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ABSTRACT

A hypothesis for the prediction of the circumferential wavenumber of buckling of the thin axially-compressed
cylindrical shell is presented, based on the addition of a length effect to the classical (Koiter circle) critical load
result. Checks against physical and numerical experiments, both by direct comparison of wavenumbers and via a

scaling law, provide strong evidence that the hypothesis is correct.
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1. INTRODUCTION

For an important class of long structures, applied in-plane compression is relieved by buck-
ling on a local wavelength ¢ that is small in comparison with the overall length L. Two dis-
tinctive types of response, distributed and localized, have been found in such circumstances.
Some buckle patterns, like that formed by the long thin compressed plate supported around
its perimeter, distribute themselves along the full length of the structure; depending on
the boundary conditions the induced pattern may be periodic or near-periodic, but the
tendency is to spread or share out the imposed end-shortening. Others are predominately
localized, the structure finding it easier to accommodate the shortening by concentrating
it to some portion of the available length. The difference is fundamental, and it is our
primary purpose here to illustrate this difference by direct reference to the buckling of a
thin cylindrical shell under axial compression.

The most important criterion for determining the form of response is found at the critical
bifurcation point, where the buckle pattern first emerges as a linear eigenvalue problem. If
this is of the stable-symmetric or supercritical form, the buckle pattern which emerges is
likely to be periodic or distributed. If on the other hand it is unstable-symmetric or subcrit-
ical, the pattern is likely to emerge as periodic but then rapidly localize as the deflection
grows. Examples of both forms of behaviour are many, and are often summarised by refer-
ence to the compressed elastic strut on a nonlinear elastic foundation. (See Wadee (1999)
for a recent review of subcritical responses, and Everall and Hunt (2000) for supercritical
behaviour.)
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But certain problems do not fall neatly into either of these two categories. The buckle
pattern of the long, unpressurized, axially-compressed, cylindrical shell is a hybrid, local-
ized with respect to the length but periodic around the circumference (Lord et al., 1999).
This offers a unique perspective on the instability process in general, and in particular on
the contrasting mechanisms of localization and periodicity. Mode locking and mode jump-
ing, for example, which are strong features of periodic behaviour (Everall & Hunt, 2000),
have no role in localization. This leads to the observation that, whereas the circumferential
wavenumber appears to be fixed at the pre-buckling stage of the loading and remains so
until far into the post-buckling range, localization only appears at an early stage of the
post-buckling. However, it does takes effect rapidly and is effectively complete at load levels
commensurate with the actual buckling load of the system.

Based on these observations, we hypothesise that the classical linear eigenvalue view, as
seen in well-known Koiter circle (Koiter, 1945), can be reinterpreted to predict the circum-
ferential wavenumber of initial buckling. From a combination of reference to well-known
experiments (Arbocz & Babcock, 1969; Yamaki, 1984; Efilinger & Geier, 1972), modern
implicit time-stepping dynamic finite element analyses (Schweizerhof et al., 1998), and our
own numerical solutions of the von Karman-Donnell equations employing a Galerkin cir-
cumferential reduction, we find evidence to support this hypothesis. This comes from two
complementary directions. First, direct experimental evidence of the circumferential wave
number offers straightfoward comparisons. Secondly, when coupled with the wavelength
prediction, the minimum load reached in the numerical Galerkin scheme is found to scale
as (t/R)*, where t is the shell thickness, R is the radius, and « is about 1.3. This compares
well with the variation of failure load in a five different sets of experiments, which span the
range 1.30 < o < 1.49. It has been noted by Calladine (2000) and others that the scaling of
the failure load differs significantly from the value of a = 1 predicted by linearized theory,
and this lends further weight to the argument that the initial buckling is governed more
by the position of the classically defined Mazwell load (Hunt & Lucena Neto, 1993; Budd
et al., 2001) than that obtained from the linear eigenvalue result.

The numerics suggest that a large number of possible equilibria coexist at the post-
buckling load levels of interest, resulting in part from the large number of coincident
eigenvalues at the Koiter circle load; the resulting tangle of equilibrium paths is much
reduced in complexity by the identification of the circumferential wavenumber.

2. LINEAR EIGENVALUE (KOITER CIRCLE) RESULT
For a thin elastic cylindrical shell of radius R, thickness ¢, and Young’s Modulus F, the
linearized buckling equations lead to the critical stress (Koiter, 1945),

o= i () &

with a mode shape that is sinosoidal both axially and circumferentially. Note that there is
no apparent dependency on the length L. The locus of possible waveforms that can arise
at this stress can be expressed as a semi-circle in “wavenumber space”, given by,

(m - mCI‘OWI‘l)2 + n2 = mgrown

and shown in Fig.1, where the axial wavenumber m < 2m,own can take any real value for
an infinitely long cylinder, while the circumferential wavenumber n < n¢own must be an
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Figure 1: The Koiter circle
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so m refers to the number of whole axial waves in a cylinder of length 27 R. Cylinders of
different lengths therefore need rescaling to determine their appropriate axial wavenumber,
as described below.

The classical view is that all waves on the Koiter circle are possible, and it singularly
fails to distinguish that which might occur in practice. Experiments, however, show a clear
preference for a single circumferential wavenumber that appears to be length-dependent
(Yamaki, 1984). Extending the argument of Croll & Yamada (1999), we propose the
following mechanism for wavenumber selection:

e For relatively short shells, the critical buckling mode is that which occurs on the
Koiter circle with a single half wave over the length L of the cylinder. This is the
suggestion made by Croll & Yamada (1999).

e For longer shells, the mode likewise occurs on the Koiter circle, but comprises two
half waves over the length.

e For even longer shells, the mode may theoretically span three or more half waves over
the length L; however, the available experimental data does not appear to contain
shells that are sufficiently long for this to occur.

As the localization imposes a rapid change in axial wavelength, we would not expect
these modes to bear any relation to the final deflected shape. However, it is known from
experiments that short shells end up in a single tier (Eflinger & Geier, 1972) or symmetric
(Yamaki, 1984) form of buckling, while those that are slightly longer finish in a two-tier,
asymmetric, or cross-symmetric (Lord et al., 1999) form. If M represents the number
of axial half-waves at the point of buckling in the shell of length L, we further propose
that, on completion of buckling, M = 1 will have led to the single tier, and M = 2
to the two-tier, form. Rescaling to a length of 2rR as described above then gives m =
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MnR/L, and substituting into the Koiter circle equation leads to the following prediction
of circumferential wavenumber,

—— R [R R\’
n2 =M Y ]_2(]_ — VZ)Z ? — ]\427'('2 <Z> . (22)
We next see how this compares with both physical and numerical experiments.

3. DIRECT EVIDENCE

3.1 Physical experiments

Many experiments on axially-compressed cylindrical shells are reported in the literature,
but few give enough details of the deflected shapes to enable direct comparison with equa-
tion (2.2). Of particular interest is the early contribution of Arbocz & Babcock (1969), who
mapped surfaces with a non-contact probe, and removed the shape of the initial imper-
fections to give accurate representations of both the pre and the post-buckled deflections.
Tests were conducted on copper shells for which R = 4 in., L = 8 in., and £ = 0.004 in.
For an assumed value of Poisson’s ratio v = 0.3, equation (2.2) gives n = 9.37 for M =1
and n = 13.07 for M = 2; the latter agrees well with the experiments.

A typical set of results from Arbocz & Babcock (1969) is given in Fig.2. At zero load,
the imperfection shape is dominated by an n = 2 ovalization. However, this is clearly
bears no relation to the triggering instability, as seen in the middle plot taken just before
buckling with the initial imperfections removed. Long axial waves with a high circum-
ferential wavenumber of n = 13 are now observed, having amplified components of the
imperfections that are not seen at the scale of the mapping at zero load. This is plotted at
a load level of 0.637 of the classical Koiter circle load (2.1), yet the thickness bars shown
at the right indicate that the amplitude of this triggering mode is much smaller than that
of the initial ovalization. In the post-buckling range shown at the bottom the amplitude
is again large, and the same circumferential wavenumber of n = 13 is found, although the
response has localized axially into the two-tier (asymmetric) form of the diamond post-
buckling pattern. These results support the thesis that the circumferential wavenumber n
is determined at the pre-buckling stage by the Koiter circle result, and remains fixed until
advanced post-buckling. Axial buckling on the other hand is strongly influenced by the
localization, and soon bears no relation to points on the Koiter circle. Arbocz & Babcock
(1969) also performed a Fourier breakdown of the pre-buckled shape, and found strongly
developing components of both the one half wave mode at n = 9 and the two half waves
mode at n = 13.

The experiments of Yamaki (1984) on elastic shells made of Mylar are also of interest.
A typical set of load/end-shortening curves is given in Fig.3(a). Here the elasticity of the
material allows deflection far into the post-buckling range, and a continuous sequence of
mode jumps to lower circumferential wavenumbers is observed. Yamaki tested cylinders
of radius R = 100 mm and thickness ¢ = 0.247 mm, ranging in length from L = 22.7 mm
to 160.9 mm. The full set of comparisons of the initial mode of instability with equation
(2.2) are given in Table 1. Note that the symmetric (single tier) form of buckling
denoted by S occurs naturally only for the shorter cylinders; longer cylinders first buckle
into the asymmetric (two-tier) form, A, but can also be persuaded into S. When it exists,
the highest wavenumbers for each form is therefore included.

Experiments by Eflilinger and co-workers, again on Mylar cylinders, are similarly docu-
mented with both mode (S or A) and wavenumber, and are also suitable for comparison
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Figure 2: Top: imperfection shape at zero load. Middle: Deflections just before buckling
with initial imperfections removed. Bottom: Post-buckled shape. Note that the bars at
the right indicate the scale of deflection relative to thickness t. (After Arbocz & Babcock
(1969).)
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Figure 3: Buckling of an elastic cylinder with L = 160.9 mm, R = 100 mm, ¢ = 0.247
mm, F = 5.56 GPa, and v = 0.3 (after Yamaki (1984), p.231). (a) load/end-shortening
response. (b) load vs. maximum and minimum deflection. (c¢) buckle pattern for n = 11.
(d) buckle pattern for n = 8.

Table 1: Yamaki cylinders: £ = 0.247 mm, R = 100 mm.

L (mm) || Mode | n (expt) | M | n (eq.(2.2))
22.7 S 18 1 17.7
35.9 S 15 1 15.6
51.0 S 14 1 13.7
71.9 S 12 1 11.9
71.9 A 14 2 15.6
113.9 S 11 1 9.7
113.9 A 12 2 13.1
160.9 S 9 1 8.2
160.9 A 11 2 11.3
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with equation (2.2). For one test highlighted by Eflinger & Geier (1972), ¢ = 0.190 mm,
R =100 mm, L = 100 mm, and the asymmetric form of buckling occurs at n = 15; this
compares well with the prediction of n = 14.9 from equation (2.2). A second series of tests
is given in Table 2. Again comparison is good except for the longest cylinder, which goes

Table 2: Efllinger cylinders: ¢ = 0.254 mm, R = 100 mm

L (mm) | Mode | n (expt) | M | n (eq.(2.2))
20 S 14 1 13.7
75 S 12 1 11.6
100 A 13 2 13.7
145 A 11 2 11.7
150 A 11 2 11.6
200 A 10 2 10.2
235 A 9 2 9.4
240 A 9 2 94
245 A 9 2 9.3
300 A 8 2 8.4
350 A 10 2 7.8
350 10 3 9.5

against the general trend and is likely to have buckled into 3 or more tiers.

3.2 Dynamical time-stepping finite element analysis

The same trends can be observed in recent numerical experiments employing dynamical
time-stepping routines such as LS-DYNA (see for example (Schweizerhof et al., 1998)).
Such simulations avoid some of the pitfalls of purely static formuations, which can be prone
to tracking unstable or barely stable solutions, and when adjusted to model the effects
of small imperfections have been found to reproduce accurately the observed behaviour.
Schweizerhof et al (1998) are primarily interested in rapidly-loaded shells, where buckling
loads are above those of slow-loading and consequently initial wavelengths are significantly
different from those on the Koiter circle. However, they do provide the slowly-loaded case
seen here in Fig.4 as a benchmark example.

The buckling sequence is illustrated at a constant end-shortening, as load drops to the
stable post-buckling limit with the diamond-pattern asymmetric form shown in the final
plot. The dynamical routine self-selects a circumferential wavenumber of n = 15. The
prediction of (2.2) gives n = 15.2 for M = 2, relating to the asymmetric (A) post-buckling
mode. The sequence shows a buckling process that involves the growth of a single post-
buckling dimple, which stabilizes to the specific determined by n = 15 and then propagates
circumferentially.

4. GALERKIN REDUCTION OF VON KARMAN-DONNELL EQUATIONS
Post-buckling deflections of a thin (shallow) cylindrical shell of radius R and thickness ¢
can be described by the governing nonlinear von Kdrman—Donnell differential equations:
KV + Mgy — poes = WogPyy + WyyPzz — 2WayPay (4.1)
V4¢ + PWgr = (wxy)2 — WeeWyy, (42)
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Figure 4: Finite element modelling of an imperfect cylinder (L = 966 mm, R = 625 mm,
t = 0.56 mm) using implicit time-stepping procedures (see Schweizerhof et al (1998)).
Growing post-buckling deflections under constrained end-shortening.
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where V4 is the two dimensional bi-harmonic operator, z € IR is the axial and y € [0, 27 R)
is the circumferential co-ordinate, w is the radial displacement measured from a non-trivial
(fundamental) unbuckled state, ¢ is a stress function, p = 1/R, the geometric constant,
k? = t?/12(1 — v?), v is Poisson’s ratio, the bifurcation parameter, A = P/FEt, where P is
the compressive axial load applied per unit length and E is Young’s modulus. Equation
(4.1) is an equilibrium, and equation (4.2) is a compatibility, equation.

A Galerkin approximation is introduced via the circumferential expansion

K—1

w(z,y) = Y a(@)cos(knpy)
k=0

o(z,y) = bi(z) cos(knpy) n €N
k=0

for some finite K, where cos(npy) is referred to as the seed mode. The outcome is a system
of 8K first-order ordinary differential equations in z, that is then solved numerically on
a truncated domain under parametric variation of the loading parameter A, using the
continuation code AUTO (Doedel et al., 1997), with boundary conditions which match the
symmetry properties at one end (the centre of the localization) and homoclinic (decaying)
conditions at the other. This process is described in detail in Lord et al (1999).

Generally K = 6 is found to provide a good compromise between accuracy and numerical
efficiency, and a full set of curves for integer values of n running from 8 to 12 is given in
Fig.5, on a plot of A\ against a measure of the end-shortening, defined by

97 1/2

B — da
arclength = / 1+ k dz, at y = 0. (4.3)
0

ox
k=0

All paths are virtually coincident as they emerge from the critical point, but eventually
each circumferential wavenumber n results a different snaking form of equilibrium path, as
described more fully in Hunt et al (1999) and illustrated for the particular case of n = 11
in Figs.6 and 7. The full picture for a particular n is one of successive destabilization and
restabilization, in a so-called “cellular” buckling sequence. The rapid onset of localization
along a typical falling path is clearly seen in Fig.8, where it is found to be effectively
complete at load levels commensurate with experimental buckling loads. Without some
other criterion for selection, it is impossible to determine from the tangle of equilibria
shown in Fig.5, the initial expected value of n.

The hypothesis of Section 2 offers just such a criterion, and we next examine both the
experimental and the numerical data from a scaling perspective to assess its significance.

5. SCALING CONSIDERATIONS

5.1 Physical experiments

As Calladine (2000) indicates, the linear eigenvalue result of equation (2.1), which suggests
that the buckling load for cylindrical shells should vary as (¢/R), does not square with
experimental evidence. Von Karman, Dunn & Tsien (1940) suggest that, for axially-
compressed cylinders for which L/R > 1.5, experiments scale more as (t/R)'*, whereas
Calladine offers a heuristic argument for an exponent of 1.5. To arrive at more objective
estimates of such exponents we shall revert to original data, where it occurs in tabular
rather than graphical form.
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Figure 5: Numerically obtained equilibrium paths for cross-symmetric (A) buckling of the
longest cylinder of Yamaki (1984): effect of altering the circumferential wavenumber n.
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Figure 6: Snaking sequence of post-buckling equilibria for a cylinder of dimensions ¢ =
0.247, R = 125, and for which n = 13. Under controlled end-displacement this gives a
punctuated or “cellular” form of buckling, in which individual cells buckle in sequential
fashion to give the patterns of Fig.7 (see Lord et al (1999)).
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Table 3 describes five different data sets from four teams of experimentalists; for each of
these data sets a power law relationship

Oexp

7 (%)b (5.1)

has been fit (by the least-squares method). Here ¢y, is the experimental buckling stress,
and it should be noted that o of equation (2.1) itself scales as (¢/R).

H Reference ‘ R/t range ‘ number of points ‘ a ‘ b H
Bridget et al. (1934) 237-919 15 2.35 | 0.31
Ballerstedt & Wagner (1936) | 455-4167 18 3.20 | 0.32
Donnell (steel) (1934) 332-1424 19 2.53 | 0.36
Donnell (brass) (1934) 161-1468 21 1.61 | 0.30
Lundquist (1933) 360-1400 45 10.64 | 0.49

Table 3: Experimental fit to equation (5.1).

5.2 Numerical experiments

having been computed for the perfect shell, the equilibrium paths of Fig.5 all emerge from
the Koiter critical load (2.1). However, each has a distinctive first minimum, where the
response restabilizes. A good approximation to the load level of this first minimum is
found in the so-called Mazwell load, where the total potential energy of the pre-buckled
and post-buckled (periodic) states are the same (Hunt & Lucena Neto, 1993; Hunt et al.,
1999). If the Maxwell load, rather than the Koiter load, governs the load level of initial
buckling, then this might be expected to show up in the scaling with respect to t/R.

Of course, this can only be checked if the relevant circumferential wavelength is known.
Fig.9 uses the hypothesis of equation (2.2) to define this wavenumber, and tracks the first
post-buckling minimum for two different L/R ratios as the thickness ¢ is altered, using the
continuation code AUTO (Doedel et al., 1997). These log-log plots appear as straight lines
with an index of -1.287 for R = 100 and -1.297 for R = 125, indicating that the Maxwell
load level of our prediction varies approximately as (t/R)'3. This compares well with the
experimental evidence reviewed in the previous section, and is significantly different from
the linear scaling suggested by the Koiter load expression (2.1).

6. CONCLUDING REMARKS

In an attempt to untangle the plethora of equilibrium paths seen in Fig.5, we suggest
here that the circumferential wavenumber n can be picked from the small-deflection Koiter
circle load (2.1). This relies on two separate conjectures — that a long (M = 1 or 2)
wavelength mode, from amongst all other possibilities, acts as the triggering instability,
and that the circumferential wavenumber thus produced persists far into the post-buckling
range. We can offer no proof for either of these suppositions. Instead, we have reviewed a
mix of experimental and numerical evidence from two complementary angles. First, there
are direct experimental wavecounts, seen for example in the two sets of tabulated data
from (Yamaki, 1984) and (EBlinger & Geier, 1972). Secondly, there is the evidence of
the numerical scaling law employing the prediction, which reflects the scaling found by a
number of different experimentalists.
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Figure 9: Scaling law from numerical experiments. Lower line, R = 100; upper line,
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The first conjecture, that long waves are picked from the Koiter circle to the exclusion
of others, was suggested by Yamada & Croll (1999) for short cylinders buckling into the
symmetric (S) mode, and we explore it no further here. The second, that the periodic
wavenumber as seen in the pre-buckling state persists into advanced post-buckling, is wor-
thy of futher discussion. Long structures with stable (plate-like) post-buckling responses
and periodic or near-periodic buckling modes are known to exhibit mode-locking and mode-
jumping phenomena (Everall & Hunt, 2000). The present periodicity, although orthogonal
to the direction of loading and part of an unstable buckling process, is nevertheless prone
to the same mechanisms. An imposed periodicity can be maintained, or a jump can take
place to a different periodic state, but unlike for localized responses, smooth transition
is ruled out. It is therefore not altogether surprising that the circumferential peridocitiy
is retained, although attempts to define axial wavelengths in the post-buckling range are
likely to be unsuccessful.

It is interesting in this regard to compare and contrast the pre-buckled shape seen ex-
perimentally by Arbocz & Babcock (1969) (middle plot, Fig.2), with the post-buckling
shape seen on the falling post-buckling path in the numerical simulations (point 18, Fig.8).
Both appear at about the same relative load level, and therefore would appear close to
one another on a load /end-shortening plot. However, the experimental point is stable (just
before buckling), while the latter is unstable and would not be seen in a normal loading
sequence. It therefore represents an energy hump, which the shell must surmount before
ultimately reaching the stable post-minimum state. This hump is clearly easily eroded
by imperfections, and a significant numerical challenge is therefore to be found in the
search for an algorithm to describe a route to instability that might mirror this. Numerical
(Schweizerhof et al., 1998) and experimental (Eflinger & Geier, 1972) evidence suggests
that such a route may be through the growth of a single dimple on the shell surface. As
such equilibrium states are unstable, this is likely to require some kind of “mountain pass”
algorithm.
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