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ABSTRACT

We propose a goodness of fit statistic for the geometric distribution and compare it in terms of power, via
simulation, with the chi-square statistic. The statistic is based on the Lau-Rao theorem and can be seen as a
discrete analogue of the total time on test statistic. The results suggest that the test based on the new statistic
is generally superior to the chi-square test.
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1 Introduction

Let X1, . . . , Xn be independent random variables taking values on N, with common distribution

function (d.f.) F , and denote by Fn the associated empirical d.f. Let G be the family of geometric

distributions on N with generic element F0(x ;α) = 1− (1−α)[x], x ≥ 0, 0 < α < 1 ([x] denoting

as usual the integer part of x). For testing the hypothesis that F ∈ G on the basis of the sample

X1, . . . , Xn, we consider the integral statistic

In = n1/2
∞

∑

i=1

F̄n(i) [Fn(i)− Fn(i− 1)] −

αn

∞
∑

i=1

∞
∑

j=i+1

(j − i− 1) [Fn(j)− Fn(j − 1)] [Fn(i)− Fn(i− 1)] , (1.1)

where αn := X̄−1
n , X̄n is the sample average, and F̄n := 1− Fn.

Put

σ2 (α) =
α3 (1− α)2 {1 + (1− α)2}

{1− (1− α)2}{1− (1− α)3}{1− (1− α)4}
, 0 < α < 1. (1.2)

As explained below, under the hypothesis that F ∈ G, the asymptotic distribution of

I∗n := In

/

√

σ2(αn) is standard normal. Thus a test of approximate size γ based on I ∗n consists

of rejecting the null hypothesis if | I∗n | > z1−γ/2, where zp is the quantile of probability p of the

standard normal distribution.
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The purpose of this note is to advocate the use of In as a goodness of fit statistic for the

geometric model. The statistic is easy to calculate, and its scaled version I ∗n has a convenient

asymptotic null distribution, being applicable in most practical situations.

Besides the classical chi-square statistic and the statistic proposed by Vit (1974), there

are by now several goodness of fit statistics for the geometric distribution; see the paper of

Bracquemond et al. (2002) and the references therein. However, given the relevance of this

model in applied science, it seems still of some interest to consider competing statistics.

The rationale behind the definition of In is explained in Section 2. We show how the

statistic is obtained as an integral of a certain empirical process, whose definition is based on

a characterization result known as the Lau-Rao theorem, and that it can be regarded as a

discrete version of the well-known ‘total time on test statistic’, which is widely used for testing

exponentiality (e.g. Hollander and Proschan (1975)). We also point out that the integral statistic

may not be consistent against all alternatives.

In Section 3 we present a small simulation study comparing the power of the integral

and chi-square statistics for testing the geometric distribution against some negative binomial,

shifted-Poisson and logarithmic alternatives. Our results suggest that the test based on In is

generally superior to the chi-square test. We also include some recommendations on the use of

the integral statistic.

In practice, the chi-square statistic is still the most popular goodness of fit statistic for

the geometric distribution (and most discrete distributions), and that is why we have chosen it

here as the standard for comparison. As to the alternatives chosen, we have focused on models

which are quite close to the geometric distribution; ‘distant models’ do not seem interesting to

us because they are easy to reject with the sample sizes used here, and because in practical

situations researchers do not usually want to test a model with data that manifestly violates it.

Before proceeding, let us note that the test procedure outlined above needs to be slightly

rectified. If the event [αn = 1] = [Xi = 1, i = 1, . . . , n] = [In = 0] occurs, then (see (1.2)) so

does [σ2(αn) = 0], and then I∗n is not defined. In this event, we shall reject the hypothesis that

F is geometric.—This makes sense because a sample whose elements are all 1 provides evidence

of a distribution degenerate at 1, a model excluded from our definition of F0( · ;α).

2 Definition of the Statistic

Let µ be a σ-finite measure on [0,+∞) such that µ{0} < 1, and f a non-negative, Borel-

measurable, locally integrable (with respect to Lebesgue measure) function not identically equal

to zero and satisfying the functional equation

f(x) =

∫

[0,∞)
f(x + y)µ(dy) for almost all x ≥ 0. (2.1)

Then, according to the Lau-Rao theorem (see Rao and Shanbhag (1994), p. 29), f must be

essentially proportional to the exponential or geometric functions. To be precise, either µ is

arithmetic with some span λ > 0 (i.e., µ is concentrated on the semi-lattice {λ, 2λ, . . .}) and

f(x+nλ) = f(x)bn for almost all x ≥ 0 and n = 0, 1, 2, . . ., or µ is non-arithmetic and f(x) ∝ eηx
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for almost all x ≥ 0, where the constants b and η are determined from
∑

∞

n=0 bnµ({nλ}) = 1 and
∫

[0,∞) f(y)µ(dy) = 1, respectively.

Now let f = F̄ := 1 − F for some probability distribution function F concentrated on

[0,+∞). If we impose certain restrictions on the supports of µ and F (namely that F be

assumed arithmetic with the same span λ as µ whenever µ is arithmetic, or non-arithmetic

whenever µ is non-arithmetic), then we conclude that f satisfies (2.1) if and only if F is the

geometric distribution on the semi-lattice {λ, 2λ, . . .}, or the exponential distribution, or the

mixture of one of these and the degenerate distribution at the origin.

We have recently introduced an empirical process associated with (2.1), defined in terms

of the sample X1, . . . , Xn by

Zn(x) = F̄n(x)−

∫

F̄n(x + y)µn(dy), x ≥ 0,

where µn is a certain sample analogue of µ. The properties of Fn, together with the charac-

terization theorem just stated, suggest that when F is essentially exponential or geometric the

process Zn should behave in a symmetric fashion around zero, and that such pattern should

occur only when F is one of those distributions. Using empirical process theory, we have proved

a precise form of this statement, and also the weak convergence of a normalized version of Zn to

a Gaussian process. But what matters to us here is the idea, implied by the previous argument,

that integral statistics such as
∫

Zn(x)dFn(x) and
∫

Z2
n(x)dFn(x) should be generally sensitive

to departures from the exponential or geometric distributions.

To give a motivating example suppose F is continuous and µn(dy) = αndy on [0,+∞) (the

sample analogue of µ(dy) = αdy) with αn as in Section 1. Then it can be checked that (i) Zn is

related to the ‘total time on test process’ studied by Csörgő et al. (1986), and consequently that

(ii) n1/2Zn is, under the null hypothesis of exponentiality, asymptotically Gaussian with mean

zero and covariance function r defined by r(s, t) = F (s)(1 − F (t)), s ≤ t, and finally that (iii)

the integral
∫

Zn(x)dFn(x) is a linear function of the total time on test statistic (e.g. Hollander

and Proschan (1975), p. 590), and hence its asymptotic distribution is normal.

Several power studies (e.g. Stephens (1986)) have shown that both
∫

Zn(x)dFn(x) and
∫

Z2
n(x)dFn(x) with µn(dy) = αndy are powerful statistics for testing the exponential distribu-

tion; moreover, this choice of µn seems to be one of the most sensible for omnibus statistics among

the many possible measures µn one can take in the definition of Zn. These considerations suggest

that a good choice of µn for testing the geometric distribution should be µn(dy) = αn[1 + dy]

on [0,+∞) (the measure concentrated on {0, 1, 2, . . .} having mass αn at each point, which is

the sample analogue of µ(dy) = α[1 + dy]).

Thus, assume F is concentrated on N and µn(dy) = αn[1 + dy] on [0,+∞). Then the

integral n1/2
∫

Zn(x)dFn(x) is precisely In, which (in analogy with the previous example) can

be seen as the discrete analogue of the total time on test statistic, and the following are facts of

interest: (i) n1/2Zn is, under the null hypothesis that F is geometric, asymptotically Gaussian

with zero means and covariance function r given by r(s, t) = F (s)(1 − F (t + 1)), s ≤ t; (ii) In

is, under the null hypothesis that F is geometric, asymptotically normal with mean zero and

variance σ2(α), where α is the (unknown) parameter of the geometric model and σ2 has been

defined in (1.2).
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These statements follow from the following proposition, which is a special case of Theorem

5.1 and Proposition 6.1 of Ferreira (2003):

Proposition Let F be concentrated on N, have mean 1/θ for some θ ∈ (0,∞), and satisfy
∫

F̄ (x)1/2dx < ∞. Put Z(x) = F̄ (x)−
∫

F̄ (x+y)θ[dy+1], x ≥ 0, and Z∗

n = n1/2(Zn−Z), where

Zn(x) = F̄n(x) −
∫

F̄n(x + y)θn[dy + 1], x ≥ 0, θn := X̄−1
n and Fn is the empirical distribution

function based on a random sample X1, . . . , Xn with distribution function F . Then as n →∞

Z∗

n →
d W and In(F ) := n1/2

[
∫

ZndFn −

∫

Z dF

]

→d

∫

W dF −

∫

Y dZ,

where Y := B ◦ F , B is a brownian bridge and W a Gaussian process defined in terms of Y by

W (x) =
∫

Y (x + t)θ[dt + 1]− Y (x)− θ2
∫

F̄ (x + t)[dt + 1]
∫

Y (t)dt, x ≥ 0.

We note that this result is tailored to test
∫

ZdF = 0 against
∫

ZdF 6= 0. One can prove

that the tests for the exponential and geometric models based on
∫

ZndFn with a general µn are

consistent only against alternatives F satisfying
∫

ZdF 6= 0. As pointed out by Spurrier (1984),

p. 1645 (see also Example 6.1 in Ferreira (2003)), there exist F other than the exponential that

satisfy
∫

ZdF = 0 with µ(dy) = α dy, and the total time on test statistic is not consistent

against such alternatives. Similarly, there should be alternatives F different from the geometric

distribution satisfying
∫

ZdF = 0 with µ(dy) = α[1 + dy], and against these I ∗n will not be

consistent.

Making the analogy with the total time on test statistic, known to be a powerful and

versatile statistic, this shortcoming of the integral statistic does not seem very serious. It

can always be overcome by calculating the chi-square statistic for those sets of data that look

suspiciously non-geometric (e.g. with too large a variance) but are not rejected by I ∗n. In any

case, the seemingly greater sensitivity of I∗n over the chi-square statistic is enough to recommend

it at least as a supplementary tool. [The use of the quadratic integral
∫

Z2
n(x)dFn(x) would avoid

consistency problems, but this can be used only for testing the exponential distribution because

its asymptotic distribution depends on the unknown parameter α unless the data are continuous

and µn is suitably chosen.]

3 Comparison with the Chi-square Statistic via Simulation

We shall compare the performances of the test based on In and the chi-square test against

several alternatives that are relatively similar to the geometric distribution. The tests will have

a nominal size of 0.10.

Since the application of the chi-square test is not completely definite, namely because there

are different methods of choosing classes and critical points, we need to decide exactly on how

the test is to be performed. We shall use a common approach suitable for discrete distributions

on N: Partition the sample space into the C classes {1}, {2},...,{C − 1} and {C,C + 1, . . .},

where C is the smallest integer satisfying Pαn
{C} < 5/n, n is the sample size, Pα is the family

of probability measures postulated by the null hypothesis and defined in terms of an unknown
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parameter α, and αn is an appropriate estimate of α. In this way, each of the classes {1},

{2},...,{C − 1} contains an ‘estimated’ expected number of sample observations ≥ 5, while the

same number for the class {C,C + 1, . . .} will not be, in principle, much less than 5. (This

well-known rule aims at improving the approximation to the chi-square distribution.)

Writing ei = nPαn
{i}, i = 1, . . . , C − 1, eC = nPαn

{C,C + 1, . . .}, and denoting by oi

the number of sample points in the i -th class, the chi-square statistic is calculated as X2
n =

∑C
i=1(oi − ei)

2/ei. It is known that, under the null hypothesis, X2
n is asymptotically a random

variable bounded below and above by a chi-square random variable with C−2 degrees of freedom

and a chi-square random variable with C − 1 degrees of freedom, respectively. The chi-square

test of (approximate or nominal) size 0.10 consists of rejecting the null hypothesis if X2
n exceeds

the quantile of probability 0.90 of one (usually the first) of these two random variables.

We find that the chi-square distribution with C − 2 degrees of freedom provides a good

approximation to the distribution of X2
n when the model is geometric. Therefore, in what

follows we use the quantile of probability 0.90 of the chi-square distribution with C − 2 degrees

of freedom, which we designate as usual by χ2
C−2,0.90

. (See Table 1 for an assessment of this

procedure.)

In the case of the geometric distribution, the number of classes C is the smallest integer i

satisfying i > 1− log (nαn/5) / log (1− αn). For small sample sizes and certain values of αn one

finds sometimes that C = 2, which precludes the use of χ2
C−2,0.90

. Whenever this happens, we

take the number of classes as 3.

Another particularity of our case is that we can frequently observe αn = 1 if α is near

1 and the sample is small. In such occurrences the test based on In consists of rejecting the

null hypothesis; we shall also convention that the chi-square test rejects the null hypothesis if

αn = 1. The possible effect of these last two dispositions on the results is very small, and for

sample sizes of n ≥ 50 it can even be ignored.

We can check the appropriateness of the chi-square test now described and the use of

the normal 90% quantiles for testing with In by comparing the actual significance levels with

the nominal 0.10 significance level. Table 1 shows estimates of the actual sizes of the tests

based on X2
n and In when the model is geometric with parameter α = 0.15, 0.25, 0.50, 0.75, 0.85.

The estimates were obtained by simulation and consist of proportions of rejections of the null

hypothesis (that the model is geometric) out of 10,000 trials. Standard errors are omitted for lack

of space, but they can be readily calculated using the information from the table and the size of

the simulated samples. [We have used the pseudo-random number generator of Wichmann and

Hill (1982). The results for X2
n and In were obtained with the same sequence of pseudo-random

numbers. Similarly for Table 2.]

For X2
n, the closeness between nominal and actual sizes seems satisfactory except when

α = 0.15, 0.25 and the sample size is ≤ 50. For In, the approximation seems satisfactory for

samples of size n ≥ 50 if α = 0.15, 0.25, and for samples of size n ≥ 100 if α ≥ 0.50. While X2
n

overestimates the size of the test, In underestimates it, and this asymmetry has to be accounted

for when interpreting the power results. In any case, it is clear that for n ≥ 100 the two tests

will be compared on equal footing.

In applications one will generally have an idea about the true value of α (e.g. through a
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confidence interval), so the information in Table 1 may serve as a guide to the actual size of a

10% test based on the integral statistic. Note that for sample sizes as small as 20 and a wide

range of α values we have the guarantee that the test based on In has an actual size of 5% to

10%, a fact with obvious practical relevance.

Table 1: Estimates of actual significance levels of the tests with nominal size 0.10 based

on X2
n and In, n = 20, 50, 100, 200, 350, for geometric distributions with parameter α =

0.15, 0.25, 0.50, 0.75, 0.85.

α

n Statistic 0.15 0.25 0.50 0.75 0.85

20 X2
n 0.2028 0.1714 0.1223 0.1162 0.1028

In 0.0856 0.0815 0.0762 0.0531 0.0808

50 X2
n 0.1618 0.1208 0.1065 0.1090 0.0910

In 0.0902 0.0916 0.0864 0.0830 0.0603

100 X2
n 0.1074 0.1091 0.1027 0.1011 0.1026

In 0.0981 0.1020 0.0957 0.0929 0.0915

200 X2
n 0.1031 0.1012 0.1000 0.096 0.0927

In 0.0978 0.0995 0.0968 0.0992 0.0935

350 X2
n 0.1024 0.1012 0.1027 0.1021 0.0921

In 0.0987 0.0999 0.0972 0.0968 0.0958

The alternatives to be considered include six examples of the negative binomial, shifted-

Poisson and logarithmic distributions on N. See Figure 1 for a comparison of their probability

functions with ‘neighbouring’ geometric probability functions. We aimed at choosing models

that are plausible alternatives to the geometric distribution (i.e., having an overall shape rela-

tively similar to it), while at the same time possessing some interesting tail feature. Thus the

Poisson distribution has a lighter tail than the geometric model, the logarithmic distribution a

heavier tail, and the negative binomial distribution more or less the same tail as the geometric

distribution.

The negative binomial distribution with parameters r and p, to which we refer as NB(r,p),

has probability function Γ (r + x− 1) Γ (x)−1 Γ (r)−1 pr (1− p)x−1 for x = 1, 2, . . ., r > 0,

0 < p < 1 (Γ is the gamma function). We consider three alternatives of this family: NB(3/2,1/3),

NB(1/2,1/3) and NB(2,6/7). The means and variances of these distributions are, respectively, 4

and 9, 2 and 3, ≈ 4/3 and ≈ 0.389. Each of the models can be compared with a ‘neighbouring’

geometric model, defined as the geometric distribution with (approximately) the same mean.

Thus, writing Geo(α) for the geometric distribution with parameter α, the neighbouring geomet-

ric models of NB(3/2,1/3), NB(1/2,1/3) and NB(2,6/7) are, respectively, Geo(1/4), Geo(1/2)

and Geo(3/4), whose means and variances are 4 and 12, 2 and 2, 4/3 and ≈ 0.444. Three of the

plots in Figure 1 represent the negative binomial alternatives and their neighbouring geometric

probability functions.

The Poisson distribution on N with parameter λ > 0, which we denote by Poi+(λ), cor-
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responds to a Poisson random variable shifted one unit to the right; its probability function is

therefore e−λλx−1/ (x− 1)!, x = 1, 2, . . . We consider a Poi+(1/3) alternative; this has mean

4/3 and variance 1/3, and corresponds to a neighbouring Geo(3/4) model, whose mean and

variance, as just said, are ≈ 4/3 and ≈ 0.444, respectively.

The logarithmic distribution on N with parameter p ∈ (0, 1), denoted by Lo(p), has prob-

ability function x−1 (−px/ log(1− p)), x = 1, 2, . . . As alternatives, we consider Lo(0.715),

whose mean and variance are 2 and ≈ 3.026, and Lo(0.423), with mean ≈ 4/3 and variance

≈ 0.534. The corresponding neighbouring geometric models are Geo(1/2) (mean 2, variance 2)

and Geo(3/4) (mean ≈ 4/3, variance ≈ 0.444).

Figure 1: Comparison between the negative binomial, Poisson and logarithmic alternative probability

functions and their ‘neighbouring’ geometric probability functions.

7



Estimates of the power of the tests based on X2
n and In with sample sizes of n =

20, 50, 100, 200 and 350 are given in Table 2. The results consist of proportions of rejections

of the null hypothesis out of 1,000 simulation runs.

For a sample size of n = 20, In is slightly biased against the Poi+(1/3) and NB(2,6/7)

alternatives, but note that for these alternatives the actual significance levels should be between

5% and 7%. The test is clearly sensitive for all other sample sizes, and we may infer that it is

consistent against the alternatives considered.

Table 2: Power estimates of the 10% tests based on X2
n and In, n = 20, 50, 100, 200, 350, against

NB(3/2,1/3), NB(1/2,1/3), Lo(0.715), Poi+(1/3), NB(2,6/7) and Lo(0.423) alternatives.

Alternatives

n Statistic NB
(

3
2 , 1

3

)

NB
(

1
2 , 1

3

)

Lo(0.715) Poi+
(

1
3

)

NB
(

2, 6
7

)

Lo(0.423)

20 X2
n 0.234 0.164 0.151 0.236 0.143 0.107

In 0.149 0.242 0.226 0.027 0.028 0.116

50 X2
n 0.242 0.230 0.185 0.322 0.173 0.125

In 0.332 0.435 0.391 0.230 0.101 0.154

100 X2
n 0.333 0.437 0.339 0.418 0.161 0.151

In 0.520 0.724 0.644 0.435 0.158 0.234

200 X2
n 0.538 0.739 0.634 0.608 0.194 0.252

In 0.784 0.926 0.891 0.723 0.252 0.356

350 X2
n 0.716 0.938 0.884 0.839 0.262 0.383

In 0.962 0.993 0.990 0.920 0.360 0.522

Overall, the performances of In and X2
n are qualitatively similar, but it is clear that the

integral statistic performs generally better against all alternatives. The main exceptions to this

rule occur for n = 20, and may be due to the underestimation, in the case of the integral statistic,

and overestimation, in the case of the chi-square statistic, of the nominal 0.10 significance

level. The superiority of In over X2
n is particularly evident for larger sample sizes against those

alternatives that are more difficult to detect, namely NB(3/2,1/3), NB(2,6/7) and Lo(0.423).
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