
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

Symmetry in labeled transition systems

I.A. van Langevelde

REPORT SEN-R0303 JUNE 30, 2003

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301666589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711

Symmetry in Labeled Transition Systems

Izak van Langevelde

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

Symmetry is defined for labeled transition systems, and it is shown how symmetrical systems can be symmet-

rically decomposed into components. The central question is under what conditions one such component may

represent the whole system, in the sense that one symmetrical system is bisimilar to a second if and only if a

component of the first is equivalent to a component of the second. The theory developed is illustrated by three

case studies, i.e. the alternating bit protocol, Peterson’s algorithm and the Dining Philosophers.

2000 Mathematics Subject Classification: 20B25 Finite automorphism groups of algebraic, geometric, or

combinatorial structures; 68Q60 Specification and verification

1998 ACM Computing Classification System: D.2.4 Software/Program Verification; F.3.1 Specifying, verifying

and reasoning about programs

Keywords and Phrases: labeled transition systems, symmetry, bisimulation equivalence, process algebra

Note: This work was carried out under project SEN2 “Specification and Analysis of Embedded Systems”

1. Introduction

Symmetry has been fruitfully exploited in the field of verification of communication protocols and
distributed systems (e.g. [ID96, ES96, RS98]). For instance, communication protocols are typically
insensitive to the actual data being sent and received, in which case the verification of the system can
be reduced to the verification for one arbitrary datum. Classical approaches to symmetry, however,
are formulated for a state-based view on systems, focusing on the assignment to state variables, as
opposed to an label-based view, focusing on the sequences and combinations of observable actions as
executed by the system.

Symmetry for state-based systems is defined in terms of a permutation of the state vector, i.e.
the values of the state variables. For each system transition from one state to another there exists
a transition from the permutation of the first to the permutation of the second. Once transitions
are labeled by actions this symmetry is destroyed, since usually the action that labels the transition
between the original states differs from the actions that label the transition between the permuted
states. Instead of identical, the symmetrical behaviour is analogous.

This report introduces a generalisation of the classical notion of symmetry, in the sense that it covers
the label-based view of systems. Instead of permutations on the state vector, it defines permutations
of the actions that label transitions.

The work reported here serves as a theoretical basis. By itself, the notion of symmetry for labeled
transition systems does not serve any direct practical application, since a labeled transition system is
a primitive and voluminous formalisation, which is typically generated from specifications at a higher
level of abstraction. Ultimately, work on symmetry should be lifted to this higher level.

The organisation of this report is as follows. Section 2 gives an overview of related work. Section
3 overviews the definitions of labeled transition systems and equivalence relations between these, and
the theory of permutations. Section 4 introduces the notion of symmetry for labeled transition systems
and Section 5 introduces symmetrical relations for these. Section 6 defines symmetrical reductions of
labeled transition systems, addressing the question of whether a reduction can represent the original
system. Section 7 describes how to benefit from symmetry in a specification. Section 8 illustrates

2

these notions on the hand of the alternating bit protocol, Peterson’s mutual exclusion algorithm and
the Dining Philosophers. Section 9 presents this report’s conclusions and an overview of future work.
The appendices contain the µCRL code for the case studies.

2. Related work

The use of the natural notion of symmetry in system analysis goes back to the 1980’s. Initially, it
was used in an ad hoc fashion in [AKS83], where it was applied in the verification of the alternating
bit protocol by reducing a selection/resolution model to dimensions independent from the number
of distinct messages handled. Later, in [Lub84] symmetry was used in a more general setting, to
verify properties like livelocks and deadlocks for n parallel instances of a program with Fetch&Add
instructions, by constructing a reachability set description independent from n. In the same year
[HJJJ84] described how symmetry can be applied in the verification of properties like boundedness,
coverability, reachability and liveness, for high-level Petri-Nets, and later in [Sta91] similar techniques
were developed for deadlock and livelock checking in P/T networks. Finally, in [ID96] symmetry was
exploited through a symmetrical data type of scalar set in reachability analysis. What these studies
have in common, is that they target a limited range of properties to be verified.

It was not until the 1990’s that symmetry was applied in a more general setting to verify arbitrary
properties. The use of symmetry in the reduction of Kripke structures to facilitate the model checking
of formulas in the temporal logic CTL∗ was independently addressed in [CFJ93] and [ES96], with
the difference that the former was centered around binary decision diagrams while the latter also
addressed properties in the µ-calculus. In each of these, symmetry is defined for unlabeled transition
systems.

The application of symmetry for labeled transition systems, where state transition are labeled by
actions, has received relatively few attention. The only known approach is [RS98] where symmetry
is used in test generation in a trace semantics context. As a consequence of symmetry being defined
for an equivalence which is coarser than bisimulation, the notion of symmetry is weaker, which makes
the set of symmetrical systems larger and which allows more freedom in the definition of symmetrical
reduction, or kernel in the terminology of [RS98].

Symmetry reductions have outgrown the stage of elegant theoretical research, and made it into a
number of state-of-the-art verification tools. Especially the scalar set notion from [ID96] seems to
make good practical implementations, as it was included in the Murϕ verification system [DDHY92]
and the SymmSpin [BDH00] extension to the well-known model checker Spin [Hol91].

A related issue is data independence [LN00, Wol86]. For a wide range of systems neither the system
behaviour nor the properties to be verified depend on the data manipulated by the system. The major
results in this area show that under these conditions it suffices to show that the system satisfies the
properties for only a finite number of finite data types, which guarantees that the system is correct
for all data types. It appears that data independent systems are symmetrical, and it is conceivable
how work on data independence could benefit from symmetry research.

A more loosely related topic is the theory of abstract interpretations [CC77], which aims at reducing
a system to a system at a higher level of abstraction, possibly reducing infinite-state systems to
finite systems. For some classes of systems, like communication protocols, where symmetry can be
interpreted as ‘the data handled is arbitrary and can thus be left unspecified’, symmetry reduction
closely resembles abstract interpretation.

A final relative is the voluminous work on partial order reduction [God90], which is motivated from
the observation that in parallel systems any interleaving of parallel actions is equivalent to any other
one, which suggests that the system can be reduced to one interleaving. For systems consisting of a
number of similar parallel processes, this procedures bears some resemblance to symmetry reduction.

The current report is meant as a generalisation of existing research in that it studies symmetry for
labeled transition systems with a bisimulation semantics. As a first step, the report fixes a number of
central notions and properties; subsequent research aims at practical applications of symmetry in the
tool set centered around the process-algebraic language µCRL [BFG+01].

3. Preliminaries 3

3. Preliminaries

This report formalises the notion of symmetry of labeled transition systems using well-known group-
theoretic notions like permutations. This section overviews labeled transition systems and permuta-
tions, for more information on the former the reader is referred to the literature of process algebra
(see [Fok00] for an introduction) and any introduction to algebra.

3.1 Labeled transition systems
The label-based view on computing centers around a system model which defines the system in terms
of states and transitions, labeled by actions, between these. In the pure label-based view the nature
of these states is left abstract.

Definition 3.1 (labeled transition system)
A labeled transition system S = 〈S,L,→, s0〉 consists of a set of states S, a set of action labels L, a
transition relation →: S ×L× S and an initial state s0 ∈ S. The set of all labeled transition systems
is denoted by Sys and the set of all possible states is denoted by Σ.

Example 1
The example that will be used throughout this report is the Positive Acknowledgement with Retrans-
mission (PAR) protocol, part of the TCP protocol suite [Def81]. The main principle of this protocol
is that data is accompanied by a sequence number, which is to be acknowledged by the receiver before
the sender is allowed to send another datum with the next sequence number; it can be easily verified
that it suffices to calculate sequence numbers modulo 2, effectively reducing them to alternating bits
which is why PAR is nicked alternating bit protocol in the more popular literature. For the sake of
presentation, the protocol is simplified in that its channels may not drop acknowledgements, although
they may drop data packets.

The labeled transition system in Figure 1 shows the protocol for two data elements d1 and d2.
The actions of receiving a datum from and sending a datum to the sending and receiving user of
the protocol are r1(datum) and s4(datum) respectively. The actions for sending and the receiving
of a datum with a sequence number are c2(datum, number) and c3(datum, number), and the actions
for sending and receiving an acknowledgement are c5(number) and c6(number). The action that
corresponds to the dropping of a datum is c3(e).

From Figure 1 the notion of symmetry is clear: each of the white nodes corresponds with one of
the black states, in the sense that each transition with an action on a datum d1 between black nodes
corresponds to a transition with the same action with d2 instead of d1, between white nodes. A special
role is played by the gray states, which correspond to themselves. This notion of symmetry will be
formalised in Section 4.

3.2 Equivalences for labeled transition systems
Equivalence for labeled transition systems comes in a vast range of flavours. This report generalises
beyond specific equivalences by focusing on equivalences which satisfy certain properties. To support
the intuition that these are not overly restrictive, it will be proven that a number of well known equiv-
alences, i.e. isomorphism, strong bisimulation and weak bisimulation, indeed satisfy the requirements.

The notion of relation between labeled transition systems is usually defined as a relation between
states, leaving the context of systems implicit. In the shape of things to come, the notion will be
made more precise.

Definition 3.2 (system relation)
A system relation is a relation R : Sys × Sys × (Σ × Σ) satisfying 〈〈S1,→1, s10〉, 〈S2,→2, s20〉, R

′〉 ∈
R ⇔ R′ ⊆ S1 × S2. When no confusion arises, the notation 〈S1,S2, R

′〉 ∈ R will be simplified to
S1RS2 and if the context is clear, sRt will be written for sR′t.

Equivalences typically come in sets, in the sense that equivalent systems are generally not just related
by one single equivalence relation. For this, it is useful to define sets of relations.

4

r1(d2)r1(d1)

c2(d2,0)c2(d1,0)

c3(d2,0)

c3(e)

c3(d1,0)

c3(e)

s4(d2)

c5(1)

s4(d1)

c5(1)

c5(0)

c6(1)

c5(0)

c6(1)

c6(0)

c2(d2,0)

c6(0)

c2(d1,0)

r1(d2)r1(d1)

c3(d2,0)

c3(e)

c3(d1,0)

c3(e)

c2(d2,1)c2(d1,1)

c3(d2,1)

c3(e)

c3(d1,1)

c3(e)

s4(d2)

c5(0)

s4(d1)

c5(0)

c5(1)

c6(0)

c5(1)

c6(0)

c6(1)c6(1)

0

1

10

11

12

13

14

15

16

17

18
19

2

2021

2223

24

25

26

27

28

29

3

30

31

3233

4

5

6

7

8

9

Figure 1: Labeled transition system for the alternating bit protocol

3. Preliminaries 5

Definition 3.3 (set of relations)
Suppose R is a set of system relations, then two systems S1,S2 are related by R, denoted by S1RS2,
iff S1RS2 for some R ∈ R.

The strictest notion of equivalence after identity is that of isomorphism, which only allows system to
differ in the designation of their states, leaving all labeled transitions between these intact; its origin
is in graph theory (e.g. [Hof82]).

Definition 3.4 (isomorphism)
Suppose S1 = 〈S1,L1,→2, s01〉 and S2 = 〈S2,L2,→2, s02〉 are labeled transition systems, then an
isomorphism from S1 to S2 is a bijection f : S1 → S2 satisfying:

i if s1
a

→1 s2 then f(s1)
a

→2 f(s2);
ii f(s01) = s02.

If S1 = S2 then f is an automorphism. If there exists an isomorphism from S1 to S2 then S1 and S2

are isomorph, which is denoted by S1 ≡ S2.

Definition 3.5 (strong bisimulation)
Suppose S1 = 〈S1,L,→1, s1〉 and S2 = 〈S2,L,→2, s2〉 are labeled transition systems. A strong
bisimulation between S1 and S2 is a relation R : S1 × S2 which satisfies the following:

i s1Rs2

ii if t1Rt2 and t1
a

→1 t′1 then t′1Rt′2 and t2
a

→2 t′2 for a state t′2 ∈ S2

iii if t1Rt2 and t2
a

→2 t′2 then t′1Rt′2 and t1
a

→1 t′1 for a state t′1 ∈ S1

If a strong bisimulation between S1 and S2 exists then these systems are called strong bisimilar ; this
is denoted by S1 ∼s S2.

In the following definition, the notation →∗ is used for the reflexive and transitive closure of →. The
action τ plays a special role here, in that it represents the hidden, or internal, actions of the system.

Definition 3.6 (weak bisimulation)
Suppose S1 = 〈S1,L,→1, s1〉 and S2 = 〈S2,L,→2, s2〉 are labeled transition systems, then a weak
bisimulation between S1 and S2 is a relation R : S1 × S2 which satisfies the following:
• s1Rs2

• if t1Rt2 and t1
a

→1 t′1 then t′1Rt′2 and t2
τ

→∗

2 ·
a

→2 ·
τ

→∗

2 t′2 for a state t′2 ∈ S2 or a = τ and t′1Rt2.

• if t1Rt2 and t2
a

→2 t′2 then t′1Rt′2 and t1
τ

→∗

1 ·
a

→1 ·
τ

→∗

1 t′1 for a state t′1 ∈ S1 or a = τ and t1Rt′2.
If a weak bisimulation between S1 and S2 exists then these systems are called weakly bisimilar ; this
is denoted by S1 ∼w S2.

The choice of equivalences presented here is relatively arbitrary, and certainly meant as complete. For
a wide spectrum of equivalences the reader is refered to [Gla90].

3.3 Permutations
A permutation of a set corresponds to a reordering of the elements of the set. The permutations of a
given set form a group, i.e. it is closed under composition, composition is associative, it contains the
identity function and each permutation has an inverse. Therefore, the theory of permutations may
draw from the vast body of group theory. This report just relies on the basic notion of permutation.

Definition 3.7 (permutation)
Suppose S is a set.

i a permutation of S is a bijection π : S → S.
ii a cycle of length k is a permutation π for which distinct s1, · · · , sk ∈ S exist satisfying π(si) =

s(imodk)+1 (16 i6k), and π(x) = x for all x ∈ S/{s1, · · · , sk}.
iii the order of a permutation π is the smallest n for which πn is the identity function.

6

Lemma 3.8
The set of permutations of a set S forms a group under composition.

A useful property of permutations used in this report is that a permutation can be written as a set of
disjoint cycles. Thus, a permutation partitions its domain into a number of disjoint orbits.

Lemma 3.9
A permutation is the product of disjoint cycles of length greater than 1.

A cycle of length k can be written in the form 〈a, π(a), π2(a), · · · , πk−1(a)〉. A permutation will be
written as the composition of its disjoint cycles. Finally, the elements permuted in one cycle form an
orbit.

Definition 3.10 (orbit)
Suppose π is a permutation on set S. The π-orbit of x ∈ S, denoted by orbπ(x), is defined as
orbπ(x) = {πn(x) | n>0}. The period of x, denoted by per(x), is defined as per(x) =| orbπ(x) |.

Lemma 3.11
Suppose π is a permutation on a set S, then the relation ∼π defined by x ∼π y ⇔ orbπ(x) = orbπ(y)
is an equivalence relation.

The next section extends the theory of permutations to labeled transition systems.

4. Symmetrical labeled transition systems

Symmetry in labeled transition system is induced by a permutation of action labels. If permuting the
labels in a labeled transition system yields an isomorphic system, then the system is symmetric with
respect to this label permutation.

Definition 4.1 (label permutation)
Suppose S = 〈S,L,→, s0〉 is a labeled transition system.

i An label permutation for S is a permutation π : L → L.

ii The definition of π is extended to apply to transition relations by t
a
→ t′ ⇔ t

π(a)

π(→) t′

iii The definition of π is extended to apply to labeled transition systems by πS = 〈S,L, π(→), s0〉

Definition 4.2 (state permutation)
Suppose S = 〈S,L,→, s0〉 is a labeled transition system.

i A state permutation for S is a permutation σ : S → S.

ii The definition of σ is extended to apply to transition relations by t
a
→ t′ ⇔ σt

a

σ(→) σt′

iii The definition of σ is extended to apply to labeled transition systems by σS = 〈S,L, σ(→), σs0〉

The notions of state permutation and isomorphism are closely related.

Lemma 4.3
Suppose S is a labeled transition system and σ is a state permutation, then σ is an isomorphism from
S to σS.

Proof
Trivial. 2

Since state permutations act on states and label permutations act on labels, the two are independent.

Lemma 4.4
Suppose S = 〈S,L,→, s0〉 is a labeled transition system, π is a label permutation for S and σ is an
isomorphism for S, then

4. Symmetrical labeled transition systems 7

i πσ →= σπ →
ii πσS = σπS

Proof
i For arbitrary 〈s, a, s′〉 ∈→ it holds that πσ〈s, a, s′〉 = π〈σs, a, σs′〉 = 〈σs, πa, σs′〉 = σ〈s, πa, s′〉 =

σπ〈s, a, s′〉. Hence, πσ →= σπ →
ii By Definition 4.1 and (i), πσS = π〈σS,L, σ →, σs0〉 = 〈S,L, πσ →, σs0〉 = 〈σS,L, σπ →, σs0〉 =

σπS
2

Now, label permutations and state permutations can be combined into one system permutation.

Definition 4.5 (system permutation)
Suppose S = 〈S,L,→, s0〉 is a labeled transition system, then a system permutation for S is a com-
position πσ, where π is a label permutation for S and σ is a state permutation for S.

Permutations respect isomorphisms, in the sense that permuted labeled transition systems are isomor-
phic and only if the originals are. This follows from the following lemma, which states the independence
of permutation and isomorphism.

Lemma 4.6
Suppose S1,S2 are labeled transition systems and π is a label permutation, then S1 ≡ S2 ⇔ πS1 ≡ πS2

Proof
Suppose σ is an isomorphism from S1 to S2. Then it follows that this same σ is an isomorphism from
πS1 to πS2, by σπS1 = πσS1 = πS2, using the previous Lemma. The reverse half of the proof is
analogous. 2

The analogue of Lemma 3.8 for labeled transition systems holds trivially.

Lemma 4.7
i The set of label permutations of a labeled transition system S is a group.
ii The set of state permutations of a labeled transition system S is a group.
iii The set of system permutations of a labeled transition system S is a group.

Proof
i Directly from Definition 4.1 and Lemma 3.8.
ii Directly from Definition 4.2 and Lemma 3.8.
iii Suppose π1σ1 and π2σ2 are system permutations for S. First, using Lemma 4.4 it follows that

π1σ1π2σ2 = π1π2σ1σ2. By (ii) the composition σ1σ2 is a state permutation for S, and by (i)
the composition π1π2 is a label permutation for S. Hence, σ1π1σ2π2 is a system permutation
isomorphism for S. Second, by (i) and (ii) both π1, π2 and σ1, σ2 have an inverse, so (π1σ1)

−1 =
σ−1

1 π−1
1 , i.e. also π1σ1 has an inverse.

2

Definition 4.8 (permutation isomorphism)
Suppose S1,S2 are labeled transition systems and π is a label permutation for both S1 and S2, and
σ is an isomorphism from S1 to S2. Then πσ is a permutation isomorphism with respect to π. If
S1 = S2 then πσ is a permutation automorphism.

Lemma 4.9
Suppose S is a labeled transition system and πσ is a system permutation, then πσ is a permutation
isomorphism from S to πσS.

8

Proof
Trivial. 2

Now, the notion of symmetry can be defined. A system is symmetric if it is insensitive to permutation.

Definition 4.10 (symmetric labeled transition system)
A labeled transition system is symmetric with respect to label permutation π iff there exists a per-
mutation automorphism based on π.

Example 2
Consider the running example introduced in Figure 1. Define the label permutation π to reflect that
each action on datum d1 corresponds to this same action with d1 replaced by d2, that is:

π = {〈r1(d1), r1(d2)〉,

〈c2(d1, 0), c2(d2, 0)〉,

〈c2(d1, 1), c2(d2, 1)〉,

〈c3(d1, 0), c3(d2, 0)〉,

〈c3(d1, 1), c3(d2, 1)〉,

〈s4(d1), s4(d2)〉}

The permutation automorphism induced by π corresponds to the geometrical symmetry in Figure 1:
each black state on the left corresponds to its white mirror image on the right, and vice versa.

Summarising, a label permutation gives rise to one or more permutation isomorphisms. The following
example shows that the order of a permutation isomorphism can be higher than the order of the
underlying label permutation. In some sense, the complexity of the symmetry of the transition system
can be higher than that of the label permutation.

Example 3
The following labeled transition system represents a trivial system, which sends one of two data
elements and, subsequently, halts. The obvious label permutation permutes the two data elements d1
and d2; it is a permutation of order 2. The permutation isomorphism, indicated by dotted arrows, on
the left is of order 4, while the one on the right is of order 2.

s(d1) s(d1)

s(d1)

s(d2)

s(d2)s(d2)

s(d2)

s(d1)

This example gives rise to two observations. First, the labeled transition system has a non-trivial
automorphism and, second, the permutation isomorphism of order 2 can be obtained by ‘short-cutting’
the orbits of the larger isomorphism. The following result states that these two hold in general.

Lemma 4.11
Suppose S is a labeled transition system that is symmetric with respect to a label permutation π of
order n.

5. Symmetrical relations 9

i if there is a permutation isomorphism for S of order greater than n then S has a non-trivial
automorphism.

ii there is a permutation isomorphism for S which order does not exceed n.

Proof
i Suppose πσ is a permutation isomorphism for S of order greater than n. Then (πσ)nS = πnσnS =

σnS 6= S, so σn is a non-trivial automorphism.
ii Suppose πσ is a permutation isomorphism for S. It holds that (πσ)nS = πnσnS = σnS. Proceed

by induction on the number of orbits of σn which contain a state s with σns 6= s. If there are no
such orbits, then σnS = S and it follows that the order of πσ is at most n. Otherwise, consider
orb(s) for some s with σns 6= s; suppose orb(s) is of length l. It holds that for all i>0 all states
of the form σi+jns (j >0) are isomorph. So, orb(s) can be partitioned into isomorph sequences of
states, i.e. orb(s) = 〈s, · · · , σk−1s; σks, · · · , σ2k−1s; · · · ; σl−ks, · · · , σl−1s〉 with k = gcd(n, l) (i.e.
k is the greatest common divisor of n and l). Now decompose orb(s) into orbits of shorter length

by defining a isomorphism σ′ : S → S as follows: σ′σis =

{

σi+1s (i + 1 mod k 6= 0)
σi−k+1s (i + 1 mod k = 0)

For σ′ the number of orbits of σ′n which contain a state s with σns 6= s is smaller than for σ, so
the hypothesis applies to σ′, which completes the proof.

2

5. Symmetrical relations

In the context of equivalence relations and permutation isomorphisms, the question whether a permu-
tation isomorphism leaves intact an equivalence is a natural one. More precise, the question is whether
some equivalence relation is closed under permutation isomorphisms. To address this property, first
it will be defined how a relation itself can be permuted.

Definition 5.1 (permuted relation)
Suppose π is a label permutation, σ1, σ2 are system permutations for S based on π and R : Sys×Sys
is a relation, then the permutation of R with respect to σ1, σ2, denoted by Rσ1,σ2

, is defined by

(σ1S1)Rσ1,σ2
(σ2S2) ⇔ S1RS2

It is easy to see that, generally, classes of equivalence relations are closed under permutation isomor-
phisms. For instance, if two systems are bisimilar, then permutations of these, based on the same
label permutation, are also bisimilar. The underlying reason is that equivalences are typically defined
without attaching special meaning to designated states or labels. These properties are defined as state
independence and label independence.

Definition 5.2 (state independence)
A set of relations R : Sys × Sys is state independent iff for each state permutation σ it holds that
σR = R.

Definition 5.3 (label independence)
A set of relations R : Sys × Sys is label independent iff for each label permutation π it holds that
πR = R.

Definition 5.4 (symmetrical relation)
A set of relations R : Sys × Sys is symmetrical iff for each system permutation πσ it holds that
πσR = R.

The following lemma follows directly from the definitions.

Lemma 5.5
A set of relations which is both label independent and state independent is symmetrical.

10

For the equivalences addressed in this report both types of independence hold trivially, with the one
exception of weak bisimulation which attaches special meaning to the ‘silent τ action’. If permutations
are limited to those leaving intact this silent action, then also weak bisimulation is label independent.

Lemma 5.6
i Isomorphy is state independent.
ii Strong bisimulation is state independent.
iii Weak bisimulation is state independent.

Proof
Directly from the definitions. 2

Lemma 5.7
i Isomorphy is label independent.
ii Strong bisimulation is label independent.
iii Weak bisimulation is label independent for labels different from τ .

Proof
Directly from the definitions. 2

Corollary 5.8
i Isomorphy is symmetrical.
ii Strong bisimulation is symmetrical.
iii Weak bisimulation is symmetrical.

6. Symmetrical reductions

This section describes the definition of a ‘symmetric half’, or symmetrical reduction, of a symmetrical
labeled transition system. A suitable definition must satisfy the requirement that equivalent symmetric
halves originate from equivalent labeled transition systems, for the equivalence relation used. Another
useful requirement is that equivalent labeled transition systems have equivalent symmetric halves.

The section is structured as follows. Section 6.1 gives the basic definitions of reduction and expan-
sion. Section 6.2 outlines how to generate the original labeled transition system from a symmetrical
reduction and how to calculate the dimensions of the original system from the reduction. Section 6.3
addresses one of the main issues in this report, i.e. whether a symmetrical reduction can represent the
original. Finally, Section 6.4 shows how to represent a symmetrical reduction in a labeled transition
system.

6.1 Definitions
To provide some intuition on the nature of symmetrical reductions, this section starts with an example.

Example 4
The labeled transition system (a) below represents a simple communication protocol which sends
and, subsequently, receives a data element. This system is symmetrical for the label permutation
π = {〈r(d1), r(d2)〉, 〈s(d1), s(d2)〉}; the permutation isomorphism is shown in dotted lines. A naive
candidate reduction is obtained by choosing one transition from each orbit, as shown in (b) below.
However, the labeled transition system (c), representing a flawed version of the same protocol, has
the same reduction.

6. Symmetrical reductions 11

r(d2)

a cb

r(d1)

s(d1) s(d2)

r(d2)

s(d1)

r(d1)

s(d2)

r(d1)

s(d1)

The problem with this naive reduction is that although using the label permutation all symmetric
halves can be generated, the information as to how these halves should be merged to form a complete
symmetrical system is missing. The key to the solution is to add to the naive reduction shown above
information on how states from the reduction have symmetric counterparts within this reduction. The
picture below shows for both (a) and (c) from above the restriction of the symmetrical isomorphism
to the naive reduction in (b) and (d), respectively. They are different.

r(d1)

s(d1)

b

s(d1)s(d1) s(d2)

r(d2)r(d1)

s(d1)

r(d1)

s(d2)

a

s(d2)

d

r(d1)

s(d1)

c

r(d2)

a

r(d1)

The intuition from the above example is formalised in the definition of symmetrical reduction. A
complication that arises is that states from the reduction may be mapped onto other states by repeated
applications of the symmetrical reduction. So, for every number of applications this indirect mapping
needs to be stored.

Definition 6.1 (symmetrical reduction)
A symmetrical reduction Cρ of order n consists of a labeled transition system C and a partial function
ρ : {1, · · · , n − 1} → (S → S)

Equivalence relations for labeled transition systems are extended to apply to symmetrical reductions
by the following.

Definition 6.2 (equivalence for symmetrical reductions)
An equivalence relation for labeled transition systems R is extended to apply to symmetrical reductions
of order n by: CρRC ′

ρ′ iff the following hold:
i CRC′

ii sRs′ ⇒ ρ(i)sRρ′(i)s′ for all s, s′ and all 16 i < n

Now that the shape of a symmetrical reduction has been defined, it can be defined when a reduction
is a reduction of some symmetrical system.

Definition 6.3 (symmetrical reduction)
Suppose S = 〈S,L,→s, s0〉 is a symmetrical system with respect to system permutation σπ of order n
and Cρ is a symmetrical reduction with C = 〈C,L,→c, c0〉, then Cρ is a reduction of S iff the following
hold:

12

i ρ(i) = σi |S→S for all 16 i < n.
ii for all 〈s, a, t〉 ∈→s there exists exactly one 〈s′, a′, t′〉 ∈→c which satisfies 〈s′, a′, t′〉 = 〈σis′, πia′, σit′〉

for some 06 i < n.
Conversely, S is an expansion of Cρ.

The definition of permutation is extended to symmetrical reductions in a straightforward way.

Definition 6.4 (permutation)
Suppose πσ is a system permutation and Cρ is a symmetrical component, then πσCρ is defined as
πσCρ = (πσC)ρ′ where ρ′ is defined by ρ′(i)(σs) = σρ(i)(s).

6.2 Generating symmetrical expansions
The first step in restoring an original labeled transition system from a symmetrical reduction is
to generate the permutations of the labeled transition system with respect to the underlying label
permutation. The next step is to string these permutations together, using reduction’s ρ mapping.

The algorithm is outlined in Table 1. It is designed more for clarity than for efficiency. It leaves
implicit the number of states which are actually defined equivalent in the equivalence relation. To
clarify the underlying principles, the next example presents a sample expansion.

Example 5
Consider the following label permutation π = 〈a, b, c〉. A sample symmetrical reduction is presented
by the following picture; here, all dotted arrows represent ρ(1) mappings.

a

c

b
c

The first step is the generation of the three permutation of the above reduction.

a

c

b
c

c

b

b

a

b

c

a

a

The equivalence relation generated from the dotted ρ(1) steps are as follows.

6. Symmetrical reductions 13

/* Extend equivalence relation ’R’ with ’sRt’ */

procedure relate(R,s,t);

/* Add to labeled transition system ’S’ all states and transition from ’T’ */

procedure unite(S,T);

/* Generate a symmetrical expansion ’S’ for the reduction given by ’C’ and ’rho’

with respect to label permutation ’pi’ of order ’n’ */

procedure expand(C, rho, pi, n, S)

var LTS C[n];

int i;

/* Generate the permutations of ’C’ */

C[0]=C;

for i=1 to n-1 do

C[i]=pi(C[i-1]);

done;

/* String the permutations together */

for i=0 to n-1 do

for each state s of C[i] do

if rho(i)(s) is defined

then relate(R,<i,rho(i)(s)>,<i+1 mod n,s>);

done;

done;

/* Construct the expansion */

S=C[0];

for i=1 to n-1 do

unite(S,C[i]);

done;

S=S/R;

end procedure

Table 1: An algorithm for generating symmetrical expansions

14

a

c

b
c

b

c

a

a

c

b

b

a

Finally, ‘dividing out’ this equivalence relation and dropping the dotted and dashed links yields the
following ‘cube’.

ba a

a

a

b

b

b

b

c

c

c

c

It is not trivial to calculate the dimensions of the expansion from the dimensions of the reduction.
The rest of this section is geared towards this calculation.

The key to the calculation is in ρ cycles which determine how many permutations share one single
state.

Definition 6.5 (ρ cycle)
Suppose Cρ is a symmetrical reduction.

A ρ cycle of length l > 0 is a set of states {s0, · · · , sl−1} where for all 06 i < l there exists some k for
which ρ(k)si = si+1modl.

The ρ cycles from the symmetrical reduction are permuted themselves with the reduction. A complica-
tion here is that these ρ cycles may have a period that is smaller than the order n of the permutation.
That is, the n permutations of the reduction may show duplicate cycles.

Definition 6.6 (order of a ρ cycle)
Suppose S is a labeled transition system with symmetrical reduction Cρ. The order of a ρ cycle

{s0, · · · , sl−1} is the smallest k > 0 for which σksi = si for all 06 i < l.

The sharing of transitions among permutations of the reductions is a bit more complex, since the
action labels are involved here. To this end, the period of a transition is defined.

Lemma 6.7
Suppose S is a labeled transition system with symmetrical reduction Cρ of the same order n.

6. Symmetrical reductions 15

i perσ(s) =

{

k if ρ(k)(s) = s
n otherwise

ii perσπ(〈s, a, t〉) = lcm(perσ(s), perπ(a), perσ(t))
Here, lcm(x, y, z) denotes the least common multiple of three natural numbers x, y and z.

Proof
Suppose πσ is the symmetrical automorphism on which ρ is based.

i Consider the smallest 0 < k6n for which σks = s. Then s ∈ C ∩ σkC. If k < n then ρ(k)s = s.
ii Consider the smallest 0 < k 6 n for which σπk〈s, a, t〉 = 〈s, a, t〉. That is, σks = s, σkt = t and

πka = a and it follows that k = lcm(perσ(s), perπ(a), perσ(t)).
2

Now that some insight is gained in the sharing of states and transitions, the calculation can be
completed.

Lemma 6.8 (counting lemma)
Suppose S is a labeled transition system with symmetrical reduction Cρ of the same order n, the
number of cycles of period i of length j is denoted by ni,j and the number of transitions of period i
is mi. Then the following hold:

i | S |= n· | C | −
∑n

k=1

∑n
l=1 nk,l(nl − k)

ii |→|= n· |→C | −
∑n

k=1 mk · (k − 1)

Proof
i Let σπ be a permutation automorphism for S. For notational convenience, write Ci = (σπ)iC.

Now S = C0 ∪ · · · ∪ Cn−1; however, the Ci are not mutually disjoint. Suppose there is a state
s ∈ Ci0 ∩ · · · ∩ Cil−1

(0 < l, 06 i0 < · · · < il−1 < n) and s /∈ Ci for each i /∈ {i0, · · · , il−1}. From
s ∈ Ci1 it follows that s = σi1−i0s′ for some s′ ∈ Ci0 . Since s ∈ Ci0 it holds that ρ(i1 − i0)(s

′)
is defined. By this argument, it holds ρ(ij+1 − ij)(s

′) is defined for all 1 6 j < l. So, each state
shared by l permutations of Ci0 corresponds to a ρ cycle in Ci0 of length l and it can be easily
proven that the converse correspondence also holds.
By symmetry, both the shared state and the corresponding ρ cycle have a permutation in C. Now
this ρ cycle has k distinct permutations in the n permutations of C, where k is the period of the
cycle.
Summarising, there are n permutations of | C | states each. Each of the nk,l ρ cycles of length l
and period k in C corresponds to k classes of nl

k
states, all of which have the same permutation.

ii There are n permutations of |→| transitions each. However, each of the mk transitions of period
k yields only k distinct permutations.

2

At first sight, the calculation of the dimensions of the expansion is complex. However, as will be
shown in Section 8, in practice this calculation is feasible, since occurrences of transitions with a
period smaller than the order of the permutations are rare.

6.3 Soundness and completeness
The question of whether a symmetrical reduction represents the original system is formalised in terms
of soundness and completeness.

Definition 6.9 (soundness/completeness)
Suppose Cρ is a symmetrical reduction of labeled transition system S and R is a set of relations.

i Cρ is a sound reduction of S with respect to R iff for all symmetrical reductions C ′

ρ′ of labeled
transition systems S ′ it holds that CρRC′

ρ′ ⇒ SRS ′.
ii Cρ is a complete reduction of S with respect to R iff for all symmetrical reductions C ′

ρ′ of labeled
transition systems S ′ it holds that SRS ′ ⇒ CρRC′

ρ′ .

16

The proof that symmetrical reduction is sound for some equivalence relation has the following struc-
ture. First, it needs to be shown that application of the permutation isomorphism to two equivalent
reductions yields another pair of equivalences; this requires that the equivalence relation is closed un-
der permutation. Second, repeated applications of the permutation isomorphism yields two sequences
of reductions, which are element-wise equivalent, and which are to be merged into two equivalent
labeled transition systems; this requires that the equivalence relation is compositional with respect to
the merge operator. Merging permutations of symmetrical reductions consists of taking all states and
transitions of the reductions.

Definition 6.10 (sum of labeled transition systems)
Suppose S1 = 〈S1,L,→1, s1〉 and S2 = 〈S2,L,→2, s1〉 are labeled transition systems with the same
initial state, then the sum of S1 and S2, denoted by S1 + S2 is defined by S1 ∪ S2 = 〈S1 ∪ S2,L,→1

∪ →2, s1〉.

As expected, this sum definition has the properties of idempotency, commutativity and associativity,
so in notations brackets can be dropped.

Lemma 6.11
Suppose S1,S2 and S3 are labeled transition systems.

i S1 + S1 = S1

ii S1 + S2 = S2 + S1

iii S1 + (S2 + S3) = (S1 + S2) + S3

Proof
Trivial. 2

Definition 6.12 (soundness/completeness)
Suppose Cρ is a symmetrical reduction and R is a relation.

i Cρ is sound with respect to R iff for all system permutations πσ, symmetrical reductions C ′

ρ′ and

all system permutations πσ′ it holds that (σiCρ)Rσiσ′i(σiC′

ρ′) for all 0 6 i < n ⇒ (σ0C + · · · +

σn−1C)(Rσ0σ′0 ∪ · · · ∪ Rσn−1σ′n−1)(σ0C′ + · · · + σn−1C′).
ii Cρ is complete with respect to R iff for all symmetrical reductions C ′

ρ′ it holds that (σ0C + · · · +

σn−1C)(Rσ0σ′0 ∪ · · · ∪ Rσn−1σ′n−1)(σ0C′ + · · · + σn−1C′) ⇒ σiCρRσiσ′iσiC′

ρ′ for all 06 i < n.

With the previous definitions, one of the main results of this sections can be formulated.

Theorem 6.13
Suppose Cρ is a reduction of labeled transition system S and R is a symmetrical set of relations.

i if Cρ is sound with respect to R then Cρ is a sound reduction of S with respect to R.
ii if Cρ is complete with respect to R then Cρ is a complete reduction of S with respect to R.

Proof
i Suppose Cρ is sound with respect to R, S is symmetrical with respect to system permutation

πσ, S ′ is a labeled transition system which is symmetrical with respect to system permutation
π′σ′ and C′

ρ′ is a symmetrical reduction of S ′ for which CρRC′

ρ′ . For notational convenience, write

Ci
ρ = σiCρ, C

′i
ρ′ = σ′iC′

ρ′ and Ri = Rσiσ′i . Since R is symmetrical, it holds that Ci
ρR

iC′i
ρ′ for all

6 i < n. Since Cρ is sound, it follows that (C0 + · · ·+Cn−1)(R0 ∪ · · ·∪Rn−1)(C′0 + · · ·+C′n−1) and
R0∪· · ·∪Rn−1 ∈ R. From the definition of symmetrical reduction it follows that C0+· · ·+Cn−1 = S
and C′0 + · · · + C′n−1 = S ′. Hence, SRS ′.

ii Analogous.
2

The rest of this section proves compositionality for the three equivalences studied in this report.

6. Symmetrical reductions 17

Lemma 6.14
i Symmetrical reductions are sound with respect to isomorphy.
ii Symmetrical reductions are sound with respect to strong bisimulation.
iii Symmetrical reductions are sound with respect to weak bisimulation.

Proof
i Suppose Cρ and C′

ρ′ are symmetrical reductions, σ, σ′ are system permutations and R1, · · · , Rn are

isomorphisms with (σiC)Ri(σ
′iC′), for all 0 6 i < n. For notational convenience, write Ci = σiC

and C′

i = σ′iC′. It will be proven that R = R1 ∪ · · · ∪ Rn is an isomorphism for C0 + · · · + Cn−1

and C′

0 + · · · + C′

n−1.
First, it will be proven that R is bijective; it will be proven that R is functional, surjective and
injective. For functionality, suppose sRt and sRu for states s, t, u. That is:
(a) s ∈ Ci, t ∈ C′

i and sRit for some 06 i < n.
(b) s ∈ Cj , u ∈ C′

j and sRju for some 06j < n.
Without loss of generality, assume i6j. Now, the following hold:
(a) s = σj−is′, for some s′ ∈ Ci.
(b) u = σ′j−iu′ for some u′ ∈ C′

i.
From sRju it follows that s′Riu

′. Since s, s′ ∈ Ci and s = σj−is′ it follows that s = ρ(j − i)s′.
From (Cρ)jRj(C

′

ρ′)j and s′Riu
′ it follows that u = ρ(j − i)u′ and sRiu. By functionality of Ri,

from sRiu and sRit it follows that t = u.
The proof of injectivity is analogous. Surjectivity follows directly from the definition of symmetrical
reduction.
Second, it will be proven that R is an isomorphism between C ∪ · · · ∪ σn−1C and C′ ∪ · · · ∪ σn−1C′.
For convenience, the notation R(s) will be used for the unique t which satisfies sRt. Suppose

s
a
→ t for s, t ∈ C ∪ · · · ∪σn−1C. That is, s, t ∈ σiC and s

a
→i t for some 06 i < n. From isomorphy

of Ri it follows that Ri(s)
a
→i Ri(t), hence, R(s)

a
→ R(t).

ii Suppose s
a
→ t for s, t ∈ C ∪ · · · ∪ σn−1C and sRu. That is, s, t ∈ σiC, s

a
→i t and sRju for

some 0 6 i, j < n; without loss of generality, assume i < j. By symmetry, from sRju it follows
that s′Riu

′, for s′, u′ ∈ σiC with s = σj−is′ and u = σ′j−iu′. From the definition of symmetrical
reduction, s = ρ(j − i)s′ and u = ρ′(j − i)u′. So, since s′Riu

′, s = ρ(j − i)s′ and σiCρRiσ
′iC′

ρ′ it

holds that sRiu. Since Ri is a bisimulation, from sRiu and s
a
→i t it follows that u

a
→i v and tRiv

for some v. The other half of the proof is analogous.
iii Similar.

2

Corollary 6.15
Symmetrical reduction is sound with respect to isomorphism, strong bisimulation and weak bisimula-
tion.

The property of completeness appears to be more complex than soundness. Some intuition is provided
by the following example.

Example 6
The simple communication protocol from the previous example is extended with a ‘reset’ action which
returns the system to its initial state after each send and receive. The label permutation leaves the reset
label intact, i.e. π = {〈r(d1), r(d2)〉, 〈s(d1), s(d2)〉}. The transition system is (a) and a symmetrical
reduction is (b) below.

18

b c

r(d1)

rst
s(d2)s(d1)s(d1) s(d2)

a

r(d2)r(d1)

rst

r(d2)

d

r(d1)

rst
s(d1)

r(d1)

rst
s(d1)

The transition system is not minimal with respect to strong bisimulation, in the sense that the two
states from which a reset is possible are bisimilar. The minimalisation is shown in (c) with a reduction
in (d). So, although (a) and (c) are equivalent, the symmetrical reductions (c) and (d) are not. The
cause of the problem is that there are states which are both permutation isomorphic and bisimilar.

The example suggests that the construction of complete reductions is hampered by a twisted inter-
action between symmetry and equivalence. The motivation for developing symmetrical reductions
includes the intuition that operations like bisimulation reduction are cheaper after symmetrical re-
duction, followed by symmetrical expansion. While soundness guarantees that bisimulation reduction
thus obtained are indeed bisimilar, lack of completeness leaves open the possibility that there are
cases in which the maximal reduction is out of reach. This incompleteness can be addressed trivially
by including bisimulation equivalence in the definition of reduction; the cost of this naive approach
cannot outweigh the benefits of symmetrical reduction. So, complete reductions will remain a subject
of further study.

6.4 Encoding symmetrical reductions
What has received no attention yet, is how to effectively check equivalence for symmetrical reductions.
The remainder of this section aims at translating symmetrical reductions to labeled transition systems
such that equivalent symmetrical reductions translate to equivalent labeled transition systems.

Definition 6.16 (encoding)
Suppose Cρ is a symmetrical reduction with C = 〈C,L,→, s0〉 and L ∩ N = ∅.

i The encoding of ρ with respect to C, denoted by enc(C, ρ), is defined by enc(Cρ) = 〈C, N,→′, s0〉,

where the transition relation →′ is defined by s1

a

→′ s2 iff one of the following holds:
(a) a = τ and s1

a
→ s2

(b) a ∈ N and ρ(a)(s1) = s2

ii The encoding of Cρ, denoted by enc(Cρ), is defined by enc(Cρ) = enc(C, ρ) + C.

It will be proven that an encoding indeed represents a ρ function, if the relevant equivalence relation
satisfies two requirements. The first requirement is that equivalent systems can be partitioned into
two subsystems which have no labels in common.

Definition 6.17 (compositionality with respect to labels)
An equivalence relation R is compositional with respect to labels A iff for all systems S1 = 〈S,L1,→1

, s0〉,S
′

2 = 〈S,L2,→2, s0〉 S ′

1 = 〈S′,L1,→
′

1, s
′

0〉,S
′

2 = 〈S′,L2,→
′

2, s
′

0〉 with A = L1 ∩ L2 and for all

a ∈ A it holds that s
a

→1 t ⇔ s
a

→2 t and s
a

→′

1 t ⇔ s
a

→′

2 t it holds that (S1 +S2)R(S ′

1 +S ′

2) ⇔ S1RS ′

1

and S2RS ′

2. If A = ∅ then R is said to be compositional with respect to labels.

The second requirement is that the encodings of equivalent systems are equivalent by themselves.

Definition 6.18
An equivalence relation R respects encodings iff for all symmetrical reductions Cρ, C

′

ρ′ it holds that
CρRC ′

ρ′ ⇒ enc(C, ρ)Renc(C ′, ρ′).

6. Symmetrical reductions 19

Theorem 6.19
Suppose Cρ, C

′

ρ′ are symmetrical reductions, R respects encodings and is compositional with respect
to labels, then CρRC′

ρ′ ⇔ enc(Cρ)Renc(C′

ρ′)

Proof
Suppose CρRC′

ρ′ . Since R respects encodings, it follows that enc(C, ρ)Renc(C ′, ρ′). Compositionality
completes the proof. 2

It remains to be proven that the three equivalences addressed in this report are compositional and
respect encodings.

Lemma 6.20
i Isomorphism is compositional with respect to labels.
ii Strong bisimulation is compositional with respect to labels.
iii Weak bisimulation is compositional with respect to labels other than τ .

Proof
Let S1 = 〈S,L1,→1, s0〉,S

′

2 = 〈S,L2,→2, s0〉, S
′

1 = 〈S′,L1,→
′

1, s
′

0〉,S
′

2 = 〈S′,L2,→
′

2, s
′

0〉 with L1 ∩
L2 = ∅ be arbitrarily given, and let →12,→

′

12 denote the transition relation of S1 + S2,S
′

1 + S ′

2,
respectively

i “⇒” Suppose (S1 +S2)R(S ′

1 +S ′

2) for some isomorphism R. Now suppose s1
a

→1 t1, s1Rs′1, t1Rt′1
for states s1, t1, s

′

1, t
′

1. It follows that s1
a

→12 t1 and a ∈ L1. Since R is an isomorphism, it follows

that s′1
a

→′

12 t′1. Since a ∈ L1, also s′1
a

→′

1 t′1. The other half of the proof is analogous.

“⇐” Suppose S1RS ′

1 and S2RS ′

2. Suppose s1
a

→12 t1, s1Rs′1, t1Rt′1 for states s1, t1. Without loss

of generality, assume s1
a

→1 t1 and since R is an isomorphism it follows that s′1
a

→′

1 t′1. Hence,

s′1
a

→′

12 t′1.

ii “⇒” Suppose (S1 + S2)R(S ′

1 + S ′

2) for some strong bisimulation R. Now suppose s1
a

→1 t1 and

s1Rs′1 for states s1, s
′

1, t1. Then s1
a

→12 t1 and a ∈ L1. From R being a strong bisimulation it

follows that s′1
a

→12 t′1 and t1Rt′1 for some state t′1. Since a ∈ L1 it follows that s′1
a

→1 t′1. The
other half, as well as the proof of S2RS ′

2, is analogous.

“⇐” Suppose S1RS ′

1 and S2RS ′

2. Suppose s1
a

→12 t1, s1Rs′1 for states s1, s
′

1, t1. Without loss

of generality assume s1
a

→1 t1 and from R being a strong bisimulation it follows that s′1
a

→′

1 t′1.

Hence, s′1
a

→′

12 t′1. The other half of the proof is analogous.

iii “⇒” Suppose (S1 + S2)R(S ′

1 + S ′

2) for some weak bisimulation R. Now suppose s1
a

→1 t1 and

s1Rs′1 for states s1, s
′

1, t1. Then s1
a

→12 t1 and a ∈ L1. From R being a weak bisimulation it

follows that t1Rt′1 and s′1
τ

→∗

12 ·
a

→12 ·
τ

→∗

12 t′1 for a state t′1 or a = τ and t1Rt′1. Since a ∈ L1 and

τ ∈ L2 it holds that s′1
τ

→∗

1 ·
a

→1 ·
τ

→∗

1 t′1. The other half of the proof is analogous.

“⇐” Suppose S1RS ′

1 and S2RS ′

2. Suppose s1
a

→12 t1, s1Rs′1 for states s1, s
′

1, t1. Without loss of

generality assume s1
a

→1 t1 and from R being a weak bisimulation it follows that s′1
τ

→∗

1 ·
a

→1 ·
τ

→∗

1

t′1. Hence, s′1
τ

→∗

12 ·
a

→12 ·
τ

→∗

12 t′1. The other half of the proof is analogous.
2

Lemma 6.21
i Isomorphism respects encodings.
ii Strong bisimulation respects encodings.
iii Weak bisimulation respects encodings.

Proof

20

Let symmetrical reductions Cρ, C
′

ρ′ be arbitrarily given.

i Suppose CρRC ′

ρ′ . Now suppose s
i
→ t (i ∈ N), sRs′ and tRt′. By definition of encoding, ρ(i)(s) = t

and by CρRC ′

ρ′ also ρ(i)(s′) = t′. The other half of the proof is analogous.

ii Suppose CρRC ′

ρ′ . Now suppose s
i
→ t (i ∈ N) and sRs′. By definition of encoding, ρ(i)(s) = t

and by CρRC ′

ρ′ also ρ(i)(s′) = t′ and tRt′.
iii Suppose CρRC ′

ρ′ . The encoding contains two types of transitions. For those labeled with natural

numbers, suppose s
i
→ t (i ∈ N) and sRs′. By definition of encoding, ρ(i)(s) = t and by CρRC ′

ρ′

also ρ(i)(s′) = t′ and tRt′. For those labeled with τ labels, suppose s
τ
→ t and sRs′. From the

definition of weak bisimulation, tRt′ for some t′.
2

7. Symmetry in specifications

The notion of symmetry which has been explored so far applies to concrete labeled transition systems,
which is a severe drawback when it comes to applications. In practice, labeled transitions typically
contain at least millions of states, the generation of which takes a decent amount of processor time.
Even worse, with existing algorithms for graph isomorphism checking being NP, the existence of
efficient symmetry checkers is at least unlikely. However, the theory developed in this report is not
meant to be directly applied at concrete labeled transition systems.

Labeled transition systems are usually generated from specifications of a high level of abstraction.
At this level, there often exists a strong intuition that symmetry has a conceptual basis. For example,
data flowing through a communication protocol, in no way influencing the course of the system,
typically gives rise to symmetry. Also, systems consisting of a number of parallel processes, which are
identical except for their process identifier, are often symmetrical. It is expected that this intuition
can be recognised in specifications of systems.

The specification language used to support the conceptual base for symmetry in this report is
µCRL [BFG+01], a language based on process algebra with data, with connectives for sequential
composition ‘·’, non-deterministic choice ‘+’, parallel composition ‘‖’, alternative quantification over
data and handshaking as native communication model. A simple example µCRL fragment is given by
the following.

proc Producer = sum(d:D, produce(d).give(d)).Producer

Consumer = sum(d:D, take(d)).delta

The example shows a producer and a consumer process. The former repeatedly produces one element
from a data sort D and gives it, while the latter takes an arbitrary data element once. It is specified
elsewhere that the producer’s give corresponds with the consumer’s take action, the resulting com-
munication action is called ‘consume’. The producer and the consumer are executed in parallel with
the following construct, under the proviso that the actions of give and take cannot be executed in
isolation.

init encap({give,take}, Producer||Consumer)

It is intuitively clear that the example system is symmetrical in the data handled. However, with
no explicit states or transitions, it is unclear how this symmetry could be verified. Moreover, simple
as it may seem, the example shows a number of non-trivial constructs like parallel composition and
communication, which have not been addressed in the context of symmetry yet.

The problem has been acknowledged before, in that it is is a well-known problem that expressiveness
of specifications is at odds with conciseness of automated tools. The solution chosen in µCRL context
is the linear process equation format, introduced in [BG94], which plays the role of machine code
in the µCRL tool set [BFG+01]. This linear format specifies a system in terms of a finite number
of conditional transitions of the form

∑

e∈E a(f(x, e)) · P (g(x, e)) � c(x, e) � δ, which means that

7. Symmetry in specifications 21

if condition c(x, e) holds in state x for some datum e of sort E, then an action a with parameters
depending on state s and datum e can be executed after which the system moves to another state
which depends on x and e. An automated lineariser tool for the generation of linear process equations
from µCRL specifications is included in the tool set [Use02].

The strong point of this linear format is that it lends itself to automated analysis, since the format is
simple and lacking complicated constructs like parallel composition and communication. Its weakness
is that it is less suited for human understanding. So, the linear process equations are presented ‘as is’
with no attempt to provide intuition on what this or that state variable means. The linear process
equation generated for this section’s examples, with some minor editing to improve legibility, is given
below.

proc X(s:State,d:D) =

sum(d0:D,produce(d0).

X(2,d0)

<|s=3|>delta)

consume(d).

X(1,d1)

<|s=2|>delta+

init X(3,d1)

States are represented by a 〈s, d〉 pair, where s is a local state which determines whether the producer
or the consumer is active, and d is the data element being handled. As it is the data which generates
the symmetry, it makes sense to fix some permutation δ : D → D. From this data permutation a
label permutation π is defined by πproduce(d) = produce(δd) and πconsume(d) = consume(δd). A
candidate state permutation is σ defined by σ〈s, d〉 = 〈s, δd〉.

Verifying that πσ indeed defines a system automorphism proceeds as follows. Consider an arbitrary
state 〈s, d〉. Now, consider the first summand and assume that for some arbitrary data element d0

the condition s = 3 holds in this state, which implies that action consume(d0) can be executed after
which the system moves to state 〈2, d0〉. This implies that in the permuted state 〈s, δd〉 there is a data
element δd0 for which condition s = 3 holds, after which action consume(δd0) moves the system to
〈2, δd0〉 = σ〈2, d0〉. The second summand is to be verified in the same way, but here is a complication.

The second summand leads to a successor state 〈1, d1〉 where d1 is a constant data element. At first
sight, this assignment of a ‘special’ data element breaks the symmetry, in that it moves the system to
a state which is not the permuted destination state which corresponds to the permuted source state.
A closer exmination reveals that the constant data element d1 plays the role of a dummy placeholder,
which is not used in states where s = 2. So, instead of assigning the dummy d1 the original value of
the d parameter can be maintained, leaving intact the symmetry. This process of removing dummy
assignments to state variables was independently discovered by Jaco van de Pol as an optimisation
for linear process equations. As dummy elimination it is mentioned in [BGL+03]. So, the second
summand can be replaced by an equivalent summand.

consume(d).

X(1,d)

<|s=2|>delta+

What remains to be verified is that the state permutation does not change the initial state 〈3, d1〉.
Here, again the data element d1 is used as a dummy element which breaks the symmetry. A solution
is to extend the data sort D with an explicit dummy element nil, with the drawback that this element
is to be excluded from regular communication. The resulting linear process equation follows below.

22

proc X(s:State,d:D) =

sum(d0:D,produce(d0).

X(2,d0)

<|s=3 and not(d0=nil)|>delta)

consume(d).

X(1,d1)

<|s=2|>delta+

init X(3,nil)

Summarising, the linear format of µCRL makes it possible to check symmetry in a relatively easy way,
which is likely to be amenable to an automated theorem proving approach. However, the lineariser
introduces some asymmetrical artefacts, which might obscure symmetry in practice. Further study of
optimisations in the style of dummy elimination is a necessary provision here.

8. Cases

This section studies three cases. First, the Positive Acknowledgement with Retransmission (PAR)
protocol [Def81], also dubbed alternating bit protocol, which was used as an example in Section 3
is studied (Section 8.1). Second, the generalised Peterson’s mutual exclusion algorithm [Pet81] is
addressed Section 8.2 and, third and final, the Dining philosophers [Dij71] case is studied (Section
8.3). The section ends with a discussion of the statistics for the three cases (Section 8.4).

8.1 The alternating bit protocol
The alternating bit protocol has a sender transmit a datum to a receiver, and repeats this until this
receiver acknowledges the receipt of this datum. In order to be prevent problems with lost data and
acknowledgements, both are accompanied by a sequence number which is checked on reception: data
and acknowledgements which are out of sequence are ignored. Because of this scheme it suffices to
have two sequence numbers, 0 and 1, which explains the name of the protocol.

The corresponding linear process equation is given below. In this equation, sort D defines the data
elements that can be sent. It is this D which is the key to symmetry, as permutations of the elements
of this data sort lead to isomorph labeled transition systems.

X(s0 : State, d : D, s1 : State, n : bit, d12 : D, s7 : State, n2 : bit, s8 : State, d11 : D) =
1

∑

b:Bool

∑

d′:D r1(d
′) · X(case(b, 5, 2), d′, s1, n, d12, s7, n2, s8, d11)

�d 6= d0 ∧ case(b, s0 = 6, s0 = 3) � δ+
2

∑

e:Enum6
c3(d12, n) · X(s0, d, 4, 0, d12, s7, n2, case(e, 6, 8, 6, 8, 3, 2), d12)

�n = case(e, 0, 1, 0, 1, 0, 1) ∧ s1 = 2 ∧ case(e, s8 = 9, s8 = 9, s8 = 7, s8 = 7, s8 = 4, s8 = 4) � δ+
3

∑

b:Bool c3(error) · X(s0, d, 4, 0, d12, s7, n2, case(b, 3, 8), d11)
�s1 = 1 ∧ case(b, s8 = 4, s8 = 9 ∨ s8 = 8) � δ+

4 τ · X(s0, d, s1, n, d12, 2, n2, s8, d11)
�s7 = 3 � δ+

5 τ · X(s0, d, s1, n, d12, 1, 0, s8, d11)
�s7 = 3 � δ+

6
∑

b:Bool s4(d11) · X(s0, d, s1, n, d12, s7, n2, case(b, 5, 1), d11)
�case(b, s8 = 6, s8 = 2) � δ+

7
∑

e:Enum4
c5(case(e, 1, 1, 0, 0)) · X(s0, d, s1, n, d12, 3, case(e, 1, 1, 0, 0), case(e, 7, 9, 4, 4), d11)

�s7 = 4 ∧ case(e, s8 = 8, s8 = 1, s8 = 3, s8 = 5) � δ+
8 τ · X(s0, d, 1, 0, d12, s7, n2, s8, d11)

�s1 = 3 � δ+

8. Cases 23

9 τ · X(s0, d, 2, n, d12, s7, n2, s8, d11)
�s1 = 3 � δ+

10
∑

b:Bool c6(error) · X(case(b, 5, 2), d, s1, n, d12, 4, 0, s8, d11)
�case(b, s0 = 4, s0 = 1) ∧ s7 = 1 � δ+

11
∑

e:Enum4
c6(case(e, 0, 1, 0, 1)) · X(case(e, 3, 5, 2, 6), d, s1, n, d12, 4, 0, s8, d11)

�case(e, 0, 1, 0, 1) = n2 ∧ case(e, s0 = 4, s0 = 4, s0 = 1, s0 = 1, s7 = 2) � δ+
12

∑

b:Bool c2(d, case(b, 0, 1)) · X(case(b, 4, 1), d, 3, case(b, 0, 1), d, s7, n2, s8, d11)
�case(b, s0 = 5, s0 = 2) ∧ s1 = 4 � δ

initX(6, d0, 4, 0, d0, 4, 0, 9, d0)

In all fairness it has to be admitted that the above linear process equation needed some manual
tweaking in order to make it a candidate for symmetry analysis. The reason for this is that the state
variables of sort D represent the contents of some of the channels used for data and acknowledgements,
and which are initially empty. The µCRL lineariser initialises these with some arbitrary data element
and only a combination of other state variables guarantees that in some cases the specific data element
is interpreted as a default dummy element. As a result, the linear process equation generated does
not look symmetrical at all, since one data element seems to have a special meaning. To repair this,
an explicit dummy datum d0 was introduced, which is only used for initialisation and not for regular
transmission.

Lemma 8.1
Suppose δ is a permutation of data sort D with δd0 = d0, π is a mapping on labels defined by
πτ = τ, πr1(d) = r1(δd), c2(d, n) = c2(δd, n), c3(d, n) = c3(δd, n), πc3(error) = c3(error), πs4(d) =
s4(δd), πc5(n) = c5(n), πc6(n) = c6(n) and σ is a mapping on states defined by σ〈s0, d, s1, n, d12, s7, n2, s8, d11〉 =
〈s0, π(d), s1, n, π(d12), s7, n2, s8, π(d11)〉 .

Then σπ is a permutation isomorphism for X.

Proof
From the fact that δ is a permutation of data sort D it follows that π is a label permutation and
σ is a permutation of states. It can be easily verified that σ leaves intact the initial state. Now, it
remains to be proven that σπ is a permutation isomorphism, i.e. for each transition 〈s, a, t〉 there
exists a transition 〈σs, πa, σt〉, so consider an arbitrary transition 〈s, a, t〉. There are 12 cases to be
considered, corresponding with the 12 summands of the above linear process equation. Here only the
first and most interesting case will be addressed.

1
∑

b:Bool

∑

d′:D r1(d
′) · X(case(b, 5, 2), d′, s1, n, d12, s7, n2, s8, d11)

�d 6= d0 ∧ case(b, s0 = 6, s0 = 3) � δ+

So, s is of the form s = 〈s0, d, s1, n, d12, s7, n2, s8, d11〉, the condition d 6= d0 ∧ case(b, s0 = 6, s0 = 3)
is satisfied, a = r1(d

′) for some datum d′ and t = 〈case(b, 5, 2), d′, s1, n, d12, s7, n2, s8, d11〉. Now, con-
sidering σs = 〈s0, π(d), s1, n, π(d12), s7, n2, s8, π(d11)〉 it follows that condition δd′ 6= d0 ∧ case(b, s0 =
6, s0 = 3) is satisfied, and allows action r1(δd

′) = πa to be executed leading, to successor state
〈case(b, 5, 2), δd′, s1, n, δd12, s7, n2, s8, δd11〉 = σt. 2

It is instructive to see that, departing from the assumption that permutations of data are the cause
of symmetry, the definition of a candidate permutation isomorphism is highly intuitive and that the
verification of the candidate is simple, in the sense that it is more a matter of pattern matching than
of theorem proving. The next step is the definition of a symmetric reduction.

Lemma 8.2
Let C be defined by the linear process equation for X with the one difference that the first summand
is defined as follows:

24

1
∑

b:Bool r1(d) · C(case(b, 5, 2), d, s1, n, d12, s7, n2, s8, d11)
�case(b, s0 = 6, s0 = 3) � δ+

Let ρ be defined by ρ(1)(〈s0, d, s1, n, d12, s7, n2, s8, d11〉) = 〈s0, d, s1, n, d12, s7, n2, s8, d11〉 iff d = d12 =
d11 = d0.

Then Cρ is a symmetrical reduction of X.

Proof
First it needs to be proven that all transitions in X are in the orbit of exactly one transition from
C; this is by an easy induction on the distance of a transition from the initial state. Second, it needs
to be proven that for all s ∈ C, 1 6 i < n with σi(s) ∈ C it holds that ρ(i)(s) = σi(s). By an easy
induction, it can be shown that C contains no other data than d and dummy element d0, so for any
s ∈ C, 16 i < n with σi(s) ∈ C it holds that s contains only the dummy d as data, so σi(s) = s, hence
ρ(i)(s) = σi(s). 2

This case shows a number of features that make symmetry reduction feasible in practice. First,
symmetry is firmly rooted in the intuition that the alternating bit protocol does not depend on
the data that flows through it. That is, the system is insensitive to permutations of the data set.
Second, given any data permutation, the definition of a candidate label permutation and a candidate
permutation isomorphism is an easy task, and the actual verification of these candidates is simple
enough to be subjected to mechanical analysis. Third, the definition of a candidate symmetrical
reduction is intuitive, although its verification requires some level of human wit.

8.2 Peterson’s mutual exclusion algorithm
The algorithm for mutual exclusion by Peterson [Pet81] was initially formulated for two parallel
processes claiming exclusive access to a critical region in their code, and later generalised for arbitrary
numbers of processes. The generic code for a process, parametrised by its process identifier, is shown
below.

procedure P(i):

for j := 1 to n-1 do

Q[i] := j;

Turn[j] := i;

wait until (for all k<>i: Q(k)<j) or Turn[j]<>i;

done

Critical Section;

Q[i]:=0;

end procedure

The underlying principle is to have all processes enter a queue where each slot is occupied by zero
or more processes. A process in a slot may only advance one slot upstream in the queue if all other
processes are further downstream or some other process entered the slot later. The position of a
process i in the queue is stored in element i of shared array Q, and the process id of the process which
entered slot j last is stored in element j of shared array Turn. The corresponding linear process
equation is given below.

X(s : State, pid : N, x0 : N, x1 : N, x2 : N, x3 : N, x4 : N, x5 : N, x6 : N, x7 : N, x8 : N, x9 : N, x10 : N,
s′ : State, pid′ : N, x′

0 : N, x′

1 : N, x′

2 : N, x′

3 : N, x′

4 : N, x′

5 : N, x′

6 : N, x′

7 : N, x′

8 : N, x′

9 : N, x′

10 : N,
turns : NatArray, flags : NatArray) =

1
∑

e:Enum2
setflag(case(e, pid, x10), case(e, 1, 0))·

X(case(e, 6, 7), pid, case(e, 1, 0), case(e, pid, 0), case(e, pid, 0), case(e, pid, 0),

8. Cases 25

case(e, 1, 0), 0, 0, case(e, 2, 0), case(e, pid, 0), case(e, pid, 0), case(e, pid, 0),
s′, pid′, x′

0, x
′

1, x
′

2, x
′

3, x
′

4, x
′

5, x
′

6, x
′

7, x
′

8, x
′

9, x
′

10,
turns, set(flags, case(e, pid, x10), case(e, 1, 0)))

�case(e, s = 7, s = 1) � δ+
2 τ ·

X(s, pid, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,
3, pid′, 0, 0, 0, 0, 0, 0, 0, 0, x′

8, x
′

9, x
′

10),
turns, flags)

�s′ = 4 ∧ x′

7 = 2 � δ+
3 wait(x3, x4)·

X(4, pid, 0, 0, 0, 0, 0, 0, x5, x7, x8, x9, x10,
s′, pid′, x′

0, x
′

1, x
′

2, x
′

3, x
′

4, x
′

5, x
′

6, x
′

7, x
′

8, x
′

9, x
′

10,
turns, flags)

�s = 5 ∧ (x3 = 2 ∨ flags[2] < x4) ∧ (x3 = 1 ∨ flags[1] < x4), turns[x4] 6= x3)) � δ+
4 setturn(x0, x1)·

X(5, pid, 0, 0, 0, x3, x4, x2, 0, x7, x8, x9, x10,
s′, pid′, x′

0, x
′

1, x
′

2, x
′

3, x
′

4, x
′

5, x
′

6, x
′

7, x
′

8, x
′

9, x
′

10,
set(turns, x0, x1), f lags)

�s = 6 � δ+
5 criticalin(x′

8)·
X(s, pid, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

2, pid′, 0, 0, 0, 0, 0, 0, 0, 0, 0, x′

9, x
′

10,
turns, flags)

�s′ = 3 � δ+
6 criticalout(x′

9)·
X(s, pid, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

1, pid′, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x′

10,
turns, flags)

�s′ = 2 � δ+
7

∑

e:Enum2
setflag(case(e, pid′, x′

10), case(e, 1, 0))·
X(s, pid, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

case(e, 6, 7), pid′, case(e, 1, 0), case(e, pid′, 0), case(e, pid′, 0), case(e, pid′, 0),
case(e, 1, 0), 0, 0, case(e, 2, 0), case(e, pid′, 0), case(e, pid′, 0), case(e, pid′, 0),
turns, set(flags, case(e, pid′, x′

10), case(e, 1, 0)))
�case(e, s′ = 7, s′ = 1) � δ+

8 τ ·
X(3, pid, 0, 0, 0, 0, 0, 0, 0, 0, x8, x9, x10,

s′, pid′, x′

0, x
′

1, x
′

2, x
′

3, x
′

4, x
′

5, x
′

6, x
′

7, x
′

8, x
′

9, x
′

10,
turns, flags)

�s = 4 ∧ x7 = 2 � δ+
9 wait(x′

3, x
′

4)·
X(s, pid, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

4, pid′, 0, 0, 0, 0, 0, 0, x′

5, x
′

7, x
′

8, x
′

9, x
′

10,
turns, flags)

�s′ = 5 ∧ (x′

3 = 2 ∨ flags[2] < x′

4) ∧ (x′

3 = 1 ∨ flags[1] < x′

4) ∧ turns[x′

4] 6= x′

3 � δ+
10 setturn(x′

0, x
′

1)·
X(s, pid, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

5, pid′, 0, 0, 0, x′

3, x
′

4, x
′

2, 0, x
′

7, x
′

8, x
′

9, x
′

10,
set(turns, x′

0, x
′

1), f lags)
�s′ = 6 � δ+

11 criticalin(x8)·

26

X(2, pid, 0, 0, 0, 0, 0, 0, 0, 0, 0, x9, x10,
s′, pid′, x′

0, x
′

1, x
′

2, x
′

3, x
′

4, x
′

5, x
′

6, x
′

7, x
′

8, x
′

9, x
′

10,
turns, flags)

�s = 3 � δ+
12 criticalout(x9)·

X(1, pid, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x10,
s′, pid′, x′

0, x
′

1, x
′

2, x
′

3, x
′

4, x
′

5, x
′

6, x
′

7, x
′

8, x
′

9, x
′

10,
turns, flags)

�s = 2 � δ
X(7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, nil(1), nil(0))

Symmetry occurs in Peterson’s algorithm because it is a parallel composition of parallel processes
which only differ in their process identifiers. Intuitively, a permutation isomorphism is defined in
terms of a permutation of process ids by permuting a state by moving the elements of the state vector
corresponding to one process to the elements of the permutation of this process, simultaneously
permuting all process identifiers occurring in the state vectors. The latter might be more complex
than it looks at first, since not all process ids are simply assigned to process variables.

The ‘TURNS’ and ‘Q’ arrays are used to store information about process identifiers: the former
assigns process identifiers to positions in the queue, while the latter assigns positions in the queue to
process identifiers. It is essential that these data structures are permuted in the sense that, say, a
permuted process has the same position in the permuted queue as the original process in the original
queue.

Lemma 8.3
Suppose δ : Pid → Pid is a permutation of process identifiers.

i The mapping δ1 : (N → Pid) → (N → Pid) defined by δ1(f)(n) = δ(f(n)) is a permutation.
ii The mapping δ2 : (Pid → N) → (Pid → N) defined by δ2(f)(δ(i)) = f(i) is a permutation.

The proof of the above lemma is omitted because of its simplicity; however, the actual µCRL spec-
ification needs more complex definitions. In µCRL, data is represented by terms and operations on
data is specified as a rewrite system. Thus, the two above mappings δ1, δ2 are to be defined on terms,
and the proof of their being a permutation is to be formulated in terms of rewrite systems. This
report relies on an idealised mathematical data representation, but it is good to note here that the
step towards exact theorem proving is less trivial than the reader might expect.

Lemma 8.4
Mapping π : L → L defined by: πsetflag(x, y) = setflag(δx, y), πτ = τ , πwait(x, y) = wait(πx, y),
πsetturn(x, y) = setturn(x, δy), πcriticalin(x) = criticalin(δx), πcriticalout(x) = criticalout(δx) is
a label permutation.

Lemma 8.5
Mapping σ : S → S defined by σ[s, pid, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, s

′, pid′, x′

0, x
′

1, x
′

2, x
′

3, x
′

4,
x′

5, x
′

6, x
′

7, x
′

8, x
′

9, x
′

10, turns, flags] = [s′, pid′, x′

0, σx′

1, σx′

2, σx′

3, x
′

4, x
′

5, x
′

6, x
′

7, σx′

8, σx′

9, σx′

10, s, pid, x0,
σx1, σx2, σx3, x4, x5, x6, x7, σx8, σx9, σx10, δ1turns, δ2flags] is a state permutation.

Lemma 8.6
The mapping σπ is a permutation isomorphism.

Proof
Now suppose s

a
→ t. It is to be proven that σs

πa
→ σt. To this end, there are twelve cases to be con-

sidered, matching the twelve summands of the linear process equation. Here, only the first case will
be treated, the other eleven are analogous. In this case, s satisfies the guard case(e, s = 7, s = 1, s =

8. Cases 27

4 ∧ x7 6= 2) for some e, a = setflag(case(e, pid, x10, x6), case(e, 1, 0, x7)) and t = 〈case(e, 6, 7, 6), pid,
case(e, 1, 0, x7), case(e, pid, 0, x6), case(e, pid, 0, x6), case(e, pid, 0, x6), case(e, 1, 0, x7), 0, 0, case(e, 2, 0,
x7+1), case(e, pid, 0, x8), case(e, pid, 0, x9), case(e, pid, 0, x10), s

′, pid′, x′

0, x
′

1, x
′

2, x
′

3, x
′

4, x
′

5, x
′

6, x
′

7, x
′

8, x
′

9,
x′

10, turns, set(flags, case(e, pid, x10, x6), case(e, 1, 0, x7))〉 It can be easily verified that σs satisfies the
guard of the 7th summand, with action πa = setflag(case(e, δpid, δx10, δx6), case(e, 1, 0, x7)) and suc-
cessor state t′ = 〈s′, δpid, x′

0, δx
′

1, δx
′

2, δx
′

3, x
′

4, x
′

5, x
′

6, x
′

7, δx
′

8, δx
′

9, δx
′

10, case(e, 6, 7, 6), δpid, case(e, 1, 0,
x7), case(e, δpid, 0, δx6), case(e, δpid, 0, δx6), case(e, δpid, 0, δx6), case(e, 1, 0, x7), 0, 0, case(e, 2, 0, x7 +
1), case(e, δpid, 0, δx8), δcase(e, δpid, 0, δx9), case(e, δpid, 0, δx10, δ1turns, set(δ2flags, case(e, σpid,
σx10, σx6), case(e, 1, 0, x7))〉. Hence, t′ = σt. 2

Peterson’s algorithm misses the pleasant feature that a definition of a symmetrical reduction can
be distilled from the linear process equation; for this, the interaction between the processes is too
complex. In Section 8.4 it will be mentioned that the reduction can be generated on-the-fly, so a
symmetrical reduction can be computed, but a symbolical reduction remains an interesting research
issue.

8.3 The Dining Philosophers
The dining philosophers were introduced by Dijkstra [Dij71] and have since then performed their
act to enliven many publications on concurrency. The problem is that of a number of philosophers
sitting around a table, each of which facing a dish filled with some undefined substance which satisfies
the somewhat distasteful property that it requires two forks to be eaten. However, each of these
philosophers has access to two forks, which he needs to share with his neighbours on the left and
right. The problem is to design a protocol which allows these people to acquire the two forks every
once in a while to eat for a while, without deadlock or starvation. The following solution is from
[Tan03].

procedure Philosopher(i)

while(true) do

think;

take_forks(i);

eat;

put_forks(i);

done;

end procedure

procedure take_forks(i)

down(mutex);

state[i]=HUNGRY;

test(i);

up(mutex);

down(s[i]);

end procedure

procedure put_forks(i)

down(mutex);

state[i]=THINKING;

test((i-1)%N);

test((i+1)%N);

up(mutex);

end procedure

procedure test(i)

28

if(state[i]==HUNGRY & state[(i-1)%N]!=EATING && state[(i+1)%N]!=EATING) do

state[i]=EATING;

up(s[i]);

done;

end procedure

The linear process equation is as follows.

X(s : State, x0 : N, x1 : N, x2 : N, pid : N,
s′ : State, x′

0 : N, x′

1 : N, x′

2 : N, pid′ : N,
mutex : N, v : NatArray, state : StateArray) =

1
∑

e:Enum5

∑

b:Bool

∑

j:N up(case(e, MUTEX, S(left(pid)), S(right(pid)), MUTEX, S(pid)))·
X(case(b, 15, 6, 1, 24, 16), 0, 0, 0, pid,

s′, x′

0, x
′

1, x
′

2, pid′,
case(b, mutex, mutex + 1), case(b, set(v, j, v[j] + 1), v), state)

�case(e, MUTEX, S(left(pid)), S(right(pid)), MUTEX, S(pid)) = case(b, S(j), MUTEX)∧
case(e, s = 16, s = 7, s = 2, s = 1, s = 17)∧
case(b, T, j = 0) � δ+

2
∑

e:Enum3

∑

b:Bool

∑

i:N

∑

j:N down(case(e, MUTEX, MUTEX, S(pid)))·
X(case(e, 22, 12, 14), 0, 0, 0, pid,

s′, x′

0, x
′

1, x
′

2, pid′,
case(b, MUTEX, j), case(b, set(v, i, j), v), state)

�case(e, MUTEX, MUTEX, S(pid)) = case(b, S(i), MUTEX)∧
case(e, s = 23, s = 13, s = 15)∧
case(b, T, i = 0)∧
case(b, j + 1 = v[i], j + 1 = mutex) � δ+

3
∑

e:Enum9

∑

j:N get(STATE(case(e,pid, right(pid), left(left(pid)), pid,

right(right(pid)), right(pid), pid, left(pid), left(pid))), state[j])·
X(case(e, 20, 18, 9, 4, 3, 5, 8, 10, 19),

case(e, 0, state[j], 0, 0, state[j], 0, state[j], 0, 0),
case(e, 0, x1, state[j], state[j], x1, 0, x1, 0, state[j]),
case(e, state[j], x2, x2, x2, x2, state[j], x2, state[j], x2),
pid,
s′, x′

0, x
′

1, x
′

2, pid′,
mutex, v, state)

�case(e,pid, right(pid), left(left(pid)), pid, right(right(pid)),
right(pid), pid, left(pid), left(pid)) = j∧

case(e, s = 21, s = 19, s = 10, s = 5, s = 4, s = 6, s = 9, s = 11, s = 20) � δ+
4

∑

e:Enum5

∑

i:N set(STATE(case(e, pid, left(pid), right(pid), pid, pid),
case(e, hungry, eating, eating, thinking, eating)))·

X(case(e, 21, 7, 2, 11, 17), 0, 0, 0, pid,
s′, x′

0, x
′

1, x
′

2, pid′,
mutex, v, set(state, i, case(e, hungry, eating, eating, thinking, eating)))

�case(e, pid, left(pid), left(pid), pid, pid) = i∧
case(e,s = 22,

s = 8 ∧ x2 = 1 ∧ x1 6= 0 ∧ x0 6= 0,
s = 3 ∧ x2 = 1 ∧ x1 6= 0 ∧ x0 6= 0,
s = 12,
s = 18 ∧ x2 = 1 ∧ x1 6= 0 ∧ x0 6= 0) � δ+

5
∑

e:Enum3 τ ·
X(s, x0, x1, x2, pid, case(e, 16, 1, 6), 0, 0, 0, pid′, mutex, v, state)

8. Cases 29

�case(e, s′ = 18, s′ = 3, s′ = 8) ∧ x′

2 6= 1 ∧ x′

1 6= 0 ∧ x′

0 = 0 � δ)+
6 eat(pid′)·

X(s, x0, x1, x2, pid, 13, 0, 0, 0, pid′, mutex, v, state)
�s′ = 14 � δ+

7 think(pid′)·
X(s, x0, x1, x2, pid, 23, 0, 0, 0, pid′, mutex, v, state)
�s′ = 24 � δ+

8
∑

e:Enum5

∑

b:Bool

∑

j:N up(case(e, MUTEX, S(left(pid′)), S(right(pid′))), MUTEX, S(pid′)))·
X(s, x0, x1, x2, pid,

case(e, 15, 6, 1, 24, 16), 0, 0, 0, pid′,
case(b, mutex, mutex + 1), case(b, set(v, j, v[j] + 1), v), state)

�case(e, MUTEX, S(left(pid′)), S(right(pid′)), MUTEX, S(pid′)) = case(b, S(j), MUTEX)∧
case(e, s′ = 16, s′ = 7, s′ = 2, s′ = 1, s′ = 17) ∧ case(b, T, j = 0)) � δ+

9
∑

e:Enum3

∑

b:Bool

∑

i:N

∑

j:N down(case(e, MUTEX, MUTEX, S(pid′)))·
X(s, x0, x1, x2, pid,

case(e, 22, 12, 14), 0, 0, 0, pid′,
case(b, mutex, j), case(b, set(v, i, j), v), state)

�case(e, MUTEX, MUTEX, S(pid′)) = case(b, S(i), MUTEX)∧
case(e, s′ = 23, s′ = 13, s′ = 15) ∧ case(b, T, i = 0) ∧ case(b, j + 1 = v[i], j + 1 = mutex) � δ+

10
∑

e:Enum9

∑

j:N get(STATE(case(e, pid′, right(pid′), left(left(pid′)), pid′, right(right(pid′),

right(pid′), pid′, left(pid′)), left(pid′))), state[j])·
X(s, x0, x1, x2, pid,

case(e, 20, 18, 9, 4, 3, 5, 8, 10, 19),
case(e, 0, state[j], 0, 0, state[j], 0, state[j], 0, 0),
case(e, 0, x′

1, state[j], state[j], x′

1, 0, x
′

1, 0, state[j]),
case(e, state[j], x′

2, x
′

2, x
′

2, x
′

2, state[j], x′

2, state[j], x′

2), pid′,
mutex, v, state)

�case(e,pid′, right(pid′), left(left(pid′)), pid′, right(right(pid′)),
right(pid′), pid′, left(pid′), left(pid′)) = j∧

case(e, s′ = 21, s′ = 19, s′ = 10, s′ = 5, s′ = 4, s′ = 6, s′ = 9, s′ = 11, s′ = 20) � δ+
11

∑

e:Enum5

∑

i:N set(STATE(case(e, pid′, left(pid′), right(pid′), pid′, pid′)),
case(e, hungry, eating, eating, thinking, eating))·

X(s, x0, x1, x2, pid,
case(e, 21, 7, 2, 11, 17), 0, 0, 0, pid′,
mutex, v, set(state, i, case(e, hungry, eating, eating, thinking, eating)))

�case(e, pid′, left(pid′), left(pid′), pid′, pid′) = i∧
case(e,s′ = 22,

s′ = 8 ∧ x′

2 = 1 ∧ x′

1 6= 0 ∧ x′

0 6= 0,
s′ = 3 ∧ x′

2 = 1 ∧ x′

1 6= 0 ∧ x′

0 6= 0,
s′ = 12,
s′ = 18 ∧ x′

2 = 1 ∧ x′

1 6= 0 ∧ x′

0 6= 0) � δ+
12

∑

e:Enum3 τ ·
X(case(e, 16, 1, 6), 0, 0, 0, pid, s′, x′

0, x
′

1, x
′

2, pid′, mutex, v, state)
�case(e, s = 18, s = 3, s = 8) ∧ x2 6= 1 ∧ x1 6= 0 ∧ x0 = 0 � δ)+

13 eat(pid)·
X(13, 0, 0, 0, pid, s′, x′

0, x
′

1, x
′

2, pid′, mutex, v, state)
�s = 14 � δ+

14 think(pid)·
X(23, 0, 0, 0, pid, s′, x′

0, x
′

1, x
′

2, pid′, mutex, v, state)
�s = 24 � δ

30

X(24, 0, 0, 0, 1, 24, 0, 0, 0, 2, 1, nil(1), nil(0))

This is another example of similar parallel processes, so permutations of process identifiers are expected
to be the key to symmetry. However, not every permutation gives rise to a correct permutation
isomorphism, which follows from the observation that no two neighbours, having to share one fork,
can be eating at the same time. So, only the permutations that respect ‘neighbourship’ are possible
candidates. In the simple two-philosophers case, this plays no role.

Definition 8.7
Let δ be a permutation of process identifiers.

Lemma 8.8
The mapping π : L → L defined by πup(MUTEX) = up(MUTEX), πup(S(pid)) = up(S(δpid)),
πdown(MUTEX) = down(MUTEX), πdown(S(pid)) = down(S(δpid)), πτ = τ , πget(STATE(pid)) =
get(STATE(δpid)), πset(STATE(pid), s) = set(STATE(δpid), s).

Lemma 8.9
The mapping σ defined by
σ〈s, x0, x1, x2, pid, s′, x′

0, x
′

1, x
′

2, pid′, mutex, v, state〉 = 〈s′, x′

0, x
′

1, x
′

2, pid′, s, x0, x1, x2, pid, mutex, v, state〉
is a state permutation.

Lemma 8.10
The mapping σπ is a permutation isomorphism.

Proof
The proof is similar to the proof for Peterson’s algorithm. 2

8.4 Statistics
With symmetrical reductions having been encoded as a labeled transition system, with the permu-
tation isomorphism stored in the ρ transitions, a natural question is what the dimensions of these
encodings are. Also, with soundness having been established for a number of equivalence relations
and completeness rendered complicated, the question remains to what extent symmetrical reductions
are complete. This section presents the statistics for the case studies presented in the previous section,
with the extension that the statistics are generated for symmetry of both order 2 and order 3.

The approach taken to generate statistics on the dimensions is to modify the existing instantiator,
which generates labeled transition systems from µCRL specifications, in such a way that it gener-
ates symmetrical reductions. The modifications contain hard-coded definitions of the permutation
isomorphisms verified in the previous section, so the resulting code is only applicable for the case
studies addressed. However, the rationale of these ‘hacks’ may guide the development of a general
symmetrical reduction tool.

Table 2 presents the dimensions of the labeled transition system and the encoding of the symmetrical
reduction for the alternating bit protocol, with 2 and 3 data elements, and Peterson’s mutual exclusion
protocol and the Dining Philosophers, both for 2 and 3 processes. The dimensions tabulated are the
number of states and transitions, the number of ρ(i) transitions (16 i < N), and the number of cycles
of ρ transitions of length i (16 i6N). The latter two sequences of numbers are presented as a comma
separated list.

For the alternating bit protocol, the size of the reduction is independent from N , as was already
suggested in Section 8. For Peterson’s algorithm and the dining philosophers, things are more compli-
cated, as is to be expected from their nature of being a parallel composition of similar processes of C
states: while the size of the labeled transition systems is O(CN) the size of the symmetrical reduction

is O(CN

N
)

9. Conclusions and future work 31

original encoded reduction
labeled transition system N states trans. states trans. rho cycles [length, period]
alternating bit protocol 2 97 122 50 61 3 [2,1]
Peterson’s algorithm 2 42 72 24 36 2 [2,1], 2 [3,2]
dining philosophers 2 980 1578 502 789 6 [2,1], 9 [3,2]
alternating bit protocol 3 144 183 50 61 3 [1,1]
Peterson’s algorithm 3 668 1500 259 500 7 [2,3], 2 [1,1], 14 [3,3]
dining philosophers 3 14916 32160 5548 10720 558[2,3], 6 [1,1], 7 [3,3]

Table 2: The dimensions of the reductions for the case studies

strong bisimulation minimisation
original reduction expansion

labeled transition system N states trans. states trans. states trans. %
alternating bit protocol 2 68 86 36 46 70 88 93
Peterson’s algorithm 2 34 56 24 36 42 72 0
dining philosophers 2 976 1572 497 786 976 1572 0
alternating bit protocol 3 100 128 36 46 106 132 86
Peterson’s algorithm 3 347 753 259 558 668 1500 0
dining philosophers 3 14856 32058 5536 11841 14916 32106 0

Table 3: The relative completeness for strong bisimulation for the case studies

The statistics for relative completeness were generated through use of bisimulation minimisation
tools from the Cæsar/Aldébaran [FGK+96] tool suite. Both the original labeled transition system and
the encoded symmetrical reduction were minimised modulo strong bisimulation and for the minimised
encoding the dimensions of the symmetrical expansion were calculated through Lemma 6.8. The
procedure was generated for weak bisimulation, with the difference that all internal actions were
hidden.

The results are presented in Table 3 and Table 4. For strong bisimulation (Table 3) the results are
quite disappointing for Peterson’s algorithm and the Dining Philosophers, in that no bisimulations
are symmetrical. The cause for this is probably in the complex interaction between the parallel
processes and the fact that most of the action labels contain the process identifier as parameter. For
weak bisimulation (Table 4), after hiding the internal actions, the relative completeness approaches
satisfactory levels.

The conclusion that can be drawn from these statistics are that weak bisimulation minimisation
could benefit from symmetrical reductions, if an efficient algorithm for generating symmetrical reduc-
tions is found. For some cases, like the alternating bit protocol, where the generation of symmetrical
reduction is trivial, and can be even done symbolically, symmetrical reduction could facilitate strong
bisimulation minimisation.

9. Conclusions and future work

This report introduced the notion of symmetry for labeled transition systems, based on the notion
of permutation of action labels. It was shown that a symmetrical labeled transition system can
be reduced to a ‘symmetrical fragment’ with sufficient information to restore the original from its
reduction.

The most interesting question that is left to be answered is what manipulations of labeled transition
systems could benefit from the research reported here, in the sense that they can be performed more
efficiently on the symmetrical reduction, as opposed to the original labeled transition system. The
type of manipulation touched upon in Section 8.4, i.e. reduction modulo some form of bisimulation, is
a possible candidate, although the statistics are not conclusive. The second application of symmetry

32

weak bisimulation minimisation
original reduction expansion

labeled transition system N states trans. states trans. states trans. %
alternating bit protocol 2 3 4 2 2 3 4 100
Peterson’s algorithm 2 16 28 17 31 26 50 69
dining philosophers 2 37 70 51 76 68 152 98
alternating bit protocol 3 4 6 2 2 3 4 100
Peterson’s algorithm 3 164 375 185 358 635 1074 49
dining philosophers 3 291 774 544 1286 807 3006 96

Table 4: The relative completeness for weak bisimulation for the case studies

is the generation of labeled transition systems. In cases like the alternating bit protocol, where
symmetrical reductions can be symbolically generated, it might be more efficient to generate a labeled
transition system as the expansion of its symmetrical reduction. The third application is visualisation.
On the one hand, existing algorithms might benefit from symmetrical reduction and expansion. On
the other hand, it is good to make explicit the symmetry inherent in a system. The fourth application
is model checking. For some properties, like absence of deadlocks, it can be easily understood that
these hold for a labeled transition system if and only if these hold for the symmetrical reduction.
This understanding can be elaborated upon, by defining symmetrical properties which are insensitive
to permutations of action labels in the same way as labeled transaction systems, and some notion of
reduction of which can be checked in the symmetrical reduction of the system.

More technical is the development of efficient algorithms and implementations of the concepts
developed. Section 8.4, suggests that symmetry checking is amenable to an automated theorem proving
approach and relies on an ‘ad hack’ modification of an on-the-fly generator of symmetrical reductions.
Also, generating symmetrical expansions from reductions is not complex, but an implementation has
not been developed yet.

On the theoretical plane, it is interesting to study the freedom of choice in the generation of
symmetrical reduction. With relative completeness in mind, it is obvious that some reductions are
better than others, although it is not always clear how to effectively generate better reductions. Finally,
it is worthwhile to pursue symbolical reductions, which can be efficiently generated as modified linear
process equations.

acknowledgement

Wan Fokkink and Jun Pang have read and commented upon a draft version of this report

33

References

[AKS83] S. Aggarwal, R. P. Kurhan, and K. Sabnani. A calculus for protocol specification and vali-
dation. In H. Rudin and C. West, editors, Protocol Specification, Testing and Verification,
volume III, pages 19–34. Elsevier Science Publishers B.V., 1983.

[BDH00] D. Bošnački, D. Dams, and L. Holenderski. Symmetric Spin. In SPIN 2000, volume 1885
of Lecture Notes in Computer Science, pages 1–19, 2000.

[BFG+01] S. C. C. Blom, W. J. Fokkink, J. F. Groote, I. A. van Langevelde, B. Lisser, and J. C. van
de Pol. µCRL: A toolset for analysing algebraic specifications. In G. Berry, H. Comon,
and A. Finkel, editors, Computer Aided Verification (CAV 2001), volume 2102 of Lecture
Notes in Computer Science, pages 250–254, 2001.

[BG94] M. A. Bezem and J. F. Groote. Invariants in process algebra with data. In B. Jonsson and
J. Parrow, editors, Proceedings CONCUR’94, volume 836 of Lecture Notes in Computer
Science, pages 401–416. Springer Verlag, 1994.

[BGL+03] S. C. C. Blom, J. F. Groote, I. A. v. Langevelde, B. Lisser, and J. v. d. Pol. New devel-
opments around the µCRL tool set. In Proceedings International ERCIM Workshop on
Formal Methods for Industrial Critical Systems (FMICS 2003), volume 80 of Electronic
Notes in Theoretical Computer Science, June 2003.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In Conference Record of
the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

[CFJ93] E. M. Clarke, T. Filkorn, and J. Jha. Exploiting symmetry in temporal logic model check-
ing. In Proceedings of the 5th International Conference on Computer Aided Verification,
volume 697 of Lecture Notes in Computer Science, pages 244–263, June 1993.

[DDHY92] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Hardware verification as a hardware
design aid. In Proceedings of the IEEE International Conference on Computer Design,
pages 522–525. IEEE Computer Society, 1992.

[Def81] Defense Advanced Research Projects Agency. Transmission Control Protocol, September
1981.

[Dij71] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica, 1:115–138,

34 References

1971.

[ES96] F. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in System
Design: An International Journal, 9(1/2):105–131, August 1996.

[FGK+96] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu.
Cadp (Cæsar/Aldébaran development package): A protocol validation and verification
toolbox. In R. Alur and T. A. Henzinger, editors, Proceedings of the 8th Conference
on Computer-Aided Verification, volume 1102 of LNCS, pages 437–440. Springer Verlag,
August 1996.

[Fok00] W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Science (an
EATCS Series). Springer Verlag, January 2000.

[Gla90] R. v. Glabbeek. The linear time – branching time spectrum. In J. Baeten and J. Klop,
editors, Proceedings CONCUR ’90, Theories of Concurrency: Unification and Extension,
Amsterdam, August 1990, volume 458 of Lecture Notes in Computer Science, pages 278–
297. Springer Verlag, 1990.

[God90] P. Godefroid. Using partial orders to improve automatic verification methods. In Proceed-
ings of CAV’90, pages 321–340. ACM, DIMACS volume 3, 1990.

[HJJJ84] P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen. Towards reachability trees for
high-level petri nets. In G. Rozenberg, editor, Advances in Petri Nets 1984, volume 188 of
Lecture Notes in Computer Science, pages 215–233, 1984.

[Hof82] C. M. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism, volume 136 of
Lecture Notes in Computer Science. Springer Verlag, 1982.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[ID96] C. N. Ip and D. L. Dill. Better verification through symmetry. Formal Methods in System
Design, 9:41–75, 1996.

[LN00] R. S. Lazić and D. Nowak. A unifying approach to data independence. In Proceedings of
the 11th International Conference on Concurrency Theory, volume XXX of Lecture Notes
in Computer Science. Springer Verlag, 2000.

[Lub84] B. D. Lubachevski. An approach to automating the verification of compact parallel coor-
dination programs I. Acta Informatica, 21:125–169, 1984.

[Pet81] G. L. Peterson. Myths about the mutual exclusion problem. Information Processing Letters,
12(3):115–116, June 1981.

[RS98] J. M. T. Romijn and J. G. Springintveld. Exploiting symmetry in protocol testing. In
S. Budkowski, A. Cavelli, and E. Najm, editors, Formal Description Techniques and Pro-
tocol Specification, Testing and Verification (FORTE XI/PSTV XVII ’98), pages 337–352.
Kluwer Academic Publishers, 1998.

[Sta91] P. H. Starke. Reachability analysis of Petri nets using symmetries. Systems Analysis,
Modelling, Simulation, 8(4/5):293–303, 1991.

[Tan03] A. S. Tanenbaum. Computer Networks. Prentice Hall, 4th edition, 2003.

[Use02] Y. S. Usenko. Linearization of µCRL specifications. In M. Leuschel and U. Ultes-Nitsche,
editors, Proc. 3rd International Workshop on Verification and Computational Logic
(VCL2002). Department of electronics and computer science, University of Southampton,
October 2002. Tech. Report DSSE-TR-2002-5.

[Wol86] P. Wolper. Expressing interesting properties of programs in propositional temporal logic. In
unknown, editor, Proceedings of the 13th ACM Symposium on Principles of Programming
Languages (POPL’86), pages 184–193, 1986.

35

Appendix I

Alternating Bit Protocol in µCRL

3
6

A
p
p
e
n
d
ix

I.
A
lte

rn
a
tin

g
B
it

P
ro

to
c
o
l
in

µ
C
R
L

1 %% $Id: abp,v 1.1.1.1 2000/03/30 12:08:31 mcrl Exp $

%% This file contains the alternating bit protocol,

%% as described in J.C.M. Baeten and W.P. Weijland,

%% Process Algebra, Cambridge Tracts in Theoretical

5 %% Computer Science 18, Cambridge University Press, 1990.

%% The only exception is that the domain

%% D to consist of two data elements d1 and d2 to facilitate

%% simulation.

10

sort D

func nil,d1,d2,d3: -> D

map eq:D#D -> Bool

15 rew eq(d1,d1)=T

eq(d2,d2)=T

eq(d3,d3)=T

eq(d1,d2)=F

eq(d1,d3)=F

20 eq(d2,d1)=F

eq(d2,d3)=F

eq(d3,d1)=F

eq(d3,d2)=F

eq(nil,nil)=T

25 eq(nil,d1)=F

eq(nil,d2)=F

eq(nil,d3)=F

eq(d1,nil)=F

eq(d2,nil)=F

30 eq(d3,nil)=F

sort Bool

35 map and,or:Bool#Bool -> Bool

not:Bool -> Bool

eq:Bool#Bool->Bool

func T,F:-> Bool

40

var x:Bool

rew and(T,x)=x

and(x,T)=x

and(x,F)=F

45 and(F,x)=F

or(T,x)=T

or(x,T)=T

or(x,F)=x

or(F,x)=x

50

not(F)=T

not(T)=F

eq(x,T)=x

55 eq(T,x)=x

eq(F,x)=not(x)

eq(x,F)=not(x)

60 sort error

func e:-> error

map eq:error#error -> Bool

var x:error

65 rew eq(x,x)=T

sort bit

func 0,1:-> bit

map invert:bit -> bit

70 eq:bit#bit-> Bool

var x:bit

rew eq(x,x)=T

eq(0,1)=F

75 eq(1,0)=F

rew invert(1)=0

invert(0)=1

80 act r1,s4 : D

s2,r2,c2 : D#bit

s3,r3,c3 : D#bit

s3,r3,c3 : error

s5,r5,c5 : bit

85 s6,r6,c6 : bit

s6,r6,c6 : error

tau_s3dn tau_s3e tau_s6n tau_s6e

90 comm r2|s2 = c2

r3|s3 = c3

r5|s5 = c5

r6|s6 = c6

95 proc S0(d:D,n:bit) = S1(nil,0).S1(nil,1).S0(nil,0)

S1(d’:D,n:bit)= sum(d:D,delta<|eq(d,nil)|>r1(d).S2(d,n))

S2(d:D,n:bit) = s2(d,n).((r6(invert(n))+r6(e)).S2(d,n)+r6(n))

R = R(1).R(0).R

100 R(n:bit) = (sum(d:D,r3(d,n))+r3(e)).s5(n).R(n)+

sum(d:D,r3(d,invert(n)).s4(d).s5(invert(n)))

K = sum(d:D,sum(n:bit,r2(d,n).

(tau_s3dn.s3(d,n)+tau_s3e.s3(e)))) .K

105

L = sum(n:bit,r5(n).(tau_s6n.s6(n)+tau_s6e.s6(e))).L

init

110 hide({tau_s3dn,tau_s3e,tau_s6n,tau_s6e},

encap({r2,r3,r5,r6,s2,s3,s5,s6}, S0(nil,0) || K || L || R))

37

Appendix II

Peterson’s mutual exclusion protocol in µCRL

3
8

A
p
p
e
n
d
ix

II.
P
e
te

rso
n
’s

m
u
tu

a
l
e
x
c
lu

sio
n

p
ro

to
c
o
l
in

µ
C
R
L

1 % The N-proc Peterson algorithm for mutual exclusion

% Note: the constant N is defined as a natural map

% The obligatory Bool sort

5

sort Bool

func T,F:->Bool

map and,or,eq:Bool#Bool->Bool

not:Bool->Bool

10 var b: Bool

rew and(T,b)=b

and(F,b)=F

% and(b,T)=b

% and(b,F)=F

15 or(T,b)=T

or(F,b)=b

eq(F,F)=T

eq(F,T)=F

eq(T,F)=F

20 eq(T,T)=T

not(T)=F

not(F)=T

25

% The Natural numbers

sort Nat

func 0:->Nat

30 S:Nat->Nat

map eq,lt:Nat#Nat->Bool

sub:Nat#Nat->Nat

N:->Nat

var n1,n2:Nat

35 rew eq(0,0)=T

eq(S(n1),0)=F

eq(0,S(n2))=F

eq(S(n1),S(n2))=eq(n1,n2)

lt(n1,0)=F

40 lt(0,S(n2))=T

lt(S(n1),S(n2))=lt(n1,n2)

sub(n1,0)=n1

sub(S(n1),S(n2))=sub(n1,n2)

N=S(S(S(0)))

45

% Process ids

sort Pid

func zero:->Pid

50 n:Pid->Pid

map eq,lt:Pid#Pid->Bool

sub:Pid#Pid->Pid

% N:->Pid

var n1,n2:Pid

55 rew eq(zero,zero)=T

eq(n(n1),zero)=F

eq(zero,n(n2))=F

eq(n(n1),n(n2))=eq(n1,n2)

lt(n1,zero)=F

60 lt(zero,n(n2))=T

lt(n(n1),n(n2))=lt(n1,n2)

sub(n1,zero)=n1

sub(n(n1),n(n2))=sub(n1,n2)

% N=n(n(zero))

65

% Mappings Pid->Nat

% Representation: cons(f(0),cons(f(1), ... cons(f(m),nil(n))...))

70 % where f(m)<>n and for all l>m: f(l)=n

sort Pid2Nat

func nil:Nat->Pid2Nat

cons:Nat#Pid2Nat->Pid2Nat

75 map eq:Pid2Nat#Pid2Nat->Bool

if:Bool#Pid2Nat#Pid2Nat->Pid2Nat

set:Pid2Nat#Pid#Nat->Pid2Nat

get:Pid2Nat#Pid->Nat

normalise:Pid2Nat->Pid2Nat

80 var l1,l2:Pid2Nat

n1,n2:Nat

rew eq(nil(n1),nil(n2))=eq(n1,n2)

eq(nil(n1),cons(n2,l2))=F

eq(cons(n1,l1),nil(n2))=F

85 eq(cons(n1,l1),cons(n2,l2))=and(eq(n1,n2),eq(l1,l2))

var l1,l2:Pid2Nat

b:Bool

rew if(T,l1,l2)=l1

if(F,l1,l2)=l2

90 if(b,l1,l1)=l1

var tail:Pid2Nat

pos:Pid

head,value1,value2:Nat

rew set(nil(value1),n(zero),value2)= cons(value2,nil(value1))

95 set(nil(value1),n(n(pos)),value2)= cons(value1,set(nil(value1),n(pos),value2))

set(cons(head,tail),n(zero),value1)=cons(value1,tail)

set(cons(head,tail),n(n(pos)),value1)=cons(head,set(tail,n(pos),value1))

get(nil(value1),pos)=value1

get(cons(head,tail),n(zero))=head

100 get(cons(head,tail),n(n(pos)))=get(tail,n(pos))

normalise(nil(value1))=nil(value1)

% normalise(cons(value1,nil(value2)))=if(eq(value1,value2),

% nil(value2),

% cons(value1,nil(value2)))

105 % normalise(cons(value1,cons(value2,tail)))=cons(value1,normalise(cons(value2,tail)))

normalise(cons(value1,tail))=if(eq(nil(value1),normalise(tail)),

nil(value1),

cons(value1,normalise(tail)))

110

% Mappings Nat->Pid

% Representation: cons(f(0),cons(f(1), ... cons(f(m),nil(pid))...))

% where f(m)<>pid and for all n>m: f(n)=pid

115 sort Nat2Pid

func nil:Pid->Nat2Pid

cons:Pid#Nat2Pid->Nat2Pid

map eq:Nat2Pid#Nat2Pid->Bool

if:Bool#Nat2Pid#Nat2Pid->Nat2Pid

120 set:Nat2Pid#Nat#Pid->Nat2Pid

get:Nat2Pid#Nat->Pid

normalise:Nat2Pid->Nat2Pid

var l1,l2:Nat2Pid

n1,n2:Pid

125 rew eq(nil(n1),nil(n2))=eq(n1,n2)

eq(nil(n1),cons(n2,l2))=F

eq(cons(n1,l1),nil(n2))=F

eq(cons(n1,l1),cons(n2,l2))=and(eq(n1,n2),eq(l1,l2))

var l1,l2:Nat2Pid

130 b:Bool

rew if(T,l1,l2)=l1

if(F,l1,l2)=l2

if(b,l1,l1)=l1

var tail:Nat2Pid

135 pos:Nat

head,value1,value2:Pid

rew set(nil(value1),S(0),value2)= cons(value2,nil(value1))

set(nil(value1),S(S(pos)),value2)= cons(value1,set(nil(value1),S(pos),value2))

set(cons(head,tail),S(0),value1)=cons(value1,tail)

140 set(cons(head,tail),S(S(pos)),value1)=cons(head,set(tail,S(pos),value1))

get(nil(value1),pos)=value1

get(cons(head,tail),S(0))=head

get(cons(head,tail),S(S(pos)))=get(tail,S(pos))

normalise(nil(value1))=nil(value1)

3
9

145 % normalise(cons(value1,nil(value2)))=if(eq(value1,value2),

% nil(value2),

% cons(value1,nil(value2)))

% normalise(cons(value1,cons(value2,tail)))=cons(value1,normalise(cons(value2,tail)))

normalise(cons(value1,tail))=if(eq(nil(value1),normalise(tail)),

150 nil(value1),

cons(value1,normalise(tail)))

155 % Peterson’s wait condition: turn[j]<>i or for all k<>i => flag(k)<j

map test:Nat2Pid#Pid2Nat#Pid#Nat->Bool

testturns:Nat2Pid#Pid#Nat->Bool

testflags:Pid2Nat#Pid#Nat#Pid->Bool

160 var turns:Nat2Pid

flags:Pid2Nat

i,k:Pid

j:Nat

rew test(turns,flags,i,j)=or(testflags(flags,i,j,n(n(n(n(n(zero)))))),testturns(turns,i,j))

165 testturns(turns,i,j)=not(eq(get(turns,j),i))

testflags(flags,i,j,zero)=T

testflags(flags,i,j,n(k))=and(or(eq(n(k),i),lt(get(flags,n(k)),j)),

testflags(flags,i,j,k))

170

act getturn1:Nat#Pid

setturn1:Nat#Pid

getflag1:Pid#Nat

175 setflag1:Pid#Nat

wait1:Pid#Nat

getturn2:Nat#Pid

setturn2:Nat#Pid

getflag2:Pid#Nat

180 setflag2:Pid#Nat

wait2:Pid#Nat

getturn:Nat#Pid

setturn:Nat#Pid

getflag:Pid#Nat

185 setflag:Pid#Nat

wait:Pid#Nat

criticalin:Pid

criticalout:Pid

190 comm getturn1|getturn2=getturn

setturn1|setturn2=setturn

getflag1|getflag2=getflag

setflag1|setflag2=setflag

wait1| wait2=wait

195

% The memory manager

200 proc memory(turns:Nat2Pid,flags:Pid2Nat)=

sum(i:Nat,getturn1(i,get(turns,i)).memory(turns,flags))+

sum(i:Nat,sum(j:Pid,setturn1(i,j).memory(normalise(set(turns,i,j)),flags)))+

sum(i:Pid,getflag1(i,get(flags,i)).memory(turns,flags))+

sum(i:Pid,sum(j:Nat,setflag1(i,j).memory(turns,normalise(set(flags,i,j)))))+

205 sum(i:Pid,sum(j:Nat,wait1(i,j).memory(turns,flags)<|test(turns,flags,i,j)|>delta))

% Entering the critical section

proc enter(i:Pid,j:Nat)=

210 tau

<| eq(j,N) |>

setflag2(i,j).

setturn2(j,i).

wait2(i,j).

215 enter(i,S(j))

% Leaving the critical section

proc leave(i:Pid)=

220 setflag2(i,0)

% The client process

proc P(pid:Pid)=

225 enter(pid,S(0)).

criticalin(pid).

criticalout(pid).

leave(pid).

P(pid)

230

% Launch the clients and the memory manager

235 init %hide({getturn,setturn,getflag,setflag,wait},

encap({getturn1,getturn2,

getflag1,getflag2,

setturn1,setturn2,

setflag1,setflag2,

240 wait1, wait2},

P(n(zero))||P(n(n(zero))) ||P(n(n(n(zero))))

||memory(nil(zero),nil(0)))%)

40

Appendix III

Dining Philosophers in µCRL

4
1

1 % The N-proc Dining Philosophers solution

% Note: the constant N is defined as a natural map

% The obligatory Bool sort

5

sort Bool

func T,F:->Bool

map and,or,eq:Bool#Bool->Bool

not:Bool->Bool

10 var b: Bool

rew and(T,b)=b

and(F,b)=F

and(b,T)=b

and(b,F)=F

15 or(T,b)=T

or(F,b)=b

eq(F,F)=T

eq(F,T)=F

eq(T,F)=F

20 eq(T,T)=T

not(T)=F

not(F)=T

25

% The Natural numbers

sort Nat

func 0:->Nat

30 S:Nat->Nat

map eq,lt:Nat#Nat->Bool

sub:Nat#Nat->Nat

N:->Nat

Eating:->Nat

35 Hungry:->Nat

Thinking:->Nat

left:Nat->Nat

right:Nat->Nat

if:Bool#Nat#Nat->Nat

40 var n1,n2:Nat

b:Bool

rew eq(0,0)=T

eq(S(n1),0)=F

eq(0,S(n2))=F

45 eq(S(n1),S(n2))=eq(n1,n2)

lt(n1,0)=F

lt(0,S(n2))=T

lt(S(n1),S(n2))=lt(n1,n2)

sub(n1,0)=n1

50 sub(S(n1),S(n2))=sub(n1,n2)

N=S(S(0))

Eating=0

Hungry=S(0)

Thinking=S(S(0))

55 left(S(0))=N

left(S(S(n1)))=S(n1)

right(n1)=if(eq(n1,N),S(0),S(n1))

if(T,n1,n2)=n1

if(F,n1,n2)=n2

60 if(b,n1,n1)=n1

% Unbounded arrays of Naturals

65

sort NatArray

func nil:Nat->NatArray

cons:Nat#NatArray->NatArray

map eq:NatArray#NatArray->Bool

70 if:Bool#NatArray#NatArray->NatArray

set:NatArray#Nat#Nat->NatArray

get:NatArray#Nat->Nat

normalise:NatArray->NatArray

var l1,l2:NatArray

75 n1,n2:Nat

rew eq(nil(n1),nil(n2))=eq(n1,n2)

eq(nil(n1),cons(n2,l2))=F

eq(cons(n1,l1),nil(n2))=F

eq(cons(n1,l1),cons(n2,l2))=and(eq(n1,n2),eq(l1,l2))

80 var l1,l2:NatArray

b:Bool

rew if(T,l1,l2)=l1

if(F,l1,l2)=l2

if(b,l1,l1)=l1

85 var tail:NatArray

pos,value1,value2,head:Nat

rew set(nil(value1),S(0),value2)= cons(value2,nil(value1))

set(nil(value1),S(S(pos)),value2)= cons(value1,set(nil(value1),S(pos),value2))

set(cons(head,tail),S(0),value1)=cons(value1,tail)

90 set(cons(head,tail),S(S(pos)),value1)=cons(head,set(tail,S(pos),value1))

get(nil(value1),pos)=value1

get(cons(head,tail),S(0))=head

get(cons(head,tail),S(S(pos)))=get(tail,S(pos))

var tail:NatArray

95 pos,value1,value2,head:Nat

rew normalise(nil(value1))=nil(value1)

normalise(cons(value1,nil(value2)))=if(eq(value1,value2),

nil(value2),

cons(value1,nil(value2)))

100 normalise(cons(value1,cons(value2,tail)))=cons(value1,normalise(cons(value2,tail)))

sort Variable

func s:Nat->Variable

105 mutex:->Variable

state:Nat->Variable

map eq:Variable#Variable->Bool

var v1,v2:Variable

n1,n2:Nat

110 rew eq(mutex,s(n2))=F

eq(s(n1),mutex)=F

eq(mutex,state(n2))=F

eq(state(n1),mutex)=F

eq(s(n1),state(n2))=F

115 eq(state(n1),s(n2))=F

eq(mutex,mutex)=T

eq(s(n1),s(n2))=eq(n1,n2)

eq(state(n1),state(n2))=eq(n1,n2)

120

act get1:Variable#Nat

125 set1:Variable#Nat

up1:Variable

down1:Variable

think:Nat

eat:Nat

130 get2:Variable#Nat

set2:Variable#Nat

up2:Variable

down2:Variable

get:Variable#Nat

135 set:Variable#Nat

up:Variable

down:Variable

comm get1|get2=get

140 set1|set2=set

up1 |up2=up

down1|down2=down

4
2

A
p
p
e
n
d
ix

III.
D

in
in

g
P
h
ilo

so
p
h
e
rs

in
µ
C
R
L

145 % The memory manager

proc memory(mutexValue:Nat, sValue:NatArray, stateValue: NatArray)=

up1(mutex).memory(S(mutexValue),sValue,stateValue)+

sum(j:Nat, up1(s(j)).memory(mutexValue,normalise(set(sValue,j,S(get(sValue,j)))),stateValue))+

150 sum(j:Nat, get1(state(j),get(stateValue,j)).memory(mutexValue,sValue,stateValue))+

sum(j:Nat, down1(mutex).memory(j,sValue,stateValue) <| eq(S(j),mutexValue) |> delta)+

sum(i:Nat,sum(j:Nat, down1(s(i)).memory(mutexValue,normalise(set(sValue,i,j)),stateValue) <| eq(S(j),get(sValue,i))|>delta))+

sum(i:Nat,sum(j:Nat, set1(state(i),j).memory(mutexValue,sValue,normalise(set(stateValue,i,j)))))

155

% The client process

proc philosopher(pid:Nat)=

160 think(pid).

takeForks(pid).

eat(pid).

putForks(pid).

philosopher(pid)

165

proc takeForks(pid:Nat)=

down2(mutex).

set2(state(pid),Hungry).

test(pid).

170 up2(mutex).

down2(s(pid))

proc putForks(pid:Nat)=

down2(mutex).

175 set2(state(pid),Thinking).

test(left(pid)).

test(right(pid)).

up2(mutex)

180 proc test(pid:Nat)=

sum(s1:Nat, get2(state(pid),s1).

sum(s2:Nat, get2(state(left(pid)),s2).

sum(s3:Nat, get2(state(right(pid)),s3).

(set2(state(pid),Eating).

185 up2(s(pid))

<| and(eq(s1,Hungry),and(not(eq(s2,Eating)),not(eq(s3,Eating)))) |>

tau))))

% Launch the clients and the memory manager

190

init %hide({get,set,up,down, think},

encap({get1,get2,

set1,set2,

up1, up2,

195 down1, down2},

philosopher(S(0))||philosopher(S(S(0)))||memory(S(0),nil(S(0)),nil(0)))%)

