/rhino/
Onttp://www.jython.org/
Yhttp://herzberg.ca.sandia.goveljess/
http://www.beanshell.org/
Bhttp:/fjruby.sourceforge.net/

53



GUI RCSwC Load Component

‘ aUser

‘ RCSwC Control

IIoad component from file } :
| | 1

i
i
|

load component from file | !

|
|
i
i

load file

read file

new Component
4M

return Component D

Figure 5.21: Sequence diagram of the user loading a component fréen a fi

5.4.13 Constraint Automaton Engine (CA-Engine)

The Constraint Automaton Engine depends on a CAM to provide the following
functionalities needed by a simulator:

e return all the initial states,
e return all outgoing transitions from a certain state,
e evaluate data constraints with a set of name-data-assignments.

The CA-Engine is separated from the simulators such that different Kisiohai-
lators can be build using the same engine.

» B}
= data(B)

Figure 5.22: Sync channel and the corresponding constraint automaton

In the following we address the issue that constraint automata do not distingu
between input and output. Suppose the Sync channel is to be simulated by a co
straint automaton (figure 5.22). If port A is associated with a timed data stream,
then the timed data stream of port B should be generated by the consttaimbau
ton. However, the data constraifitta (A) = data (B) is a propositional formula

and not an assignment. Thus, the constraint automaton itself is not diréctisna

it does not say anything how data items flow through the Reo connector.

The constraint automaton engine should be able to handle this situationt K por
and B are active, but only at port A a data item is present, then a data iterulsie
assigned to port B such that the data constréint (A) = data (B) is evaluated

54



to true. One apparent solution is to treat the data constraints in a Prolog likeeman
where free variables are bound to values when possible.

Several Java libraries exist that act as an interface to Prolog, e.gProleg*,
K-Prolog'®, JPL®. Since we strive for a platform independent application, we do
not prefer this approach, because the Prolog engine itself is not agpheation.
Prolog libraries that are completely written in Java are, for example, Jifolo
jPrologt® and Prolog Caf€. JIProlog is not an option since it is a commercial
library. jProlog is a very outdated library from 1997 and is not mature ghou
(some of the files are marked as version 0.1). The latest release of &afeg
is version 0.9.1 on 24th February 2004. Therefore, Prolog Cafe sémmmost
promising library.

5.5 Requirements for the IT-GUI

We summarize the following refined requirements to the IT-GUI. The userldho
be able to:

e openmultiple CA-Editors,
e start the TDSLAS,
e startthe RCSwWTDS,

e start the RCSwC.

5.6 Requirements for the CA-Editor

We summarize the following refined requirements to the CA-Editor. The user
should be able to:

e add and remove states,

e add and remove transitions,

modify state properties, e.g. state names,

modify transition properties, e.g. data constraints,

save and load constraint automata to and from XML,

e automatically layout the constraint automaton on the screen.

http://www.declarativa.com/interprolog/
Bhttp://www.kprolog.com/
Bhttp://mww.swi-prolog.org/packages/jpl/
Yhttp://www.ugosweb.comijiprolog/
Bhttp://www.cs.kuleuven.ac.be/ bmd/ProloginJava/
Bhttp://kaminari.scitec.kobe-u.ac.jp/PrologCafe/

55



5.7 Requirements for the TDSLAS

We summarize the following refined requirements to the TDSLAS. The usaldsho
be able to:

e create timed data streams,
e save and load timed data stream to and from TDS-XML files,

e simulate a constraint automaton with timed data streams.

5.8 Requirements for the RCSwWTDS

We summarize the following refined requirements to the RCSwWTDS. The user
should be able to:

e create timed data streams,
e save and load timed data stream to and from TDS-XML files,
e simulate a constraint automaton with incomplete timed data streams

e generate the complete timed data streams.

5.9 Requirements for the RCSwC

We summarize the following refined requirements to the RCSwC. The usddshou
be able to:

¢ |load and execute components,
e connect component-ports to Reo-connector-ports,

e simulate a constraint automaton as a Reo connector while components are
writing and reading to the simulated Reo connector.

Additionally, the following should be provided with the simulator:
e an Java API for implementing components,

e support for components written in a scripting language.

56



5.10 Requirements for the CA-Engine

We summarize the following requirements to the CA-Engine. The CA-Engine
should be able to:

e return all initial states,
e return all outgoing transitions from a certain state,

e evaluate data constraints against a set of name-data-assignments inga Prolo
like manner.

57



58



Chapter 6

Design and Implementation

In this chapter we discuss the design and implementation of the tool and ¢é&abora
on the technological choices we made. We present the software arctdtettu
the tool using the Unified Modeling Language (UML). The number of ckaasel
methods is usually too large to view in one class diagram. Therefore, weydispla
the tool architecture using several class diagrams and in each clasandiagr
show only the relevant classes and methods.

6.1 Programming Language

We choose Java as the programming language, because applicationsimdiées
can run on both MS Windows and Linux, the standard operating systentyddp
within the CWI.

The choice for Java helps the later integration of the features of the plegesting
Reo and constraint automaton tools (also written in Java) with our tool.

We choose for Java version 1.5, because this version has many nesssxe
language features compared with the previous versions and betterisiqugbe
development of multithreaded applications, as discussed in section 5.3.

6.2 Architectural Overview

In this section we present a high level introduction to the software archigeofu
the tool. The tool is decomposed in the following main packages:

e Cwi.reo.itgui, contains the classes for the Integrated Tool GUI,
e cwi.reo.caeditor, contains the classes for the CA-Editor,

e cwi.reo.tdslas contains the classes for the TDS Language Acceptor
Simulator,

e cwi.reo.rcswtds contains the classes for the Reo Connector Simulator with
TDS,

59



e cwi.reo.rcswg contains the classes for the Reo Connector Simulator with
Components,

e cwi.reo.caengingecontains the classes for the CA-Engine.

These packages and their dependencies are shown in the UML pat&ggem in
Figure 6.1. The decomposition of the tool into packages correspond$ydiosiee
decomposition shown in figure 5.1.

cwi.reo —l
Eaaner o ¥ caeditor [ !
| i
I I
| |
i [y tdslas  [FEVEEEEE i i
|
] N
] %
itgui L caengine
rcswtds 2N
MepgemsmeenN 0 [EeeeEeeee e 1 |
| |
! |
|
l |
| I
| I
7 rcswc

Figure 6.1: The UML package diagram of the tool.

6.3 CA-Editor

In this section we discuss how the CA-Editor is designed and implemented. The
classes for the CA-Editor are located in ttwi.reo.caeditor package, which is
again decomposed into several subpackages. The decomposition iedépite

UML package diagram in figure 6.2.

e cwi.reo.caeditor.cam contains the classes for the Constraint Automaton
Model (CAM).

e cwi.reo.caeditor.gui contains the classes for the GUI CA-Editor.
e cwi.reo.caeditor.layoutengine contains the classes for the Layout Engine.

e cwi.reo.caeditor.dcparser contains the classes for parsing strings
representing data constraints.

e cwi.reo.caeditor.namesparsercontains the classes for parsing strings
representing names (of a names set).

60



cwi.reo.caeditor

dcparser | cam o layoutengine
T /N T
.. !
|
|
1w ; 1
|
[Resseesiugiesaiiiosd
namesparser gui

Figure 6.2: The UML package diagram of the CA-Editor.

6.3.1 CAM

In this subsection we discuss the design and implementation of the CAM. All the
classes for the CAM are located in tbei.reo.caeditor.campackage.

Constraint automaton

The data structures representing a constraint automaton are shown liasthdia-
gram in figure 6.3. The following classes have been defined:

e ConstraintAtomaton, represents the overall constraint automaton,
e Transition, represents a transition,
e State represents a state.
To be able to model a state as an initial state, we introduce the following classes:

¢ InitialTransition , eachState object that is the target state loiitial Transi-
tion is an initial state,

o |nitialState, acts as the source state foitialTransition .

Figure 6.4 shows the relation between the components of a constraint automato
and the classes representing the constraint automaton.

We generalize the two state and two transition classes by introducing thecabstra
classesAbstractState and AbstractTransition. This providesConstraintAu-
tomaton with a generic view such that it can work with different state and tran-
sition classes without having to recognize the exact individual subtype.

Using this design for constraint automata, we can easily extend toward iite pa
meterized constraint automaton. States in parameterized constraint autouwsata ha

61



cwi.reo.caeditor.cam -
1 ConstraintAutomaton
] K>
* +add(in n : AbstractState) 1
+add(in e : AbstractTransition) e —
+remove(in n : AbstractState) 1
AbstractTransition +remove(in e : AbstractTransition) 5

+setNamesSet(in namesSet : NamesSet)
+setStatelD(in s : AbstractState, in id : Stri

+getSource() : AbstractState setStatelD(in s stractotate, In | ring) AbstractState

+getTarget() : AbstractState k>

+getTransitionID() : String 5 2 +getStatelD() : String

InitialTransition Transition InitialState State

+getDataConstraint() : DCFormula
+setDataConstraint(in dc : DCFormula)
+getNamesSet() : NamesSet

1 +setNamesSet(in namesSet : NamesSet) | 1
DCFormula NamesSet 1
+getNamesSet() : NamesSet +addName(in name : String)

Figure 6.3: The class diagram of the data structures representing teaguingu-
tomaton.

Transition

"

InitialTransition

"

InitialState

State

Figure 6.4: Relation between the components of a constraint automaton and the
classes representing the constraint automaton.

62



state variables and transitions are labeled with assignments for these skate var
ables. Extending the current design to support parameterized cohatitomata
can easily be realized by adding extra information to the classes.

cwi.reo.caeditor.cam AbstractTransition

ConstraintAutomaton

+addStateListener(in | : StateListener)

+addConstraintAutomatonListener(in | : ConstraintAutomatonListener) #fireTransitionChanged()
#fireStateAdded(in s : AbstractState) 1
#fireStateChanged(in s : AbstractState) 1 e 5

) SR * 2 -notifies
#fireStateRemoved(in s : AbstractState) 1
#fireTransitionAdded(in t : AbstractTransition)
#fireTransitionRemoved(in t : AbstractTransition) AbstractState

#fireTransitionChanged(in t : AbstractTransition)
#fireConstraintAutomatonChanged()

+addTransitionListener(in | : TransitionListener)
* -notifies #fireStateChanged()
. gslonsio ‘ -notifies
o -listens to
«interface»
ConstraintAutomatonListener _
+stateAdded(in s : AbstractState) S:alrt]:.?:tce?er
+stateRemoved(in s : AbstractState) 2 -listens to
+stateChanged(in s : AbstractState) +stateChanged(in state : AbstractState)

+transitionAdded(in t : AbstractTransition)

+transitionRemoved(in t : AbstractTransition)
+transitionChanged(in t : AbstractTransition)
+constraintAutomatonChanged(in ca : ConstraintAutomaton) +transitionChanged(in transition : AbstractTransition)

«interface»
TransitionListener

Figure 6.5: The class diagram of the constraint automaton classes andeherlis
interfaces.

The constraint automaton, transition and state classes implement the Ololgerver
sign pattern[6], which allows them to notify others about changes, e.gqdtiiton

or removal of states, the modification of transition properties. The IT-&Ukx-
ample, needs to get notified of changes in the constraint automaton, bétause
save button (for saving constraint automata) becomes only enabled whearth
straint automaton has been changed. The following listener interfacdsfared:

e ConstraintAutomatonListener, listener interface fo€onstraintAutoma-
ton,

e TransitionListener, listener interface fofransition,

e StateListener, listener interface foState

The class diagram in figure 6.5 shows the relations between the constraint a
tomaton classes and the listener interfaces. The sequence diagram engfigur
illustrates the interaction betweerCanstraintAutomaton object and a concrete
ConstraintAutomatonListener.

Data Constraint

The data structures representing a data constraint are shown in thdiatfrssn in
figure 6.7. Each operator that can occur in a data constraint formularessented

63



anObject constraintAutomaton | | concreteCAListener

i addConstraintAutomatonListener(concreteCAListener) i

.

setNamesSet(namesSet)

fireConstraintAutomatonChanged()

|
constraintAutomatonChanged(this) :

get changes

Figure 6.6: The sequence diagram showing the interaction between a
ConstraintAutomaton object and a concret@onstraintAutomatonListener.

cwi.reo.caeditor.cam 2
DCFormula
1 +accept(in v : DCVisitor) 2
DCFormulaEqual DCFormulaNotEqual DCFormulaOr 1
DCFormu Y
+getLeftOperand() : DCTerm +getLeftOperand() : DCTerm +getLeftOperand() : DCFormula
+getRightOperand() : DCTerm +getRightOperand() : DCTerm +getRightOperand() : DCFormula
1
DCFormulaNot 1 1 DCFormulaAnd
> — «interface» 2 -
-+ N
getOperand() : DCFormula DCTerm +getLeftOperand() : DCFormula .
s o |tacceptf(in v : DCVisitor) +getRightOperand() : DCFormula

«interface» IS

DCVisitor / N
+visit(in dcf : DCFormulaEmpty) 4 2
+visit(in dcf : DCFormulaAnd) DCTermDataString DCTermName
+visit(in dcf : DCFormulaEqual)
+visit(in dcf : DCFormulaNot)
+visit(in dcf : DCFormulaNotEqual) +accept(in v : DCVisitor) +accept(in v : DCVisitor)
+visit(in dcf : DCFormulaOr) +getData() : String +getName() : String
+visit(in dct : DCTermName)
+visit(in dct : DCTermDataString)

Figure 6.7: The class diagram of data constraint formulae.

64



by a class:
¢ DCFormulaEqual, represents the equal operator,

DCFormulaNotEqual, represents the not equal operator,

DCFormulaNot, represents the not operator,

DCFormulaAnd, represents the and operator,

DCFormulaOr, represents the or operator.

There is separate class for representing the empty data constraint foDrGiar-
mulaEmpty.

The equal and not equal operators have operands that are terrasfollbiwing
types of terms have been defined:

e DCTermName, represents the name of a name-data-assignment,

e DCTermDataString, represents a data item of type string.

Data constraint formulae can be both individual data constraint formelgelC-
FormulaEqual) and compositions of data constraint formulae (€2§-Formu-
laAnd). By applying the Composite design pattern[6], introducing the abstract
classDCFormula, we can treat all data constraint formula objects in the compos-
ite structure uniformly, since the abstract class allows us to ignore theetitfer
between individual and compositions of data constraint formulae.

To be able to add new types of terms easily in the future, we define the inter-
faceDCTerm that is placed betweeCFormulaEqual, DCFormulaNotEqual

and concrete term classes. The interf@€Term provides a generic view, which
enables introducing new types of terms without having to recognize théiegac
vidual subtype.

With these classes an abstract syntax tree can be build that represetdascard
straint formula. An example is shown in figure 6.8.

DCFormulaOr

data(A) = data(B) v data{f) = "d1" <=  DCFormulaEqual DCFormulaEqual

TN N

DCTermName DCTermName DCTermMame DCTermDataString

Figure 6.8: The abstract syntax tree of a data constraint formula.

To perform operations on the abstract syntax tree, we apply the Visigigrde
pattern[6]. This design pattern offers the flexibility of defining new opens

65



over a structure without changing the structure itself. Di@Visitor defines the
interface of a visitor for a data constraint formula. Figure 6.9 depicts tessee
diagram showing how a concrddeCVisitor object traverses an abstract syntax tree
of DCFormula andDCTerm objects.

anObject dcFormulaEqual leftDCTermName rightDCTermName aConcreteDCVisitor

| accept(aConcreteDCVisitor) |
1 |

I
I
I
visit(this) !
1

per'form operation on dcFormulaEqual

|
|
getLeftOperand() :
|
return left operand |

| .
: accept(this)
visit(this)

perform operation 0;1 leftDCTermName

|
:
|
getRightOperand() :
|
|
I

accept(this)
visit(this)

"
perform operation on rightDCTermName

Figure 6.9: The sequence diagram showing the interaction betwB&Vasitor
and soméCFormula andDCTerm objects.

Names set

The classNamesSetepresents a set of names. It is parCoihstraintAutomaton
andTransition.

6.3.2 LSCAM

The class responsible for loading and saving a constraint automaton tooamd f
CA-XML file is CAXMLFilelOModule . It has access to all the classes of the
CAM. The structure and relations are depicted in figure 6.10. TAXML-
FilelOModule class is part of thewi.reo.caeditor.campackage.

66



cwi.reo.caeditor.cam
CAXMLFilelOModule

+loadFromCAXML(in file : File) : ConstraintAutomaton
+saveAsCAXML (in ca : ConstraintAutomaton. in file : File)

1 -accesses
1 " - %
ConstraintAutomaton AbstractTransition AbstractState DCFormula
InitialState Transition NamesSet InitialTransition State

Figure 6.10: The class diagram of tB&AXMLFilelOModule

6.3.3 GUI CA-Editor and CA-Editor Control

In this subsection we discuss how the GUI CA-Editor and CA-Editor Coaime|
designed and implemented. All the classes, interfaces and subpackabpsdmip
ing the GUI CA-Editor and the CA-Editor Control are located in

the cwi.reo.caeditor.guipackage:

e graceeditor package,

e gracefigurespackage,

e ConstraintAutomatonView class,

e ConstraintAutomatonViewListener interface,

e PropertySheetclass.
The class diagram in figure 6.11 shows an overviewvafreo.caeditor.guipack-
age.
graceeditor package

For the implementation of GUI CA-Editor and CA-Editor Control we choose for
Grace, because Grace is able to generate both on the basis of a specifEs
discussed in section 5.4.3). Hence, Grace generates a graph editsratblatto:

e visualize a constraint automaton on the screen,
e maintain consistency between the visual representation and the data repre-

sentation of a constraint automaton.

67



cwi.reo.caeditor.gui
y ConstraintAutomatonView
ViewState
+EDIT <— @ —> . F-> )
+ADDSTATE 4 4 [tsetViewState(in state : ViewState) graceeditor gracefigures
+ADDTRANSITION +getViewState() : ViewState
+REMOVE
+DISABLED % -notifies
T 5 -listens
L
«interface» PropertySheet
's def|ne:d as enum in qlass ConstraintAutomatonViewListener
ConstraintAutomatonView - - - - -
+viewStateChanged(in caView : ConstraintAutomatonView)

Figure 6.11: The class diagram of GUI CA-Editor

The specification consists of three parts. First, one has to describe théngap
from the application domain to the graph domain, thus the mapping from classes to
graph, nodes and edges. In order for the Grace editor classesgmizethe roles

of the application domain classes as such and to interact with them, the application
domain classes need to implement the interf&&egph, Node, Edge Figure 6.12
shows how this is done for the classes of the CAM.

Second, the presentation style needs to be specified, a descriptiondioeoezpo-

nent of the graph domain is visualized on the screen (figure 6.13). @racieles

the developer with a set digures e.g. boxes and circles for nodes, straight lines
and Bezier curves for edges. This set also contains figures for yiisplext, e.g.
labels for nodes and edges.

Third, the interactions must to be specified, describing the behavior offite e
when it interacts with the user. For example, clicking with the mouse on a node,
subsequently dragging to and releasing on another node should areatgeabe-
tween those nodes. The complete specification language of Grace aauimblari

[7]. All the Grace generated classes are placed irgtheeeditor package.

gracefigures package

The basic set of figures that Grace provides for specifying the ipiatsen style
does not suffice to express constraint automata. For example, a tranaititrave
multiple data constraint formulae, which we want to visualize as an edge label
where each data constraint formula is on a separate line, while Graceupplgrss
single line edge labels. Therefore, we extend this set with the pagkagefigures
containing the following custom figures:

o multiline text label for nodes,
e multiline text label for edges,

e concatenated Bezier curves figure for edges.

68



grace.model «interface»

GraphObject

i

«interface»
«interface» -has -belongs to Node
Edge +getinEdges() : List

+getSource() : Node +getOutEdges() : List

+getTarget() : Node x 2 +add(in e : Edge)
/\ +remove(in e : Edge)

5 -belongs to «interface» A
Graph -belongs to x
-has +add(in n : Node) -has
+add(in e : Edge)

+remove(in n : Node)
1 [+remove(in e : Edge) 1
+getNodes() : Iterator
+getEdges() : Iterator

: ConstraintAutomaton

—_— [
* +add(in n : AbstractState) 1
+add(in e : AbstractTransition)
+remove(in n : AbstractState)
AbstractTransition +remove(in e : AbstractTransition)
+setNamesSet(in namesSet : NamesSet)
+setStatelD(in s : AbstractState, in id : String) AbstractState

cwi.reo.caeditor.gui.graceeditor

+getSource() : AbstractState
+getTarget() : AbstractState >

+getTransitionID() : String 3 2 +getStatelD() : String

Figure 6.12: Integration of the application domain classes with the Grace editor
classes.

Application domain Graph domain Presentation

Bezier curve with textlabel

textlabel
— A\ Bezier curve with textlabel

State & node & textiabel Circle with textlabel
InitialState node &—> ° Circle
E E textlabel

—>
Transition &—> edge
—

InitialTransition edge

Figure 6.13: The specification of the GUI CA-Editor



Grace provides a Bezier curve figure for edges, but this figure amigists of
one single Bezier curve. The custom edge figure that we implement ssigmar
Bezier curve, but also supports multiple concatenated Bezier curvescofitate-
nated Bezier curves figure for edges is added, because we plan Grajskviz
as the layout engine and Graphviz describes the layout of an edgeshyr omore
Bezier curves.

ConstraintAutomatonView

The Grace generated editor does not have scrolling abilities.ChmstraintAu-
tomatonView class extends the Grace generated editor and adds scrolling abilities
to the editor. Thus, if part of the visualized constraint automaton is pladsiieu

the viewing area, then a scrollbar appears, which the user can movenigectte
viewing area.

ConstraintAutomatonViewListener

The ConstraintAutomatonView can be in different states, e.g. ‘add state’, ‘add
transition’ or remove state. To allo@onstraintAutomatonView to notify others
about changes of its state, we apply the Observer design pattern[6ditining the
listener interfaceConstraintAutomatonViewListener. Mainly the IT-GUI will

listen to these changes to update itself to show the user in which state the editor
currently is, e.g. whether itis in an “add state” or “add transition” state.

PropertySheet

ThePropertySheetclass is a panel that can be used to show the properties of con-
straint automata, states and transitions, e.g. state name, transition datarasnstra
Through thePropertySheetthe user can also modify these properties.

6.3.4 Input Parsers

TheDCParserandNamesParseipackage contains all the classes for parsing data
constraints and names respectively. Parsing is the conversion of inptietoal
data structures. In our case we need to parse:

1. adata constraint string to an abstract syntax trégGformula,
2. a names string toldamesSebbject.

Instead of implementing these two parsers, we use a parser generatariteato
reads a description of a language and converts it to a program thatadrand
analyze that language. Javati8 a popular parser generator for use with Java
applications. In addition to the description of the language, the actions thatoe

http://javacc.dev.java.net/

70



digraph agraph digraph agraph

{ {
rankdir=LR; graph [rankdir=LR];
node [shape =circle];  node [label=%N”, shape=circle];
A->B; graph [bb="0,0,112,38"];
} A [p0s="19,19", width="0.53", height="0.53"];
B [pos="93,19", width="0.53", height="0.53"];
A-> B[pos="e,74,19 38,19 46,19 55,19 64,19"];
}
(a) (b)

Figure 6.14:(a) DOT file without layout information.(b) DOT file with layout
information.

be taken when a certain sequence is recognized should be specifesg: ddiions
create a abstract syntax tree@CFormula (1) or aNamesSebbject (2).

6.3.5 Layout Engine

For the implementation of the GUI CA-Editor, we use a graph visualization library
that has no built-in layout engine. Therefore, we use Graphviz as tieenek
layout engine. Graphviz is open source graph visualization softwdrehvhas
several graph layout programs. We make use of the graph layoutapnaipt,
which makes layouts for directed grapkiet takes description of a graph in a sim-
ple text language, called th#OT language, as input. Subsequentlgt generates
the layout for this graph by reproducing the input along with layout infaiona
(figure 6.14).

Grappa is a Java graph drawing package, which can be seen a®égsubset of
Graphviz to Java. Grappa is able to read graphs described DQfidanguage.

cwi.reo.caeditor.layoutengine

DotLayoutEngine

+performLayout(in model : ConstraintAutomaton, in view : ConstraintAutomatonView)

Figure 6.15: The class diagram of the Layout Engine.

71



Figure 6.15 shows the class diagram of the Layout Engine. The Diadsay-
outEngine, located in the packagewi.reo.caeditor.layoutenging is the imple-
mented Layout Engine that makes use ofdbelayout program of Graphviz. Fig-
ure 6.16 shows how theotLayoutEngine globally works:

1. translate the CAM data structures tD@T file,
2. call thedotlayout program which adds layout information to DeT file,
3. read theDOT file using Grappa,

4. extract the layout information from the Grappa data structures ariy iapp
to the layout of the states and transitions of the constraint automaton in the

GUI CA-Editor.
CAM S . 2 dot layout
datastructures ~ / > Dot file /M
‘ DOT file with 3 Grappa 4 'Apply quout
> layout S datastructures /— information to
information ~ / GUI CA-Editor

Figure 6.16: The layout process of thetLayoutEngine

6.4 IT-GUI

For the implementation of the Integrated Tool GUI we use the Java MDI Applica-
tion Framework. This framework provides a skeleton for MDI applicatitimer,e-

fore reducing the development time of a MDI application.

The use of the Java MDI Application Framework is based on the Factoryddeth
design pattern [6]. In this design pattern a framework defines abstesstes and
also maintains the relationships between objects. To create an applicatmificspe
implementation, one just has to subclass the abstract classes of the fr&kmewor
Figure 6.17 shows how the subclassing is done for our tool. These slasse
located in theewi.reo.itgui package. The description of the classes is given below:

e CAEditorMain , the main class of the toaol,
o CAEditorMainWindow , the main window of the tool,

e CAEditorCommands, handles all commands which can be triggered by
users,

72



1

Java MDI Application Framework

cwi.reo.i

gui

CAEditorMain CAEditorMainWindow CAEditorCommands CAFilelOException CAEditorResources

CAEditorActionConverter CAEditorView CAFileFormat CAEditorData CAEditorFilelOModule
1 1
cwi.reo.caeditor.gui cwi.reo.caeditor.cam
ConstraintAutomatonView | 1 ConstraintAutomaton | 1 CAXMLFilelOModule | 1

Figure 6.17: The class diagram of the Integrated Tool GUI.

CAEditorData, contains the data of a document, thus a constraint automa-
ton (therefore it contains theéonstraintAutomaton class),

CAEditorView , responsible for viewing the data of a document (therefore
it contains theConstraintAutomatonView class),

CAEditorActionConverter , responsible for handling the undo, redo, copy,
cut and paste command,

CAEditorResources manages all the resources of the tool (e.g. icons, prop-
erty file),

CAEditorFilelOModule , responsible for loading and saving (therefore it
depends on thEAXMLFilelOModule ),

CAFileFormat, represents the file format,

CAFilelOException, the exceptions which can occur during loading or sav-
ing.

Figure 6.18 illustrates how the IT-GUI looks like and shows which classes the
components of the IT-GUI correspond to.

6.5

CA-Engine

In this section we discuss the implementation of the CA-Engine. The first two
requirements of the CA-Engine as described in section 5.10 are quite teigs|,

73



CAEditorMainWindow CAEditorView ConstraintAutomatonView

CAEditorCommands

£ Fifo1.jgx - Constraint Automata E fitor and Siinulator

PropertySheet

File Edit Windows

NE IR IR

L e ) o

C:Documents and Settings'Kan'Mijn documen... nz i

state_0

A
data(A) ==['d1"

L

state_1

B
data(B) ==

g

Port Hames: |A, B

Ready

Figure 6.18: The screenshot of the IT-GUI showing the correspaedeith the

classes.

74



to realize. However, the third requirement, evaluating data constraints wl@gPr
like manner, is hard to implement from scratch.

To implement the third requirement we use Prolog Cafe, a Prolog to Javiatoans
system. It is able to convert Prolog source code to Java source cateeHve
create a Prolog program that evaluates data constraints against anapieflata-
assignments, while binding free variables to values when possible. WithgProlo
Cafe we translate this Prolog program to a Java program, which we cam thee
tool.

The classes, interfaces and subpackages of the CA-Engine arallottie
cwi.reo.caengingpackage (figure 6.19):

e CAENgine, implements the requirements of CA-Engine as defined in section
5.10,

¢ NameDataAssignmentrepresents a name-data-assignment,
o NDASet, represents a set of name-data-assignments,
¢ Data, the interface for data objects usedNameDataAssignment

e DataWrapper, which implements th®ata interface, can be used to wrap
an object such that the object can be useldameDataAssignment

¢ PrologDCChecker, checks data constraints using the to-Java-translated Pro-
log program,

e prologdccheckerpackage, contains all the to-Java-translated source code of
the Prolog program.

6.6 TDSLAS

In this section we discuss the design and implementation of the TDSLAS. Using
the requirements of the TDSLAS described in section 5.7, the TDSLAS can be
decomposed into the following:

e atimed data stream editor part (TDS-Editor), where the user is able to edit,
save and load timed data stream,

e asimulator part, where the user simulates a constraint automaton with timed
data streams.

In the next subsections the TDS-Editor and the simulator part are discsspa-
rately.

75



cwi.reo.caengine

CAEngine
+getlnitialTransitions() : Vector<InitialTransition> Eiz prologdcchecker
+getTransitionsFrom(in s : State) : Vector<Transition>
+evalTransition(in t : Transition, in ndaset : NDASet) : Vector<NDASet>

NDASet

DataWrapper

+addNDA(in nda : NameDataAssignment)

+removeNDA(in nda : NameDataAssignment)

+ -contains +deepCopy() : Data

+getValue() : Object
|

2 |

NameDataAssignment %7
-name : String -contains «interface»
+NameDataAssignment(in name : String, in data : Data) Data
+getData() : Data : +deepCopy() : Dgta
+getName() : String 1 |+getValue() : Object

+setData(in data : Data)

Figure 6.19: The class diagram of the CA Engine.

6.6.1 Model-View-Controller Design Pattern

For the design and implementation of the GUI we often apply the Model-View-
Controller (MVC) design pattern[6]. The MVC design pattern decompases
application in the following three objects:

¢ the model, which contains the data of the application,
e the view, responsible for displaying the model on the screen,

o the controller, which handles the interactions the user performs with the ap-
plication and changes the data of the model accordingly.

The MVC decouples the model and view by applying the Observer desitané],
where the view is the observer of the model. Whenever the data of the model
changes, it notifies its observers. Figure 6.20 illustrates the basic MaoelgtV
Controller relationships.

6.6.2 TDSM and LSTDS

Since the TDSLAS acts as a language acceptor simulator, it only needs toteimula

a constraint automaton with timed data streams where the data consists of strings,
timed stringdata streamsThe data structure representing such a timed string-
data stream is th&imedStringDataStream class. TheT SDSXMLFilelOMod-

76



-handles user input
Controller
-changes data
R it Model
[
: -notifies
|
|
: -listens to
V
View
-delegates user input -displays data

Figure 6.20: The basic Model-View-Controller relationships.

ule class handles the loading and saving of a timed stringdata stream from and to a
TSDS-XML file. The class diagram is shown in figure 6.21.

6.6.3 GUI TDS-Editor

Through the GUI TDS-Editor the user is able to edit, save and load timed data
streams. In the GUI TDS-Editor a table is shown where each column of the table
represents a timed stringdata stream associated with a constraint autormaton po
A screenshot of the GUI TDS-Editor is shown in Figure 6.22.

For the GUI TDS-Editor we apply the MVC design pattern[6]. Figure 6.28sh

the class diagram of the TDS-Editor and which part of the MVC design pdtier
classes correspond to.

e PortsTimedStringDataStreams associates timed stringdata streams with
ports.

e TimedStringDataStreamsEditorModel, the model of the TDS-Editor.

e TimedStringDataStreamsEditorModelListener, the listener interface for
TimedStringDataStreamsEditorModel.

¢ PortsTimedStringDataStreamsTableMode] the adapter class between
PortsTimedStringDataStreamsand the table which shows the ports and
the associated timed string data streams.

e TimedStringDataStreamsEditorView, the view of the TDS-Editor.

77



cwi.reo.tdslas

TSDSXMLFilelOModule

+saveAsTSDSXML(in tsds : TimedStringDataStream, in file : File)
+loadFromTDSXML(in file : File) : TimedStringDataStream

TimedStringDataStream

+insertTimeStringData(in time : int, in data : String)
+setTimeStringData(in time : int, in data : String)
+removeTimeStringData(in time : int)
+removeTimeStringDataFrom(in time : int)
+getStringData(in time : int) : String

-accesses

Figure 6.21: The class diagram @&fmedStringDataStream and TSDSXML-

FilelOModule

Timed Data Streams

fime A =]

- |— Fy
1] a1 o1
1 oz L
2 o3
3 el
4 =

A v Load Save Insert Delete

Figure 6.22: Screenshot of the GUI TDS-Editor.



e TimedStringDataStreamsEditorControl, the controller of the TDS-Editor.

cwi.reo.tdslas
TSDSXMLFilelOModule

+saveAsTSDSXML(in tsds : TimedStringDataStream, in file : File)

i +loadFromTDSXML(in file : File) : TimedStringDataStream
view
-delegates user input
TimedStringDataStreamsEditorView 1
-accesses
-fisplays data controller
+ed!torD|sabIed() = el e (ot TimedStringDataStreamsEditorControl
+editorEnabled()
]
€7 1 +insert()

«interface» :delete-()t d - Stri
TimedStringDataStreamsEditorModelListener +IS:l;ci(i:1ntssdss::n:ﬂee N Str::':g;))
+editorDisabled() - 7
+editorEnabled() . o

*| -changes data

4 -listens to

-notifies 1

| i model
TimedStringDataStreamsEditorModel
+addTimedStringDataStreamEditorModelListener(in | : TimedStringDataStreamsEditorModelListener) &
<> 1
2 PortsTimedStringDataStreamsTableModel 1

data

PortsTimedStringDataStreams

+associatePortTimedStringDataStream(in portname : String, in tsds : TimedStringDataStream)
+clearPortTimedStringDataStream(in portname : String)

TimedStringDataStream 1 _associates with port

+insertTimeStringData(in time : int, in data : String)
+setTimeStringData(in time : int, in data : String)
+removeTimeStringData(in time : int)
+removeTimeStringDataFrom(in time : int)
+getStringData(in time : int) : String

Figure 6.23: The class diagram of the TDS-Editor of the TDSLAS.

The table shown in the GUI TDS-Editor, implemented by Table (from the
Java Swing library), shows the data BbrtsTimedStringDataStreams How-
ever, the interface dPortsTimedStringDataStreamsis not the interfacdTable
expects. By applying the Adapter design pattern[6], the dPastsTimedString-
DataStreamsTableModelconverts thd?ortsTimedStringDataStreamsinterface
into an interfaceJTable expects. PortsTimedStringDataStreamsTableModel
acts as a model whetHable gets its data from, but the actual data comes from
PortsTimedStringDataStreams Changes ifPortsTimedStringDataStreamsare
reflected inJTable and vice versa.

79



6.6.4 TDS-Editor Control

TheTimedStringDataStreamsEditorControl is the controller object, which han-
dles the following interactions with the user:

e insert timed stringdata tuples

e delete timed stringdata tuples
e save timed stringdata streams
¢ |oad timed stringdata streams

The TimedStringDataStreamsEditorControl performs these operations directly
on TimedStringDataStream and PortsTimedStringDataStreams Because of
the adapter clasBortsTimedStringDataStreamsTableModelthese changes are
reflected in the timed stringdata streams table in the GUI TDS-Editor.

6.6.5 GUITDSLAS

In the simulator part of the TDSLAS the user simulates a constraint automaton
by ‘stepping’ through the constraint automaton, going from one state tiv@no
dependent on the timed data streams. At each step the simulator lists the enabled
transitions (the possible transitions), which depends on the currenraionsu-
tomaton state and timed data streams, from which the user chooses one for the
next step. A trace log is available, showing the history of the steps. Thevintio
classes are defined:

e EnabledTransitions, represents the enabled transitions,
e Trace, represents the trace history.

For the GUI of the simulator part we apply the MVC design pattern[6]. Figure
6.24 shows the class diagram and which part of the MVC design pattertatses
correspond to.

e TraceModel, the model fofTrace containing theTraceTableModel.

e TraceTableModel, the adapter class betwednaceModel and the table
which shows the trace history,.

e EnabledTransitionsModel, the model ofEnabledTransitions containing
the EnabledTransitionsTableModel

e EnabledTransitionsTableModel the adapter class betweEnabledTran-
sitions and the table which shows the enabled transitions.

e TDSLASModel, the model of the simulator part.
o TDSLASModelListener, the listener interface forDSLASModel.

80



e TDSLASView, the view of the simulator part.
e TDSLASControl, the controller of the simulator part.

e CAENngineModel, contains the CAEngine and keeps track of the current
state, selected transition and last transition made during the simulation.

cwi.reo.tdslas cwi.reo.caengine -
CAEngineModel

CAEngine 1 7

<>+setCurrentState(in s : AbstractState)
+setSelectedTransition(in t : AbstractTransition)
+setLastTransition(in t : AbstractTransition)

TimedStringDataStreamsEditorModel 1 1

+addTimedStringDataStreamEditorModelListener(in | : TimedStringDataStreamsEditorModelListener)

view -delegates user input | Sontroller
<interfacer TDSLASView - TDSLASControl
TDSLASModelListener| . | 1 -
+simulationStarted() +simulationStarted()
+simulationStopped() +simulationStopped() 1
% -changes data
-listens to 4 g -displays data
1
model \J/ 1
- TDSLASModel =
EnabledTransitionsModel

-notifies  [+addTDSLASModelListener(in | : TDSLASModelListener) [ >

1 10 11 .

1 *
TraceModel .—1% TraceTableModel EnabledTransitionsTableModel
1
1 1
—

B

data . V.
EnabledTransitions 1

+addTransition(in t : AbstractTransition, in ndaset : NDASet)
+clear()

Trace

+addTraceTransition(in time : int, in from : AbstractState, in to : AbstractState, in t : AbstractTransition, in ndaset : NDASet)
+removeTraceTransition(in index : int)
+clear()

Figure 6.24: The class diagram of the simulator part of the TDSLAS.

For the overall GUI TDSLAS we integrate the GUI TDS-Editor and the GUI of
the simulator part and show them together in one window. Figure 6.25 shows a
screenshot of the GUI TDSLAS. The class diagram depicted in figuresh.@s

the implementation.

e TDSLASFrame, the window which contains the GUI of the TDS-Editor
and the simulator.

81



e TDSLASMain, the main class which starts and initializes the TDSLAS.

TDSLASView TDSLASFrame TimedStringDataStreamsEditorView
Trace : imed Data Streams —
time from to A B firme A B
— — state_0 e —
1] state_0 state_1 dl 0 o1
1 state_1 -1 di
2
3
i 4
T T = I
Enabled Transitions
fram | ju} | A | E |
state_1 |state_0 | |1 |

Figure 6.25: The screenshot of the GUI TDSLAS showing the correspuce
with the classes.

6.6.6 TDSLAS Control

The TDSLAS Control is implemented B DSLASMain and TDSLASControl.
TDSLASMain is the main class that starts and initializes the TDSLAS. The user
is able to accesEDSLASMain through the IT-GUI.

The TDSLASControl is the controller object, which handles the interactions the
user performs with the simulator part. Since it is also responsible for chatiggn
data of the model object (the trace log, the enabled transitions tabl@)DBEAS-
Control is the one which actually performs the simulation.

The TDSLASControl interacts with the user and performs the simulation as fol-
lows:

1. The user starts the simulation.

2. TheTDSLASControl fills the enabled transitions table with the initial tran-
sitions.

3. The user selects one of the initial transition and makes a step.

4. TheTDSLASControl steps to the state indicated by the selected initial tran-
sition (this state becomes the ‘current state’).

5. TheTDSLASControl clears and fills the enabled transitions table as fol-
lows:

82



cwi.reo.tdslas
TimedStringDataStreamsEditorView TDSLASView
+editorDisabled() +simulationStarted()
+editorEnabled() +simulationStopped()
1 TDSLASFrame 1
<> <>
1 1
]
1 -creates/initializes
TDSLASMain
+start(in ca : ConstraintAutomaton, in view : ConstraintAutomatonView)

Figure 6.26: The class diagram of the integration of the TD-Editor and sinmulato

83



(a) use the CA-Engine to retrieve the outgoing transitions from the current
state

(b) get the timed stringdata streams from TDS-Editor

(c) create a set of name-data-assignments with the timed stringdata streams
for time pointt

(d) use the CA-Engine to evaluate each transition with this set of hame-
data-assignments

(e) each transition which is possible (according to the evaluation), is added
to the enabled transitions table

6. The user selects a transition of the enabled transitions table and makes a ste

7. The TDSLASControl updates its current state with the state indicated by
the selected transition.

8. Steps 5, 6 and 7 are repeated until the enabled transitions table becomes
empty such that no transition can be selected by the user at step 6 (the con-
straint automaton rejects the timed stringdata streams).

6.6.7 Simulation Coloring

During the simulation the TDSLAS goes from one constraint automaton state to an
other state dependent on the timed data streams and the transitions the asescho
The simulation can be made visible in the GUI CA-Editor, for example, by indi-
cating the current state using colors. To realize this we apply the Obsisign
pattern[6] onCAEngineModel and introduce the following classes:

e CAENgineModelListener, the listener interface faCAEngineModel,

e CAColorControl, which implements th&€ AEngineModelListener inter-
face and changes the colorsGonstraintAutomatonView.

The class diagram is shown in figure 6.27.

6.7 RCSwWTDS

Looking at the requirements of RCSWTDS described in section 5.8, werjeise
the functionality of RCSwTDS as follows:

e atimed data stream editor part (TDS-Editor), where the user is able to edit,
save and load timed data stream,

e a simulator part, where the user can simulate a constraint automaton with
(incomplete) timed data streams.

For the TDS-editor we reuse the TDS-Editor of the TDSLAS, becausedtey
equivalent.

84



cwi.reo.tdslas

-changes colours
CAColourControl

1
T

cwi.reo.gui

+currentStateChanged(in s : AbstractState)
+selectedTransitionChanged(in t : AbstractTransition) ConstraintAutomatonView
+lastTransitionChanged(in t : AbstractTransition)

v

«interface»
CAEngineModelListener
+currentStateChanged(in s : AbstractState) CAEngineModel
+selectedTransitionChanged(in t : AbstractTransition)
+lastTransitionChanged(in t : AbstractTransition)

+setCurrentState(in s : AbstractState)
+setSelectedTransition(in t : AbstractTransition)
+setLastTransition(in t : AbstractTransition)

-listens to

-notifies

Figure 6.27: The class diagram GRAEngineModelListener and CAColorCon-
trol .

6.7.1 GUI RCSWTDS

The simulation part of the RCSWTDS is very similar to the TDSLAS. Like with
the TDSLAS, the user simulates a constraint automaton by stepping through the
constraint automaton. At each step the RCSWTDS shows the possible tr@nsitio
from which the user chooses one for the next step. The RCSwTDSadsmthace

log showing the history of the previous steps. Thus, for the simulation pany ma
classes of the TDSLAS can be reused.

In addition to the TDSLAS, the RCSwWTDS needs to show the ‘observed time
stringdata tuple’ of each time step. For this we use the TDS-Editor, but we dis-
able the editing of timed stringdata streams. By reusing the TDS-Editor, it is not
necessary to implement another table. Figure 6.28 shows a screengn®Gifl
RCSwTDS.

For the GUI RCSWTDS we apply the MVC design pattern[6]. The class dimgr

is depicted in figure 6.29.

¢ RCSwTDSModel the model of the simulator part.
o RCSwTDSModelListener, the listener interface fARCSwTDSModel

¢ RCSwWTDSView, the view of the simulator part.

RCSwTDSControl, the controller of the simulator part.

RCSwTDSFrame the window which contains the GUI of the TDS-Editor
and the simulator.

RCSwTDSMain, responsible for starting and initializing the RCSwWTDS.

85



TimedStringDataStreamsEditorView

RCSwIDSView RCSwIDSFrame

i Timed Data Streams

frarm to time
— state_0

state_0

A V| Load || Save || Ingert H Delete

Uﬁsenﬂea ||meﬂ Uﬁfa gfreams

time A

-
Enabled Transitions

fram | to
state_0 |state_0

Figure 6.28: The screenshot of the GUI RCSwWTDS showing the camelgmce
with the classes.

cwi.reo.tdslas EnabledTransitionsModel cwi.reo.rcswtds
1 1 | model
TraceModel RCSwTDSModel -notifies
1 d
ontroller
tdslas::CAEngineModel RCSwTDSControl
111 -changes data 1 1

+setCurrentState(in s : AbstractState)
+setSelectedTransition(in t : AbstractTransition)
+setlLastTransition(in t : AbstractTransition) Lhandles user input 1

view
RCSwTDSView
K

-displays data
]

*

TimedStringDataStreamsEditorView

+simulationStarted()

+ed{torD|sab|ed() delegates user input . N
+editorEnabled() +simulationStopped() . -listens to
7N
2 i e
RCSwTDSFrame «interface»
b ~ RCSwTDSModelListener
+simulationStarted()
1 1 +simulationStopped()

i i RCSwTDSMain

-creates/initializes

Figure 6.29: The class diagram of RCSWTDS

86



6.7.2 RCSwTDS Control
The RCSwTDS Control is implemented RCSwTDSMain andRCSwTDSCon-

trol.

The classRCSwTDSMain is the main class that starts and initializes the

RCSwTDS. The user is able to acc€&SSwTDSMain through the IT-GUI.
TheRCSwTDSControl is the controller object, which handles the interactions the
user performs with the simulator part. Since it also responsible for chatigéng
data of the model object (the trace log, the observed timed stringdata stthams,
enabled transitions table), tiRCSwWTDSControl is the one which actually does
the simulation.

The RCSwTDSControl interacts with the user and performs the simulation as
follows:

1.
2.

The user starts the simulation.

The RCSwTDSControl fills the enabled transitions table with the initial
transitions.

The user selects one of the initial transition and makes a step.

The RCSWTDSControl steps to the state indicated by the selected initial
transition (this state becomes the ‘current state’).

TheRCSwTDSControl clears and fills the enabled transitions table as fol-
lows:

(a) use the CA-Engine to retrieve the outgoing transitions from the current
state

(b) get the timed stringdata streams from TDS-Editor

(c) create a set of name-data-assignments with the timed stringdata streams
for time pointt

(d) combine this set of name-data-assignments with the delayed name-
data-assignments of the previous step

(e) add the combined set of name-data-assignments to the table showing
the observed timed stringdata streams in the GUI RCSwWTDS

(f) use the CA-Engine to evaluate each transition with the combined set of
name-data-assignments

(g) each transition which is possible (according to the evaluation), is added
to the enabled transitions table

6. The user selects a transition of the enabled transitions table and makgs a ste

7. TheRCSwTDSControl updates its current state with the state indicated by

the selected transition.

8. Steps 5, 6 and 7 are repeated.

87



6.7.3 Simulation Coloring

Like the TDSLAS the simulation of a constraint automaton in the RCSwTDS can
be visualized by coloring the states and transitions in the GUI CA-Editor. Since
we reuse the clasSAEngineModel of TDSLAS, the other classes responsible for
the coloring can also be reused (see subsection 6.6.7).

6.8 RCSwC

In this section we discuss the design and implementation of the RCSwC.

6.8.1 GUIRCSwWC
Through the GUI RCSwC the user is able to:

¢ |oad Reo components into the application,

¢ load constraint automata into the application as Reo connectors,
e connect Reo component ports with Reo connector ports,

e start/stop the simulation.

After a component has been loaded into the application, the ports of this cemtpo
are shown in a table in the GUI RCSwC. The same applies for constraint aatoma
Next, the user can select a component port and a connector porbanelat them.
Figure 6.30 shows a screenshot of the GUI RCSwC.

B=1ES

Load Component | | Load Reo Connector |
Component - Port Feo Connector- Port
WWriter — output Sync-a. oy — B
Connect ‘ ‘ Disconnect
Component - Port Reo Connector - Port
Taker + input Sync-a.jox = A
| Start ‘ ‘ Stop ‘

Figure 6.30: Screenshot of the GUI RCSwC.

88



The MVC design pattern[6] is applied for the GUI RCSwC. The class diadgsa
depicted in figure 6.31.

e ComponentPort, represents a component port.
¢ ReoConnectorPort represents a Reo connector port.

¢ RCSwCModel, the model of the RCSwC, which contains the data such as
the loaded components ports, loaded Reo connector ports and the connec
tions made (between components ports and Reo connector ports).

e ComponentPortsTableMode] the adapter class betwe®&CSwCModel
and the table which shows the component ports.

e ReoConnectorPortsTableModelthe adapter class betweRBESwCModel
and the table which shows the Reo connector ports.

e MappingTableModel, the adapter class betweRE€SwCModel and the ta-
ble which shows the connections between component ports and Re@eonne
tor ports.

o RCSwCView, the view of the RCSwC.
o RCSwCControl, the controller of the RCSwC.

o RCSwCMain, the main class which starts and initializes the RCSwcC.

6.8.2 Load Component and Component

The class responsible for loading a Reo component into the application is the
classComponentXMLLoadModule. The ComponentXMLLoadModule reads

a Component-XML file where the binary name or the location of a class is spec-
ified. The Component-XML file can also contain extra information that can be
used for initialization of the component. The class is loaded into the memory by
theMultiClassLoader. If the loaded class implements t®mponentinterface,

then an object is instantiated from this class, which acts as a component@stan
The Componentinterface allows the following:

e pass the Component-XML file to the component instance for initialization,
e get/set the name of the component instance,
e retrieve names of the output ports and input ports,

e connect (disconnec8ink andSourceobjects to (from) input portname (out-
put porthames).

89



cwi.reo.rcswc
-handles user input RCSwCControl

RCSwCView 1 +start()
-dell user input  |+stop()
S +loadComponent(in ¢ : Component, in name : String)
+loadReoConnector(in ca : ConstraintAutomaton, in view : ConstraintAutomatonView, in name : String)
1 +connect(in componentindex : int, in reoConnectorindex : int)
-displays data +disconnect(in mappedPortindex : int)

-changes data il -accesses

1

RCSwCModel ComponentXMLLoadModule

11 +addReoConnector(in rc : ReoConnectorSimulationEngine, in name : String)
+addComponent(in ¢ : Component, in name : String)

+loadComponent(in f : File) : Component

+connect(in rport : ReoConnectorPort, in cport : ComponentPort)
+disconnect(in rport : ReoConnectorPort, in cport : ComponentPort) 1
1 1 1
1 1 il
ComponentPortsTableModel MappingTableModel ReoConnectorPortsTableModel

d ReoConnectorPort ComponentPort ¢ i

Figure 6.31: The class diagram of GUI RCSwC.

Through theSink and Source objects the component instance is able to perform
take and write operations with its environment. However, all the objects which
pass through th&ink and Source have to implement th®ata interface. Fig-

ure 6.32 shows the class diagram of the classes that are located in tlagemck
cwi.reo.rcswc.componentndcwi.reo.rcswc.core

Some standard components have already been implemented. These camponen
are located in the packag#i.reo.rcswc.component.std

e Taker, a component which allows the user to perform take operations on a
port,

e Writer , a component which allows the user to perform write operations on
port,

e FIFO1, a component which acts as a FIFOL1 buffer,

e PythonComponent a component which enables the support for the script-
ing language Python.

The implementation of the Jython component is discussed in subsection 6.8.3.

6.8.3 Python Component

The Python component is implemented by the cRgthonComponent which
acts as wrapper around a Python interpreter. For the Python interpretese
Jython, which is a pure Java implementation of the scripting language Python.

90



cwi.reo.rcswc.component

ComponentXMLLoadModule

«interface»Component

+init(in xmlile : File)
+loadComponent(in f : File) : Component +getName() : String

T +setName(in name : String)

1
1

+getOutputPortNamesSet() : NamesSet
+getinputPortNamesSet() : NamesSet

+connectinputPort(in portname : String, in sink : Sink)
MultiClassLoader +connectOutputPort(in portname : String, in source : Source)
+disconnectinputPort(in portname : String)
+disconnectOutputPort(in portname : String)

+load(in classname : String) : Class
+load(in classfile : File) : Class 1 i 1 nies e
Cwi.reo.rcswe.core 2
Sink Source
+take() : Data +write(in data : Data)
+take(in timeoutms : long) : Data +write(in data : Data, in timeoutms : long)

Figure 6.32: The class diagram of Load Component and Component.

When a Python component is instantiated, it creates a Python interprets, loa
the source code of the Python program into the interpreter and execetssuite
code. The source code is contained in the Component-XML file, which éndw
the component instance during initialization.

To allow the Python program to perform write and take operations, a psoXxy
loaded into the Python interpreter environment, ByghonComponentProxy:.
Through this proxy a Python program is able to retriirk andSourceobjects by
input and output portnames. However, these objects cannot be usetiydivithin
the interpreter environment, therefore the proxy puts a wrapper atbendwith
PythonSinkWrapper and PythonSourceWrapper before it returns them to the
Python program (figure 6.33).

Through thePythonSinkWrapper and PythonSourceWrapperthe Python pro-
gram is able to perform write and take operations. However, Python dgate
cannot just leave the interpreter environment. PlgthonSourceWrapperwraps
the Python data objects with tiRythonDataWrapper before they leave the inter-
preter environment.

6.8.4 RCSwC Control

The RCSwWTDS Control is implemented RCSwCMain and RCSwCControl.
The classRCSwCMain is the main class that starts and initializes the RCSwC.
The user is able to acceB€SwCMain through the IT-GUI.

TheRCSwCControl handles the following interactions the user performs with the

91



|Snurce

PythonComponent I~
IPythnnSnurcewrapper
Pyibhon fnterpreter A A~
Fovironment :
Prihon

PythonComponentProxy

T

FProgram

Figure 6.33: The Python component.

application:
¢ load Reo components into the application,
¢ load constraint automata into the application as Reo connectors,
e connect/disconnect component ports with Reo connector ports,

e start/stop the simulation.

Load Reo Components

The loading of Reo components is delegated to Load Component, which is dis-
cussed in subsection 6.8.2. After the loading, the ports of the componesthicava
in a table in the GUI RCSwC.

Load Constraint Automaton as Reo Connector

When the user loads a constraint automaton into the RCSviReo& onnector-
SimulationEngine object is created for this constraint automaton. RemCon-
nectorSimulationEngine is the class that is responsible for simulating the con-
straint automaton as a Reo connector. After the loading the ports of theaiohs
automaton are shown in a table in the GUI RCSwC.

Connect Component Ports and Connector Ports

A component port is not directly connected to a connector port, but thisns d
with a Sink or Sourceobject that acts as an intermediarySik object is used if
the connector port is an input port andgaurceobject in case of an output port.
Hence, a component has no knowledge to which connector it is conreetdadce
versa.

92



The simulation of a connector is based on a constraint automaton. Since a con
straint automaton does not distinguish between input and output portdnthe s
lated Reo connector, tHReoConnectorSimulationEngine also does not distin-
guish between these. To accommodate thisSimx and Sourceare generalized

by the abstract clagS8hannelEnd. Figure 6.34 shows the class diagram.

SWLIEO IS WCLOTS ReoConnectorSimulationEngine

+getPortNamesSet() : NamesSet

+connect(in name : String, in ce : ChannelEnd)
+disconnect(in name : String) 1
+acquireReadWriteLock(in timeoutms : long)
+releaseReadWriteLock()

- 1 -accesses -
Sink ChannelEnd Source
+take() : Data #acquireLock() +write(in data : Data)
+take(in timeoutms : long) : Data #releaselLock() +write(in data : Data, in timeoutms : long)
cwi.reo.rcswc.component
«interface»
Component

+init(in xmlile : File)

1 +getName() : String

+setName(in name : String)
+getOutputPortNamesSet() : NamesSet
+getinputPortNamesSet() : NamesSet 1
+connectinputPort(in portname : String, in sink : Sink)
+connectOutputPort(in portname : String, in source : Source)
+disconnectinputPort(in portname : String)
+disconnectOutputPort(in portname : String)

-writes to

-reads from

Figure 6.34: The class diagram showing the connection between contp@meh
connectors.

Simulation

When the user starts the simulation, all the loaded components and loaded Reo
connector simulators are executed, each by a separate thread. Derexgtution

the components perform write and take operations to the conn8cteite and

Sink objects. TheReoConnectorSimulationEngineimmediately goes to sleep

and waits until an operation is being performed at one of its conné&hednel-

End.

TheSource Sink andReoConnectorSimulationEnginehave mutex locks, which

are used to synchronize the threads and prevent corrupt situatiodsschiption

93



of how the components§ink, Source andReoConnectorSimulationEnginein-
teract with each other is given below:

1. A component performs a write (take) operation to its Source (Sink) bbjec

2. TheSource(Sink) tries to acquire the read-write-lock of tReoConnector-
SimulationEngine. The read-write-lock prevents that multigg®urceand
Sink objects try to wake thReoConnectorSimulationEngineg(see the next
step).

3. TheSource(Sink) wakes theReoConnectorSimulationEngineand goes to
sleep.

4. The awakenefReoConnectorSimulationEngineacquires all the locks of
the ChannelEnd objects it is connected to. This prevents th&lzannel-
End continues its work when it wakes up while tReoConnectorSimula-
tionEngine is still busy (see step 8).

5. The ReoConnectorSimulationEngineevaluates the data of itShannel-
End objects by checking whether a transition is possible in the constraint
automaton.

6. TheReoConnectorSimulationEnginechanges the data of ea&hannel-
End if the data of thisChannelEnd was involved in a transition.

7. TheReoConnectorSimulationEnginereleases all the locks of iGhannel-
End objects and wakes them.

8. The awakene8ource(Sink) tries to acquire its own lock. This prevents that
a Source(Sink) continues its work when it wakes up while tReoConnec-
torSimulationEngine is still busy (see step 4).

9. TheSource(Sink) releases its own lock and returns (the data) to the com-
ponent (where the operation originated from).

6.8.5 Simulation Coloring

Each connector that is being simulated in the RCSwC is based on a constraint
automaton that is being viewed in the CA-Editor. Hence, the simulation of a con-
nector can be made visible by coloring the states in the constraint automaton in the
GUI-CA-Editor, just like the TDSLAS and RCSwTDS. To accommodate this we
apply the Observer design pattern[6] on BeoConnectorSimulationEngine

e ReoConnectorSimulationEngineListenerthe listener interface for
ReoConnectorSimulationEngine

e CAColorControl , which implements the
ReoConnectorSimulationEngineListeneiinterface and changes the colors
in ConstraintAutomatonView.

94



The class diagram is depicted in figure 6.35.

cwi.reo.gui Cwi.reo.rcswc
ConstraintAutomatonView 1 . CAColourControl
L
h | +lastTransitionChanged(in t : AbstractTransition)
-changes colours +currentStateChanged(in s : AbstractState)

cwi.reo.rcswc.core |

AV
«interface»
ReoConnectorSimulationEngineListener

+lastTransitionChanged(in t : AbstractTransition)

ReoConnectorSimulationEngine

+getPortNamesSet() : NamesSet +currentStateChanged(in s : AbstractState)
+connect(in name : String, in ce : ChannelEnd) @

+disconnect(in name : String) - di
+acquireReadWriteLock(in timeoutms : long) Slons 1o
+releaseReadWriteLock() -notifies

Figure 6.35: The class diagramRe&oConnectorSimulationEngineListenerand
CAColorControl .

95



96



Chapter 7

Conclusions

In this chapter we summarize our contributions and the MSc project. We briefly
give some ideas how our work could be extended or could benefit otbgrcts.
Finally, the author reflects on the personal experiences.

7.1 Contributions

The main contribution of this MSc project is a tool for constraint automata, con
sisting of an editor and three simulators. The constraint automata editor allews th
user to visually construct and modify constraint automata. The editor ibeaph
saving and loading constraint automata to and from files, which allows the¢aise
continue previous work, parses input, which prevents the user freatiog cor-

rupt constraint automata, and contains a layout engine for the visuabmgiation

of the states and transitions.

The first simulator is the “TDS-Language Acceptor Simulator”, which is able to
check the acceptance of a TDS-language for a constraint automatan seth

ond simulator, the “Reo Connector Simulator with TDS”, is able to simulate a
constraint automaton as a Reo connector where the input is given as titaed da
streams. This simulator allows one to study the behavior of Reo connectors in
non-real-time. The third simulator is the “Reo Connector Simulator with Compo-
nents”, which is able to simulate a constraint automaton as a Reo connector with
components attached to it. An API has been provided for implementing arbitrary
software components that can be attached to the simulator, including sumport f
scripting components in Python. We believe that our tool is the first thatiograa
complete visual editor and simulators for constraint automata.

Since constraint automata do not distinguish between input and output,ule co
not directly determine values for output from given input. This functionatity
required for simulating constraint automata as Reo connectors. We illush@ated
take operations in Reo can be interpreted as the completion of incomplete timed
data streams in constraint automata. Hereby we encountered an issue with the
data constraints: they are propositional formulae, not assignments. Nl so

97



this issue by using Prolog-style backward-chaining during evaluatioarsftaint
automaton transitions to bind proper values to the variables representing outp
ports in the constraint automatons data constraints.

The tool has a modular design, such that many parts can be reusedgetepta
improved in the future. The design of our tool can easily be extended deswar
parameterized constraint automata.

7.2 Summary

Before we started with the MSc project, we performed a literature study toracq
the background knowledge on Reo and constraint automata and beawitiarfa
with the concepts and terminology.

The actual execution of the MSc project started with the requirements ahgin

of the assignment. The requirements of the assignment were analyzedcaomd-d
posed into several smaller subrequirements. Each subrequiremenhalgzea
again and, where necessary, decomposed into even smaller subremige

Next, we explored which options were available for the implementation eaeh sub
requirement. For example, the GUI of the constraint automata editor can be im-
plemented by making use of a graph visualization library, such as JGrajptoor
Draw, but another more sophisticated option would be Grace, a genfenagoaph
editors.

In the design and implementation phase all the options of each subrequirement
were examined and the most suitable option for this subrequirement (atitefor
overall project) was chosen. For example, from JGraph, JHotDravGaace, we
selected Grace, because the generated editor is not only able to visoakteamt
automata, but also able to keep the consistency between the visual negtiese

of a constraint automaton and its data representation.

The tool has a modular design, such that in the future parts of the toolasily e

be replaced or reused.

To conclude, all the requirements of the assignment were realized anahtipdate

tool has been delivered, consisting of:

e a constraint automata editor,
e atimed data stream language acceptor simulator,
e a Reo connector simulator with timed data streams,

¢ a Reo connector simulator with components.

7.3 Future Work

The tool Swiss Watch is a visual editor for constraint automata, but it is still in
an early development stage. Besides the editor functionality, Swiss Watbteis a

98



to perform the join and hide operation on constraint automata. Our constrain
tomata editor is more mature than Swiss Watch, but it does not have the join and
hide features, because these functionalities did not concern this assiy8inee

both are written in Java, our tool could relatively easily be improved with these
features of Swiss Watch by integrating them together.

A feature that can be added to our tool is the support for parametegzestraint
automata. This is useful, because parameterized constraint automata atiow us
describe (more) complex behavior in a compact way (see section 4.4).

Another direction would be extending the current tool towards timed constra
automata[2], an extended version of constraint automata where time dotsstra
are added on transitions. Timed constraint automata can be used to d&awibe
channels whose behavior involves temporal constraints. For instarfei&,Cl
channel that automatically loses a data item from its buffer when the data ieem ha
stayed in the buffer longer thdnunits of time.

Currently the simulators block the constraint automata editor when they are run
ning, preventing the user from modifying the constraint automaton while iimngbe
simulated. An interesting extension to our tool would be allowing the user tepaus
the simulation, modify the constraint automaton through a set of specialtimpera
and then continue the simulation. This would facilitate the research in dynamic
reconfiguration of Reo connectors[5], which is about reconfiguaicgnnector at

run time while components are still connected to it. This subject is of importance,
because dynamically reconfiguring a connector could lead to a coiitugtien,
where the coordinating connector exposes undesirable behavior.

Since our tool is designed in a modularized way, many parts can be rebsed.
example, the constraint automata engine, which is able to evaluate dataiobsstra
in a Prolog like manner, could be used in other constraint automata projecis, s
as model checking tools. The same applies for the names parser and therdata
straint parser.

7.4 Personal Experience

For the last ten months | worked on this MSc project, which included a literature
study, analysis of requirements, design and implementation of the tool andgwritin
of the thesis. The project was conducted at the CWI in Amsterdam. Althoegh th
traveling from The Hague to Amsterdam and back was hard, | enjoyekiivgor
there, because of its international environment with researchers fidama of
nationalities. For the most part | worked autonomously and independenthyeon
project, but | had two supervisors, Nikolay Diakov of CWI and KeesRrioom

TU Delft, who guided me through the overall process.

During the literature study | experienced reading papers about a ngecsand
how to acquire the knowledge needed for a project. Next, | analysec ¢juére-
ments and decomposed them into subrequirements. For the implementation of each
subrequirement | searched and evaluated which technique was the ppogpia

99



ate. During the analysis of requirements | tried to foresee the potentia draia
could cause problems later on and look for the best way to deal with them. The
analysis of requirements phase was personally the most interesting pbesese

it required me to think out of the box in order to come up with an elegant solution
for each problem.

During the design and implementation of the tool | did not use UML often nor did

| document a lot. Keeping UML diagrams and documentation consistent with the
actual progress of the project requires a lot of time. Since the projechetathat

big and consisted only of one person, | did not find that having UML diagrand
documentation benefit against the extra time it requires to create them. The only
documentation | kept was a list of the work | did and the problems | encaahter
during the project, which served as input for my written report, this thesised

UML only in complex situations where a lot of classes were involved. This was
especially the case during the design and implementation of the graphical user
interfaces. However, | found out that | did not have enough expeegigvith UML
modeling certain situations. Nikolay Diakov helped me to improve on this aspect.
After the design and implementation | did create the UML diagrams and docu-
mentation and included them in my thesis, because they were necessarg for th
developers who would work on the tool after me. The writing of the thesis was
difficult for me, not only because of the lack of experience with writing iiglish,

but also with scientific writing in general. Luckily, during the writing process |
got the support from both my supervisors. However, | do think that thd€lft
should pay more attention to this during student projects in general, if thely wan
to prepare future researchers, because writing academic papeimisatant and
time-consuming part of the job. Another difficulty | experienced was cingahe

right level of detail for the thesis. Should the thesis be a high level docuntesre

only the concepts are clarified or a low level document where even the impleme
tation is explained?

During the project | dealt with two supervisors. Nikolay Diakov, who was my
daily supervisor and therefore more involved in the project, was able toosup

me throughout the project and gave constructive critisism where reggeséees
Pronk was less involved in the beginning, but became more involved duréng th
writing of the thesis. Since he was less involved in the project, he could epsily s
the gaps and holes in the thesis that might confuse the general reader.

| found this project very interesting, because it required me to use thel&dge
acquired at TU Delft, but the project also gave me opportunity to improve my
knowledge, to work in an international environment at a highly valuedareke
institute and to gain experience with scientific writing. Finally, | want to conclude
that | am very glad how the project proceeded and very content witmitheasult.

100



Bibliography

[1] Farhad Arbab. Reo: A channel-based coordination mamteldmponent composition.
Mathematical. Structures in Comp. $Sdi4:329-366, 2004.

[2] Farhad Arbab, Christel Baier, Frank de Boer, and JandRuttModels and temporal
logics for timed component connecto&econd International Conference on Software
Engineering and Formal Methods, 200#ages 198-207, 2004.

[3] Farhad Arbab, Christel Baier, Jan J.M.M. Rutten, and j&tarSirjani. Mod-
eling component connectors in reo by constraint automatéerided abstract).
ENTCS 97:25-46, 2004. For the full version see http://web.infatik.uni-
bonn.de/l/baier/publikationen.html.

[4] Farhad Arbab and Farhad Mavaddat. Coordination throciggmnel composition.
LNCS 2315:22-39, 2002.

[5] Dave Clarke. Reasoning about connector reconfigurdtiBquivalence of construc-
tions. Technical Report SEN-R0506 ISSN 1386-369X, CWI, Aardaim, The Nether-
lands, February 2004. http://homepages.cwi.nl/ davahgyi

[6] Erich Gamma, John Vlissides, Ralph Johnson, and Richiich. Design Patterns
CD: Elements of Reusable Object-Oriented Software, (CDARQAddison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[7] Gerwin Klein. Generating graphical editors for grajkeldata structures. MSc thesis,
Technische Universit Miinchen, November 1999. http://www.doclsf.de/grace/.

[8] Michael Sipser.Introduction to the Theory of Computatiomnternational Thomson
Publishing, 1996.

[9] Clemens Szyperski.Component Software: Beyond Object-Oriented Programming
Addison-Wesley Longman Publishing Co., Inc., second ediéidition, 1998.

The user can find links to online resources embedded as footnoteshbrdube
text of the individual chapters.

101



102



Appendix A

User’'s Manual

This tutorial gives an introduction to the tool, which consists of:
e the Constraint Automata Editor,
¢ the Timed Data Stream Language Acceptor Simulator (TDSLAS),
¢ the Reo Connector Simulator with Timed Data Streams (RCSwTDS),
¢ the Reo Connector Simulator with Components (RCSwC).

First, the installation of the tool is explained and how to run it. Then we continue
to the constraint automata editor where a small constraint automaton will be cre-
ated as an example. Next, we proceed to the different simulators and explain
constraint automata are being simulated using the example.

A.1 Installation

A.1.1 System Requirements

The tool requires an operating system with Java Runtime Environment (#RE)
sion 5 or above. The JRE is supported by several operating systema/iedpws,
Linux and Solaris. It can be downloaded frémt p: / / www. j ava. coni .

The graph layout programiot must be installed and reachable via the PATH envi-
ronment variable (reachable from any directog9t is part of Graphviz, which is
open source graph visualization software. Graphviz has sevegi tagout pro-
grams and is supported by Windows, Linux and Apple. It can be dowatb&dm
http://ww. graphvi z. org/.

A.1.2 Installing and Running

The tool’s binaries are shipped as compressed zip or tar archive. Wioem-
pressed you get the following files and directory structure:

103



.\ ConstraintAutomataEditor.and Simulators.jar the executable file
Alib contains the libraries

the tool depends on
The tool can be started from the command line as follows:

java -jar Constraint _Automata_Editor _and_Simulators.jar

A.2 Constraint Automata Editor

When you start the tool, you see a window with a workspace area and @hetop
usual menu bar and tool bar. In the workspace area constraint autodhata-
ments can be viewed, each in a separate document window. At the bottom of a
document window there is a properties pane where you can see and rialify
properties of a constraint automaton. The menu bar and tool bar pro@dmii

trols you need to work with documents. Some of the controls are only aclgessib

if a document is opened.

Menu Bar

Tool Bar
Untitled-1 &
Document
Window —
PunNamex|
Ready
Figure A.1: The workspace area.
Menu Bar

In the menu bar you can perform the following actions:
o File
New Creates a new empty constraint automaton document.

Open Opens a constraint automaton document from a CA-XML file.

104



Open RecentShows the 10 last documents which have been opened.
Save Saves a constraint automaton document to a CA-XML file.

Save as Saves a constraint automaton document to a CA-XML file under
a specific name.

Close Closes the current.
Quit: Shuts down the application.

o Edit

Edit State/Transition/CAPuts the application in the edit-mode. In this
mode the layout and properties of states, transitions and the constraint
automaton can be modified.

Add State Puts the application in the ‘add state’-mode. In this mode a state
can be added.

Add Transition Puts the application in the ‘add transition’-mode. In this
mode a transition can be added.

Remove State/TransitioRPuts the application in the remove-mode. In this
mode a state or transition can be removed.

Perform Layout rearranges the layout of states and transitions of a con-
straint automaton.

e \Windows
Tile: tiles the document windows.

Cascadecascades the document windows.

Tool Bar

The tool bar provides the following controls (figure A.1):
e A: Creates a new empty constraint automaton document.
e B: Opens a constraint automaton document from a CA-XML file.

C: Saves a constraint automaton document to a CA-XML file.

D: Saves a constraint automaton document to a CA-XML file under a specific
name.

E: Closes the current document window.

F: Shuts down the application.

G: Puts the application in the edit-mode. In this mode the layout and prop-
erties of states, transitions and the constraint automaton can be modified.

105



H: Puts the application in the ‘add state’-mode. In this mode a state can be
added.

I': Puts the application in the ‘add transition’-mode. In this mode a transition
can be added.

J. Puts the application in the remove-mode. In this mode a state or transition
can be removed.

K: Rearranges the layout of the states and transitions of the constraint au-
tomaton.

L: Opens the TDSLAS

M: Opens the RCSwWTDS.

N: Opens the RCSwC.

A.2.1 Add State

To add a state to the constraint automaton perform the following steps:
1. Put the application in the ‘add state’-mode.

2. Left mouse click on a empty place inside the document window. At this spot
the new state will created.

3. The application automatically returns to the edit-mode.

A state becomes an initial state when an initial transition points towards it. See
subsection A.2.3 how to create an initial transition

A.2.2 Modify State Properties

The state name is the only property of a state. To modify the state name perform
the following steps:

1. Put the application in the edit-mode.

2. Left mouse click on the state of which the name needs to be changed. The
properties pane will show the state name.

3. Modify the state name in the properties pane.
4. Left mouse click on the Save button in the properties pane to save thgeshan

A state name may only contain letters, numbers, hyphens and underscores.

106



A.2.3 Add Transition
Transition

To add a transition between two states perform the following steps (figuje A.2
1. Put the application in the ‘add transition’-mode

2. Choose a state, the source state, by pressing down on it and holdie the
mouse click.

3. Without releasing move the mouse to a state, the target state.

4. Release the mouse on the target state. This creates a transition from the
source state to the target state. If the source state and target state are the
same, then a transition will be created from a state to itself.

5. The application automatically returns to the edit-mode.

Figure A.2: Create a transition between two states.

Initial Transition

To create an initial transition perform the following steps:
1. Put the application in the ‘add transition’-mode.

2. Press down on a empty place inside the document window and hold the left
mouse click.

3. Without releasing move the mouse to a state.

4. Release the mouse on this state. This creates an initial transition towards the
state. The state becomes an initial state.

5. The application automatically returns to the edit-mode.

107



Precedence| Operator
1 () parenthesis
2 ! unary not
3 == equal
I= not equal
4 && Boolean AND
5 I Boolean OR

Table A.1: The operators that can be used in data constraints and tleedenee.

Term
dat a( <port name>) | represents the data which is assignee port name-
" <string>" represents a stringdata constant

Table A.2: The terms that can be used in data constraints.

A.2.4 Modify Transition Properties

The properties of a transition are the port names and the data constrainiedify
properties of a transition perform the following steps:

1. Put the application in the edit-mode.

2. Leftmouse click on the transition of which the properties need to be eldang
The properties pane will show the transition properties.

3. Modify the transition properties in the properties pane.
4. Left mouse click on the Save button in the properties pane to save thgeshan

A port name may only contain letters, numbers, hyphens and understorester
multiple port names separate them by commas.

A data constraint is a propositional formula. Multiple data constraints cam-be e
tered by separating them by new lines. Table A.1 lists the operators (and their
precedence) that can be used in a data constraint. Table A.2 showsikewieich

are allowed in a data constraint. Here are some examples of a data constraints
dat a( A) ==dat a( B)

dat a( A) =="d1"

I (dat a( A) ==dat a(B) && data(A)=="d1")

A.2.5 Modify Constraint Automaton Properties

The constraint automaton has one property, the port names. To modifpthe p
names of the constraint automaton perform the following steps:

1. Put the application in the edit-mode.

108



2. Left mouse click on empty place inside the document window. The proper-
ties pane will show the port names of the constraint automaton.

3. Modify the port names in the properties pane.
4. Left mouse click on the Save button in the properties pane to save thgeshan
A port name may only contain letters, numbers, hyphens and understorester

multiple port names separate them by commas.

A.2.6 Perform Layout

The layout of the states and transitions can be changed.

Move State

To move the states perform the following steps:
1. Put the application in the edit-mode.
2. Choose a state by pressing down on it and holding the left mouse click.

3. Without releasing move the mouse to another location. The state will follow
the mouse movements.

4. Release the mouse on the desired location.

Move Transition

In the constraint automaton editor a transition is drawn as an arrow. Thig ean
consist of one or more segments. To divide a segment into two segmerdsperf
the following steps (figure A.3):

1. Put the application in the edit-mode.
2. Left mouse click on the transition which needs to be divided.

3. Right mouse click on the segment of the arrow which needs to be divided.
popup menu will be shown.

4. Select ‘Subdivide Curve Segment’ in the popup menu. The segmentewill b
divided in two.

After a segment is divided into two segments a point will be shown which aisne
the two segments. This point can also be moved as follows (figure A.4):

1. Put the application in the edit-mode.

2. Left mouse click on the transition which needs to be divided.

109



state_1

Suhdidide Curve Segment
state_0

) Bezier Mode
® Straight Mode

Figure A.3: Subdivide a segment of the arrow representing a transition.

3. Press down on the point which needs to be moved and hold the left mouse
click.

4. Without releasing move the mouse to another location. The point will follow
the mouse movements.

5. Release the mouse on the desired location.

>

Figure A.4: Move a point connecting two segments to another location.

Such a point can also be deleted, which causes the two segments to be@me on
segment again. To do this follow these steps (figure A.5):

1. Put the application in the edit-mode.
2. Left mouse click on the transition which needs to be divided.

3. Right mouse click on the point which needs to be deleted. A popup menu
will be shown.

4. (a) Select ‘Delete Point’ in the popup menu. The two segments connected
by this point will become one segment.

110



(b) Select ‘Delete All Points’ in the popup menu. All the points of the
segments of the arrow are deleted which causes the arrow to consist of
one segment again.

1 Delete Point
state_0 Delete All Points >

Figure A.5: Delete a point which causes the two segments to become one again.

Each segment of the arrow can be in two modes: a Bezier mode and a straight
mode. To select the mode for a segment do as follows:

1. Put the application in the edit-mode.
2. Left mouse click on the transition which needs to be divided.

3. Right mouse click on the segment of which the mode needs to be changed.
A popup menu will be shown.

4. (a) Select 'Bezier Mode’ in the popup menu. The segment will become a
Bezier curve.

(b) Select ‘Straight Mode’ in the popup menu. The segment will become
a straight line.

When a segment is in the Bezier mode two controls are shown as little black
squares. By moving these controls the shape of Bezier curve can bellzmh
Perform the follow steps to move these controls (figure A.6):

1. Put the application in the edit-mode.

2. Left mouse click on the transition of which the shape needs to be changed
When a segment is in Bezier mode, the two controls will become visible.

3. Press down on the control which needs to be moved and hold the lefemous
click.

4. Without releasing move the mouse to another location. The control will
follow the mouse movements.

5. Release the mouse on the desired location.

111



(A= (DA
b

Figure A.6: Move a control which causes the segments to change shape.

Automatic Layout

To perform automatic layout of the states and transitions of the constragrhau
ton click the ‘Perform Layout’ button on the tool bar (buttkin see figure A.1).

A.2.7 Exercise

In this subsection we create a small constraint automaton as an example. The
constraint automaton will be one describing the behavior of a Sync chésel
subsection 4.1.1). This example will be used again in the next sections exglain
the simulators.

To create the Sync channel constraint automaton perform the followipg; ste

1. Create a new empty constraint automaton document.

2. Change the port names of the constraint automato, toB.

3. Add a state.

4. Create a transition from the state to itself.

5. Change the port names of the transitionAp: B.

6. Change the data constraint of the transitiordiat a( A) ==dat a( B) .
7. Save the constraint automaton document to a CA-XML file.

Figure A.7 shows how the result should look like after performing thesa step

A.3 Timed Data Stream Language Acceptor Simulator

To start the TDSLAS select the document window of the constraint automaton
(in the constraint automaton editor) that needs to be simulated and click on the
TDSLAS button at the toolbar (buttdn, see figure A.1).

When you start the TDSLAS a window will be shown which consists of twaéspar
(figure A.8):

o the simulator part (left),

¢ the timed data stream editor part (right).

112



Untitled-1

A B
data(A) == data(B)

Port Hames: |4, B

Sdve

Figure A.7: A constraint automaton describing the behavior of a Synmehan

2 Timed Data Stream Language Acceptor Simulator,

Trace : Timed Data Streams
time [ from| to [ A [ B time A B
A s | —
0 o1 ol
1 d2 o2
2 d3
L A

Enabled Transitions

fr0m|t0| A|EI

=

I| Start || Step || Reset | |'|| Load || Save || Insert || Delete |

Figure A.8: A screenshot of the TDSLAS.

113



A.3.1 Timed Data Stream Editor

The timed data stream editor consists mainly of a table, which shows the timed
data streams. The second column of the table shows the time. In the first column
there is an arrow which will indicate the current time step during the simulation.
The other columns represents timed data stream, each associated withfalport o
constraint automaton. The timed data streams can directly be edited through the
table.

The four buttons at the bottom of the timed data stream editor do the following:

e Load: Loads a timed data stream into the editor from a TDS-XML file and
associates it with the constraint automaton port indicated by the pulldown
menu.

e Save: Saves the timed data stream indicated by the pulldown menutoa TDS-
XML file.

e Insert: Inserts a row into the timed data stream talfiler the selected row.

o Delete: Deletes the row which is selected in the timed data stream table.

A.3.2 Simulator
The simulator part has two tables:
¢ the trace table, showing the history of the steps made during the simulation.

¢ the enabled transitions table, showing the transitions which are possible for
a step.

The three buttons at the bottom of the simulator part do the following:

e Start: Starts the simulation with the timed data streams in the timed data
stream editor.

e Step: Performs a simulation step if possible.

e Reset: Stop the simulation and resets the trace table and the enabled transi-
tions table.

A.3.3 Exercise

In this subsection we simulate the constraint automaton of the example created in
subsection A.2.7 in the TDSLAS.

1. Load the constraint automaton of the example into the constraint automaton
editor.

2. Start the TDSLAS.

114



3. Create timed data streams such as shown in figure A.8.

4. Start the simulation. The enabled transitions table shows which transitions
can be made.

5. Perform a simulation step. The step selected in the enabled transitions table
will be made and added to the trace table. The enabled transitions table is
again refilled with the possible transitions for the next step.

Step 5 will be repeated until no next step can be made, because the enatbéd
tions table is empty, which means that no transitions are possible.

By selecting a step in the trace table you can perform this step again. Yavean
select another transition for this step from the enabled transitions table.

The simulation is also visualized using colors in the constraint automaton that is
viewed in a document window of the constraint automaton editor. The selected
transition of the enabled transitions table is colored orange. The cutegatis
colored green. The last transition made is colored yellow.

A.4 Reo Connector Simulator with Timed Data Streams

To start the RCSWTDS select the document window of the constraint automato
(in the constraint automaton editor) which needs to be simulated and click on the
RCSwTDS button at the toolbar (buttdf, see figure A.1).

When you start the RCSwWTDS a window will be shown which consists of twis pa
(figure A.9):

e the simulator part (left and bottom right),

¢ the timed data stream editor part (upper right).
The timed data stream editor is equivalent with the timed stream editor of the TD-
SLAS (see subsection A.3.1).
A.4.1 Simulator

The simulator part is almost equivalent with the simulator part of the TDSLAS.
The first difference is the table shown in the bottom right of the window. {Etike
shows the observed timed data streams during the simulation.

Second, the RCSwWTDS tries to complete incomplete timed data streams. An in-
complete entry in a timed data stream can be created with the strireptl” (see
figure A.9).

A.4.2 Exercise

In this subsection we simulate the constraint automaton of the example created in
subsection A.2.7 in the RCSwTDS.

115



< Reo Connector, Simulator, with Timed Data Streams

Trace : Timed Data Streams

time [fom| o | A | B | - time A B

0 1
1 read
2 o2 o2

|'|| Load || Save || Insert || Delete |

B e
Enabled Transitions

flom [ o [ A [ B A gme [ & [ B ]

Start a |'|| S |

Figure A.9: A screenshot of the RCSWTDS.

1. Load the constraint automaton of the example into the constraint automaton
editor.

2. Startthe RCSwWTDS.
3. Create timed data streams such as shown in figure A.9.

4, Start the simulation. The enabled transitions table shows which transitions
can be made. It also shows the completed timed data tuple.

5. Perform a simulation step. The step selected in the enabled transitions table
will be made and added to the trace table. The enabled transitions table is
again refilled with the possible transitions for the next step. The observed
timed data streams table is updated for the current observed data.

By selecting a step in the trace table you can perform this step again. Yavean
select another transition for this step from the enabled transitions table.

The simulation is also visualized using colors in the constraint automaton that is
viewed in a document window of the constraint automaton editor. The selected
transition of the enabled transitions table is colored orange. The cutetatis
colored green. The last transition made is colored yellow.

A.5 Reo Connector Simulator with Components

To start the RCSwC click on the RCSwC button at the toolbar (buttosee fig-
ure A.1). This button is only enabled when constraint automaton documents ar

116



opened in the constraint automaton editor.
When you start the RCSwC a window will be shown which consists of mainly
three tables(figure A.10):

e a component ports table, showing the loaded components and the ports of
these components,

e aconnector ports table, showing the loaded constraint automaton (which will
act as connectors) and the ports of these constraint automata,

e aconnections table, showing the connections made between comporient por
and connector ports.

£ Reo Connector Simulator with Components

Load Component Load Reo Connector
Component - Port Reo Caonnectar - Port
Connect Disconnect
Component - Port Feo Connector - Port
Wiriter — output Sync-1 <= A
FIFC1 + input Sync-1 < B
FIFO1 - output Syne-2 - A
Taker + input Syne-2 +— B
Start Stop

Figure A.10: A screenshot of the RCSwC.

A description of what the buttons do is given below.

e Load Component: Loads a component into the RCSwC from a Component-
XML file.

o Load Reo Connector: Loads a constraint automaton as a connector into the
RCSwC. Only the constraint automata which are opened in the constraint
automaton editor can be loaded.

117



Connect: Connects a component port with a connector port.

Disconnect: Disconnects a component port from a connector port.

Start: Starts the simulation.

Stop: Stops the simulation.

A.5.1 Implementing Components

To implement a component you need to create a Java class that implements the
Componentinterface from thecwi.reo.rcswc.componenpackage. Through this
interface the RCSwC is able to communicate with the component and pass the
SourceandSink objects through which the component can perform write and take
operations.

A component is loaded into the RCSwC through a Component-XML file, which
contains the location of the component. The location can be given by the path to
the class file. This path can be absolute or relative to the Component-XMfofile,
example:

<?xm versi on="1.0"encodi ng="TF-8">

<comnponent >

<cl assfil e>Taker. cl ass</cl assfil e>

</ conponent >

Instead of specifying the path, the binary name of the class can be ¢egrever,
in this case the class needs to be reachable from the classpath. An exagnh@a is
below.

<?xm version="1.0"encodi ng="TF-8">

<conponent >

<cl assnane>

CW . reo.rcswe. conponent . std. Taker

</ cl assnanme>

</ conmponent >

The following standard components have already been implemented:

e Taker: A component which can be used to perform take operations. The
binary name igwi.reo.rcswc.component.std. Taker

e Writer: A component which can be used to perform write operations. The
binary name igwi.reo.rcswc.component.std.Writer

e FIFO1: A component which acts a FIFO1 channel. The binary name is
cwi.reo.rcswc.component.std.FIFO1

118



e Python component: This component will be explained in subsection A.5.2.
The binary name is
cwi.reo.rcswc.component.std.PythonComponent

A.5.2 Implementing Python Components

The Python component can be used to load components written in the scripting
language Python. The source code of the Python component needspediiéed

in the Component-XML file and also the input and output port names thabarg g

to be used.

The Python component is able to perform take and write operations theiuigh

and sources. These sinks and sources can be requestedcbhyripenentProxyas
follows:

e conponent Proxy. get | nput Port (" X") : Returns the sink connected
to port “X” (if not connected it returns null).

e conponent Proxy. get Qut put Port (" Y"): Returns the source con-
nected to port “Y” (if not connected it returns null).

An example of a Component-XML file for a Python component is given below.
<?xm version="1.0" encodi ng="UTF-8"?>

<conponent >

<cl assnanme>

CW . reo.rcswe. conponent . st d. Pyt honConponent

</ cl assnanme>

<i nput por t s><nanme>X</ name></i nput port s>

<out put port s><nane>Y</ nane></ out put port s>

<pyt honcode>port X = conponent Proxy. get | nput Port (" X")
portY = conponent Proxy. get Cut put Port ("Y")

print portX take()

portY.wite("foo")</pythoncode>

</ conponent >

A.5.3 Exercise

In this subsection we simulate the Sync channel constraint automaton of the exa
ple created in subsection A.2.7 in the RCSwC.

1. Create two CA-XML files of the constraint automaton of the example.
2. Load both constraint automata into the constraint automaton editor.

3. Start the RCSwC.
4

. Create a Component-XML file for the following components (see subsectio
A.5.1):

119



© N o O

10.

(a) Taker
(b) Writer
(c) FIFO1

Load a Taker component in to the RCSwC and give it the name “Taker”.
Load a Writer component in to the RCSwC and give it the name “Writer”.
Load a FIFO1 component in to the RCSwC and give it the name “FIFO1".

Load both constraint automata into the RCSwC and give them the names
“Sync-1”, “Sync-2". The RCSwC will simulate these constraint automata as
Sync channels.

Connect the component ports and the connector ports as shownria figu
A.10

Start the simulation. The RCSwC simulates the configuration of the compo-
nents and connectors as shown in figure A.11.

writer |—j FIFo1 = Taker

Figure A.11: The configuration of the components and connectors.

120



Appendix B

Developer’'s Manual

The programming language used for the tool is Java 1.5, which can bécdmied
fromhttp://java. sun. coni. The tool is developed using NetBeans. This
is an open source Java IDE from Sun, which can be downloaded litanp:

/I www. net beans. or g/ . If one is interested in the source code of the tool, it
is recommended to use NetBeans. However, this is not necessary.

The global structure of the directory containing the source code is as/follo

\\images some images

Alib the external libraries

A\lib\Grace Grace, the graph editor generator
A\lib\Grappa Grappa, used for reading dot-files
A\lib\JavaCC JavaCC, the parser generator
A\lib\JMDIFrameWork Java MDI Application Framework,

used for making Multiple Document
Interface applications

A\lib\Jython Jython, a pure java implementation
of the programming language Python
A\lib\PrologCafe PrologCafe, a translator system which

translates prolog-source-files to
java-source-files

A\nbproject the NetBeans project files
\src the Java source files
\src spec files the specification files from

which java-files are generated
\\src spec filesDataConstraintChecker the prolog program used to check the
dataconstraints of transitions

\src spec filesDCParser the specification files of the
DataConstraint Parser

\src spec filesGrace the specification files of the graph
editor

\\src spec filegNameSetParser the specification files of the NameSet
Parser

121



