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ABSTRACT

We prove the strong consistency of estimators of the conditional distribution function and conditional expectation
of a future observation of a discrete time stochastic process given a fixed number of past observations.
The results apply to conditionally stationary processes (a class of processes including Markov and stationary
processes) satisfying a strong mixing condition, and they extend and bring together the work of several
authors in the area of nonparametric estimation. One of our goals is to provide further justification for the
growing practical application of estimators in non-stationary time series and in other ‘non i.i.d.’ settings. Some
arguments as to why such estimators should work very generally in practice, often in a nearly ‘optimal’ way,
are given. Two numerical illustrations are included, one with simulated data and the other with oceanographic data.
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1 Introduction

Let X = {Xi : i ∈ N} be a sequence of real-valued random variables defined on a probabil-

ity space (Ω,F , P ). We consider the problem of predicting the value of Xn+1 given only the

knowledge of the past observations Xn, . . . , X1 when little is known about the distribution of X.

Solutions to this problem include an estimate of the conditional distribution function of Xn+1

given (Xn, . . . , X1) = (xn, . . . , x1) ∈ R
n,

P
(

Xn+1 ≤ x
∣

∣Xn = xn, . . . , X1 = x1

)

, x ∈ R, (1.1)

an estimate of the conditional mean E[Xn+1|Xn = xn, . . . , X1 = x1] (when this exists), an

estimate of the median of (1.1), and a prediction interval
(

x
(n)
ε/2, x

(n)
1−ε/2

)

such that

P
(

Xn+1 ∈
(

x
(n)
ε/2, x

(n)
1−ε/2

)

∣

∣

∣
Xn = xn, . . . , X1 = x1

)

≥ 1 − ε
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for a given ε ∈ (0, 1).

Since prediction is to be carried out solely on the basis of the present realization of the

sequence, any approach to the problem must consist of treating, in one way or another, the

realization of the process as samples of the process itself. One very general form of this approach,

which is being more and more frequently applied in practical problems, is based on a simple

and intuitive idea pervading all those areas and sub-areas of science sometimes put under the

heading of ‘statistical learning’, such as neural networks and nearest-neighbour methods: In

order to predict the outcome of an event (a ‘response’ variable, say) under a particular context

(a collection of measurements, initial conditions, ‘explanatory variables’, ‘features’, etc.), we

may look back into our past history (a sample or ‘training set’) for situations where the same

or approximately the same context was observed, and (if at least one such instance is found)

predict the outcome of the event in question on the basis of what the homologous outcomes were

in the past, for example by averaging them or by choosing the most frequent among them.

In the context of our time series X the most natural way of implementing this idea is

perhaps to fix a positive integer m < n, construct estimators of the conditional distribution

function, expectation or quantiles of Xn+1 given the previous m observations Xn, . . . , Xn−m+1,

and use these as tools to make inferences and predictive statements about the future observation.

The main objective of this paper is to show that a particular class of such estimators is consistent

under rather general assumptions, a conclusion which will have at least the virtue of encouraging

and justifying even more their application in practical problems.

For the idea outlined above to work it seems necessary, at least from a technical point of

view, to assume that X is conditionally stationary in the sense that the conditional distribution

function of Xn+1 given (Xn, . . . , Xn−m+1) = u ∈ R
m does not depend on n. Accordingly, we shall

assume in everything that follows that there exists a so-called probability kernel (u, v) → F (v|u)

such that
∫

[Ui∈B]
F (v|Ui)dP =

∫

[Un∈B]
P (Xn+1 ≤ v|Xn, . . . , Xn−m+1) dP =

∫

[Um∈B]
P (Vm ≤ v|Um) dP

for all v ∈ R and B ∈ Bm, where

Ui = (Xi, . . . , Xi−m+1) , Vi = Xi+1, i ≥ m. (1.2)

For simplicity we shall avoid indicating the dependence on m in our notation for F ( · |u), but

since m will always have the same meaning throughout the paper this should not be a source of

confusion.

If F ( · |u) has a first moment for u in a given set, we shall call u → R(u) =
∫

vdF (v|u) ≡
E [Vi|Ui = u] the regression function (of Vi on Ui).

Write S(u, h) = {u′ ∈ R
m : −h/2 < ui − u′

i < h/2, i = 1, . . . , m} for the m-dimensional

square centred at u with sides of length h > 0 parallel to the coordinate axes. Given a sequence

{hn} of strictly positive numbers converging to 0, we define the empirical conditional distribution

function (of Xn+1 given (Xn, . . . , Xn−m+1) = u) based on (1.2) by

Fn(v|u) =

∑n−1
i=m 1[Vi≤v,Ui∈S(u,hn)]
∑n−1

i=m 1[Ui∈S(u,hn)]

, v ∈ R, (1.3)
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and the empirical regression function by

Rn(u) =

∫

v dFn(v|u) =

∑n−1
i=m Vi1[Ui∈S(u,hn)]
∑n−1

i=m 1[Ui∈S(u,hn)]

. (1.4)

These functions are defined only on the set
{
∑n−1

i=m 1[Ui∈S(u,hn)] > 0
}

; they may be arbi-

trarily defined elsewhere. From a more general standpoint we shall regard them as regression

estimators based on an arbitrary sequence (U1, V1), (U2, V2), . . . which in particular need not

have anything to do with the time series X1, X2, . . . Then (1.3) and (1.4) are essentially re-

gression estimators of the Nadaraya-Watson type (Nadaraya (1964), Watson (1964)), studied

in various forms and under different contexts by many authors. Stute (1986) considered the

conditional empirical distribution function (1.3) in the i.i.d. case, proving its a.s. uniform con-

vergence to F ( · |u) for a.a. u solely under the condition that nhm
n / log n → ∞.1 Earlier, Roussas

(1969) had proven under stronger conditions a similar but weaker result for stationary Markov

sequences. This was later improved in Roussas (1991a), though still under more restricted con-

ditions (e.g. existence of densities) than Stute’s (1986) in the i.i.d. case. Other estimates of

conditional distribution functions in the context of Markov sequences have also been considered

by Yakowitz (1979); see also Yakowitz (1985).

The list of authors proving convergence theorems for Rn is much bigger; we refer the

reader to the bibliographic list of Collomb (1985), the books of Györfi et al. (1989), Härdle

(1989), Roussas (1991b), Bosq (1998), and the article of Ango Nze and Doukhan (2002), for

background and references to some of the most important and recent contributions in the area

of nonparametric regression. Let us just mention that Stute (1986) showed that Rn(u) → R(u)

a.s. for a.a. u in the i.i.d. case under what is the weakest condition known to this day, namely

the existence of an absolute moment of order r > 1 and (essentially) n1−1/rhm
n / log n → ∞; and

that Roussas (1990) and L.T. Tran (the latter cited by the former) proved the corresponding

result for strictly stationary mixing processes, though under a more restrictive choice of the

sequence {hn} and assuming, among other things, the existence of joint densities.

As suggested by the above sample of references, the work on nonparametric estimation

in the context of discrete time processes concerns mainly strictly stationary and stationary

Markov processes. The only exceptions seem to be the work of Collomb (1984) and its significant

improvement and amplification by Györfi et al. (1989). The work of Collomb (1984) is, we think,

quite important: He essentially realized that, apart from some form of ergodicity, in order to

obtain convergence results for regression-type estimators such as (1.3) and (1.4) it is sufficient

that there be (i) a regression function and (ii) a measure dominating the distributions of the

Ui. This idea implies that consistency results require no stationarity assumption, and in fact

that Markov and stationary processes can be both treated as special cases of what we have just

called conditionally stationary processes.

In spite of its reworking and generalization by Györfi et al. (1989), Collomb’s work has

been somewhat forgotten. This is partly due to the shift of research into rates of convergence,

central limit theorems, bandwidth selection methods and other topics involving more detailed

1Throughout, limits are taken as n → ∞ unless stated otherwise.
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information about convergence and which naturally demand stronger assumptions. However,

since in actual practice the choice of parameters optimizing prediction is successfully achieved

via rather empirical methods, and rates of convergence and similar results are often expressed

in terms of practically incalculable items, it seems of great interest even today to weaken and

clarify the conditions under which consistency alone is possible.

In Section 2 of this paper we obtain the strong consistency of the estimators (1.3) and (1.4)

for conditionally stationary processes satisfying a strong mixing condition. Roughly speaking,

Theorem 2.1 states that supv∈R |Fn(v|u) − F (v|u)| → 0 a.s. under no assumptions on (u, v) →
F (v|u), generalizing both Stute’s and Roussas’s results. In Theorem 2.2 we essentially prove

Rn(u) → R(u) whenever supi E (|Vi|
r) ≤ M for some M > 0 and some r > 1, and in Theorem

2.3 a uniform version of this statement; these results generalize several of the available results

in nonparametric regression, and partly those of Collomb (1984) and Györfi et al. (1989).

It is perhaps interesting to note that the consideration of conditionally stationary sequences

(instead of stationary and Markov sequences separately, for instance) renders simple and trans-

parent assumptions and relatively short proofs; moreover, once Bosq’s inequality and Devroye’s

lemma (two of our main tools) are accepted, the proofs are practically self-contained.

The rest of the paper is devoted to more conceptual aspects of the prediction method based

on a fixed number of past observations. In Section 3 we look a little further into the definition of

conditionally stationary processes, and examine the question of whether nonparametric methods

can be expected to behave in a nearly ‘optimal way’. For the class of approximately Markov pro-

cesses introduced there, this is shown to be true with large samples, and in a certain sense. The

concepts introduced in Section 3 are illustrated by numerical results based on an ARMA(1, 1)

process in Section 4; these results answer in particular certain questions regarding the interplay

between the sample size n and the number m of previous observations used to produce fore-

casts, and appear to be relevant in view of the increasing availability of large data sets in many

scientific areas. Finally, Section 5 contains a statistical analysis of some wave data which clearly

do not satisfy any form of stationarity; besides giving prediction results we informally check the

assumption of conditional stationarity.

Before proceeding we need to clear one possible doubt: are there any non-trivial condition-

ally stationary sequences (i.e., non-stationary and non-Markov)? Although it does not seem so

easy to come up with ‘natural’ examples of such processes, we do have a couple of simple ones

(variations of which are possible); they serve to show in particular that our consistency results

are not just a vague generalization of known ones—they may actually be applied to models not

previously considered in the literature.2

Let X(1), X(2), . . . be a family of strictly stationary sequences with the same marginal dis-

tribution function H and such that the joint distribution function of
(

X
(i)
k , X

(i)
k+1

)

is independent

of i (such processes undoubtedly abound). Then X (1), X(2), . . . all have the same conditional

distribution function (u, v) → F (v|u). Given a sequence 1 < k1 < k2 < · · · of integers and a

sequence ξ1, ξ2, . . . of independent, standard uniform random variables, we can generate a se-

quence X as follows (rather than the processes X (1), X(2), . . . themselves, what we use in this

2However, the establishment of conditions under which examples of conditionally stationary processes are
mixing is presently beyond our scope.
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construction is their family of joint distributions). Letting Hi,n( · |X
(i)
n−1, . . . , X

(i)
1 ) stand for the

conditional distribution function of X
(i)
n given X

(i)
n−1, . . . , X

(i)
1 , so that in particular F ( · |u) =

Hi,2( · |u) a.a. u, we put X1 = H−1(ξ1) and Xn = H−1
1,n(ξn|Xn−1, . . . , X1) for 1 < n ≤ k1;

Xn = H−1
2,n−k1+1(ξn|Xn−1, . . . , Xk1

) for k1 < n ≤ k2; Xn = H−1
3,n−k2+1(ξn|Xn−1, . . . , Xk2

) for

k2 < n ≤ k3; and so on. By construction, X has marginal distribution function H and con-

ditional distribution function (u, v) → F (v|u); however, it is generally non stationary, since

the segments (X1, . . . , Xk1
), (Xk1+1, . . . , Xk2

), . . . may have a very different structure, and non

Markov.

Next, suppose (u, v) → F (v|u) is defined for u and v on the same countable subset of R,

and that the associated Markov chain has a recurrent state u0. For each i ∈ N let X(i) be a

strictly stationary sequence with marginal distribution function v → F (v|u0) and conditional

distribution function (u, v) → F (v|u), and having u0 also as a recurrent state. Writing τk =

min{n > τk−1 : Xn = u0} for k ∈ N and τ0 = 1, and using the same notation as above, we set

X1 = F−1(ξ1|u0) and Xn = F−1(ξn|Xn−1) for 1 < n ≤ τ1; Xn = H−1
1,n−τ1+1(ξn|Xn−1, . . . , Xτ1

)

for τ1 < n ≤ τ2; Xτ2+1 = F−1(ξτ2+1|u0) and Xn = F−1(ξn|Xn−1) for τ2 + 1 < n ≤ τ3;

Xn = H−1
3,n−τ3+1(ξn|Xn−1, . . . , Xτ3

) for τ3 < n ≤ τ4; and so on. Then the sequence X has the

same conditional distribution but not necessarily the same marginal distribution, and it need

not be stationary nor Markov.

2 Consistency

Throughout this section X is assumed strongly mixing: there exists a sequence α(1), α(2), . . .

converging to zero such that

|P (A ∩ B) − P (A)P (B)| ≤ α(k) (2.1)

for all n ∈ N and all sets A ∈ F1,n, B ∈ Fn+k,∞, where F1,n and Fn+k,∞ are the sigma fields

generated by {X1, . . . , Xn} and {Xn+k, Xn+k+1, . . .}, respectively. The numbers α(1), α(2), . . .

are called mixing coefficients.

A basic tool for obtaining consistency results for strongly mixing sequences is the following

‘exponential-type’ inequality of Bosq (see p. 28 of Bosq (1998)):

Lemma 2.1. Let Y1, Y2, . . . be a strongly mixing sequence with E(Yi) = 0 and |Yi| ≤ b ∀i ∈ N,

and mixing coefficients β(1), β(2) . . . Then for each ε > 0 and each integer q ∈ [1, n/2],

P

(∣

∣

∣

∣

∣

n
∑

i=1

Yi

∣

∣

∣

∣

∣

> n ε

)

≤ 4 exp

{

−
ε2

8 τ2(q)
q

}

+ 22

(

1 +
4 b

ε

)1/2

q β

([

n

2q

])

, (2.2)

where

τ2(q) =
2

p2
σ2(q) +

b ε

2
, (2.3)

with p = n
2q and σ2(q) = maxj=0,1,...,2q−1 E

[(

([jp] + 1 − jp)X[jp]+1 + X[jp]+2 + · · · + X[(j+1)p]+

((j + 1)p − [j + 1)p]) X[(j+1)p)+1]

)2]

.
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The strong mixing condition is one of the weakest of the so-called ‘weak dependence’ con-

ditions. Its importance in our context comes from the fact that it yields (2.2), which in principle

may be replaced by a similar inequality; thus it should not be hard to adapt our proofs to other

dependence contexts where exponential-type inequalities are available.

We shall also need a useful lemma of Devroye (1981):

Lemma 2.2. Denote by Bε(u) the m−dimensional ball with radius ε centred at u. Let µ be a

positive, sigma-finite measure and {εn} a sequence of positive numbers such that nεm
n → ∞. For

all c > 0,

nµ (Bc εn
(u)) → ∞ as for µ − almost all u.

Our consistency results require three main assumptions:

A0 There exists a sequence {qn} of integers such that qn ∈
[

1, n−m
2

]

and

q3/2
n α

([

n

2 qn

])

= O

(

(

n(log n)1/2(log log n)1+δ
)−1

)

(2.4)

for some δ > 0.

A1 There exists a measure µ with the following property: For each u ∈ R
m there exist a

neighbourhood N (u) of u and two strictly positive numbers C1 and C2, such that

C1µ(B) ≤ P (Ui ∈ B) ≤ C2µ(B)

for all i and all Borel sets B ⊂ N (u).

A2 There exists a non-decreasing function G : R+ → [0, 1] with G(∞) = 1 such that

sup
i

P (|Vi| > v) ≤ 1 − G(v) (2.5)

for all sufficiently large v and
∫∞
0 vrdG(v) < ∞ for some r > 1.

As we shall see, A0 combined either with (2.7), (2.12) or (2.17) below provides weaker

conditions for the consistency of estimators than those obtained by Györfi et al. (1989), which

for instance do not apply to polynomially decreasing mixing coefficients; the improvement comes

partly from using Bosq’s inequality in place of Carbon’s (1983).

Let us try to interpret these assumptions. A1 is weaker than assumption (A.1) on p. 24

of Györfi et al. (1989), which is due to Collomb (1984). (Collomb (1984) essentially took µ as

Lebesgue measure and required the second inequality of A1 to hold for all B ∈ Bm.) To see

what it entails, observe that A1 is equivalent to the requirement that there be a measure µ with

the property that for each compact subset K ⊂ R
m there exist constants C1,K and C2,K such

that C1,Kµ(B) ≤ P (Ui ∈ B) ≤ C2,Kµ(B) for every i and every Borel subset B of K. Thus A1 is

equivalent to the requirement that the restrictions of the probability measures P (Ui ∈ · ) to any

compact set K be absolutely continuous with respect to each other as well as to the restriction

of µ to K, so that to each i there corresponds a density fi,K such that P (Ui ∈ B) =
∫

B fi,Kdµ
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for every Borel subset B of K. If for K we take Qk := [−k, k]m and put gi,k = 1Qk
fi,Qk

, then
∫

B gi,kdµ =
∫

B gi,k′dµ for B ⊂ Qk if k < k′ and gi,k increases a.e. with k, so it follows by the

monotone convergence theorem that to each i there exists a density g(i) := limk→∞ gi,k in R
m

such that

P (Ui ∈ B) =

∫

B
g(i)dµ ∀B ∈ Bm. (2.6)

Thus A1 implies (2.6).

Assumptions A0 and A1 are the most fundamental; they are used everywhere. Together

they imply that X is recurrent in the following sense: for µ−a.a. u, the process visits every

neighbourhood N (u) of u infinitely often. This follows from the fact that
∑n−1

i=m 1[Ui∈S(u,hn)] ∼
∑n−1

i=m P (Ui ∈ S(u, hn)) a.s., proved in Theorem 2.1 below, since if {hn} satisfies (2.7), hence a

fortiori n hm
n → ∞, we have a.s., for large enough n,

n−1
∑

i=m

1[Ui∈N (u)] ≥
n−1
∑

i=m

1[Ui∈S(u,hn)] ∼
n−1
∑

i=m

P (Ui ∈ S(u, hn)) ≥ (n − m)µ (S(u, hn)) C1 → ∞

by Lemma 2.2.

Assumption A2 is used to prove the consistency of empirical regression functions. It is

equivalent to the requirement that supi E (|Vi|r) ≤ M for some M > 0 and some r > 1.

Indeed, the latter condition implies supi v
r−δ−1P (|Vi| > v) ≤ M v−(δ+1) for all δ, v > 0, and

therefore that the function G defined by G(v) = inf i P (|Vi| ≤ v) (v ≥ 0) is such that G(∞) =

1 and
∫∞
0 vr−δdG(v) < ∞ for all δ ∈ (0, r), and hence satisfies A2. Conversely, (2.5) and

∫∞
0 vrdG(v) < ∞ imply supi E (|Vi|r) ≤ M for some M ≥ 0.

Theorem 2.1. Suppose (i) {qn} is a sequence satisfying A0, (ii) A1 holds. If {hn} is a

sequence of positive numbers converging to zero in such a way that

qn hm
n

log n
→ ∞, (2.7)

then for µ−a.a. u

sup
v∈R

|Fn(v|u) − F (v|u)| → 0

with probability 1.

Proof. We shall first prove that, for fixed v, |Fn(v|u) − F (v|u)| → 0 a.s. for µ−a.a. u, and later

show this implies the conclusion of the theorem.

Put

∆1,n =
n−1
∑

i=m

{

1[Vi≤v,Ui∈S(u,hn)] − P (Vi ≤ v, Ui ∈ S(u, hn))
}

∑n−1
j=m P (Uj ∈ S(u, hn))

,

∆2,n =
n−1
∑

i=m

{P (Vi ≤ v|Ui ∈ S(u, hn)) − F (v|u)}P (Ui ∈ S(u, hn))
∑n−1

j=m P (Uj ∈ S(u, hn))
,

∆3,n =

∑n−1
i=m 1[Ui∈S(u,hn)]

∑n−1
i=m P (Ui ∈ S(u, hn))

− 1 =
n−1
∑

i=m

{

1[Ui∈S(u,hn)] − P (Ui ∈ S(u, hn))
}

∑n−1
j=m P (Uj ∈ S(u, hn))

.
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Then

|Fn(v|u) − F (v|u)| ≤ |∆1,n| + |∆2,n| +

∣

∣

∣

∣

∆3,n

1 + ∆3,n

∣

∣

∣

∣

|∆1,n + ∆2,n + F (v|u)| ,

and we need to prove the convergence of ∆1,n, ∆2,n and ∆3,n to zero.

To prove limn→∞ |∆2,n| = 0, we note that the existence of a common conditional distribu-

tion function and assumption A1 give

∣

∣

∣

∣

P (Vi ≤ v, Ui ∈ S(u, h)))

P (Ui ∈ S(u, h)))
− F (v|u)

∣

∣

∣

∣

≤
1

P (Ui ∈ S(u, h))

∫

S(u,h)

∣

∣F (v|u′) − F (v|u)
∣

∣ dP (Ui ≤ u′)

≤
C2/C1

µ(S(u, h))

∫

S(u,h)

∣

∣F (v|u′) − F (v|u)
∣

∣µ(du′), (2.8)

and by Lebesgue’s density theorem this tends to zero as h ↓ 0 for µ−a.a. u.

Set n′ := n − m, Πn′ := 1
n′

∑n′

i=1 P (Ui+m−1 ∈ S(u, hn)), and define

Yi−m+1 := Π−1
n′

(

1[Vi≤v,Ui∈S(u,hn)] − P (Vi ≤ v, Ui ∈ S(u, hn))
)

, i ≥ m.

Then Y1, Y2, . . . is a strongly mixing sequence with mixing coefficients given by β(k) = α(k−m)

for k > m and β(k) = 1 for 1 ≤ k ≤ m, and satisfying |Yi−m+1| ≤ Π−1
n′ . Thus Bosq’s inequality

(2.2) applies to give, for sufficiently large n,

P (|∆1,n| > ε) = P

(
∣

∣

∣

∣

∑n′

i=1
Yi

∣

∣

∣

∣

> n′ ε

)

≤ 4 exp

{

−
ε2

8 τ2(qn′)
qn′

}

+ 22

(

1 +
4

ε Πn′

)1/2

qn′ β

([

n′

2qn′

])

(2.9)

for every ε > 0 and integer qn′ ∈ [1, n′/2], where τ 2(qn′) is defined by (2.3) with pn′ := n′

2qn′

and

qn′ in place of p and q, respectively.

Furthermore, for large enough n we have by assumption A1

∣

∣E[Yi−m+1Yj−m+1]
∣

∣ ≤
1

Π2
n′

P (Ui ∈ S(u, hn)) =
1

Πn′

P (Ui ∈ S(u, hn))
1
n′

∑n′

r=1 P (Ur+m−1 ∈ S(u, hn))
≤

1

Πn′

c1,

for all i, j ≥ m and a constant c1 > 0. This inequality yields

σ2(qn′) ≤ 2 c1

(

2pn′ + 1 + pn′ (pn′−1)
2

)

Πn′

≤ 2 c1
(pn′ + 1)2

Πn′

,

and, since 1 + 1
pn′

≤ 2,

τ2(qn′) =
2

p2
n′

σ2(qn′) +
ε

2 Πn′

≤
1

Πn′

(

16 c1 +
ε

2

)

≤
c2

Πn′

(1 + ε)
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for some c2 > 0. Using this in (2.9) we conclude that for sufficiently large n there is a constant

c > 0 such that

P (|∆1,n| > ε) ≤ 4 exp

{

−c
ε2

1 + ε
qn′Πn′

}

+ 22

(

1 +
4

ε Πn′

)1/2

qn′ β

([

n′

2qn′

])

(2.10)

for all ε > 0.

We shall now show that (2.4) and (2.7) imply the summability of both terms on the right-

hand side of (2.10), and hence that limn→∞ |∆1,n| = 0 a.s.

For the first term to be summable it is sufficient that qn′Πn′/ log n′ → ∞. By assumption

A1, Πn′ ≥ C1µ(S(u, hn)) for large enough n, so by Devroye’s lemma it is sufficient to require

qn′ hm
n / log n′ → ∞, which is (2.7).

Since either 1/Πn′ → ∞ or 1/Πn′ = O(1), we have
(

1 + 4
ε Πn′

)1/2
= O

(

Π
−1/2
n′

)

, so the

summability of the second term on the right of (2.10) is equivalent to

∑

n′

1

(Πn′qn′/ log n′)1/2

q
3/2
n′

(log n′)1/2
β

([

n′

2qn′

])

< ∞,

for which (2.4) is sufficient.

The proof of limn→∞ |∆3,n| = 0 a.s. is practically the same.

Now let ε > 0. By a classical argument (e.g. Tucker (1967), pp. 127-128), we know that

for a given u ∈ R
m there exist points −∞ ≤ v0 < v1 < · · · < vk(ε) ≤ ∞ such that F (vi|u) −

F (vi−1|u) ≤ ε, i = 1, . . . , k(ε). If v ∈ [vi−1, vi], then

Fn(vi−1|u) − F (vi−1|u) − ε ≤ Fn(v|u) − F (v|u) ≤ Fn(vi|u) − F (vi|u) + ε,

so

sup
v

|Fn(v|u) − F (v|u)| ≤ max
i=1,...,k(ε)

|Fn(vi|u) − F (vi|u)| + ε.

If |Fn(vi|u) − F (vi|u)| 6→ 0 a.s. for some i, then u ∈ Sε for some Borel set with µ(Sε) = 0.

Otherwise,

lim sup
n→∞

sup
v

|Fn(v|u)ω − F (v|u)| ≤ ε

for ω on a set Ωε ⊂ F with P (Ωε) = 1.

Finally, set S :=
⋃

ε∈Q : ε>0 Sε and Ω0 :=
⋂

ε∈Q : ε>0 Ωε with Sε and Ωε defined as above.

Then µ(S) = 0, P (Ω0) = 1, and for u ∈ SC , ω ∈ Ω0,

lim
n→∞

sup
v

|Fn(v|u)ω − F (v|u)| = 0,

which proves the result.

If the pairs (U1, V1), (U2, V2), . . . are independent, the assumptions of the theorem are sat-

isfied with qn = [n/2] and (2.7) becomes n hm
n / log n → ∞, essentially Stute’s (1986) condition.

If the mixing coefficients decrease exponentially, i.e., if α(k) = O(e−θ k) for some θ > 0,

then qn = [c n/ log n] with c ≥ 5
2 θ satisfies (2.4), and the conclusion of the theorem holds with

9



any {hn} converging to zero in such a way that n hm
n /(log n)2 → ∞. This condition coincides

with Collomb’s (1984) in the less general case of ϕ−mixing sequences, and is only slightly more

stringent than Stute’s.

Suppose the mixing coefficients decrease polynomially: α(k) = O(k−γ) for some γ > 0.

Then the conclusion of the theorem is true if

n2(γ−1)/(2γ+3)

{

(log n)1/2(log log n)1+δ
}2/(2γ+3)

hm
n → ∞,

which requires γ > 1 and naturally is the more stringent the slower the decay of α is.

Similar statements apply to Theorem 2.2 and Theorem 2.3.

Another consequence of the theorem is the following: If F ( · |u) is strictly increasing at

xε(u) := F−1(ε|u) ≡ min{x : F (x|u) ≥ ε}, the conditional quantile of probability ε ∈ (0, 1), or

equivalently if F−1( · |u) is continuous at ε, then

x(n)
ε (u) := F−1

n (ε|u) → xε(u)

with probability 1, i.e., the ε−conditional sample quantile x
(n)
ε (u) (the quantile of probability ε

of the empirical conditional distribution function) converges a.s. to xε(u). Thus, for example, if

F ( · |u) is strictly increasing and continuous at xε/2(u) and x1−ε/2(u), then

P
(

Xn+1 ∈
(

x
(n)
ε/2(u), x

(n)
1−ε/2(u)

)

∣

∣

∣
(Xn−1, . . . , Xn−m) = u

)

→ 1 − ε, (2.11)

a statement which may justify the use of the (1− ε)% predictive interval
(

x
(n)
ε/2(u), x

(n)
1−ε/2(u)

)

in

practice.

Let us remark that Theorem 2.1 is a statement about a.s. convergence, while the consistency

of non-parametric estimators is sometimes proved in the sense of complete convergence. Though

not stated, the convergence in our two other results is in the complete sense.

Theorem 2.2. Suppose (i) {qn} is a sequence satisfying A0, (ii) A1 and A2 hold. If {hn} is

a sequence of positive numbers converging to zero in such a way that

qn hm
n

n1/r log n
→ ∞, (2.12)

then for µ−a.a. u

Rn(u) → R(u)

with probability 1.

Proof. Let us observe in the first place that assumption A2 implies the existence of E [|Vi|],
and hence of E

[

|Vi|
∣

∣Ui = u
]

, for all i.

Taking up the notation in the proof of Theorem 2.1, we define

∆∗
1,n =

n−1
∑

i=m

{

Vi1[Ui∈S(u,hn)] − E[Vi1[Ui∈S(u,hn)]

}

n′Πn′

,

∆∗
2,n =

n−1
∑

i=m

{E[Vi|Ui ∈ S(u, hn)] − R(u)}P (Ui ∈ S(u, hn))

n′Πn′

,

10



and ∆∗
3,n = ∆3,n. Then

|Rn(u) − R(u)| ≤ |∆∗
1,n| + |∆∗

2,n| +

∣

∣

∣

∣

∆3,n

1 + ∆3,n

∣

∣

∣

∣

∣

∣∆∗
1,n + ∆∗

2,n + R(u)
∣

∣ ,

and we have to show that
∣

∣∆∗
1,n

∣

∣→ 0 a.s. and
∣

∣∆∗
2,n

∣

∣→ 0 for µ−a.a. u.

Take ε > 0 arbitrary, and choose T so large that
∫∞
T 1 − F (v|u) + F (−v|u) dv < ε′ :=

ε/(1 + C2/C1). Then

∣

∣E[Vi|Ui ∈ S(u, hn)] − R(u)
∣

∣ ≤

∫ T

−T

∣

∣F (v|u) − P (Vi ≤ v|Ui ∈ S(u, hn))
∣

∣dv + ε′ +

∫ ∞

T
P (|Vi| > v|Ui ∈ S(u, hn)) dv.

By (2.8), for µ−a.a. u the first term on the right hand side of this inequality tends to zero as

n → ∞ uniformly in i. As to the last term, note that

∫ ∞

T
P (|Vi| > v|Ui ∈ S(u, hn)) dv =

∫ ∞

T

∫

S(u,hn)
1 − F (v|u′) + F (−v|u′)

dP (Ui ≤ u′)

P (Ui ∈ S(u, hn))
dv

≤
C2

C1

∫

S(u,hn)

∫ ∞

T
1 − F (v|u′) + F (−v|u′) dv

µ(du′)

µ (S(u, hn))
,

hence

lim sup
n→∞

max
m≤i≤n−1

∫ ∞

T
P (|Vi| > v|Ui ∈ S(u, hn)) dv < ε′C2/C1 (µ − a.a. u). (2.13)

Thus

lim sup
n→∞

max
m≤i≤n−1

∣

∣E[Vi|Ui ∈ S(u, hn)] − R(u)
∣

∣ < ε (µ − a.a. u), (2.14)

which proves
∣

∣∆∗
2,n

∣

∣→ 0 for µ−a.a. u.

Now let {Tn} be a sequence of positive numbers increasing to infinity, and define

Y ∗
i−m+1 := Π−1

n′

(

Vi1[|Vi|≤Tn,Ui∈S(u,hn)] − E[Vi1[|Vi|≤Tn,Ui∈S(u,hn)]]
)

, i ≥ m.

Then

∣

∣∆∗
1,n

∣

∣ ≤

∣

∣

∣

∣

∣

1

n

n−1
∑

i=m

Y ∗
i−m+1

∣

∣

∣

∣

∣

+
1

n

n−1
∑

i=m

E
[

|Vi|1[|Vi|>Tn,Ui∈S(u,hn)]

]

Πn′

+
1

n

n−1
∑

i=m

|Vi|1[|Vi|>Tn,Ui∈S(u,hn)]

Πn′

=: δ1,n + δ2,n + δ3,n,

and we want to prove the convergence of δ1,n, δ2,n and δ3,n to zero.

As in the proof of Theorem 2.1, we see that Y ∗
1 , Y ∗

2 , . . . is a strongly mixing sequence with

mixing coefficients given by β(k) = α(k − m) for k > m and β(k) = 1 for 1 ≤ k ≤ m, and

11



satisfying |Y ∗
i−m+1| ≤ 2 Tn/Πn′ . Moreover, by A1 we have, for n large enough,

∣

∣E[Y ∗
i−m+1Y

∗
j−m+1]

∣

∣ ≤
Tn

Π2
n′

E
∣

∣Vi1[|Vi|>Tn,Ui∈S(u,hn)] − E
(

Vi1[|Vi|>Tn,Ui∈S(u,hn)]

)
∣

∣

=
Tn

Π2
n′

∫

S(u,hn)
E
[

|Vi|
∣

∣Ui = u′
]

dP (Ui ≤ u′) +
Tn

Π2
n′

E
(

|Vi|1[Ui∈S(u,hn)]

)

≤
c0Tn

Πn′

{

1

µ (S(u, hn))

∫

S(u,hn)
E
[

|Vi

∣

∣Ui = u′
]

µ(du′) +
E
(

|Vi|1[Ui∈S(u,hn)]

)

Πn′

}

for some c0 > 0. Because the integrand in the rightmost term of these inequalities is inde-

pendent of i, we may conclude from Lebesgue’s density theorem and from equation (2.14) that

maxm≤i≤n−1

∣

∣E[Y ∗
i−m+1Y

∗
j−m+1]

∣

∣ ≤ c1Tn/Πn′ for some c1 > 0 (µ−a.a. u), which in turn yields,

as in the proof of Theorem 2.1, τ 2(qn′) ≤ c2 Tn/Πn′ for some c2 > 0 (µ−a.a. u). Applying Bosq’s

inequality we thus find that for µ−a.a. u and sufficiently large n there is a constant c > 0 such

that

P (δ1,n > ε) ≤ 4 exp

{

−c
ε2

1 + ε

qn′Πn′

Tn

}

+ 22

(

1 +
8 Tn

ε Πn′

)1/2

qn′ β

([

n′

2qn′

])

for all ε > 0. If we now choose Tn = n1/r, where r > 1 is such that
∫∞
0 vrdG(v) < ∞, then it

follows essentially as in the proof of Theorem 2.1 that (2.4) and (2.12) imply the summability

of both terms on the right-hand side of this last inequality. This proves limn→∞ δ1,n = 0 a.s.

Next, note that if ε > 0 is given and T is chosen sufficiently large then, by (2.13),

δ2,n ≤
C2

C1

1

n

n−1
∑

i=m

E
[

|Vi|1[|Vi|>Tn,Ui∈S(u,hn)]

]

P (Ui ∈ S(u, hn))
=

C2

C1

1

n

n−1
∑

i=m

∫ ∞

Tn

P (|Vi| > v|Ui ∈ S(u, hn)) dv

≤
C2

C1
max

m≤i≤n−1

∫ ∞

T
P (|Vi| > v|Ui ∈ S(u, hn)) dv < ε

for all sufficiently large n. This proves limn→∞ δ2,n = 0 for µ−a.a. u.

Finally, because limn→∞ ∆3,n = 0 (Theorem 2.1), we can show that limn→∞ δ3,n = 0 a.s. by

showing instead that

n−1
∑

i=m

|Vi|1[|Vi|>Tn,Ui∈S(u,hn)]
∑n−1

j=m 1[Uj∈S(u,hn)]

≤
n−1
∑

i=m

|Vi|1[|Vi|>Ti]1[Ui∈S(u,hn)]
∑n−1

j=m 1[Uj∈S(u,hn)]

→ 0 (a.s.). (2.15)

By Lemma 6.1.1 of Ash and Doléans-Dade (2000), we know that if {xi} is a sequence converging

to zero and {ani} a double sequence such that limn→∞ ani = 0 for each i and
∑∞

j=1 an j = 1,

then limn→∞
∑∞

i=1 xiani = 0. Let ani = 1[Ui∈S(u,hn)]/
∑n−1

j=m 1[Uj∈S(u,hn)] if m ≤ i ≤ n − 1 and

ani = 0 otherwise, and xi = |Vi|1[|Vi|>Ti]. Observe that by A1, Devroye’s lemma and (2.12) we

have with probability 1

1[Ui∈S(u,hn)]
∑n−1

j=m 1[Ui∈S(u,hn)]

∼
1[Ui∈S(u,hn)]

∑n−1
j=m P (Ui ∈ S(u, hn))

≤
C2

C1

1

n µ (S(u, hn))
→ 0,
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so limn→∞ ani = 0 a.s., and we thus see that (2.15) will follow once we prove that {xi} converges

to zero a.s., or equivalently that limi→∞ 1[|Vi|>Ti] = 0 a.s., or, still equivalently, that P (|Vi| >

Ti i.o.) = 0. But, by A2,
∞
∑

i=1

P (|Vi| > Ti) ≤
∞
∑

i=1

1 − G(Ti),

and (e.g. Knopp (1928), p. 294) with Tn = n1/r this last series is convergent if and only if

∫ ∞

0
vr−1 [1 − G(v)] dv < ∞,

which in turn holds if and only if G has a finite moment of order r.

Collomb (1984) and Györfi et al. (1989) proved a stronger type of statement, namely

sup
u∈K

|Rn(u) − R(u)| → 0 a.s. (2.16)

where K ⊂ R
m is compact, assuming in particular the continuity of R and the existence of

strictly positive Lebesgue densities for P (Ui ∈ · ). Actually, the result they proved was for a

‘smoothed’ version of Rn in which the factors 1[Ui∈S(u,hn)] are replaced by K ((u − Ui)/hn), K

being a kernel satisfying a Lipschitz condition. Our version of (2.16) contained in Theorem 2.3

is again for the ‘unsmoothed’ version of the regression estimator (the proof of (d) below would

be simpler in a smoothed version). Before stating it, we need to introduce further assumptions.

In the following, λ denotes Lebesgue measure on R
m.

A1∗ There exists a compact set K ⊂ R
m and two strictly positive numbers C1,K and C2,K such

that

C1,Kλ(B) ≤ P (Ui ∈ B) ≤ C2,Kλ(B)

for all i and all Borel sets B ⊂ K.

A3 We have supu∈K E
[

|Vi|
r
∣

∣Ui = u
]

= supu∈K

∫

|v|rdF (v|u) < ∞ for some r > 1.

A4 For every T > 0 and every ε > 0, there is δ > 0 such that

∫ T

−T

∣

∣F (v|u) − F (v|u′)
∣

∣ dv < ε

for all u′, u in K such that |u − u|′ < δ.

Remarks

(i) As pointed out by Bosq (1998), p. 72, one can not in general hope to obtain Rn → R

uniformly over the whole of R
m.

(ii) If the variables Ui are concentrated on the same lattice then (2.16) follows of course from

Theorem 2.2.

(iii)A4 holds under the condition that for each v outside a fixed set of Lebesgue measure zero

the mapping u → F (v|u) is continuous on K.
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(iv) For smoothed versions of Rn, results like (2.16) can apply only to continuous R. Our

assumptions do not seem to imply the continuity of R on K. But they do if instead of A4 (or

instead of the sufficient condition stated in (iii)) we assume that F ( · |un) converges weakly to

F ( · |u) whenever un → u in K. [ Proof: If ξu1
, ξu2

, . . . is a sequence with distribution functions

F ( · |u1), F ( · |u2), . . ., then, by A3, supn E [|ξun
|r] ≤ M for some M ≥ 0, so {ξun

} is uniformly

integrable and therefore E [ξun
] → E [ξu], where ξu has distribution function F ( · |u), which is

the same as R(un) → R(u).]

Theorem 2.3. Suppose (i) {qn} is a sequence satisfying A0, (ii) A1∗ holds for some compact

K ⊂ R, (iii) A2 and A3 hold with some r > 1, (iv) A4 holds. If {hn} is a sequence of positive

numbers converging to zero in such a way that 3

qn h
m(1+2γ)
n

n1/r log n
→ ∞ (2.17)

for some γ > 1, then

sup
u∈K

|Rn(u) − R(u)| → 0

with probability 1.

Proof. As we shall make use of results already proved, it will be convenient to make explicit the

dependence of the remainder terms in the proof of Theorem 2.2 on the variable u by denoting

them by ∆∗
1,n(u), ∆∗

2,n(u), ∆∗
3,n(u), δ1,n(u), δ2,n(u) and δ3,n(u).

We divide the proof in several steps.

(a) Given ε > 0, we can choose T > 0 such that

sup
u∈K

∫ ∞

T
1 − F (v|u) + F (−v|u)dv < ε.

Writing ξu for a random variable with distribution function F ( · |u), we see that the integral in

question is
∫

{|ξu|>T}
|ξu| dP ≤

supu∈K E
[

|ξu|
δ
]

T δ−1
≤

M

T δ−1

for some M > 0, by A3.

(b) supu∈K

∣

∣∆∗
2,n(u)

∣

∣→ 0.

We have

sup
u∈K

∣

∣∆∗
2,n(u)

∣

∣ ≤
C2,K

C1,K
sup
u∈K

max
m≤i≤n−1

|E [Vi|Ui ∈ S(u, hn)] − R(u)| , (2.18)

3It will be clear from the proof that Theorem 2.3 effectively holds with n1/r log n/
(

qnh
m(1+2γ)
n

)

= O(1) in
place of the slightly more stringent condition (2.17), but the latter is more in line with (2.7) and (2.12).
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and we shall show this last term goes to zero. By (a), given ε > 0 we can choose T > 0 such

that supu∈K

∫∞
T 1 − F (v|u) + F (−v|u)dv < ε := ε/ (1 + C2,K/C1,K), hence, as in the argument

around (2.13), the right hand of (2.18) is bounded above by a constant times

sup
u∈K

max
m≤i≤n−1

∫ T

−T

∣

∣F (v|u) − P (Vi ≤ v|Ui ∈ S(u, hn))
∣

∣dv + ε.

But the inequality (2.8) and A4 imply, by the bounded convergence theorem, that this last

integral can be made arbitrarily small by taking n large enough, and this proves our statement.

(c) supu∈K δ1,n(u) → 0 a.s.

Following Collomb (1984), p. 455, we let, for each n ∈ N, S1, . . . , Sln be a cover of K by ln
squares centred at u1, . . . , uln ∈ K with edges (parallel to the coordinate axes) of length at most

hγ
n, where γ > 1. Moreover, since K is bounded we can choose this cover in such a way that

ln ≤ LKh−γm
n for some LK ≥ 0. Put

δ̃1,n(u) = δ1,n(u) − δ1,n(uk), u ∈ Sk ∩ K.

Then

δ1,n(u) ≤ δ1,n(uk) +
∣

∣δ̃1,n(u)
∣

∣, u ∈ Sk ∩ K,

and (c) will be proved once we show

max
1≤k≤ln

δ1,n(uk) → 0 and sup
u∈K

∣

∣δ̃1,n(u)
∣

∣→ 0 a.s. (2.19)

Let us first note that the upper bound for P (δ1,n > ε) obtained in the proof of Theorem 2.2

applies to δ1,n(u) as well, and uniformly in K; specifically, for sufficiently large n there exist

c1, c2 > 0 such that

sup
u∈K

P (δ1,n(u) > ε) ≤ 4 exp

{

−c1
ε2

1 + ε

qn′hm
n

Tn

}

+ 22

(

1 +
c2Tn

ε hm
n

)1/2

qn′ β

([

n′

2qn′

])

(2.20)

for all ε > 0. (Recall Tn = n1/r.)

Since P (max1≤k≤ln δ1,n(uk)) ≤ LKh−γm
n supu∈K P (δ1,n(u)), in order to secure the first

statement in (2.19) it remains to show that both terms obtained by multiplying the right

hand side of (2.20) by h−γm
n are summable. As to the first term, it is sufficient to require

qn′hm
n /(Tn log n) → ∞ and lim infn log hn/ log n > −∞, both of which are easily seen to be

implied by (2.17). By A0 the summability of the second requires only Tn log n/
(

qnh
m(1+2γ)
n

)

=

O(1), and this follows again by (2.17).

Next, writing S̃1(u, uk, hn) := S(u, hn)∩S(uk, hn)C , S̃2(u, uk, hn) := S(u, hn)C ∩S(uk, hn),

and noting

1[Ui∈S(u,hn)] − 1[Ui∈S(uk,hn)] = 1[Ui∈S̃1(u,uk,hn)] − 1[Ui∈S̃2(u,uk,hn)],
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we see that

∣

∣δ̃1,n(u)
∣

∣ ≤
C−1

1,K

nhm
n

n−1
∑

i=m

∣

∣Vi1[|Vi|≤Tn]1[Ui∈S̃1(u,uk,hn)]

∣

∣+
C−1

1,K

nhm
n

n−1
∑

i=m

∣

∣Vi1[|Vi|≤Tn]1[Ui∈S̃2(u,uk,hn)]

∣

∣+

C−1
1,K

nhm
n

n−1
∑

i=m

E
[

Vi1[|Vi|≤Tn]1[Ui∈S̃1(u,uk,hn)]

]

+
C−1

1,K

nhm
n

n−1
∑

i=m

E
[

Vi1[|Vi|≤Tn]1[Ui∈S̃2(u,uk,hn)]

]

.

To remove the dependence on u in these sums, we introduce

Γ
(1)
k,n :=

⋃

u∈Sk∩K

S̃1(u, uk, hn), Γ
(2)
k,n :=

⋃

u∈Sk∩K

S̃2(u, uk, hn).

Then S̃1(u, uk, hn) ⊂ Γ
(1)
k,n and S̃2(u, uk, hn) ⊂ Γ

(2)
k,n for all u ∈ Sk ∩ K, and moreover

λ
(

Γ
(1)
k,n

)

= λ
(

Γ
(2)
k,n

)

≤ Cmhγ+m−1
n ,

where Cm depends only on m. [ For each u ∈ Sk ∩ K the set S̃1(u, uk, hn) is one of the two

disjoint components in the difference of two intersecting squares, and its area increases with the

distance between u and uk. The set Γ
(1)
k,n is obtained by displacing u the farthest away from uk

in all directions; it is like a ‘frame’ to the square S1(uk, hn), and its measure is bounded above

by a constant times hγ
n/2 (the ‘frame’s width’) times hm−1

n (the ‘frame’s length’).]

Therefore,

sup
u∈K

∣

∣δ̃1,n(u)
∣

∣≤ max
1≤k≤ln

C−1
1,K

nhm
n

2
∑

j=1

{

n−1
∑

i=m

|Vi|1[|Vi|≤Tn]1[Ui∈Γ
(j)
k,n] +

n−1
∑

i=m

E
[

|Vi|1[|Vi|≤Tn]1[Ui∈Γ
(j)
k,n]

]

}

,

and we may finish the proof of (2.19) by showing that

max
1≤k≤ln

∣

∣

∣

∣

∣

1

nhm
n

n−1
∑

i=m

|Vi|1[|Vi|≤Tn]1[Ui∈Γ
(j)
k,n] − E

[

|Vi|1[|Vi|≤Tn]1[Ui∈Γ
(j)
k,n]

]

∣

∣

∣

∣

∣

→ 0 a.s. (2.21)

and

max
1≤k≤ln

1

nhm
n

n−1
∑

i=m

E
[

|Vi|1[|Vi|≤Tn]1[Ui∈Γ
(j)
k,n]

]

→ 0. (2.22)

The first statement follows just as max1≤k≤ln δ1,n(uk) → 0 a.s. from an upper bound similar

to (2.20), the only difference being that in the exponential term the factor hm
n is replaced by

hm+1−γ
n . The second follows from the inequality

E
[

|Vi|1[|Vi|≤Tn]1[Ui∈Γ
(j)
k,n]

]

≤

∫

Γ
(j)
k,n

E[|Vi||Ui = u]dP (Ui ≤ u) ≤ chγ+m−1
n max

m≤i≤n−1
sup
u∈K

E[|Vi||Ui = u],

where c is a constant, and assumption A3.
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Note that in the course of proving (c) we have also shown (simply omit all the occurrences

of the factor |Vi|1[|Vi|≤Tn])

(d) supu∈K

∣

∣∆∗
3,n(u)

∣

∣→ 0 a.s.

To finish off we need to complete the proof of

(e) supu∈K

∣

∣∆∗
1,n(u)

∣

∣→ 0 a.s.

As in the proof of Theorem 2.2,

sup
u∈K

δ2,n(u) ≤ sup
u∈K

C2,K

C1,K
max

m≤i≤n−1

∫ ∞

T
P (|Vi| > v|Ui ∈ S(u, hn)) dv

≤

(

C2,K

C1,K

)2

sup
u∈K

∫

S(u,hn)

∫ ∞

T
1 − F (v|u′) + F (−v|u)dv

du′

hm
n

,

and by (a) this can be made arbitrarily small by taking T large enough.

Finally, we show that supu∈K δ3,n(u) → 0 a.s. With an,i(u) ≡ an,i and xi as at the end of

the proof of Theorem 2.2, we have

δ3,n(u) ≤
C−1

1,K

nhn

n−1
∑

i=m

xian,i(u)

n−1
∑

i=m

1[Ui∈S(u,hn)] ≤

(

C2,K

C1,K

n−1
∑

i=m

xian,i(u)

)

∣

∣1 + ∆∗
3,n(u)

∣

∣

By a slight generalization of Lemma 6.1.1 of Ash and Doléans-Dade (2000), it can be seen that

this will tend uniformly to zero on K if supu∈K an,i(u) → 0. But

sup
u∈K

an,i(u) ≤ sup
u∈K

1[Ui∈S(u,hn)]
∑n−1

j=m P (Uj ∈ S(u, hn))
sup
u∈K

∣

∣1 + ∆∗
3,n(u)

∣

∣

−1
≤

supu∈K

∣

∣1 + ∆∗
3,n(u)

∣

∣

−1

C1,Knhm
n

→ 0

because

sup
u∈K

1
∣

∣

∣
1 + ∆∗

3,n(u)
∣

∣

∣

=
1

infu∈K

∣

∣

∣
1 + ∆∗

3,n(u)
∣

∣

∣

≤
1

infu∈K 1 −
∣

∣∆∗
3,n(u)

∣

∣

=
1

1 − supu∈K

∣

∣∆∗
3,n(u)

∣

∣

→ 1,

by (d), so our proof is complete.

3 Approximately Markov Sequences

There seems to be one main conceptual condition to be required from a process in order to

be able to predict future from past values in a nonparametric way—by making use of its past

observations only and without assuming much about its distribution. This condition, to which

we may refer loosely as ‘conditional stationarity’, is that the same information at different

moments in time yield the same probabilistic conclusions about the future. Without it, it seems

that any prediction method would have to be capable of inferring or ‘generalizing’, which is
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apparently impossible without postulating a model for the process. Mathematically, the idea

may be formulated as follows: The process X is said to be conditionally stationary if there exist a

function (u, v) → F (v|u) and m positive integers i1 < · · · < im such that for all x, x1, . . . , xm ∈ R

P (Xn+1 ≤ x|Xn−i1+1 = xm, . . . , Xn−im+1 = x1) = F (x|xm, . . . , x1). (3.1)

(We have taken ij = j ∀ j in our definition of Section 1.) Strictly stationary processes are

conditionally stationary, and so are homogeneous Markov processes of arbitrary order; on the

other hand, inhomogeneous Markov processes are not conditionally stationary. Processes with

stationary, non-independent increments, such as fractional Brownian motion with N as index

set, provide other examples of processes which are not conditionally stationary.

The definition of a conditionally stationary process goes hand in hand with this forecasting

principle: fix a sub-path conditional upon which predictions are to be made, look back at the

realization of the process in search of sub-paths which somehow resemble it, and then use the

knowledge of how these sub-paths have evolved to guess the next value of the process. In the

form of estimation of conditional distribution functions and expectations, this principle is plainly

justified because it leads to consistent estimators, at least for conditionally stationary processes

satisfying assumptions similar to those of Section 2. From the point of view of applications

it can be justified on empirical grounds for processes which to some extent may be regarded

as conditionally stationary; the statistical analysis of Section 5 illustrates how graphical and

statistical tools might be used to check the conditional stationarity hypothesis.

Of course, prediction methods based on such a principle are generally sub-optimal because

they involve conditioning on a portion of the past rather than on the full observed path. In itself

this may not be a problem at all, especially when a parametric method is not tenable. Sometimes,

however, we would like to say a bit more about what may be expected from nonparametric esti-

mators such as Rn(Xn, . . . , Xn−m+1) (i.e., (1.4) evaluated at the point u = (Xn, . . . , Xn−m+1)),

in particular when we want to compare them with parametric estimators in cases where the

latter are optimal. One may well wonder whether the errors of a nonparametric predictor can

be brought near those of the optimal predictor, whether they do not increase with time, etc.

To proceed in this direction we shall need to strengthen (3.1) by assuming that there exists an

m0 ∈ N such that for all integers n ≥ m ≥ m0 and all x, xm, . . . , x1 ∈ R

P (Xn+1 ≤ x|(Xn, . . . , Xn−m+1)=(xm, . . . , x1)) = F (x|xm, . . . , x1). (3.2)

Under this assumption the prediction principle can be carried out by conditioning on paths

(Xi−m+1, . . . , Xi), i = m, . . . , n−1, of any length m ∈ [m0, n], and one may more specifically ask

whether the prediction of a future observation on the basis of a fixed number of past observations

is ‘good enough’, or if instead the number of observations used to produce forecasts should

somehow increase with the sample size. On a practical level the latter option appears to be

extremely undesirable because any specification of the rate at which the number of observations

used to forecast grows would certainly demand a considerable knowledge of the process, and

even if such rate were available it would lead to limit theorems in terms of vectors of increasing

dimension, whose practical interpretation is often hard to grasp.

18



Prediction based on a fixed number of past observations is much more practical and easily

interpretable, and it would be interesting to provide it with some sort of theoretical justification.

With this in mind, let us try and focus on processes for which, roughly speaking, the error

incurred when predicting in the sub-optimal way can be kept small and be non-increasing with

the sample size. If the interest lies in estimators of the conditional expectation of Xn+1 given

Xn, . . . , X1, this can be translated into the requirement that, given a positive integer m ∈ [m0, n],

the error

δn,m(Xn, . . . , X1) :=
∣

∣Π(n)
n − Π(n)

m

∣

∣,

where Π
(n)
m ≡ Π

(n)
m (Xn, . . . , Xn−m+1) := E[Xn+1|Xn, . . . , Xn−m+1] for 1 ≤ m ≤ n, be, in some

sense, kept smaller than a certain δ > 0 for all n ≥ m.

If X is a Markov process of order m, then δn,m(Xn, . . . , X1) = 0; although the event

[δn,m(Xn, . . . , X1) < δ] does not generally hold with probability 1, it typically holds with high

probability if m is large enough, which suggests this definition for the class of processes we are

thinking of: A process X is said to be approximately Markov (of order m0) if m0 is the smallest

integer for which (3.2) is satisfied and if for any ε, δ > 0

sup
n≥m

P ( δn,m(Xn, . . . , X1) > δ ) ≤ ε (3.3)

for sufficiently large m ≥ m0.

To illustrate the sort of statements about Rn(Xn, . . . , Xn−m+1) this definition permits,

suppose X is approximately Markov, that for a fixed m for which (3.3) holds we have

supu∈K |Rn(u) − R(u)| →P 0 for every compact set K ⊂ R
m, as we do for example under

conditions like those of Theorem 2.3, and furthermore that the sequence {Ui} is tight. What we

can say, then, is that given arbitrary ε, δ > 0 we can fix m ∈ N such that

P
(

∣

∣Rn(Xn, . . . , Xn−m+1) − Π(n)
n (Xn, . . . , X1)

∣

∣ > δ
)

≤ ε (3.4)

for all sufficiently large n. This is precisely the conclusion one would like to draw, at least

in one of its forms: for large enough n, the number of past observations m used to estimate

the expectation of the future observation conditional on the whole observed path does not have

to increase with the sample size in order to keep the error of the nonparametric predictor

Rn(Xn, . . . , Xn−m+1) relative to the optimal predictor Π
(n)
n smaller than a prescribed ε > 0.4

This result can be used in many situations to justify prediction based on a fixed number

of past observations; the simulation study of Section 4 will illustrate just this in the case of a

Gaussian ARMA(1, 1) process.

We close this section with an example of a class of (stationary) approximately Markov

processes. Let X be a stationary Gaussian process with covariance function γ satisfying γ(0) > 0

and γ(k) → 0 as k → ∞. For each positive integer m ≤ n, the covariance matrix of the vector

(Xn, . . . , Xn−m+1), which we designate by Σm, is non-singular (e.g. Brockwell and Davis (1987),

p. 160). Write, for 1 ≤ m ≤ n,

πm (xn, . . . , xn−m+1) = γmΣ−1
m xT

n,m, (xn, . . . , xn−m+1) ∈ R
m,

4Of course, the existence of moments of order r > 1 implies a similar statement in terms of expected values.
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where γm = [γ(1) · · · γ(m)], xn,m = [xn · · ·xn−m+1]. As is well known,

Π(n)
m = E [Xn+1 |Xn, . . . , Xn−m+1 ] = πm (Xn, . . . , Xn−m+1)

and

E
[

(Π(n)
m − Xn+1)

2
]

= γ(0) − γmΣ−1
m γT

m ≥ γ(0) − γnΣ−1
n γT

n = E
[

(Π(n)
n − Xn+1)

2
]

.

Since σ2
n := γ(0) − γnΣ−1

n γT
n decreases with n, σ2 := limn σ2

n exists. Also, E
[

(Π
(n)
m − Π

(n)
n )2

]

=

σ2
m + σ2

n + 2E
[

(Π
(n)
n −Xn+1)Xn+1

]

+ 0 = σ2
m + σ2

n + 2γnΣ−1
n γT

n − 2γ(0) = σ2
m − σ2

n. Thus, given

arbitrary ε > 0,

E
[

(Π(n)
m − Π(n)

n )2
]

≤ σ2
m − σ2 < ε

for all n ≥ m if m is large enough, and this implies (3.3).

A fact worth mentioning in this connection is contained in Section 10.10 of Grenander and

Szegö (1958): if X has an analytic spectral density with no real zeros and integrable logarithm—

hence, in particular, if X is a causal and invertible ARMA process—then σ2
m − σ2 → 0 as

m → ∞ exponentially fast. Because (3.4) can only benefit from such speed of convergence, this

explains why in many applications the number m of past observations required for a satisfactory

prediction is surprisingly small. For the ARMA(1, 1) process considered next one can compute

σ2
m − σ2 explicitly.

4 An Illustration with a Gaussian ARMA(1,1) Process

We consider the process defined by

Xt = φXt−1 + Zt + θZt−1, t ∈ N,

where {Zt : t ∈ Z} is an i.i.d. N(0, σ2) sequence and |φ|, |θ| < 1. If we assume that (1− φz)(1 +

θz) 6= 0 for |z| ≤ 1 then the process is causal and invertible and, by Theorem 9 on p. 189 of

Ibragimov and Rozanov (1978) and Theorem 4.4.2 of Brockwell and Davis, the mixing property

(2.1) holds with lim supk→∞ α(k)1/k ≤ |φ|.
For this process one can compute explicitly several characteristics of interest (Example 5.3.3

of Brockwell and Davis (1987) contains some of the formulae below). The covariance function

is given by

γ(k) ≡ E[XtXt+k] =

{

σ2
(

1 + 2 φ θ + θ2
)

/
(

1 − φ2
)

if k = 0,

σ2φk−1
(

φ + θ + φ2θ + φ θ2
)

/
(

1 − φ2
)

if k = 1, 2, . . .

The minimum mean square error (MSE) predictor of Xn+1 based on Xn, . . . , X1 can be recur-

sively calculated as Π0 ≡ 0,

Π(n)
n = φXn +

θ

rn−1
(Xn − Πn−1), n = 1, 2, . . . , (4.1)

where

rn = 1 + θ2n

(

1 − φ2

(θ + φ)2
+

1 − θ2n

1 − θ2

)−1
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for n = 1, 2, . . ., and r0 = γ(0)/σ2. Setting p0 = 0 and

pi = φXi+n−m +
θ

ri−1
(Xi+n−m − pi−1), i = 1, . . . , m,

we can use (4.1) to conclude that Π
(n)
m = pm is the minimum MSE predictor of Xn+1 based on

Xn, . . . , Xn−m+1. Finally, the conditional distribution of Xn+1 given Xn, . . . , X1 is normal with

mean Π
(n)
n and variance

E
[

(Xn+1 − Π(n)
n )2

]

= σ2
n = σ2rn.

By what was said in Section 3 the process is approximately Markov, and we have

E
[

(Π(n)
m − Π(n)

n )2
]

= E
[

(Π(n)
m − Xn+1)

2
]

− E
[

(Π(n)
n − Xn+1)

2
]

≤ σ2(rm − 1) (4.2)

for all n ≥ m, which gives an upper bound for the mean square difference (MSD) between Π
(n)
m

and Π
(n)
n .

Table 1: Upper bounds for the mean square difference (MSD) between Π
(n)
n and Π

(n)
m as given in

(4.2) corresponding to a choice of the parameters φ and θ of an ARMA(1, 1) model with σ2 = 1
and of the number m of past observations.

φ θ m Bound MSD

0.1 0.4 1 0.0320
0.1 0.4 2 0.0050
0.7 0.7 2 0.1372
0.7 0.7 3 0.0591
0.7 0.7 4 0.0273
0.7 0.7 5 0.0130
0.7 0.7 6 0.0063

Table 1 shows values of the right-hand side of (4.2) corresponding to choices of m and of

the parameters of the ARMA(1, 1) model with σ2 = 1. The figures give an idea of what kind

of errors can be expected when forecasting using the previous m observations in place of all

past observations. When φ = 0.1 and θ = 0.4 we have γ(0)1/2 ≈ 1.21, so the improvement of

Π
(n)
n relative to Π

(n)
1 is at most about 15% of the standard deviation of the time series. When

φ = θ = 0.7 we have γ(0)1/2 ≈ 2.20, whence the improvement of Π
(n)
n relative to Π

(n)
2 is at

most 17% of the standard deviation of the time series. Thus, even in ‘high correlation’ cases a

relatively small m will already produce practically satisfactory point estimates (a mere reflection

of the exponential decay of the MSD). By taking m = 2 and m = 5 in the first and second cases

considered, one can further reduce the improvement of Π
(n)
n upon Π

(n)
m to about 5% of the

corresponding standard deviations.

Table 1 gives upper bounds for parametric errors. The sub-optimality of our prediction

method results from parametric and nonparametric errors—those arising from the nonparametric
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estimation of quantities based on the distribution of Π
(n)
m . For example, in terms of MSE we

have

E[(Π̃(n)
m − Xn+1)

2] = E[(Π(n)
m − Xn+1)

2] + E[(Π̃(n)
m − Π(n)

m )2],

where

Π̃(n)
m := Rn(Xn, . . . , Xn−m+1);

in other words, the error incurred using the nonparametric method is the sum of parametric and

nonparametric errors. Since there should be a trade-off between the two types of errors (smaller

parametric errors implying larger nonparametric errors, and conversely), it is of some interest to

see what form this trade-off may assume in practice, and what its consequences are as regards

pointwise and interval prediction.

With this in mind we have used simulation to compute approximately some characteristics

of the ARMA(1, 1) model with φ = θ = 0.7 and σ2 = 1. Table 2 shows estimates of the

MSE of the predictors Π
(n)
m and Π̃

(n)
m —MSE(Π

(n)
m ), etc., for short—and coverage probabilities

of the approximate 95% predictive intervals defined by (2.11), for m = 2, 6 and sample sizes of

n = 125× 20, . . . , 125× 213. The results are based on 100,000 simulations, whence the widths of

the 95% confidence intervals for the MSE and coverage probability estimates are less than 0.02

and 0.004, respectively.

Of course, MSE(Π
(n)
m ) is known exactly; we have included its estimates both as a check and

as a means of illustrating the adherence of (4.2).

Table 1 gives us 0.1372 as an upper bound for the MSD between Π
(n)
n and Π

(n)
m ; the results

of Table 2 for m = 2 are consistent with this for all sample sizes. Of course, within the accuracy

of the table MSE(Π
(n)
m ) is not supposed to decrease with n, but MSE(Π̃

(n)
m ) is. For m = 2,

MSE(Π̃
(n)
m ) is at the beginning about 50% larger than the asymptotic error of Π

(n)
n , and 38%

larger than MSE(Π
(n)
m ); it decreases and practically attains MSE(Π

(n)
m ) when n = 1, 024.000.

For m = 6 the bound for the MSD given in Table 1 is < 0.007; accordingly, the difference

between the asymptotic error of Π
(n)
n and the MSE of Π

(n)
m in Table 2 is practically insignifi-

cant. The convergence of MSE(Π̃
(n)
m ) to MSE(Π

(n)
m ) is in this case extremely slow: for small n,

MSE(Π̃
(n)
m ) can exceed MSE(Π

(n)
m ) (and MSE(Π

(n)
n )) by as much as 140%, and for n = 128, 000 by

25%; in contrast, an excess of 25% over MSE(Π
(n)
m ) occurs in the case m = 2 only for n < 1000.

Less accurate simulations of larger samples indicate that MSE(Π̃
(n)
m ) attains MSE(Π

(n)
m ) to within

the accuracy of Table 1 when n = 8, 192, 000 = 8×1, 024, 000. Thus, if we take into account the

fact that the standard deviation of this ARMA(1, 1) model is γ(0)1/2 ≈ 2.20, we see that from

a MSE point of view the price to pay for a gain in precision of 0.13 ≈ 0.1372− 0.0063, achieved

by predicting with Π̃6 in place of Π̃2, is extremely high.

With both m = 2 and m = 6 the predictive intervals are too narrow for small n, and

with m = 6 they are slightly conservative for large n, the convergence to the true coverage

probability being more rapid when m = 2. In any case, the results show that one can make

practically reliable predictive statements based on the empirical conditional distribution function

with rather small sample sizes—n = 2000, say—even for relatively large m, which is in contrast

with the results about conditional means.

22



We should say something about the choice of the ‘smoothing parameter’ hn. For expo-

nential decreasing mixing coefficients we require n1−1/rhm
n /(log n)2 → ∞ for a given r > 1,

which suggests taking hn = cm

(

nγ−1(log n)2
)1/m

with γ ∈ (0, 1) and cm to be determined.

By minimizing the prediction error in terms of the supremum distance between the empirical

and true conditional distribution functions, we have carried out some simulation experiments

to numerically determine optimal values of hn for various sample sizes, and then determined

γ and cm by fitting the mapping n → cm

(

nγ−1(log n)2
)1/m

to those values of hn. For m = 2

this procedure gave γ = 0.45, cm ≈ 1.32, and for m = 6 it gave γ = 0.01, cm ≈ 5.83. These

settings are far from being critical; other choices of distances and functional forms for n → hn

yield neighbouring values for the parameters and very similar results.

Table 2: Estimates based on 100,000 simulations of the ARMA(1, 1) model with σ2 = 1 and φ =

θ = 0.7 of the mean square errors of the predictors Π
(n)
m (parametric) and Π̃

(n)
m (nonparametric)

and of the coverage probabilities of the 95% nominal predictive intervals based on the empirical
conditional distribution function (see (2.11)) for various sample sizes, m = 2 and m = 6.

m = 2 m = 6

n MSE(Π
(n)
m ) MSE(Π̃

(n)
m ) Cov. prob. MSE(Π

(n)
m ) MSE(Π̃

(n)
m ) Cov. prob.

125 1.136 1.562 0.793 1.002 2.394 0.831
250 1.137 1.390 0.864 0.997 2.044 0.889
500 1.145 1.298 0.902 1.013 1.868 0.918
1000 1.133 1.232 0.924 1.010 1.743 0.937
2000 1.146 1.212 0.936 1.001 1.611 0.948
4000 1.136 1.179 0.943 0.993 1.515 0.955
8000 1.138 1.165 0.948 1.006 1.464 0.959

16,000 1.138 1.155 0.950 1.007 1.399 0.962
32,000 1.141 1.152 0.952 1.004 1.350 0.964
64,000 1.137 1.144 0.952 1.012 1.304 0.964
128,000 1.137 1.143 0.953 0.998 1.254 0.965
256,000 1.123 1.126 0.953 1.006 1.219 0.964
512,000 1.139 1.141 0.951 1.006 1.184 0.964

1,024,000 1.135 1.136 0.952 1.002 1.152 0.964

To sum up our conclusions, let us say that for this type of model our nonparametric

pointwise estimates and prediction intervals with small m are good enough for most practical

purposes one can think of, even for relatively small samples, and that a ‘too accurate’ estimation

demands rather large sample sizes—of the order of millions, really. What is also important to

observe is how the numerical results do indeed illustrate the argument around (3.4): once specific

precision requirements are made—e.g. MSD≤ 0.1372—one can actually see them being fulfilled

after some time. Thus one may well say that for large samples the nonparametric method works

in a nearly optimal way—almost in the same way as if the true model were completely known.
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This numerical study seems relevant to those scientific areas dealing with environmental

data, where the time series can often be assumed approximately Markov of rather low order

(from which stems the ‘difficulty’ in predicting them); the application described in the next

section provides an example of this situation.

5 An Illustration with Wave Data

In Ocean Engineering, the sea surface elevation relative to the mean water level at a given point

and during a period of about 3 hours is modelled as a stationary, ergodic, mean zero Gaussian

process. This model is known to provide a reasonable approximation to wave phenomena, and

it enables the calculation of several sea-state parameters which serve to partly characterize the

sea-state. The evolution of the sea-state in time is regarded as a sequence of such Gaussian

processes, and accordingly can be described in terms of time series of sea-state parameters.

One of the most useful of these parameters is the so-called significant wave height (SWH),

which is defined as 4 times the standard deviation of the sea surface elevation process and hence

provides a measure of severity of the sea-state. Naturally, the prediction of future values of SWH

is a matter of importance in Ocean Engineering and in the oceanographic sciences in general.

Currently, forecasts are provided by state-of-the-art wave models, models based on the physical

description of wave generation, dissipation and non-linear wave-wave interactions, that use wind

fields, past wave observations, and even present wave observations from certain geographical

positions (a technique called ‘assimilation’), to produce estimates of wave conditions on a grid

of points over whole ocean areas.

Here we shall use series of SWH buoy measurements from the American National Oceanic

and Atmospheric Administration (NOAA) database5 to study the quality of 1-step forecasts of

SWH based on nonparametric estimators of the regression and conditional distribution functions.

The results will be compared in terms of mean square error with the corresponding wave model

predictions from the ERA-40 project, a project aiming at the reconstruction of global wave

conditions from 1957 onwards (see Caires and Sterl (2003)).

The dataset we have chosen consists of the time series of 3-hourly averages of SWH (in

metres) at a location off the northeast coast of the U.S.A. (measurements from buoy 46006)

from 1978 to 1996. The 3-hourly averages provide a description of the severity of the sequence

of sea-states postulated in the Ocean Engineering model. We shall construct estimators of the

regression and conditional distribution functions using the data from 1978 to 1995, comprising a

total of 18535 measurements (there are a number of gaps in the series), and use them to produce

one-step predictions for May 1996. Typically, the month of May includes a great variety of wave

conditions, including wind sea—locally generated waves—and swell—travelling waves generated

elsewhere—, and that is why we have chosen it for our illustrations.

The left panel of Figure 1 shows the time series of 3-hourly averages of SWH during May

1996. The non-stationary character of the process seems evident from the figure. On the other

hand, both experimental and theoretical physics point to general laws by which waves evolve

from a given set of initial conditions, which suggests that the assumption of a conditional law

5Available at http://seaboard.ndbc.noaa.gov/
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Figure 1: Wave and wind observations during May 1996 from a buoy located in the Northeastern Pacific.

Left panel: significant wave height; right panel: wind speed.

for one observation given a few previous observations might not be an unreasonable one.

The right panel of the figure shows the time series of wind speed (at a 10-metre height, in

metres per second) at the buoy location. The overall correspondence between the wind and wave

time series reflects the fact that waves are generated by the wind. However, the relationship

between winds and waves is very complex; it depends on many factors and to a certain extent

has to be treated as random. For instance, the first two peaks in the time series of SWH shown

in Figure 1 can be explained in terms of the corresponding peaks in the time series of wind

speed, but the occurrence of the highest peak in the time series of SWH must be attributed to

a combination of wind sea and swell.

Figure 2 shows one-step forecasts for May 1996 obtained from the empirical regression

function, together with the time series of buoy measurements, the envelope representing the

endpoints of the 95% predictive intervals computed from the empirical conditional distribution

function, and the sequence of errors (the differences between measurements and forecasts). The

predictions are based on m = 2 past observations; numerical studies with the data from 1978

to 1995 indicate that this is likely to be the best choice in terms of mean-square error, besides

being in agreement with the ‘memory length’ expected from physical models and empirical

evidence. The choice of the smoothing parameter was carried out essentially as in the case of

the simulations of Section 4 (using only the data from 1978 to 1995 and not that from 1996)

but aiming at the minimization of the mean-square error.

From the 107 forecasts made (a few measurements were missing) we compute an average

error or bias of 0.01 metres, a root mean square error (square root of the sum of squared errors)

of 0.31 metres, and a coverage rate of the predictive intervals of 98%. As expected, the latter are

above the prescribed 95% because of the dependence between observations. The corresponding

forecasts furnished by the above mentioned ERA-40 wave model have a bias of −0.15 metres

and a root-mean square error of 0.34 metres; wave model results give no confidence intervals.

In the way they are used here the non-parametric estimators do not offer an alternative
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to global wave models, since the latter provide forecasts over whole areas rather than at single

location, but it is clear from these results that they can be profitably used at least for local

studies.

Figure 2: One-step predictions and SWH measurements for May 1996, and the corresponding 95%
confidence bands and errors.

Besides being useful in predicting wave conditions, nonparametric estimators are also po-

tentially useful in modelling wave dynamics and in studying climate changes. Indeed, assuming

there are approximate physical laws governing the evolution of the sea state given a set of ini-

tial conditions, the empirical conditional distribution function of a (future) sea-state parameter

given the values of other parameters (eg. past or neighbouring observations from one or more

variables) represents the ideal tool to infer and validate such laws; on the other hand, the oc-

currence of climate changes might be detected through systematic changes in conditional laws

or conditional means. The remainder of this section will serve to illustrate these points.

Table 3 shows the biases, root-mean-square errors and coverage probabilities of the predic-

tive intervals with nominal level 0.95 of the SWH forecasts for May 96 based on various subsets

of the 1978-1995 data set, namely the subsets of 1, 2, 3, 6, 9 years and the full 18-year set. The

root mean square error decreases by about 8% as the amount of data increases from 1 to 9 years,

but there is no significant improvement when passing from 9 to 18 years of data, indicating that

with only two past observations smaller errors should not be expected (even from an extremely

good parametric model) and that a past history of 9000 observations is practically enough to

reach the ideal situation.
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Table 3: Biases, root-mean-square errors (RMSE) and coverage probabilities of the predictive intervals
of the SWH forecasts for May 96 based on different subsets of the 1978-1995 database.

Amount of data Period n Bias RMSE Cov. prob.

1978–1978 1116 -0.020 0.334 0.981
1979–1979 1132 -0.016 0.338 1.000
1979–1979 1132 -0.016 0.338 1.000
1982–1982 1447 -0.005 0.336 0.991
1983–1983 1428 -0.009 0.341 0.991

1 year 1984–1984 1458 0.005 0.339 1.000
1985–1985 1200 0.054 0.336 0.991
1987–1987 1199 0.046 0.340 0.991
1989–1989 1053 0.054 0.347 0.981
1990–1990 1430 -0.011 0.344 0.953
1993–1993 1448 0.023 0.334 0.972
1994–1994 1129 0.015 0.332 0.981

1978–1979 2249 -0.016 0.322 0.991
1980–1981 940 -0.029 0.358 0.963
1982–1983 2878 -0.003 0.328 1.000
1984–1985 2661 0.017 0.316 1.000

2 years 1986–1987 2166 0.014 0.324 0.963
1988–1989 1928 0.041 0.326 0.991
1990–1991 1461 -0.007 0.342 0.963
1992–1993 2234 0.015 0.322 0.972
1994–1995 1995 0.023 0.327 0.991

1978–1980 2249 -0.016 0.322 0.991
1981–1983 3821 -0.008 0.337 0.972

3 years 1984–1986 3628 0.012 0.311 0.991
1987–1989 3130 0.040 0.324 0.981
1990–1992 2245 0.001 0.331 0.972
1993–1995 3446 0.023 0.317 0.972

1978–1983 6070 -0.011 0.323 0.972
6 years 1984–1989 6761 0.024 0.311 0.981

1990–1995 5694 0.017 0.316 0.963

9 years 1978–1986 9701 0.001 0.311 0.991
1987–1995 8827 0.028 0.312 0.953

18 years 1978–1995 18531 0.014 0.309 0.981
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The biases show that the nonparametric estimators are almost unbiased for small as well as

large sample sizes. The predictive intervals are always conservative, though less so when bigger

samples are used, showing that the excessive coverage is mainly a consequence of the dependence

in the sequence of forecasts.

Observe that the results are rather consistent within sample size categories; in particular,

the nonparametric estimators constructed with the first and second 9-year periods are very

similar as far as the statistics shown in Table 3 are concerned. This supports the hypothesis of

conditional stationarity and suggests no climate changes have occurred in this location at least

at the level of conditional means.

Table 4: Mean- and median-based forecasts of typical and atypical observations using three different data
sets, with the corresponding 95% predictive intervals (x̂0.025 and x̂0.975) and the numbers of observations
(No. obs.) contributing to the nonparametric estimators.

Predicted observation Period No. obs. Mean Median x̂0.025 x̂0.975

15/5/1996, 00h:00m 1978-1986 847 2.037 1.967 1.533 2.933
2.267 m 1987-1995 844 2.009 2.000 1.567 2.700

1978-1995 1323 2.018 1.967 1.533 2.733

18/5/1996 06h:00m 1978-1986 17 5.457 5.433 4.467 6.833
5.9 m 1987-1995 15 5.898 5.533 4.200 8.200

1978-1995 27 5.659 5.433 4.2 8.200

To take a closer look at the conditional stationarity assumption we shall now concentrate on

two observations of May 1996, one that is rather typical, of 2.267 m., and another more atypical

or extreme, of 5.9 m (the largest observation in the series); they are indicated by circles in the left

panel of Figure 1. Table 4 shows forecasts of these observations based on the conditional mean

and conditional median as well as the endpoints of the corresponding 95% predictive intervals

and the number of observations involved in the construction of the empirical regression and

conditional distribution functions—i.e., the number of strictly positive terms in (1.3) and (1.4).

Three forecasts are given for each observation: one is obtained using the data from the first

9-year period (1978-1986), the other the data from the second 9-year period (1987-1995), and

the third the whole 18-year series. As one would expect, the number of observations contributing

to the nonparametric estimators is quite large in the case of the typical observation but rather

small in the case of the extreme observation.

Let us note that the ERA-40 wave model underestimates the extreme observation by about

1.5 metres; in contrast, the nonparametric estimators are able to capture the quick increase and

uncertainty in the SWH values; both means and medians have a rather small error, and the

actual observation falls comfortably into each of the three predictive intervals.

The predictive intervals for the typical observation indicate a good agreement between the

estimators obtained from the first and second halves of the data, but perhaps the same can not

be said of the intervals for the extreme observation. Figures 3 and 4 allow an overall compari-

son between the empirical conditional distributions obtained from the two 9-year datasets and
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between each of these and the empirical conditional distribution constructed from the whole

18-year series; they show quantile plots (the quantiles of one empirical distribution function

versus the quantiles of another) and graphs of the empirical conditional distribution functions.

Figure 3: Graphs comparing the empirical conditional distributions of the typical observation constructed
from three different data sets; upper left and lower panels: quantile plots; upper right panel: empirical
distribution functions.

Figure 3 reveals a good agreement between the three estimators in the range of 0 to 2.5

metres but a discrepancy above 2.5 metres. Unfortunately, the dependent character of the data

makes it difficult to test whether the empirical distributions from the two halves of the data are

significantly different or not; a two-sample Kolmogorov-Smirnov test gives a p-value of about

0.55, but there is no reason why this should be taken into account and one can only conclude

that in spite of some agreement between the two distributions the hypothesis of conditional

stationarity may represent only a crude approximation.
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The plots in Figure 4 indicate a reasonable agreement between the two empirical condi-

tional distributions for the atypical observation, but there is again evidence of differences in

the upper tails: the distribution function constructed from the second half of the data has a

comparatively heavier tail (a consequence of the presence of certain more extreme events ob-

served during 1987-1995). The two-sample Kolmogorov-Smirnov test gives a p-value of 0.80

(corresponding to a maximal distance of 0.038 between the two distribution functions); since

in this case the observations contributing to the estimators are rather rare and spaced, and

consequently approximately uncorrelated, the non significant result of the test deserves to be

taken seriously.

Figure 4: Graphs comparing the empirical conditional distributions of the atypical observation con-
structed from three different data sets; upper left and lower panels: quantile plots; upper right panel:
empirical distribution functions.
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In conclusion, one may state that in spite of some discrepancies between the empirical condi-

tional distribution functions computed from data of different periods the conditional stationarity

assumption seems to be fulfilled at least approximately in the case of this SWH dataset. Of

course, our somewhat subjective considerations can not replace formal (and more global) testing

procedures, but the latter seem difficult to obtain in so general a setting.
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Ash, R., and Doléans-Dade, C. (2000). Probability and Measure Theory (2 ed.). Academic

Press.

Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes (2 ed.). Lecture Notes in

Statistics 110, Springer-Verlag.

Brockwell, P., and Davis, R. (1987). Time Series: Theory and Methods. Springer-Verlag.

Caires, S., and Sterl, A. (2003). Validation of ocean wind and wave data using triple collocation.

J. Geophys. Res., 108 (C3), 43.1-43.16, doi:10.1029/2002JC001491.
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