
Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository
www.elsevier.com/locate/jss

The Journal of Systems and Software 81 (2008) 1816–1844
An e-contracting reference architecture

Samuil Angelov *, Paul Grefen

Faculty of Technology Management, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands

Received 1 June 2007; received in revised form 27 November 2007; accepted 16 February 2008
Available online 26 February 2008
Abstract

Business-to-business e-contracting aims at automating the contracting process between companies. It improves the efficiency of the
contracting process and enables the introduction of new business models that can be supported by companies. For the development
of an e-contracting system, an architecture is required that describes the system components and the communication channels between
them. This paper presents a reference architecture for the development of e-contracting systems. The architecture is designed on the basis
of a requirement analysis of e-contracting systems. Established architectural principles are used in its design. The architecture can serve
as a foundation in the analysis and design of concrete architectures of e-contracting systems. Furthermore, it can be used as a standard-
ization model that facilitates system integration and communication of ideas. Its value for both software architects and business profes-
sionals makes it an important tool in the analysis and implementation of e-contracting systems.
� 2008 Elsevier Inc. All rights reserved.

Keywords: E-contracting; Electronic contract; E-contracting architecture; Reference architecture
1. Introduction

Since the very beginning of human history, people have
been exchanging values. Contracts between value-exchang-
ing sides have been adopted to specify the exchanged values
and the rights and obligations of the participants. Nowa-
days, contracts are an indispensable tool in business
exchanges: ‘‘all economic production and exchange pro-
cesses are organized through contracts. Contracts are the
instruments and the means for the organization of
exchange relations” (Wigand et al., 1997).

Business-to-business e-contracting uses information
technology for improving the efficiency and effectiveness
of contracting processes of companies. One way to imple-
ment e-contracting is by simply digitizing existing paper
contracts and using fast communication channels for con-
tract establishment (e.g., e-mail). We call this type of e-con-
tracting ‘‘shallow e-contracting” (Angelov and Grefen,
0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2008.02.023

* Corresponding author. Tel.: +31 40 247 2617; fax: +31 40 243 2612.
E-mail addresses: s.angelov@tue.nl (S. Angelov), p.w.p.j.grefen@tue.nl

(P. Grefen).
2004b). Shallow e-contracting improves the efficiency of
the contracting process by reducing the time and costs
for communication. However, shallow e-contracting
requires significant human involvement and does not
change traditional business and organizational models.
Shallow e-contracting can be supported by existing and
widely accepted information technology (e-mail clients,
text editors, etc.). The second way to support e-contracting
is by implementing a dedicated e-contracting system that
can fully (or to a great extent) automate the e-contract
establishment, enactment, and management. We call this
type of e-contracting ‘‘deep e-contracting” (Angelov and
Grefen, 2004b). Deep e-contracting eliminates (or signifi-
cantly decreases) human participation in contracting pro-
cesses. The high level of automation of contracting
processes allows companies to realize new business and
organizational models that lead to improved market com-
petitiveness. Deep e-contracting allows, for example, the
support of contracting in the latest possible moment
(just-in-time contracting) and of contracting of micro busi-
ness relationships (micro-contracting). An elaborate dis-
cussions on the values introduced by deep e-contracting

https://core.ac.uk/display/301666581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:s.angelov@tue.nl
mailto:p.w.p.j.grefen@tue.nl


S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1817
is presented in Angelov and Grefen (2004b). A number of
business domains allow high automation of contracting
relationships (e.g. on-line advertising (Angelov and Grefen,
2006)). Businesses from such domains that want to benefit
from one or more of the values introduced by deep e-con-
tracting will have to implement an advanced e-contracting
system that can automate its contracting related processes.

As in most modern software development projects, the
development and implementation of a ‘‘deep e-contracting
system” must be preceded by the effort- and time-consum-
ing ‘‘system analysis” and ‘‘system design” phases (Mac-
iaszek, 2001). The existence of a specification of the
requirements on a highly-automated e-contracting system
and of a reference architecture to serve as a guideline in
the design of concrete architectures will significantly
facilitate the software development process of deep e-con-
tracting systems. A reference architecture for a deep e-con-
tracting system will bring a number of other benefits as
well. Similar to other reference architectures (e.g., Hol-
lingsworth, 1995), it will facilitate modular configuration
of e-contracting systems. Different vendors will be able to
provide specific modules that can be easily integrated. It
will facilitate interoperability of deep e-contracting systems
with other information systems. It will make easier the
analysis and evaluation of existing e-contracting systems.
Last but not least, its existence will provide a standardized
view on e-contracting systems which will facilitate commu-
nications between the potential stakeholders (business pro-
fessionals, software developers).

A few efforts for the design of complete or partial e-con-
tracting architectures exist. Many of these efforts propose
concrete e-contracting architectures that are suitable for
specific business situations and software solutions (e.g.,
Dan et al., 1998; Hoffner et al., 2001a; Ludwig et al.,
2004). Efforts that are independent of concrete technology
and business scenarios lack sufficient level of detail and
completeness (e.g., Boulmakoul and Salle, 2002; Chiu
et al., 2003; Griffel et al., 1998; Milosevic and Bond, 1995).

In this paper, we propose a reference architecture for
highly automated e-contracting systems. An e-contracting
reference architecture should specify in a detailed way the
functionalities that must be delivered by an e-contracting
system and should provide the major system design princi-
ples. In Kruchten (1995), four views on a system are sug-
gested, i.e., logical, process, implementation, and
deployment. The E-contracting Reference Architecture
that is presented in this paper (referred from now as
ERA) aims at facilitating the design of the logical view of
concrete e-contracting systems. The logical view (also
called functional (Rozanski and Woods, 2005)) describes
the functionalities that the system should provide and is
traditionally the starting point for defining an architecture
(Rozanski and Woods, 2005). ERA is defined on the basis
of a set of required qualities. These qualities were either
extracted from existing publications on e-contracting (see
Section 2) or were discovered during the initial stages of
the design of ERA (see Section 7).
The paper is structured as follows. In Section 2, the
identified functional, non-functional, and architecture
qualities are presented. The main design principles that
are used in the design of ERA are discussed in Section 3.
ERA is presented at three levels of abstraction. Descrip-
tions of the first, second, and third levels of ERA are pro-
vided in Sections 4–6, respectively. In Section 7, we present
an evaluation of ERA and discuss related work. The paper
ends with conclusions.

2. Required qualities in a reference architecture for e-

contracting

In this section, we discuss the functional and non-func-
tional qualities that must be addressed in ERA. Func-
tional qualities express the functionalities that must be
supported by an e-contracting system. We used Angelov
and Grefen (2004a) for the definition of the required func-
tionalities. Non-functional qualities are separated into two
groups, i.e., system qualities and architecture qualities.
The system qualities are qualities that must be addressed
in the development of an e-contracting system. The archi-
tecture qualities are qualities that are important for the
design of a ‘‘good” e-contracting reference architecture.
Initially, as an inspiration for the definition of non-func-
tional qualities required in an e-contracting reference
architecture, we used the list of non-functional qualities
on information systems presented in Bass et al. (2003)
and existing publications on e-contracting (Angelov and
Grefen, 2002, 2003b, 2004a, 2005; Angelov et al., 2005;
Grefen et al., 2003; Griffel et al., 1998; Hoffner et al.,
2001b; Merz et al., 1998). Based on our initial list of
requirements, we defined a draft version of ERA. During
the evaluation of ERA (see Section 7), the list of required
non-functional qualities in ERA evolved. In this section,
we present the final list of identified qualities. Results
from our initial efforts can be found in Angelov (2006,
2007b).

2.1. Required functional qualities

As discussed in Angelov and Grefen (2002), an e-con-
tracting process consists of four phases, i.e., the informa-
tion, pre-contracting, contracting, and enactment phases.
Thus, an e-contracting system must provide support for
each of these four phases. In addition, an e-contracting sys-
tem must provide support for the seamless integration of
these phases into a coherent e-contracting process. The fol-
lowing general functional requirements follow from this
high-level view on the e-contracting process.

� To support the information phase (finding potential
partners), an e-contracting system must provide match-

ing functionalities.
� To support the pre-contracting phase (selecting pre-

ferred partners for negotiation), an e-contracting system
must provide partner-selection functionalities.



1818 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
� To support the contracting phase (negotiating and sign-
ing the agreed upon contract), an e-contracting system
must provide negotiation and contract establishment

functionalities.
� To support the enactment phase, an e-contracting sys-

tem must provide contract enactment functionalities.
� To support the integration of the e-contracting phases

into a coherent e-contracting process, an e-contracting
system must provide management functionalities.

In businesses where the set of potential partners is well
known and does not change in time, the matchmaking
phase does not have to be performed and consequently
matchmaking functionalities are not required in e-contract-
ing systems. Furthermore, in certain businesses, partners
may even be fixed for long periods of time (e.g., a value-
chain with fixed partners). In this case, both the informa-
tion and pre-contracting phases do not have to be per-
formed and consequently matchmaking and partner
selection functionalities are not required in e-contracting
systems.

Each e-contracting phase can be decomposed into
‘‘abstract” activities. Abstract activities can be decomposed
to ‘‘concrete” activities. In Table 1, based on Angelov and
Grefen (2004a), we provide decomposition of the phases
into abstract activities and decomposition of the abstract
activities into concrete activities. Table 1 contains the sub-
set of concrete activities that together with the abstract
activities are used for refinement of the general functional
requirements. The complete set of concrete activities can
be found in Angelov and Grefen (2004a).
Table 1
Decomposition of the e-contracting phases

Phases Abstract activities Concrete activities

Information General preparations Elaborate general provisions,
Prepare templates, etc.

Partner matching Publish advertisement,
Search for advertisements, etc.

Pre-contracting Partner information Request information,
Send/Receive information, etc.

Offer Request offer,
Send/Receive offer, etc.

Partner selection Evaluate partner,
Select partner, etc.

Contracting Negotiation Request for contract offer,
Reject/Accept contr. offer, etc.

Signing and storing Sign,
Store internally/externally

Enactment Value exchange Request/Send enactment data,
Deliver service/reward, etc.

Monitor and control Monitor, Control,
Notify

Dispute resolution Notify for dispute,
Request/Send dispute data, etc.

Evaluation Evaluate,
Store/send evaluation
In addition to the theoretical findings on required func-
tionalities, during the evaluation of initial versions of ERA
(see Section 7), we discussed the required functionalities
with contract management professionals representing dif-
ferent business domains (Angelov, 2007a). These discus-
sions helped us to confirm and slightly improve the
theoretical results on the identified concrete activities. We
revisit the results obtained from these discussions and their
influence on the architecture in Section 7.

2.2. Required non-functional system qualities

According to Bass et al. (2003), system qualities can be
divided into two classes, i.e., system qualities discernable
at runtime, and not discernable at runtime. The qualities
defined in this section follow the terminology of the infor-
mation systems domain (Bass et al., 2003). For clarity, we
indicate in brackets the corresponding terms in the soft-
ware engineering domain as defined in International Orga-
nization for Standardization (2006), as well as the terms
used by non-IT stakeholders (contract managers, contract
engineers, lawyers, etc.).

2.2.1. System qualities discernable at runtime

Security (trust). An e-contracting system involves the
storing and exchange of data with high degree of privacy
(Angelov et al., 2005). This requires e-contracting systems
to provide a high level of security. In ERA, we address only
security functionalities that are characteristic for e-con-
tracting systems. Clearly, message recipients should be able
to verify the identity of a message sender in a non-repudi-
atable way. Communications should be protected from
eavesdropping and alterations to messages during their
transmission should be detectable. These security issues
are usually referred to as ‘‘authentication”, ‘‘non-repudia-

tion”, ‘‘encryption”, and ‘‘integrity” (Turban et al., 2000).
They are commonly agreed to be paramount for e-com-
merce systems and must be addressed in the design of an
e-contracting system as well. Basic security issues like
authorization and access control to an e-contracting system
are out of the scope of ERA. Existing security frameworks
can be used for this purpose (Dhillon, 2007). As indicated
by the term ‘‘trust”, in the context of e-contracting, security
can be discussed in a broader, non-IT sense. An e-contract-
ing system must be a trustworthy business solution. Incor-
porated business intelligence and business data must result
in a business behavior desired by the company. Trust can
be influenced from outside the system as well, e.g., by
trusted third parties (e-notaries, certificate authorities,
etc.).

High automation. Companies require contracting sys-
tems that provide a high-level of automation of the con-
tract creation, enactment, and management. As already
stated in Section 1, we discuss a reference architecture for
highly automated e-contracting systems.

Flexibility. Contracting is a highly dynamic process that
involves the execution of diverse activities, the participation



S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1819
of diverse partners, and the exchange of diverse data (Ange-
lov and Grefen, 2004a). Consequently, an e-contracting sys-
tem must be able to support diverse contracting scenarios
with diverse business partners.

A number of other qualities like performance (efficiency),
portability, and reliability are of importance for an e-con-
tracting system. E-contracting may increase the number
of contracts in a company. It may require establishment
and execution of contracts in seconds (Angelov and
Grefen, 2004b). In such cases, the computational and
communication loads on e-contracting systems become
considerable (Angelov et al., 2005) and performance of
e-contracting systems is of high importance. As an e-con-
tracting system supports the execution of business pro-
cesses that are vital for a company, the reliability quality
is of high importance as well. Similarly, a company would
prefer a system that is independent on the underlying hard-
ware and software and thus can be easily ported to new
machines and operating systems. These qualities however
are out of the scope of ERA, which is aimed at the descrip-
tion of the functionalities of an e-contracting system and
the main design principles for the development of an e-con-
tracting system (see Section 1).

2.2.2. System qualities not discernable at runtime

Modifiability (maintainability). As e-contracting is a new
concept, and currently no advanced e-contracting systems
exist, it can be expected that newly developed e-contracting
systems will require changes (upgrades, extensions, etc.).
Moreover, commercial software regularly undergoes
updates and releases of new versions. In addition, the busi-
ness environment is dynamic and changes in it may lead to
the need for changes in the e-contracting system as well.
That is why modifications driven by software or business
development must be easily applied upon an e-contracting
system. Loose coupling of components is of paramount
importance to achieve system modifiability.

Integrability. As most modern, complex information
systems, e-contracting systems will consist of software
modules which will often be developed separately and inte-
grated at a later stage. For this reason, it should be easy to
integrate the components of an e-contracting system. On
the highly abstract level of reference architectures, integra-
bility of components is achieved by specifying a number of
elements that facilitate integration among components
(Immonen et al., 2005). These elements might, for example,
translate incoming and outgoing data (facilitating data-for-
mat independence), abstract internal implementation of the
functionalities of components (avoiding invocation depen-
dencies), etc.

Interoperability. An e-contracting system has to be able
to interoperate with information systems supporting other
business functions (e.g., planning, logistics, production). It
has to be able to interoperate with information systems of
the external partners (contracting partners, mediators) as
well. Integrability and interoperability qualities must be
both addressed in terms of data and process aspects.
2.3. Required non-functional architecture qualities

In Bass et al. (2003), a number of general qualities
required in architectures are presented. Inspired by them,
and after conversations with stakeholders, we have elabo-
rated the following list of architectural qualities expected
in ERA:

Completeness. Clearly, completeness is of major impor-
tance for ERA, as it has to serve as a guiding model for
the design of concrete e-contracting architectures regard-
less of the business and technological context. A quality
closely related to completeness is scope. An e-contracting
reference architecture must give a clear description of the
business aspects that it addresses.

Feasibility. An architecture specification must be imple-
mentable (buildable), preferably in an easy and timely man-
ner. Furthermore, being a reference architecture, ERA
must have a clear structure and coherent design (conceptual

integrity).
Applicability. ERA must be applicable for the design of

new e-contracting systems as well as for the analysis of
existing systems.

Usability (acceptability). For its successful adoption,
ERA must be easy to understand by both business and
IT professionals (for business professionals to a certain
high-level of detail). It must foster communications
between the stakeholders of an e-contracting system. Fur-
thermore, architecture designers should be able to use
ERA as a starting step in the design of concrete e-contract-
ing architectures. Satisfying these requirements will set the
foundations for the acceptance of ERA by both business
and IT professionals.

3. Design approach

ERA is designed in accordance with the principle of
functional decomposition of a system (also known as ‘‘sep-
aration of operation”). ERA has three levels of decompo-
sition. At each level of decomposition of ERA, the
identified sub-components provide functionalities that are
non-overlapping with the remaining sub-components at
this level (the ‘‘part-whole” principle).

There are a number of qualities that can be addressed
through the part-whole decomposition approach. As indi-
cated in Bass et al. (2003), part-whole decomposition pro-
motes achieving modifiability and integrability qualities in a
system. We use functional decomposition also to address
the usability quality of ERA. High-levels of decomposition
can be easily understood by business professionals and
used for communication of ideas and opinions, while lower
levels of decomposition provide details required by archi-
tecture designers. Functional decomposition facilitates the
application of ERA for analysis of existing e-contracting
systems as well. It allows the selection of the proper level
of detail for analysis of existing systems. The approach of
functional decomposition offers one more benefit. System
functionalities can be addressed in a step-by-step manner,



1820 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
starting from a high level of abstraction and gradually
increasing the level of detail. Through a careful control
on the decomposition process, the possibility to omit the
support of functionalities at a more detailed level is mini-
mized. This helps for achieving completeness of ERA at
its lower level of detail. However, to ensure completeness
of ERA, it has to be controlled for this quality at its first
level of decomposition as well. As already mentioned (see
Section 2.1), we have addressed functional completeness
of ERA by using existing research findings and by conduct-
ing discussions with potential stakeholders.

The usage of part-whole decomposition as a leading
design choice may have negative effects on performance
which we briefly mentioned as a required quality in an e-
contracting reference architecture (see Section 2.2.1). This
problem has to be addressed in the development view of
an e-contracting architecture (Kruchten, 1995, Rozanski
and Woods, 2005).

To address the interoperability, security, flexibility, and
automation qualities we introduce dedicated components.
Conceptually, information systems in an enterprise can
be divided into two classes, namely, ‘‘external” and ‘‘inter-
nal” information systems. ‘‘External systems” are geared
towards communicating data and process specifications
between organizations. These systems operate with data
and process specifications that are tailored to a commonly
agreed data and process semantics. ‘‘Internal systems” are
geared towards enactment of processes and data manage-
ment in the context of a specific organization. According
to this classification, an e-contracting system can be defined
as an external system. An e-contracting system interacts
with ‘‘internal” information systems. Furthermore, an e-
contracting system interacts with the ‘‘external” informa-
tion systems of counterparties. In ERA, clear connections
are made through dedicated interfaces and components
to partner and internal information systems. This sets the
basis for achieving interoperability of e-contracting sys-
tems. The security system quality is addressed in ERA
through the introduction of dedicated, security-related
components, and the flexibility quality is addressed by del-
egating advanced functionalities (‘‘business intelligence”)
to certain components. To address the requirement for a
highly automated system, we design components that can
automatically support the required contracting activities.

To achieve structure and conceptual integrity of ERA
(part of the feasibility quality), established architectural
styles and patterns are used (Bass et al., 2003; Buschmann
et al., 1996; Klein and Kazman, 1999). Patterns are used to
address the integrability quality as well.

In the recent years, Service Oriented Architectures
(SOA) (Papazoglou, 2007) gained popularity as a paradigm
for software design. SOA provides the foundations for
design of architectures of highly-modifiable systems with
loosely coupled components. Thus, designing ERA from
a SOA perspective can be perceived as a logical step. How-
ever, we think that in the case of ERA the design of a care-
fully engineered, traditional, component-based architecture
will offer the benefits introduced by SOA and will avoid a
number of negative features that are related to the usage
of SOA. Next, we briefly present our argumentation for
the advantage of designing a component-based e-contract-
ing architecture over a service oriented e-contracting
architecture.

One of the strong features of SOA is that it allows ser-
vices to be publicly accessible and used. Consequently,
applications may use ‘‘foreign” services for their own oper-
ation. However, relying on ‘‘foreign” services or granting
them access to services that are part of a critical, private,
internal process like contracting is not an option. Thus, this
SOA feature is not beneficial in the case of ERA. Another
positive characteristic of SOA is the independence of ser-
vices from their concrete software realization. We abstain
from concrete technological choices in ERA as well. As
already mentioned, SOA facilitates the design of modifi-
able, loosely-coupled architecture. By making use of cer-
tain styles and patterns, a modifiable architecture of
loosely coupled components can be designed as well (Petri-
tsch, 2006).

The usage of SOA for the design of ERA would have a
number of weak points. The SOA approach focuses on the
description of the interfaces of services and ignores their
internal realization (where a service is the software reifica-
tion of a business function). Thus, using SOA for the
description of ERA will lead to a description of a set of
coarse-grained e-contracting services without specification
of their internal realization. As a result, we would define
a highly general architecture, failing in our design objective
of defining a detailed reference architecture. SOA is not
fully standardized and bad performance and data overhead
are issues that still have to be addressed in SOA (Petritsch,
2006). Selection of SOA for the design of ERA will make
these current SOA problems an intrinsic characteristic of
ERA which may be perceived by users as a limitation of
the architecture.

For these reasons, we define ERA as a component-based
architecture. We apply styles and patterns to achieve an
architecture of modifiable and integratable components.
ERA can be mapped to a SOA by selecting modules that
provide specific business functions and positioning them
in a service oriented architectural framework. Next, in Sec-
tion 4, we discuss the components from the first level of
decomposition of ERA. Components from this level of
abstraction represent self-contained business functions
and are thus a suitable input for the translation of the
ERA components to services in a SOA.

4. First level of decomposition of ERA

As explained in Section 3, ERA is presented at three lev-
els of detail. In this section, first, we discuss the top (first)
level of decomposition of ERA. A simple notation consist-
ing of ‘‘Components”, ‘‘Higher-level components”, ‘‘Pas-
sive data components”, ‘‘Abstract data components”,
‘‘Information systems of third-parties” and ‘‘Data flows”



Fig. 1. Notation used for the description of ERA.

S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1821
(see Fig. 1) has been used in the design of ERA. Passive
data components implement the ‘‘Data indirection” archi-
tectural style (Klein and Kazman, 1999), while abstract
data components implement the ‘‘Abstract data reposi-
tory” architectural style (Klein and Kazman, 1999). Next,
we discuss loose coupling of the components from the first
level of decomposition of ERA and demonstrate that the
modifiability and integrability qualities of ERA (see Sec-
tion 2.2.2) are preserved at this level of decomposition.

4.1. Top-level components and their organization

According to the functional requirements analysis (see
Section 2.1), the four e-contracting phases require the sup-
port by an e-contracting system of four different, main
functionalities. In addition, an e-contracting system must
provide support for the management of the e-contracting
process. Thus, an e-contracting system can conceptually
Fig. 2. E-contracting reference architec
be decomposed into five general components, i.e., Match-

maker, Partner Selector, Contractor, Enactor, and Con-

tracting Manager (see Fig. 2). The Secure Messenger

component is defined in order to address the security qual-
ity (see Section 2.2.1). The Secure Messenger component
provides support for message encryption and decryption,
digital signature management, semantic mapping of mes-
sages, and verification of messages for compliance with
the process agreed.

The components of the first level of decomposition of
ERA are organized in accordance with the layered archi-
tectural style (Bass et al., 2003). The Secure Messenger pro-
vides communication services to the contracting
components (Matchmaker, Partner Selector, etc.). The
Contracting Manager uses the services of the contracting
components for contract establishment and enactment. In
Fig. 2, layers are depicted in reverse order, i.e., lowest layer
is depicted on top. The reason for this reverse order is that
ture (first level of decomposition).



Fig. 3. Layered view of ERA.

1822 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
people more easily assimilate and accept elements posi-
tioned at the top of a picture as external. In Fig. 3, layers
are depicted in the traditional order. The Secure Messenger
component represents the ‘‘Communication layer”. The
Matchmaker, Partner Selector, Contractor, and Enactor
components are part of the ‘‘Application layer”. The Con-
tracting Manager component represents the ‘‘Management
layer”. The Contracting Manager must exchange certain
information with the Secure Messenger (explained in Sec-
tion 5.1 and 5.5). To avoid direct communications between
the Contracting Manager and the Secure Messenger (and
thus, to adhere to a strict layered style), we introduce the
Message Passer. Its role is to serve as a transition point
for messages between the Contracting Manager and the
Secure Messenger.

Each component is composed of sub-components. Sub-
components in the application and communication layers
provide methods that can be invoked by components from
the corresponding higher layers. To facilitate integration of
components and improve their modifiability, we use the
‘‘Facade” pattern (Gamma et al., 1995). This pattern
groups the methods offered by sub-components of a com-
ponent and exposes them for access, while ‘‘hiding” details
on location, internal naming, etc. Facades allow separate
development of components from different layers and their
easy integration. To improve integrability between compo-
nents, we also use the ‘‘Abstract data repository” style
(Klein and Kazman, 1999). This style allows components
to exchange data unaware of each others requirements on
the data format.

As discussed in Section 2.1, in a limited set of business
scenarios, the matchmaking and partner selection function-
alities are not required. In these cases, the Matchmaker and
Partner Selector components can be omitted in the design
of concrete e-contracting systems.

The components from the first level of decomposition of
ERA are defined on the basis of a set of non-overlapping,
self-contained functionalities. This ensures loose functional
coupling of the components from this level. However, it
does not ensure that the components from this first level
of decomposition are actually loosely coupled from a data
perspective. To address this problem, next, we discuss the
collaborations in which the components from the first level
of decomposition of ERA are involved. To describe the
collaboration, we define a structural model and a behav-
ioral model (Booh et al., 1999). The structural model
describes the data entities created, read, updated, and
deleted by the components, while the behavioral model
describes the way components manage these data entities
(creating them, distributing them in the form of messages,
etc.). We use these models to show that the components
from the first level of decomposition of ERA are loosely
coupled from a data perspective as well. These two models
can be seen as part of the information view in Rozanski
and Woods (2005).

4.2. Collaboration model

The components from the first level of decomposition of
ERA participate in two high-level collaborations. The
‘‘contract establishment” collaboration aims at the estab-
lishment of a contract. It involves all high-level compo-
nents except the Enactor. The ‘‘contract enactment”
collaboration is a collaboration between the Contracting
Manager, Enactor and Secure Messenger components
and is organized towards the enactment of a contract. As
in both collaborations, the role of the Secure Messenger
is of minor importance, we do not further pay explicit
attention to it.

In this section, we describe only the ‘‘contract establish-
ment” collaboration. The ‘‘contract enactment” collabora-
tion involves a small number of interactions between the
Contracting Manager and Enactor components. The Con-
tracting Manager can send a message to the Enactor to ini-
tiate the enactment of a contract (which is included in the
message) and optionally can prematurely terminate the
enactment of the contract due to internal factors (see Sec-
tion 5.4). As the structural and behavioral aspects of the
‘‘contract enactment” collaboration are relatively simple,
the lack of data dependencies in it can be directly observed.
For this reason, we do not further discuss it.

To avoid unnecessary complexity, we omit minor details
in the description of the ‘‘contract establishment” collabo-
ration and concentrate on its core aspects. We use UML
static structure and collaboration diagrams for the descrip-
tion of the structural and behavioral models, respectively
(Booh et al., 1999).

4.2.1. Structural model

A ‘‘contract request” (see Fig. 4) is an internally gener-
ated message that expresses the need within the company
of a contract for a certain exchange value (a product, ser-
vice), in certain quantity, and with certain qualities. A
request for matchmaking (‘‘matchmaking request”) is based
on the contract request and contains in addition a number
of matchmaking rules. A rule may state what the geograph-
ical location of potential partners must be, may define oper-
ational constraints (e.g., time for collecting of matching
parties), etc. An advertisement (‘‘own advertisement”) is
created on the basis of the matchmaking request. It contains
a looser version of the qualities and quantities defined in the
matchmaking request (in order to broaden the search for
partners). For simplicity, we consider queries requesting



Fig. 4. Structural model of the ‘‘contract establishment” collaboration.

S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1823
products or services that are sent to other parties also as
advertisements. Own advertisements also contain informa-
tion for the company. For each own advertisement, match-
ing advertisements of other companies may be found
(‘‘external advertisement”). A matching advertisement con-
tains information for the advertisement and information for
the party behind this advertisement. All matching advertise-
ments form a ‘‘list of matching advertisements”.

The ‘‘partner selection request” is a message that trig-
gers the selection of the most suitable partner for negotia-
tions. It is created on the basis of the list of matching
advertisements and on a number of rules that influence
the selection of a party. For example, a rule can state that
for the selection of a partner time of value delivery is more
critical than price of the value. Additional information for
the business status of the parties is collected through
requests for information (‘‘information request”). These
requests can be for an offer (an advertisement does not
have the legal status of an offer and may fail to provide
important information), customization of an offer, or addi-
tional information for the party itself. An offer is a legally
binding document that lies in the foundations of the estab-
lishment of a contract. An offer would usually lack many
legal and business clauses that are added later on in con-
tracts. A ‘‘contracting party” is a party that is selected as
Fig. 5. First part of the contract
a potentially ‘‘good” party for negotiation. A contracting
party has a ranking as a partner compared to the other
contracting parties (i.e., it shows how ‘‘preferred” is this
party for the establishment of a contract). All contracting
parties and their final offers form a ‘‘list of contracting
parties”.

A ‘‘contracting request” for the start of contract negoti-
ations is created on the basis of the list of contracting par-
ties and on a number of rules that should influence the
contract establishment process (e.g., ‘‘establish a contract
until. . .”). Contract offers are exchanged with contracting
parties. A contract offer that is accepted by the negotiating
parties is signed and becomes a contract.
4.2.2. Behavioral model

To simplify the behavioral model, we depict it into three
separate diagrams. First, the Contracting Manager (CM)
component receives a contract request for the establishment
of a contract (see Fig. 5). The CM elaborates on the basis
of the internal request a matchmaking request that is sent to
the Matchmaker. On the basis of the matchmaking request,
the Matchmaker creates own advertisements and publishes
them at external parties. The Matchmaker receives external

advertisements that match its own advertisements. It elabo-
establishment collaboration.



Fig. 6. Second part of the contract establishment collaboration.

1824 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
rates a list of matching advertisements and returns it to the
CM.

The CM evaluates the result (e.g., length of the list). Dis-
satisfactory results may lead to a new invocation of the
Matchmaker (not shown in this collaboration scenario).
If the result is satisfactory, it creates a partner selection

request and sends it to the Partner Selector (PS) (see
Fig. 6). The PS creates a number of information requests

which sends to parties (including third parties) and on
the basis of the answers received creates a list of contracting

parties which returns to the CM.
If the list of contracting parties is not empty, the CM

uses it to define a contracting request which is sent to the
Contractor (see Fig. 7). The Contractor creates contract

offers and if an agreements is reached with the counter
party, creates a contract. The contract is returned to the
CM.

A stepwise analysis of this collaboration shows that each
data entity from the structural model is produced by a
component and is used by a component. Each component
receives the data that it needs for its operation and pro-
duces the data required by the next component in the col-
laboration in a sequential manner. Thus, there is both
functional and data decoupling among components from
the first level of decomposition of ERA.

Next, in Sections 5 and 6, we provide descriptions of the
second and third levels of detail of ERA, respectively. For
brevity reasons, we do not provide structural and behav-
ioral models in the second and third levels of decomposi-
tion of ERA. Rather, we depict the main messages that
the components exchange and discuss them in the text
description. This allows readers to form a limited idea for
the level of data coupling among sub-components.
Fig. 7. Third part of the contract
5. Second level of decomposition of ERA

This section presents the decomposition of the Secure
Messenger, Contracting Manager, Partner Selector, Con-
tractor, and Enactor components.

The functionalities provided by the Matchmaker have
been researched for many years and research findings on
and implementations of this component are available
(Bichler and Segev, 1999). For this reason, the Match-
maker component is not further decomposed in this paper.
The Matchmaker can be implemented by a company as an
application with complete functionality. Alternatively, its
main functionalities (matching of parties based on their
offers/requests) can be outsourced to an external third
party. The company has to implement in this case only a
light version of the Matchmaker that supports sending
and receiving of current offers/requests to and from an
external Matchmaker. A heterogeneous solution that
implements both alternatives is possible as well. An exam-
ple of such solution is discussed in Section 7.2.1.

The Message Passer was introduced to serve pure archi-
tectural goals. Its functionalities do not require further
attention.

The decomposition of the Contracting Manager is based
on existing reference architectures in workflow manage-
ment. The Partner Selector, Contractor and Enactor com-
ponents provide support for the pre-contracting,
contracting, and enactment phases of the e-contracting
process, respectively. That is why we use the e-contracting
process decomposition (see Section 2.1) for their functional
decomposition. The decomposition of the Secure Messen-
ger is based on the functional requirements on this compo-
nent defined in Section 4.
establishment collaboration.



S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1825
5.1. Decomposition of the Contracting Manager component

The Contracting Manager component provides support
for the management of the e-contracting process. It can be
seen as a special kind of a workflow management system.
For this reason, the high-level view of the Reference Archi-
tecture for Workflow Management Systems (Grefen and
Remmerts de Vries, 1998) abbreviated here as RAWFMS,
and the Workflow Reference Model (Hollingsworth, 1995)
abbreviate as WRM are used as an inspiration for the
decomposition of the Contracting Manager. The two
workflow reference architectures are aligned with the
requirements defined on ERA and are tailored for the
domain of e-contracting. As a result the Enactment Server,
Control User Interface, Definition User Interface, Design,
Evaluator, Knowledge Updater, Internal Mapper, and
Internal Broker sub-components are defined (see Fig. 8).
Next, each of these sub-components, their relation to the
RAWFMS and WRM, and their specifics for the domain
of e-contracting are described.
5.1.1. Definition User Interface (DUI) and Design

components

The DUI component provides the user interface for the
specification of supported e-contracting activities and the
rules applying to these activities. Furthermore, this compo-
nent allows users to define contract templates and clauses
that can be used during contract negotiation. The Design
component supports the specification process and controls
the user input for consistency with existing definitions. The
DUI and Design components have similar functionalities
to the ‘‘UIS interface” and ‘‘WF Design” components in
Fig. 8. Decomposition of the Con
RAWFMS and the ‘‘Process Definition Tools” component
in WRM.
5.1.2. Knowledge Updater (KU) component

The Knowledge Updater collects/receives relevant infor-
mation from other information systems. New business
rules, process specifications, service/product specifications
defined in internal company systems that are relevant for
the contracting process are sent to/requested by the KU.
For example, the process supported by an internal system
for delivering of a service (named Internal Enactor in
Fig. 8) can be used in the specification of the service in a
contract (Grefen et al., 2000). The KU obtains relevant
information from external systems as well (e.g., currency
rates, new contract templates). Information collected by
the KU may be controlled and approved via the DUI
and Design components.
5.1.3. Enactment Server component

The Enactment Server component, triggered by the
Internal Planner, starts and manages e-contracting pro-
cesses. The Internal Planner belongs to the internal infor-
mation systems (shown in grey color) of the company
(see Section 3) and provides information for required or
available for contracting products/services. In the manu-
facturing domain, an application that serves as an Internal
Planner is the Material Requirements Planning (MRP)
application. MRP modules are implemented in leading
ERP systems like SAP and Oracle (Nahmias, 1997). Based
on the process specifications and rules and on the data pro-
duced by already invoked components, the Enactment Ser-
ver invokes or terminates the execution of components.
tracting Manager component.



1826 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
The status of a contracting process is stored in ‘‘Process
data” database. When invoking a component, the Enact-
ment Server supplies configuration data to the invoked
components. The configuration data is produced during
the execution of other components (stored in the ‘‘Applica-
tion data” database) or is defined before the initiation of
the contracting process (stored in the ‘‘Process, rule, ontol-
ogy” database). The configuration data for the Communi-
cation Monitor contains the specification of the
contracting and enactment process (see Section 5.5). The
configuration data for the Partner Selector is a list of
matching partners found by the Matchmaker. Similarly,
the relevant configuration information is sent to the other
e-contracting components as well. In order not to overbur-
den the figures, channels for configuration information are
not shown. The ‘‘Management data” database contains
aggregated workflow process data and management infor-
mation that is used by the Evaluator for evaluation pur-
poses (explained next).

The Enactment Server component has functionalities
similar to the ‘‘Workflow Engine” component in the
WRM and the ‘‘WF Server” component in the RAWFMS.
However, in contrast to existing workflow engines, the
Enactment Server should be able to monitor and, eventu-
ally, control relations between contracting process
instances. This is required as contracting processes are
often related to each other. These relations are also known
as contracting dependencies (Angelov and Grefen, 2001).
Failure in one contracting process may lead for example
to the need of termination of other contracting processes.
This characteristic of the Enactment Server requires spe-
cific attention in its design.

5.1.4. Evaluator component

The Evaluator component facilitates the contract-man-
agement support provided by the Enactment Server. Many
architectural components can provide information that is
valuable for the evaluation of the e-contracting relation-
ship. For example, a high number of invalid digital signa-
tures reported by the Authenticator might indicate higher
risk of fraudulent attempts (see Section 5.5). Lack of offers
that match the needs of the company for a long period of
time would give a sign for possible contracting process fail-
ure or at least delay of contract establishment. Frequent
occurrence of contract disputes may be indicative for bad
communication channels, low contract quality, or simply
for an unreliable partner. The Evaluator collects statistical
information stored by other components and using pre-
defined algorithms provides an evaluation statement on
the contracting relationship at a specific point in time.
An algorithm can state which statistical information must
be used, assign different weights on it, etc. The information
that can be collected and the algorithms for its evaluation
require further research. In order not to overburden the fig-
ures representing ERA, the communication channels
through which evaluations are obtained are not shown.
Based on the information provided by the Evaluator, the
Enactment Server can change the contracting process (ter-
minate it, suspend it, etc.). At the end of the contract enact-
ment, the Evaluator produces a final evaluation of the
e-contracting relationship. This final evaluation is to be
used for adapting the future contracting behavior of the
company. For example, it can be used by the Partner Selec-
tor in the future selection of partners (see Section 5.2). An
evaluation can be stored externally at a Reputation Rank-
ing Center (Masum and Zhang, 2004) as well. The final
evaluation activity is part of the enactment phase (see
Table 1). However, due to the need for collection of inter-
mediate evaluations throughout the complete e-contracting
process and for sharing these evaluations with the Enact-
ment Server, the Evaluator component is defined as a
sub-component of the Contracting Manager.

The Evaluator component can be seen as a concretiza-
tion of the ‘‘Application Systems” component in RAW-
FMS. The Evaluator component is part of the
‘‘Workflow Engine” in WRM.
5.1.5. Control User Interface (CUI) component

Similar to the ‘‘Administration and Monitoring Tools”

component of the Workflow Reference Model, the CUI
provides access for humans to monitor and control the
Enactment Server. This user interface allows handling of
potential exceptions that occur in a contracting process
and require human intervention. The analogue of CUI in
the RAWFMS is the ‘‘Workflow administration client”.
5.1.6. Internal Mapper and Internal Broker components

The Internal Mapper facilitates the integration of the
Contracting Manager with internal systems. It maps
method calls and data formats of internal systems to the
data format and methods used in the Contracting Man-
ager. Thus, any changes in the internal systems are reflected
only on the Internal Mapper. The Internal Broker is
responsible for delivering messages between the Contract-
ing Manager and internal systems. It implements the Bro-
ker pattern (Buschmann et al., 1996) and provides
location and implementation transparency of internal
systems.

The RAWFMS provides a detailed decomposition of its
components and can be used for the further decomposition
of the components of the Contracting Manager.
5.2. Decomposition of the Partner Selector component

The Partner Selector component supports the pre-con-
tracting phase. As shown in Table 1, it must be able to col-
lect external information about potential parties (see
‘‘Offer” and ‘‘Partner information” abstract activities).
Based on the collected external information and on existing
internal information, the Partner Selector has to select
partners with which negotiations on a contract may start.
To support the information collection activities we define
the Information Collector sub-component of the Partner



S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1827
Selector. To support the selection activity, we define the
Selector sub-component (see Fig. 9).

5.2.1. Management data (PS), Evaluations, Selection rules

data components

In the ‘‘Management data (PS)” database, data is stored
that is required for the performance of the Partner Selector
and that is provided by the Contracting Manager (e.g., par-
ties to be considered). Evaluations from previous business
relations are stored by the Contracting Manager in the
Evaluations database. These two databases implement
the ‘‘Abstract data repository”. style to reduce coupling
between the Partner Selector and Contracting Manager
components (possibly developed in isolation). The Selec-
tion Rules database contains the rules for selection (defined
via the Definition UI).

5.2.2. Selector component

The Selector component obtains the set of potential
partners (discovered by the Matchmaker) from the ‘‘Man-
agement Data” database. Based on evaluations stored in
the Evaluations database (see Section 5.1), the internal
rules, and on the information provided by the Match-
maker, the Selector attempts to nominate a ‘‘winning”

partner (or a set of ‘‘winners”). If the information is not
sufficient or not up-to-date, the Selector requests the Infor-
mation Collector for collection of additional information.
The Selector implements functionalities that are typical
for a Decision Support System. Decision Support Systems
have received sufficient attention in the research world and
a number of commercial systems for development of rule-
based applications are available (e.g. ILOG, 2006; Savvion,
Fig. 9. Decomposition of the Partner Selector component.
2006). Therefore, the Selector component is not further
decomposed in this paper.

5.2.3. Information Collector component

In many scenarios, the information available internally
and the information discovered by the Matchmaker may
be insufficient for nominating a ‘‘winning” partner. For
example, the Matchmaker might have identified a match-
ing offer but with no price information. Furthermore, guar-
antees, credentials, up-to-date offers, general provisions,
etc. may be required for the choice of a partner with whom
to start negotiating a contract. The Information Collector
is responsible for collecting additional information for a
specific partner. The information may be obtained from
Trusted Third Parties (e.g., chambers of commerce),
trusted business partners, or the potential partner-com-
pany itself. In certain business domains, the Information
Collector may stage a tender auction for collecting of offers
from potential partners. The Matchmaker component is
responsible for providing information on requests arriving
from the Information Collectors of other parties.

5.2.4. Definition UI (PS) component

The Definition User Interface of the Partner Selector
allows users to define the rules for the selection of the
potential partners. It uses data from the Management data
(PS) on the offered/required products and services for the
rule definitions (e.g., for a certain product speed may be
of higher importance than costs).

5.3. Decomposition of the Contractor component

The Contractor component supports the execution of
the activities in the contracting phase. In Table 1, the con-
tracting phase is decomposed into two abstract activities,
i.e., ‘‘Negotiation”, and ‘‘Signing and storing”. Conse-
quently, we define the Negotiator and Contract Finalizer
sub-components to support these sub-activities (see
Fig. 10).

5.3.1. Negotiator component

The Negotiator component supports negotiations on the
values to be exchanged, the e-contract content, non-agreed
updates of e-contracts, or other negotiable topics. The
Negotiator has access to a set of rules that define the com-
pany policies for negotiation, contract templates, etc. If the
Partner Selector provides a set of ‘‘partner candidates”, the
Negotiator will have to start multiple negotiations threats,
looking for the best trading opportunity. Depending on the
context, the Negotiator component may have to implement
a complex functionality that will often require high degree
of flexibility. In Beam and Segev (1997), a comprehensive
survey on the existing research results on this topic is pre-
sented. In Jennings et al. (2000), an architecture of a nego-
tiation component named Interaction Management
Module (IMM) is presented. It can be used for further
decomposition of the Negotiator component.



Fig. 10. Decomposition of the Contractor component.

1828 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
5.3.2. Contract Finalizer (CF) component

When an e-contract (or an update of an e-contract) is
agreed upon, the Contract Finalizer arranges the establish-
ment of the e-contract and its storing. It implements a
mechanism that guarantees the signing of the agreed e-con-
tract by all parties (e.g., via an e-notary). When the e-con-
tract is signed by all parties and all parties possess a copy of
the e-contract, the CF stores the e-contract internally (in
the MC/SA component) and distributes it to the mediators
involved in the contract enactment, e.g., to contract enact-
ment monitors, arbitrators, trusted updaters (Angelov
et al., 2005). At the end, it informs the Contracting Man-
ager for the final result.

5.3.3. Definition UI (C) component

The Definition User Interface (C) allows users to define
negotiation rules and strategies for the establishment of an
e-contract. It uses the clauses and rules defined via the DUI
of the Contracting Manager and stored in the Management
data (C).

5.3.4. MC/SA, Negotiation rules, Management data (C)

components

In the MC/SA database, original contracts (named Mas-
ter Contracts) or their updates (named Subsidiary Arrange-
ments) are stored. The ‘‘Negotiation rules” and
‘‘Management data (C)” databases provide data storage
functionalities analogous to the databases discussed in
the Partner Selector component (see Section 5.2).
5.4. Decomposition of the Enactor component

In the decomposition of the e-contracting process model
presented in Table 1, four abstract activities during e-con-
tract enactment are identified, i.e., value exchange, moni-
toring and control, dispute resolution, and evaluation
activities. The support of the evaluation activity is provided
by the Evaluator sub-component in the Contracting Man-
ager. To support the monitoring and control activities, the
External Enactment Server and Data Manager sub-compo-
nents of the Enactor component are defined. To support
the dispute resolution activities the Dispute Handler is
defined. The support for the value exchange activity is pro-
vided by the Internal Enactor component that is part of the
‘‘internal” enterprise information systems (shown in grey
color in Fig. 11). The Internal Enactor represents the infor-
mation system that supports the execution of business pro-
cesses related to the value delivery agreed in the e-contract.
The Internal Enactor can already be in place before the
introduction of an e-contracting system in a company (an
example of an Internal Enactor is a workflow management
system). As in the Contracting Manager, the Enactment
Mapper and Internal Broker components address the inter-
operability quality (see Section 2.2).

5.4.1. Data Manager (DM) component

The Data Manager component supports the manage-
ment of contract related data during e-contract enactment.
In an e-contract, parties agree on certain rules for updating



Fig. 11. Decomposition of the Enactor component.

S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1829
some of the contract data and for exchanging its new val-
ues (Angelov et al., 2005). During e-contract establishment,
data items that may have their values updated are assigned
initial values that are agreed upon by the parties at the time
of contract establishment (could be a null value as well).
We denote this type of data as External Contract Data
items (ECD). As the new values of ECD items are not part
of the agreement, these new values are stored externally of
the contract (hence their name). An example for an ECD
item is an ‘‘event data item”. In the e-contract, the parties
agree the occurrence of the event to be reported by one of
the parties. Upon its occurrence, the responsible party
informs the counterparty that the event data item status
has changed from ‘‘not-occurred” to ‘‘occurred”. When a
request for an update of an ECD occurs, the Data Man-
ager verifies if the requester is allowed to update the value
of this data element. If the verification result is positive, the
Data Manager updates the value and informs the Internal
Enactor (via the Enactment Mapper and Internal Broker)
and if required – the counterparty (push monitoring). On
request from the counterparty, the Data Manager can pro-
vide information on the current values of the ECD (pull
monitoring).

5.4.2. External Enactment Server (EES) component

The External Enactment Server component manages the
e-contract enactment. Based on the interpretation of the e-
contract, current state of the enactment process and ECD,
and the defined internal business rules, it schedules and
starts the execution of activities agreed in the e-contract.
In case a contract violation is detected and the EES esti-
mates that the violation must be addressed, it sends a
request to the Dispute Handler (the EES might purposely
postpone or omit a call for contract violation). To maintain
high level of awareness, the EES can request information
from the counterparty on the current value of certain data
items (through the DM). The EES can make a decision to
purposely violate the e-contract enactment (when the ben-
efits will be higher than the losses), to terminate the e-con-
tract enactment, or to request re-negotiation of the
e-contract. When one of these decisions is taken, the Con-
tracting Manager is informed. Clearly, the EES must sup-
port rather complex (in terms of business intelligence)
functionalities.

The Enactment Server manages the global contracting
process (see Section 5.1). As the ES has a global view over
the contractual relationships of a company, it has higher
level of awareness and may instruct the EES to termi-
nate/suspend/resume the contract enactment even if the
EES does not estimate this as necessary.

For decomposition of the EES, two components, part
of an agent-based contracting architecture presented in
Jennings et al. (2000) can be used. The first component
is called Service Execution Module (SEM) and provides
support for triggering, suspending, resuming, and termi-
nating activities agreed in the e-contract. It handles



1830 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
‘‘low-level exceptions” as well (e.g., attempting corrections
by restarting a failed task). The second component is
called Situation Assessment Module (SAM) and provides
support for monitoring the state of an e-contract and
selecting and scheduling of activities to be performed
(communicated to SEM). SAM must be extended to sup-
port collection of data from the counterparties. SAM may
be extended with a user interface for manual handling of
exceptions.
5.4.3. Dispute Handler component

The Dispute Handler component provides support for
handling disagreements that have occurred during the e-
contract enactment. Based on the information provided
by the External Enactment Server, it attempts to identify
the cause for the dispute and to resolve it. If re-negotiation
is necessary, the Contracting Manager is informed. If reso-
lution is not possible, an external Arbitrator is informed.
The result of the dispute resolution is returned to the Exter-
nal Enactment Server.
5.4.4. ECD, Enactment rules, Management data (E)

components

The ‘‘ECD” database contains the past and current val-
ues of the External Contract Data items. The ‘‘Enactment
rules” and ‘‘Management data (E)” databases provide data
Fig. 12. Decomposition of the S
storage functionalities analogous to the databases dis-
cussed in the Partner Selector component (see Section 5.2).
5.4.5. Enactment Mapper, Internal Broker components
The Enactment Mapper component is used to address the

interoperability system quality discussed in Section 2.2. The
Enactment Mapper component provides ‘‘passive” and
‘‘intelligent” mapping between data and process specifica-
tions used in the Enactor and data and process specifications
used at the internal level. Passive mapping is a one-to-one
mapping between two data/process items that have different
names at the internal and external levels. Intelligent mapping
is used for mapping of one data/process item from the exter-
nal level to several data/process items from the internal level.
Intelligent mapping might require processing of the mapped
data. Rules for applying intelligent mapping techniques on
process specifications are discussed in (Zdravkovic and Kab-
ilan, 2005). The Enactment Mapper receives the data
intended for the Internal Enactor from the Data Manager
(or from the EES in the cases of process invocation) and
delivers the data provided by the Internal Enactor back to
the Data Manager. Besides, the Internal Enactor, other
internal systems may require data from the Enactor. For
example, a company may have a financial system that can
provide information for received/performed payment
related to a contract. To improve decoupling between the
ecure Messenger component.



S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1831
enactor and internal systems, we introduce the Internal Bro-
ker (analogously to Section 5.1).

5.4.6. Definition UI (E) component

The Definition User Interface for the Enactor allows
users to define rules for the contract enactment (e.g., rules
stating when a contract may be violated, rules for tolerance
of partner misbehavior).

5.5. Decomposition of the Secure Messenger component

As defined in Section 4, the Secure Messenger must pro-
vide five basic functionalities, i.e., encryption/decryption
(to address the ‘‘encryption” security quality discussed in
Section 2.2), sender authentication (to address the ‘‘authen-
tication” and ‘‘non-repudiation” security qualities), mes-
sage integrity verification (to address the ‘‘integrity”

security quality), mapping, and process monitoring func-
tionalities. Consequently, five sub-components of the
Secure Messenger are defined, i.e., the Cryptographer,
Authenticator, Message Verifier, External Mapper, and
Communication Monitor components (see Fig. 12).

5.5.1. Cryptographer component

The Cryptographer receives all incoming messages. If an
incoming message is encrypted, the Cryptographer
decrypts it. Outgoing messages (sent by the Authenticator)
are encrypted by the Cryptographer (if necessary) and sent
to the external recipient. Messages that cannot be
decrypted are stored in the ‘‘Management data (SM)” data-
base. This information is to be used by the Evaluator sub-
component (discussed in Section 5.1).

5.5.2. Authenticator component

The Authenticator component authenticates the identity
of message senders. The authentication method should also
guarantee non-repudiation from the message authorship.
For outgoing messages, the Authenticator applies tech-
niques to ensure that receivers will be able to authenticate
(in a non-repudiate way) the company as the sender. The
Authenticator may request information from external par-
ties that will allow it to verify sender’s authenticity (e.g., a
certificates from a Certificate Authority). Information for
non-authenticated messages is stored in the ‘‘Management
data (SM)” database for evaluation purposes.

5.5.3. Message Verifier component
The Message Verifier checks incoming messages for

integrity. Information for messages that fail the verification
process is stored in the ‘‘Management data (SM)” database
for evaluation purposes.

5.5.4. External Mapper component

Contracting parties may use different message schemas
for their messages (e.g., a ‘‘request for offer” message can
be described as a ‘‘request for quotation” as well). The
External Mapper performs bidirectional mapping of the
descriptions used by counterparties and the descriptions
used by the e-contracting system.

5.5.5. Communication Monitor (CmM) component

In Angelov and Grefen (2004a), it is shown that e-con-
tracting processes can be defined in a fixed, structured man-
ner or in non-structured, rule-based manner (allowing
greater flexibility to companies). In both scenarios, there
is a specification of the communication activities that can
be performed by the parties at any moment.

The Communication Monitor component verifies if
incoming and outgoing messages comply with the agreed
e-contracting communication process and applicable rules.
If a message is disapproved, the CmM stores information
about the sender and the rejected message (information to
be used by the Evaluator in the Contracting Manager). Out-
going messages from any component of the e-contracting
architecture are sent to the CmM and if approved are for-
warded to the External Mapper. The CmM keeps the Con-
tracting Manager informed of the current state of the
communication activities performed by the parties. The
CmM obtains the process and rule specifications provided
by the Contracting Manager via the Management data
(SM) database.

The sub-components of the Secure Messenger operate
in a sequential mode. For each incoming message, a com-
ponent receives data, processes it, and sends the resulting
data to the next component in a strict, unidirectional
sequence. For each outgoing message, the components
(except for the Message Verifier) again perform their
functionalities sequentially but in a reversed order. For
this reason, as shown in Fig. 12, the decomposition of
the Secure Messenger follows the ‘‘Bidirectional batch
sequential” architectural style (Bass et al., 2003). The
identified sub-components serve as passive filters, i.e.,
the data is pushed to a component by its preceding com-
ponent. The batch-sequential style can affect system per-
formance (Bass et al., 2003). This problem has to be
addressed in the concurrency view (Rozanski and Woods,
2005) of an e-contracting architecture (e.g., by implement-
ing the ‘‘concurrent pipelines” style (Klein and Kazman,
1999)).

6. Third level of decomposition of ERA

This section contains description of the decomposition
of a number of components of ERA at the third level of
detail. As already discussed, for many components at the
second level of detail, either existing design patterns can
be used for their implementation or existing reference
architectures can be used for their further decomposition.
For example, the Enactment Server can be further decom-
posed based on the ‘‘WF Server” component in the Refer-
ence Architecture for Workflow Management Systems (see
Section 5.1). That is why, next, decomposition solely of the
Contract Finalizer, Dispute Handler, and Data Manager
components is provided.



Fig. 13. Decomposition of the Contract Finalizer component.

1832 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
6.1. Decomposition of the Contract Finalizer component

As already explained, the Contract Finalizer supports
the signing of the agreed contract, its storing and option-
ally distribution to other mediators. Hence, the Contract
Finalizer is decomposed into Contract Establisher, Signer,
and Contract Distributor components (see Fig. 13).

6.1.1. Contract Establisher (CE) component

The Contract Establisher receives from the Negotiator
an e-contract (or a subsidiary arrangement) that was
agreed upon by the parties. The Contract Establisher
implements a mechanism that guarantees the signing of
the e-contract by all parties. An example mechanism that
makes use of an e-notary is discussed in Angelov et al.
(2005). For the signing of the e-contract, the CE can make
use of a Signer component (discussed next).

6.1.2. Signer component

The Signer signs agreed e-contracts. Digital signatures
are a common technique for signing of electronic docu-
Fig. 14. Decomposition of the D
ments. The signing of an e-contract means for a company
acceptance of certain obligations. This makes contract
establishment a highly important activity from a security
point of view.

6.1.3. Contract Distributor component

The Contract Distributor receives from the Contract
Establisher an e-contract signed by all parties. The Con-
tract Distributor stores the e-contract in the MC/SA data
component and can optionally distribute it to mediators
that are involved in the e-contract enactment. The media-
tors that must obtain a copy of the e-contract are provided
by the Negotiator and/or the Contracting Manager.

6.2. Decomposition of the Dispute Handler component

As discussed in Milosevic et al. (2002), resolution of dis-
putes can be automated to a certain extend. The Dispute
Handler component provides support for handling of
occurring disputes between contracting parties. Based on
current contracting practices (Angelov, 2007a), and
ispute Handler component.



S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1833
research results for automated dispute resolution (Milos-
evic et al., 2002) two subcomponents of the Dispute Han-
dler can be defined, i.e., the Dispute Resolution Manager
and the Direct Data Synchronizer (see Fig. 14).
6.2.1. Dispute Resolution Manager (DRM) component

The Dispute Resolution Manager component manages
the resolution of e-contract disputes. The Dispute Resolu-
tion Manager resolves disputes in an escalation manner.
When it receives information for a dispute from the Exter-
nal Enactment Server component, first, it attempts resolu-
tion of the conflict by comparing the ECD available at the
e-contracting parties. The reason for the dispute might be
for example a failed update of local data or not sent/
received information for data update. For this step, it
invokes the Direct Data Synchronizer component
(explained below). If there is no synchronization problem
or there is no agreement on the synchronization, the
DRM requests resolution of the dispute through negotia-
tions (to be performed by the Negotiator component).
The DRM sends a request for negotiations to the Contract-
ing Manager and waits for the result. If the Negotiator
fails, the DRM provides the dispute case to an external
Arbitrator that enforces a resolution of the dispute on
the contracting parties. Depending on the situation, the
DRM can skip the first and/or second steps in the dispute
resolution process. The result of the dispute resolution is
returned to the External Enactment Server component.
6.2.2. Direct Data Synchronizer (DDS) component

The Direct Data Synchronizer performs comparison of
the ECD available locally and at the counterparty. First,
it requests from the counterparty its ECD data. Next, it
compares the received data and the local ECD data. If dif-
ferences are found, the DDS sends a request for update of
the differing data items to the counterparty. The request for
update contains the differing ECD data items and their
Fig. 15. Decomposition of the
local values. The counterparty can respond with an accep-
tance or rejection of the suggested changes.
6.3. Decomposition of the Data Manager component

The Data Manager component provides three basic
functionalities. It notifies external parties and the Internal
Enactor for data updates. It verifies if a request (internal
or external) for update of ECD is correct. When a request
for update is approved, it performs an update on the ECD.
The Data Update Notifier, Verifier, and Updater compo-
nents are defined to address these functional requirements
(see Fig. 15).
6.3.1. Verifier component

The Verifier component receives requests for update of
ECD. Requests can be from the counterparty, the Internal
Enactor (via the Enactment Mapper), or the External
Enactment Server. When a request for ECD update is
received and approved by the Verifier, the Verifier forwards
the change that has to be applied to the Updater and the
Data Update Notifier. Rejected update requests are stored
(for evaluation purposes) and the requester of the update is
informed for the rejection. The Verifier sends/receives
requests to/from the counterparty for information on the
status of certain ECD agreed for monitoring.
6.3.2. Updater component

The Updater component is responsible for accessing and
modifying the ECD. On request by the Verifier, it updates
the ECD.
6.3.3. Data Update Notifier (DUN) component

The Data Update Notifier receives information from the
Verifier for an approved update and sends an information
message to the counterparty or/and to the Internal Enactor
(via the Enactment Mapper). The DUN is used also for
Data Manager component.



Table 2
Support in ERA for the e-contracting phases

Phases First level components

Information Matchmaker
Pre-contracting Partner Selector
Contracting Contractor
Enactment Enactor

Table 3
Support in ERA for the e-contracting abstract activities

Abstract activities Second level components

Partner information Information collector
Offer Information collector
Partner selection Selector
Negotiation Negotiator
Signing and storing Contract Finalizer
Value exchange Internal Enactor
Monitor and control External Enactment Server and Data Manager
Dispute resolution Dispute Handler
Evaluation Evaluator

1834 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
sending of responses on monitoring requests from the
counterparty.

In Sections 4–6, we provided a description of ERA. We
started from a high level of abstraction and via functional
decomposition we reached a level at which based on exist-
ing research and implementation experience components
can be further decomposed or even directly implemented.
Next, in Section 7, we evaluate ERA.

7. Evaluation of ERA

An evaluation of an architecture helps identifying the
strong and weak aspects of the architecture and gives an
indication for the success of the system development and
implementation processes. A reference architecture serves
as a guiding tool for many projects taking place in diverse
contexts. Thus, its evaluation prior to its adoption by the
stakeholders is of even greater importance. Furthermore,
a strong positive evaluation of a reference architecture is
an incentive for its wider adoption.

Literature provides a set of methods that can be used to
evaluate architectural qualities. Brief summaries and com-
parison of the most popular methods can be found in
Babar and Gorton (2004) and Ionita et al. (2002). To the
best of our knowledge, there are no methods dedicated to
the holistic evaluation of reference architectures. For the
evaluation of the completeness, modifiability, interoperabil-

ity, integrability, security, and flexibility qualities of ERA,
we adapted an existing method and applied it for evalua-
tion of concrete architectures. For the evaluation of the
applicability, usability, feasibility, and automation qualities,
we used classical, reasoning techniques.

Next, we provide our results from the evaluation of the
completeness, applicability, usability, feasibility, automa-
tion, modifiability, interoperability, integrability, security,
and flexibility qualities. As we use one method for the eval-
uation of the modifiability, interoperability, integrability,
security, and flexibility qualities, their evaluation is
described in one subsection.

7.1. Functional completeness of ERA

In this section, we present our results from the evalua-
tion of ERA in terms of functional completeness of
ERA. Use of scenarios is the commonly accepted way for
evaluation of completeness of an architecture. For exam-
ple, the Software Architecture Analysis Method (SAAM)
(Bass et al., 2003) is a well-known, scenario-based method
to evaluate architectures in terms of completeness and
modifiability. Because of the high importance of the func-
tional completeness quality in ERA, we approach the prob-
lem in two different, complementary ways, i.e., theoretical
and empirical (scenario-based).

7.1.1. Theoretical evaluation of ERA for completeness
We use two conceptual models to evaluate ERA for

completeness. The first model describes the contracting
activities that an e-contracting system should support. It
has already been presented in Section 2.1 and had a leading
role in the construction of ERA. Next, we briefly control
compliance of ERA with this model.

The main ERA components are defined based on the
high-level decomposition of the e-contracting process (see
Section 4). In Table 2, we list the e-contracting phases to
which an e-contracting process is decomposed in the left
column. The ERA components that support these phases
are listed in the right column.

In Table 3, we present the mapping between abstract
activities (decomposition of the e-contracting phases) and
ERA components from the second level of abstraction.
As the Matchmaker is not decomposed in ERA, we omit
the abstract activities from the information phase.

As it can be seen, ERA provides support for each
abstract activity in its design. We stop the analysis of sup-
port for e-contracting activities in ERA at this level due to
the fact that only few components were decomposed at a
third level of detail (i.e., only components whose complex-
ity presents an implementation challenge and no reference
architectures exist for their further decomposition).

Next, for evaluation of completeness of ERA, we used a
model that defines the fundamental e-contracting concepts.
Evaluating the extent to which ERA provides functional-
ities for the support of the e-contracting concept serves as
an additional indication for completeness of ERA. We ana-
lyzed ERA from the perspective of the ‘‘4W e-contracting
framework” (Angelov and Grefen, 2003b), which com-
pared to other contracting frameworks (e.g., Greunz
et al., 2000; Griffel et al., 1998) provides higher level of
detail and covers a larger set of concepts (Angelov and
Grefen, 2003b). To familiarize the reader with the ‘‘4W e-
contracting framework”, we provide a brief summary of it.



S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1835
The central concept in the 4W e-contracting framework
is the contract concept. At the highest level of abstraction,
the contract concept is associated with four basic concepts,
i.e., the Who, Where, What, and HoW concepts. The Who
concept models the actors that participate in the contract
establishment and enactment. The Where concept models
the context of the contract. The What concept models the
exchanged values and the exchange description. The HoW

concept relates to the means for contract establishment
and enactment. These four general concepts are decom-
posed as follows:

� The Who concept is decomposed into party, mediator,
and sub-contractor concepts.
� The Where concept is decomposed into business, legal,

and geographical context concepts.
� The What concept is decomposed into the product, ser-

vice, financial reward, and exchange description concepts.
� The HoW concept is decomposed into the contracting

phase (information, pre-contracting, contracting, and
enactment), contract representation, contract structure,

communication, security, and standard concepts.

Next, we analyze ERA in terms of support for each of
the listed e-contracting concepts.

Who. ERA allows contracting between two or more
contracting parties. Furthermore, ERA allows the involve-
ment of an unlimited number of mediators (see Fig. 2) and
explicitly defines components that collaborate with a num-
ber of mediators (Certificate Authorities, E-notaries, etc.).
As sub-contractors are a special class of contracting parties,
we conclude that ERA allows the involvement of all actors
related to e-contracting.

Where. The legal context of the contracting relation is
defined by the governing law, general provisions, and
umbrella contracts. The business context is defined by the
partner companies and internal business strategies. The
legal and business contexts are reflected in ERA by the
‘‘Knowledge Updater” and a set of user interface compo-
nents that allow the maintenance of an up-to-date knowl-
edge with respect to the business and legal environments.

What. The exchanged values (products, services, financial

rewards) and the descriptions for their exchange are defined
in the e-contract. The request/offer for a service/product is
provided by the Internal Planner, the processes that are
supported are provided by the Internal Enactor, and the
descriptions for the value exchange are defined via the Def-
inition UI and Design components. The e-contract is estab-
lished in the Contractor component and is used by the
Enactor component. E-contracts are stored in the MC/
SA active data component.

HoW. ERA addresses in its design all four phases of e-

contracting. Communications between parties and media-
tors are depicted through communication channels. The
security quality on an e-contracting system are addressed
by the Secure Messenger and Signer components. As
explained in Section 2.2, basic security issues like user
authorization and access control are not addressed in
ERA. The standards used by the parties are provided by
different mediators and can be obtained by the Knowledge
Updater. The mapping components introduced in ERA
provide mappings between different standards. The e-con-
tract is established in a format agreed by the parties during
the negotiation process. The Control UI subcomponent of
the Contracting Manager can produce human-readable
representation of e-contracts.

7.1.2. Empirical evaluation of ERA for completeness

As part of the evaluation of ERA, we conducted several
meetings with potential users of ERA (see Section 7.6.1 for
details). An important part in these meetings was genera-
tion of use-case scenarios that ERA should address. The
results from these discussions confirmed the need for the
functionalities identified in our theoretical approach. Fur-
thermore, stakeholders suggested a number of scenarios
which required automation of the maintenance of up-to-
date knowledge in the Contracting Manager. Their com-
ments lead us to the definition of the Knowledge Updater
component (see Section 5.1). In the initial versions of
ERA, the functionalities of the KU were delegated to
humans.

In Section 7.2, we discuss the application of ERA for the
analysis of existing contracting architectures. Results from
this section also demonstrate that ERA addresses the func-
tionalities defined in existing, concrete architectures.

7.2. Applicability of ERA

In this section, we discuss the applicability quality of
ERA. We compare the functionalities supported in ERA
to the functionalities addressed in existing, domain-inde-
pendent, commercial and academic architectures. This
comparison allows us to demonstrate the applicability of
ERA as an analytical tool.

First, we discuss the architectures of two commercial e-
contracting systems, i.e., Oracle Contracts and Contracto
and compare their functionalities to the functionalities pro-
vided by ERA. Oracle Contracts being one of the largest
existing contracting applications was chosen for its com-
plexity and size. Contracto was chosen as an example for
a small contracting application. Next, we compare the
functionalities defined in ERA to the functionalities defined
in e-contracting architectures designed in the academia. A
number of conceptual e-contracting architectures have
been defined in the research world. Many of them incorpo-
rate specific technology choices. For example, (Ludwig
et al., 2004) concentrates on contracting of Web Services
and (Jennings et al., 2000) discusses contracting between
software agents for support of workflows. A discussion
on the system functionalities required for e-contracting in
general settings is presented in the scope of the COSMOS
project (Griffel et al., 1998; Merz et al., 1998). However,
the publications that resulted from this project did not
address the design of an e-contracting architecture. Three



Table 4
Mapping of OES contracting packages to ERA

OES packages

iS M PM Q OM S CER CTL

ERA
components

M Publish � � �
Search � �

PS information �
Offer � �
Selection

C Negotiate � � �
Sign & store �

E Exchange
Mon.&cont.
Dispute
Evaluate

CM Manage �

1836 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
existing conceptual architectures for e-contracting deserve
closer attention (i.e., Boulmakoul and Salle, 2002; Hoffner
et al., 2001b; Milosevic and Bond, 1995). These architec-
tures aim at automated support of e-contracting in general,
technology-independent scenarios. For this reason we com-
pare ERA to these three architectures.

7.2.1. Oracle contracts and ERA

A set of applications for the support of business pro-
cesses and data management in enterprises is provided in
the Oracle E-Business Suite (OES) (Oracle, 2006). The
OES contains four dedicated applications for contracting
support, i.e., Sales Contracts, Service Contracts, Project
Contracts, and Procurement Contracts. An important
characteristic of these applications is that they require sig-
nificant human participation. The differences between them
are mostly in the supported, pre-defined contracting sce-
narios, as well as in the types of contracts the applications
can interpret. In this section, we concentrate on the Sales
Contracts application and the contracting-related applica-
tions integrated with it. The comparison of the other three
contracting applications to ERA leads to similar
conclusions.

The Sales Contracts application (S) supports the crea-
tion of contracts for sales of products. It can receive an
offer from the Oracle Quoting application (Q) or an order
from the Oracle Order Management application (OM). In
both cases, Sales Contracts is used for elaboration of the
contract content and its approval by the counterparty.
The Oracle Quoting application is used for the elaboration
of quotes (offers). It is integrated with the iStore applica-
tion (iS). The iStore serves as a digital catalogue/shop
where the company can publish its products/services.

OES has a couple of applications indirectly related to
the Oracle Sales Contracts. The Oracle Marketing applica-
tion (M) supports marketing of products and services. Ora-
cle Marketing is integrated with iStore. The Oracle Partner
Management (PM) application supports maintenance of
partners’ information. PM can be used by external partners
as a match-making engine as well.

The iStore application supports local advertising and
matching functionalities of the Matchmaker in ERA. The
Oracle Marketing application addresses the external adver-
tising functionality of the Matchmaker. The Oracle Partner
Management serves as an advanced external Matchmaker
(can be seen as a mediator in ERA). It supports external
companies in maintaining their profiles and ‘‘matching”
them with other companies registered in OPM. Thus, the
Matchmaker is implemented by Oracle through the iStore
and the Oracle Marketing applications. In addition, the
PM application is provided to serve as an external Match-
maker for companies that do not implement locally a
Matchmaker. This significant attention on the support of
the functionalities of the Matchmaker is due to the practi-
cal experience accumulated in the recent years with this
type of applications (as discussed in Section 5). The Oracle
Sales Contracts application can be mapped to the Contrac-
tor component in ERA. Oracle Sales Contracts uses two
‘‘supporting” applications, i.e., the Contract Expert Rules
and Contract Terms Library, which store information
equivalent to the information stored in the ‘‘Negotiation
rules” and ‘‘Management data (C)” sub-components of
the Contractor. The Oracle Order Management application
provides automation of the management of the order life-
cycle. The automation is based on a workflow management
system implemented at a lower level of the Oracle architec-
ture. The Oracle Order Management provides support for
functionalities of the Contracting Manager in ERA. How-
ever, the Oracle Order Management does not cover the
complete e-contracting life-cycle. In Table 4, we visualize
the mapping of OES contracting components to the com-
ponents of ERA and the functionalities they support (as
defined in Table 1). However, the reader should bear in
mind that this visualization is not precise, as often a pack-
age addresses functionalities defined in ERA but does not
fully support them (e.g., the Order Management package).

From the brief comparison between the contract related
applications in OES and ERA, it can be seen that OES
does not have complete e-contracting functionalities. OES
does not provide functionalities for the evaluation of the
best potential partner (part of the Partner Selector in
ERA). It does not support management of the complete
contracting process but only the process of order creation
and contract finalizing. Finally, OES does not support
the functionalities of the Enactor component.
7.2.2. Contracto and ERA

The Contracto software (Contracto, 2006) aims at sup-
porting contract management processes in a company. In
contrast to OES (see Section 7.2.1), Contracto constitutes
of one application. In this application users can have a
‘‘global view” on their contractual relationships and a
‘‘concrete view” on specific contracts. Contracto allows
users to associate contracts with attributes (starting date,
status, etc.). Based on these attributes, it can in a limited
way monitor the contracting relations and notify users
for problems, deadlines, etc. Contracto allows definition



Table 5
Mapping of Contracto, BCF, HP, CrossFlow architectures to ERA

Contracto BCF HP CrossFlow

ERA
components

M Publish �
Search �

PS Information �
Offer �
Selection �

C Negotiate � � �
Sign & store � �

E Exchange � �
Mon. &
cont.

� � �

Dispute � �
Evaluate

CM Manage � �

S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1837
of contracting activities as well. However, relations
between activities cannot be defined. Consequently, the
contracting process is managed manually. Contracto
allows users to maintain detailed information about former
and potential future partners.

Thus, Contracto provides limited support for only two
ERA components, i.e., the Contracting Manager and Part-
ner Selector components. However, Contracto provides
mainly user interfaces for data representation, while the
main functionalities of the Contracting Manager and Part-
ner Selector are performed manually. Table 5 presents a
mapping between the functionalities addressed in Con-
tracto and the functionalities delegated to the ERA compo-
nents. We stress again on the fact that due to the different
levels of support for a functionality, this visualization is not
precise and is used only to depict the general picture.

As discussed in Section 2.1, contract management is
directly linked to each of the four contracting phases. Thus,
to support contracting management, Contracto incorpo-
rates in its design functionalities required for the support
of the e-contracting phases (e.g., selection of partners)
and concepts from these phases (e.g., status of the contract
negotiation). However, this combination of concepts and
functionalities from different e-contracting phases in a sin-
gle application indicates lack of separation of concerns
during system design. Complexity of future improvements
and extensions to Contracto will constantly grow as
changes will have to be applied on the complete application
rather than on specific modules. Contracto does not offer
any support for integration with other applications, i.e.,
interoperability is not addressed in the design of Contracto
and is an indication for another weakness in its design.
7.2.3. The Business Contract Framework

The first academic effort for design of an e-contracting
architecture (called BCF – Business Contract Framework)
is described in Milosevic and Bond (1995). In subsequent
publications from this research group, (e.g., Quirchmayr
et al., 2002), it is renamed to BCA (Business Contract
Architecture). However, the model does not undergo sig-
nificant changes. BCF can be compared to certain compo-
nents in ERA. BCF defines a Contract Negotiator and
Contract Validator components. These two components
can be seen as sub-components of the Negotiator in
ERA. The Contract Monitoring and Contract Enforcer
components are defined in BCF for the support of contract
monitoring and dispute handling. These two components
are comparable to the External Enactment Server and Dis-
pute Handler in ERA, respectively. However, in ERA, the
EES supports a larger set of functionalities, which are miss-
ing in BCF. Mediators like arbitrators, e-notaries, and
legal/standard repositories (e.g., contract templates) are
addressed in both BCF and ERA. Table 5 shows the map-
ping between the functionalities addressed in BCF and the
functionalities delegated to the ERA components. In con-
clusion, BCF provides an incomplete representation of
the functionalities of an e-contracting system. The main
reason for this is the lack at that time of a comprehensive
understanding of the e-contracting process and e-contract.

7.2.4. HP e-contracting architecture

The architecture of the e-contracting system presented in
Boulmakoul and Salle (2002) is separated into two parts,
namely contract establishment and contract enactment
parts.

The contract establishment part comprises a Negotia-
tion Engine component, User Interface component and
Persistent Store. The Negotiation Engine is equivalent to
the Contractor component in ERA. It stores all exchanged
contract proposals in the Persistent Store component
(equivalent to ‘‘Management data (C)”).

The contract enactment part comprises the Contract
Fulfillment Protocol Manager (CFPM), Reasoner, Sched-
uler, Contract repository, and Fulfillment components.
This part of the architecture can be compared with the
decomposition of the Enactor and Secure Messenger com-
ponents in ERA. The CFPM has similar functionalities as
the Communication Monitor component in ERA (see Sec-
tion 5.5). The Reasoner and Scheduler provide the same
functionalities as the External Enactment Server compo-
nent in ERA (see Section 5.4). In addition, the Reasoner
supports communications on contract violations and
exchanged enactment information. In ERA, these function-
alities are outsourced to the Dispute Handler and Data
Manager, respectively. This contributes for higher modifi-
ability of ERA and clearer functionality specification.
The Contract repository and the Fulfillment components
are equivalent to the MC/SA and Enactment Mapper com-
ponents, respectively. Thus, the contract enactment part
can be seen as similar to the decomposition of the Enactor
component in ERA. It misses detailed specification of data
management issues (presented in the third level of decom-
position of ERA).

The HP architecture does not address management
functionalities (provided by the Contracting Manager in
ERA). Furthermore, it misses the functionalities supported
by the Matchmaker and Partner Selector components in



1838 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
ERA. Again, Table 5 summarizes our findings on the rela-
tion between the functionalities discussed in the architec-
ture of HP and the functionalities defined in ERA.

7.2.5. Crossflow e-contracting architecture

In the CrossFlow project (Hoffner et al., 2001b), a
detailed architecture for the support of dynamic outsourc-
ing and contracting is defined. Similar to the HP e-con-
tracting architecture (see Section 7.2.4), the CrossFlow
architecture is divided into two main parts, i.e., contract
establishment and contract enactment parts.

The first part of the architecture describes the function-
alities required for contract establishment. In CrossFlow,
the Matchmaker is external for both parties. The Contract-
ing Manager component in CrossFlow implements deci-
sion making, negotiation, contract establishment, and
contract management functionalities. It can be seen as an
aggregation of the functionalities supported by the Partner
Selector, Contractor, and part of the Contracting Manager
components in ERA. The aggregation of functionalities
leads to decreased modifiability of the architecture.

The second part of the CrossFlow architecture supports
contract enactment functionalities. The configuration of
the enactment components is supported by a dedicated
Configuration Manager (in ERA, this functionality is pro-
vided by the Enactment Server). It configures: a Proxy-
Gateway component that controls the incoming and outgo-
ing messages (implementing the Secure Messenger compo-
nent in ERA); a Coordinator component that is used to
connect the enactment components (similar to the Enact-
ment Server in ERA); Cooperation Support Services
(CSS) components that are used to control enactment pro-
cesses and monitor their quality (similar to the EES in
ERA). The modularity of the CSS allows new cooperation
services to be easily added to the architecture, which intro-
duces easier modifiability of the enactment architecture.
ERA can be extended in this direction through introducing
new sub-modules of the EES. In CrossFlow analogs of the
Evaluator, Dispute Handler, and Data Manager compo-
nents are missing. The CSS provide only part of the func-
tionalities of the EES, but are missing its main
functionality of steering the contractual relation in the
desired direction. The major reasons for this incomplete-
ness are the lack of advanced rule definitions in e-contracts
and the lack of explicit attention to the legal aspects of e-
contracts and to legal practices (digital signing, dispute res-
olution, contract updates are not addressed). However, as
it can be seen from Table 5, CrossFlow addresses the larg-
est set of functionalities that are defined in ERA.

7.3. Usability of ERA

We presented ERA to both IT and business profession-
als (see Section 7.6.1 for details). IT experts could easily
grasp the major functionalities specified in ERA and the
design principles of ERA. In a couple of hours, we man-
aged to explain all three levels of ERA. IT experts found
the level of detail satisfactory and could locate specific e-
contracting functionalities defined in ERA. After a brief
introduction, business professionals could fully compre-
hend the first level of ERA and the main aspects of the sec-
ond level (including advanced components like mappers).
Our experiments showed that ERA uses naming conven-
tions, notation, and structure that were understandable
by the stakeholders. Clearly, as these results were obtained
from a limited set of stakeholders, they can be considered
only as an indication for the usability quality of ERA.

7.4. Feasibility of ERA

Two fundamental architectural styles are used to achieve
conceptual integrity in ERA. On the first level of decompo-
sition the layered architectural style provides the overall
structure of the architecture (see Section 4). Processes in
ERA are coordinated by the Management layer. Diverse
contracting functionalities are provided by the Application
layer. The ‘‘Abstract Data Repository” style is used to pro-
vide a common way for data exchange between compo-
nents from different layers (see Sections 5.2–5.5).

Building a prototype will prove its buildability. On one
hand, the functionalities of certain components of ERA
have not yet been implemented in existing software appli-
cations. This means that there is no previous experience
and knowledge in their development (e.g., design patterns)
and algorithms for their operation still have to be defined.
Consequently, the easiness of the development of an e-con-
tracting system based on ERA cannot be directly evalu-
ated. On the other hand, functionalities provided by
other components of ERA have already been implemented
in existing software solutions. The applicability of these
existing software solutions for the development of an e-
contracting system can be used as a partial indication for
the buildability quality of ERA. A summary of the applica-
bility of existing software solutions for the development of
an e-contracting system is presented in Angelov and Grefen
(2003a). To directly evaluate the buildability quality of the
architecture a prototype implementation must be devel-
oped. Currently, we investigate the domain of on-line
advertising as a potential domain for implementation of a
deep e-contracting system based on ERA (Angelov and
Grefen, 2006).

7.5. Level of automation of ERA

ERA is aimed at facilitating the design of highly auto-

mated e-contracting systems. For this reason, in the decom-
position of its components, user interfaces are considered
only where external knowledge has to be manually intro-
duced to the system (rules, process specifications) or man-
ual handling of exceptions is required. In certain
e-contracting systems, a higher degree of human involve-
ment might be preferred. This may be incited by the need
to increase flexibility or to avoid costs for automation of
activities that can be performed cheaply manually. In these



S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1839
cases, components can be extended with or even directly
replaced by user interfaces that support humans in per-
forming the functionalities of the components. Thus, the
level of automation of an e-contracting system has to be
evaluated in the concrete design of an e-contracting system.
That is why we do not discuss this quality any further.

7.6. Modifiability, integrability, interoperability, security,

and flexibility qualities of ERA

The Architecture Tradeoff Analysis Method (ATAM)
(Clements et al., 2002) supports evaluation of a wide set
of qualities. It is considered to be very suitable for evalua-
tion of modifiability, integrability, and interoperability
qualities (Ionita et al., 2002). ATAM concentrates on the
relation between the architectural approaches used in an
architecture and the desired qualities, and investigates
potential sensitive or conflicting points (called ‘‘trade-off
points”). In this analysis, scenarios (as in SAAM) play a
vital role. Based on the analysis, conclusions are drawn
on the potentially problematic and positive aspects of the
architecture (risks and non-risks).

We used ATAM to evaluate ERA for the modifiability,
integrability, interoperability, security, and flexibility qual-
ities. Next, we provide a summary of our results from the
evaluation of ERA via ATAM. As ATAM is intended
for evaluation of concrete architectures and ERA is a ref-
erence architecture, we had to adapt ATAM in a number
of points for the evaluation of ERA. We explain the adap-
tations that we made to ATAM as well.

7.6.1. Following the steps of ATAM

As a first step, we elaborated a list of the architectural
approaches (styles, patterns, other reference architectures)
used in ERA. The list of approaches for the final version
of ERA is provided in Appendix B. Next, we elaborated
a utility tree that represents the expected qualities (see
Appendix A). The qualities are separated into two classes,
i.e. system and architecture qualities (as already explained
in Section 2). The qualities that were to be evaluated
through ATAM were decomposed to concrete scenarios.
Concrete scenarios were ranked for their importance and
for complexity of addressing them in ERA.

Next, we organized three small meetings within our
research group involving 10 software architects/designers
in the first meeting and 3 in the second and third. In the
first meeting, we conducted a general, unstructured discus-
sion on ERA. In the second and third meetings, we dis-
cussed the qualities, improved the utility tree, and
analyzed the suitability of the architectural approaches to
the list of qualities. At this point, we found a number of
weaknesses in ERA. Each discussion was leading to
improvements of ERA and an iteration of the previous
steps.

Next, we conducted a meeting with potential business
users of ERA. This was one of the problems that we faced
in using ATAM. ATAM is used for evaluation of concrete
architectures that have a clearly defined group of stake-
holders. However, in the case of a reference architecture,
there is no concrete group of stakeholders. We identified
as main stakeholders a number of roles, i.e., contract man-
agers (this role is given different names like contract engi-
neers, contract supervisors, contract legal officers, etc.),
software architects/designers, CIOs, and CEOs. We orga-
nized a workshop on e-contracting (Angelov, 2007a),
where we presented ERA to 25 representative stakeholders.
Though this meeting cannot be representative for all stake-
holders of ERA, we consider it sufficient to indicate the
level of excellence of ERA (addressing all stakeholders
would indeed be impossible). After an adequate introduc-
tion, we asked the participants to suggest possible scenarios
and prioritize them. We also asked participants to provide
their expectations in terms of qualities from ERA. The
result was a set of 25 use-case scenarios. We used these sce-
narios in the evaluation of ERA for completeness as well
(see Section 7.1.2). The resulting utility tree was a subset
of the qualities identified initially by us. After the work-
shop, we analyzed the results from it and made final adap-
tations to ERA.

A general problem that we faced in applying ATAM
was the definition of scenarios. Being a reference architec-
ture, ERA is not designed for a specific context, and must
address all possible scenarios. Defining concrete scenarios
without specific context is difficult and often impossible.
That is why we used a ‘‘relaxed” format for the scenarios
and allowed definition of rather general scenarios.

7.6.2. Main improvements from applying ATAM

The application of ATAM led to a number of improve-
ments of ERA. As already mentioned the Knowledge Upd-
ater was introduced as a new component. Furthermore, a
number of new architectural styles were introduced, i.e.,
the Data Indirection style, Abstract Data Repository style,
Fac�ade pattern, and the Broker pattern. Finally, we discov-
ered the need of the Internal Mapper component. Thus,
ATAM lead to significant improvements in ERA.

7.6.3. Results from applying ATAM

The results from applying ATAM can be divided into
two groups, i.e., a structured analysis of the relation
between the architectural decisions used in ERA and the
required qualities and a set of major conclusions on the
strong and weak points of ERA. Next, we summarize the
results from applying ATAM.

7.6.3.1. Relation between architectural decisions and quali-

ties. The modifiability quality is addressed by the usage of
the Layering, Part-Whole decomposition, Abstract Data
Repository styles and the Fac�ade, Broker, Batch-sequen-
tial, and Mapper patterns.

� The Layering style facilitates achieving higher degree of
modifiability. Changes in functionalities influence only
‘‘higher” layers. A company may initially implement



1840 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
few components from the application layer and add
additional components in the future. This will have
impact only on the Contracting Manager component.
� The Part-Whole decomposition style promotes achiev-

ing separation of concerns among components, which
leads to increased modifiability of a system.
� As explained, in ERA, components from different layers

exchange data through databases that implement the
Abstract Data Repository style. This style is used to
achieve indirection in data exchange.
� We expect that a component from the first level of

decomposition of ERA (see Fig. 2) will be developed
by a single company. Consequently, data integrity
between data providers and data consumers becomes
of lower importance. For this reason, for data exchange
within components, we opted for the Data Indirection
style, which also supports high degree of modifiability
(easy additions/removal of data consumers/providers)
but does not abstract from the format of the stored data.
If differences in the data format are to be expected, the
Abstract Data Repository can be used.
� The Fac�ade pattern is used to provide encapsulation of

‘‘lower-layer” components from ‘‘higher-layer” compo-
nents. Using facades allows a ‘‘higher-layer” component
to be unaware of the concrete decomposition and imple-
mentation details of lower-layer components.
� The use of the Broker pattern facilitates achieving indi-

rection in communications between internal systems and
an ERA-based system. Internal systems can be relo-
cated, added, etc. without affecting ERA but only its
Internal Broker.
� The use of the Batch-Sequential pattern allows easy

modification to be applied on the Secure Messenger.
As this component may be shared with other systems
that require external communications, it can be easily
adapted to fit their requirements.
� The Mapper pattern is used to define components that

‘‘absorb” changes in the external environment with
respect to data and process semantics (see the Internal
Mapper, External Mapper, and Enactment Mapper).
This pattern reduces the amount of modifications
required by an ERA-based system when modifications
in external data occur.

The Mapper pattern is used to address the interoperabil-

ity quality as well. Mapping components support the usage
of different data and process specifications in an e-contract-
ing system and external/internal systems, which leads to
increased interoperability.

The integrability attribute is addressed by the usage of
the Fac�ade pattern and Abstract Data Repository style.

� In the facade of a component the methods and parame-
ters are grouped together and offered for access hiding
internal component implementation. An agreement on
a fac�ade allows separate development of components
and their easier integration.
� The usage of the Abstract Data Repository style allows
data producers and consumers to exchange data una-
ware of each others requirements on the data format.

The security quality is addressed by the introduction of
the Secure Messenger and the optional Signer components.
Manipulation and storage of sensitive business data (con-
tracts and contracting data) is delegated to dedicated com-
ponents, i.e., Updater and Contract distributor (MC/SA).

The flexibility quality is addressed by the introduction of
an Enactment Server component that supports the flexible
execution of the contracting process. ERA-based systems
can establish relationships with diverse parties and can
make use of diverse mediators.

7.6.3.2. Sensitivity points, tradeoff points, risks, and non-

risks. Sensitivity points and tradeoff points are points in the
architecture where the satisfaction of one or more qualities
may be influenced by certain properties of the architectural
styles or of the components. Risks and non-risks are based
on the identified sensitivity and tradeoff points and present
a high-level summary of the good and problematic archi-
tectural decisions (Clements et al., 2002). Next, we provide
a summary of our main findings for the sensitivity/tradeoff
points and risks/non-risks in ERA.

We have identified all mapping components as sensitiv-
ity points. Mappers can map data and processes between
standards that have a common conceptual foundation. It
may not be possible to absorb in a mapper external mes-
sages/protocols that differ conceptually from the internally
used standards. The limitations of mappers can decrease
the interoperability quality of ERA. The complexity of
the ES, Design, Negotiator, and EES components may hin-
der development of an ERA-based system (and thus, affect
the buildability and automation qualities of ERA).

The tradeoff points are mainly related to the perfor-
mance of an ERA-based system. Though this quality is
not addressed in ERA, we briefly present these tradeoff
points (in order to facilitate the development of the other
views of an e-contracting system). Security related compo-
nents (Authenticator, Message Verifier, Cryptographer,
and Signer) are computationally intensive components that
will be subject to significant loads (Angelov et al., 2005).
Similarly, complex mappers will require substantial compu-
tational power and may cause decrease in performance. The
choice of the Layering style for the structure of ERA affects
performance as it requires communication to take place
only between neighboring layers. The usage of the Abstract
Data Repository style can affect performance as well.

Based on our findings on the sensitivity and tradeoff
points, we identified three main risk factors:

� The Secure Messenger is a potential bottleneck for the
high performance of an ERA-based system.
� The mapping components may be insufficient to incor-

porate substantial differences which will lead to changes
in internal components.



S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1841
� The highly advanced functionalities of certain compo-
nents may be difficult to implement.

Next, we list a number of non-risk factors that we iden-
tified in ERA:

� The introduction of the Signer component decreases the
load on the Authenticator which leads to improved secu-
rity management (in a distributed environment) and
performance.
� The usage of the Layered style leads to the definition of

only three layers. The small amount of layers decreases
the negative impact of this style on the performance
quality. Furthermore, our meetings showed that it has
no negative effect on the usability of ERA by business
professionals.
� As indicated in Bass et al. (2003), part-whole decompo-

sition has no negative effect on other qualities.

Up to this point, we have described our main results
from the evaluation of ERA. In Section 7.7, we provide a
discussion on the evaluation process.

7.7. Discussion

In this section, we analyzed ERA in terms of the quali-
ties expected from an e-contracting reference architecture.
Our findings show that ERA addresses all qualities. It
excels in the completeness, applicability, and usability qual-
ities. The application of ERA to commercial and academic
systems shows that ERA has equivalent components to the
components defined in the architectures of each of these
systems. However, none of these systems exceeds ERA in
terms of completeness and level of detail. Thus, ERA is a
contribution to the existing knowledge in the e-contracting
domain. Furthermore, the application of ERA to commer-
cial and academic systems shows that ERA can be applied
for the analysis of diverse e-contracting architectures
described at different levels of abstraction. This illustrates
the power of ERA as a tool for analysis of existing e-con-
tracting architectures.

Buildability of ERA (part of its feasibility) is a quality
that requires attention during the design of concrete e-con-
tracting systems. Inability of software developers to imple-
ment certain advanced and complex functionalities defined
in ERA will affect the level of automation of an ERA-
based system and will limit the introduction of new busi-
ness and organizational models offered by e-contracting
(Angelov and Grefen, 2004b). Thus, the complexity of
the software development process has to be carefully eval-
uated by the software development company. The perfor-
mance quality has to be paid specific attention as well. A
number of components may affect performance of the sys-
tem which may limit introduction of business models like
just-in-time contracting (Angelov and Grefen, 2004b).
The performance quality has to be addressed in a process
view of an e-contracting system.
Many designs exist of reference architectures in various
application domains of information systems. A few exam-
ples are the well-known ISO/OSI network reference model
(Tanenbaum, 1992), the Workflow Reference Model (Hol-
lingsworth, 1995), and the Reference Architecture for
Workflow Management Systems (Grefen and Remmerts
de Vries, 1998). Similar to each of these models, ERA aims
at providing a description of the main functionalities that
the system must support and a standardized view on the
components required for the delivery of these functional-
ities. Many of the existing reference architectures provide
only a high-level view of the system to be designed. These
reference architectures serve mostly as standardization
models that promote the modular development of a system
and its future integration with other information systems.
In contrast to them, ERA provides a detailed description
of its components. This allows software designers and
developers to reach deeper understanding for the compo-
nents of an e-contracting system and for the interactions
among them. As currently no advanced e-contracting sys-
tems exist in business practices, this detailed representation
of the functionalities of an e-contracting system is a major
necessity for both designers and developers.

The process of evaluation of ERA was significantly hin-
dered by the lack of a dedicated method for evaluation of
reference architectures. Our experiences during the evalua-
tion of ERA showed that methods for evaluation of con-
crete architectures (e.g., ATAM) can be applied with
limited success for evaluation of a reference architecture.
Communications with stakeholders and generation of sce-
narios play a major role in these methods. However, these
steps are hard to perform in the evaluation of reference
architectures. Furthermore, these methods do not address
the evaluation of architectural qualities that are of funda-
mental importance in the case of reference architectures.
In the evaluation of ERA, we used results from the appli-
cation of the ATAM method and combined them with
our findings obtained by simple reasoning techniques.
The combination of all results in a final evaluation was
mostly based on our intuition. The existence of a dedicated
method for evaluation of reference architectures would sig-
nificantly substantiate the evaluation process.

8. Conclusions

In this paper, the design of an e-contracting reference
architecture (ERA) is presented. The architecture design
is guided by well-established, scientific, design principles.
ERA provides a detailed description of the system func-
tionalities and qualities that have to be addressed in the
implementation of an e-contracting system.

ERA introduces a number of benefits to software devel-
opers and business professionals. It allows faster develop-
ment of e-contracting systems. Furthermore, it introduces
standardized view on e-contracting systems (allowing mod-
ular system development and facilitating interoperability
with other information systems) and will lead to improved



Fig. 17. Utility tree for non-functional architectural qualities (NFAQ).

1842 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
understanding of e-contracting systems. Depending on the
people that use ERA and on the goals aimed with its usage,
ERA will be used in different ways. It may be expected that
the first level of decomposition of ERA (see Section 4) will
be most useful for communicating the main architecture
principles between software developers and/or business
professionals. This level will be used for initial discussions
on and general analysis of concrete e-contracting architec-
tures. Lower levels of detail will be mostly valuable for
software developers and system integrators who will
require a detailed description of the functionalities of an
e-contracting system for its design and implementation.

ERA is aimed at facilitating the design of logical views
of concrete e-contracting systems. Based on our evaluation
of ERA, we believe that it will have a significant contribu-
tion to the design process of concrete e-contracting systems
and will promote developments in the domain of e-
contracting.

Further research work is necessary to investigate the
potential problems and solution in the design of process,
implementation, and deployment views of e-contracting
Fig. 16. Utility tree for non-functi
systems as suggested in Kruchten (1995). For example, flex-
ibility of contracting processes and multiple, simulta-
neously running contracting processes are factors that
require specific attention in the design of a process view
of an e-contracting system.
onal system qualities (NFSQ).



S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844 1843
Appendix A. Utility trees for non-functional qualities

Next, we list the utility trees that represent the required
qualities in ERA. In Fig. 16, we list the non-functional sys-
tem qualities. As qualities from this part of the utility tree
are evaluated by the Architecture Tradeoff Analysis
Method (ATAM), the utility tree is decomposed to a level
of concrete scenarios.

Fig. 17 presents the utility tree for non-functional archi-
tectural qualities.

Appendix B. List of architectural approaches

B.1. Architectural approaches at the first level of ERA

� Layering style (Bass et al., 2003; Klein and Kazman,
1999).
� Part-whole decomposition style (Bass et al., 2003).
� Facade pattern (Gamma et al., 1995).
B.2. Architectural approaches at the second level of ERA

� WFMC standard architecture (Hollingsworth, 1995)
and RAWFMS (Grefen and Remmerts de Vries,
1998). Related components: Contracting Manager.
� Batch sequential pattern (Bass et al., 2003). Related

components: Secure Messenger.
� Data indirection style (Klein and Kazman, 1999).

Related components: Selection rules, Negotiation rules,

Enactment rules, Management data, Application data,

Process data, Process, rule, and ontology definitions.
� Abstract data repository style (Klein and Kazman,

1999). Related components: Invalid messages, Manage-
ment data (PS), Evaluations, Management data (C),

MC/SA, Management data (E), Management data

(SM), Rejected updates.
� Broker pattern (Buschmann et al., 1996). Related com-

ponents: Internal broker.
� Mapper pattern (Fowler, 2002). Related components:

External Mapper, Internal Mapper, Enactment Mapper.
� Security dedicated components – Cryptographer,

Authenticator, Message Verifier, Signer, Communication

Monitor, Updater, Contract Distributor (MC/SA).
References

Angelov, S., 2006. Foundations of B2B Electronic Contracting. Techni-
sche Universiteit Eindhoven.

Angelov, S., 2007a. Defining e-contracting and measuring its signifi-
cance. In: Post-conference Workshop at the 4th Annual Contract
Management Conference. Institute for International Research,
Dubai.

Angelov, S., 2007b. Evaluation of the E-contracting Reference Architec-
ture, Beta Working Paper, Eindhoven University of Technology.

Angelov, S., Grefen, P., 2001. B2B eContract handling – a survey of
projects, papers and standards, CTIT Technical Reports, University of
Twente.

Angelov, S., Grefen, P., 2002. Support for B2B e-contracting – the process
perspective. In: Marik, V., Camarinha-Matos, L.M., Afsarmanesh, H.
(Eds.), Knowledge and Technology Integration in Production and
Services: Balancing Knowledge in Product and Service Life Cycle,
Fifth IFIP/IEEE International Conference on Information Technol-
ogy for Balanced Automation Systems in Manufacturing and Services
(BASYS’02), vol. 229, September 25–27, 2002, Cancun, Mexico,
Kluwer, pp. 87–96.

Angelov, S., Grefen, P., 2003a. An analysis of the B2B E-contracting
domain: paradigms and required technology, Beta Working Paper, WP
102, Eindhoven University of Technology, Eindhoven.

Angelov, S., Grefen, P., 2003b. The 4W framework for B2B e-contracting.
International Journal of Networking and Virtual Organisations 2, 78–97.

Angelov, S., Grefen, P., 2004a. Supporting the Diversity of B2B E-
contracting Processes, Telematica Instituut Technical reports, TI/RS/
2003/120, Telematica Instituut.

Angelov, S., Grefen, P., 2004b. The business case for B2B e-contracting. In:
Janssen, M., Sol, H.G., Wagenaar, R.W. (Eds.), Proceedings of the 6th
International Conference on Electronic Commerce, Delft, The Neth-
erlands, vol. 60. ACM Press, New York, pp. 31–40, October 25–27.

Angelov, S., Grefen, P., 2005. Requirements on a B2B E-contract
Language, Beta Working Paper, WP 140, Eindhoven University of
Technology.

Angelov, S., Grefen, P., 2006. A case study on electronic contracting in
on-line advertising – status and prospects. In: Camarinha-Matos, L.,
Afsarmanesh, H., Ollus, M. (Eds.) Network-Centric Collaboration
and Supporting Frameworks – Proceedings 7th IFIP Working
Conference on Virtual Enterprises, 25–27 September 2006, Helsinki,
Finland, Springer, Boston, pp. 419–428.

Angelov, S., Till, S., Grefen, P., 2005. Dynamic and secure B2B e-contract
update management. In: Kearns, M., Reiter, M. (Eds.), Proceedings of
the 6th ACM Conference on Electronic Commerce. ACM Press, New
York, Vancouver, BC, Canada, pp. 19–28, June 5–8.

Babar, M., Gorton, I., 2004. Comparison of scenario-based software
architecture evaluation methods. In: Proceedings of the 11th Asia-
Pacific Software Engineering Conference (APSEC’04). IEEE Com-
puter Society, Washington, USA, pp. 600–607.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in
Practice, second ed. Addison-Wesley Professional.

Beam, C., Segev, A., 1997. Automated negotiations: a survey of the state
of the art. Wirtschaftsinformatik 39, 263–268.

Bichler, M., Segev, A., 1999. A brokerage framework for Internet
commerce. Distributed and Parallel Databases 7, 133–148.

Booh, G., Rumbaugh, J., Jacobson, I., 1999. The Unified Modeling
Language User Guide. Addison-Wesley Longman.

Boulmakoul, A., Salle, M., 2002, Integrated Contract Management, HP
Labs Technical Reports, HPL-2002-183, HP Laboratories Bristol.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996.
Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. John Wiley & Sons.

Chiu, D.K.W., Cheung, S.C., Till, S., 2003, A three-layer architecture for
e-contract enforcement in an e-service environment. In: Proceedings of
the 36th Annual Hawaii International Conference on System Sciences
(HICSS’03) – Track 3, vol. 3, Big Island, Hawaii IEEE Computer
Society, Washington, pp. 74.

Clements, P., Kazman, R., Klein, M., 2002. Evaluating Software Archi-
tectures: Methods and Case Studies. Addison-Wesley Professional.

Contracto. 2006. Contracto software, version 6.02, <http://www.con-
tracto.nl/>.

Dan, A., Dias, D., Nguyen, T., Sachs, M., Shaikh, H., King, R., Duri, S.,
1998. The Coyote project: framework for multi-party e-commerce.
Proceedings of the Second European Conference on Research and
Advanced Technology for Digital Libraries, Heraklion, Crete, Greece,
vol. 1513. Springer-Verlag, London, pp. 873–889.

Dhillon, G., 2007. Principles of Information Systems Security: Text &
Cases. Wiley.

Fowler, M., 2002. Patterns of Enterprise Application Architecture.
Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

http://www.contracto.nl/
http://www.contracto.nl/


1844 S. Angelov, P. Grefen / The Journal of Systems and Software 81 (2008) 1816–1844
Grefen, P., Aberer, K., Hoffner, Y., Ludwig, H., 2000. CrossFlow: cross-
organizational workflow management in dynamic virtual enterprises.
International Journal of Computer Systems Science and Engineering
15, 277–290.

Grefen, P., Remmerts de Vries, R., 1998. A reference architecture for
workflow management systems. Data & Knowledge Engineering 27,
31–57.

Grefen, P., Ludwig, H., Angelov, S., 2003. A three-level framework for
process and data management of complex e-services. International
Journal of Cooperative Information Systems 12, 487–531.

Greunz, M., Schopp, B., Stanoevska-Slabeva, K., 2000. Supporting
market transactions through XML contracting container. In: Proceed-
ings of the Sixth Americas Conference on Information Systems
(AMCISS 2000), August 10–13, Long Beach, CA.

Griffel, F., Boger, M., Weinreich, H., Lamersdorf, W., Merz, M., 1998.
Electronic contracting with COSMOS – how to establish, negotiate
and execute electronic contracts on the Internet. In: Proceedings of the
2nd International Workshop on Enterprise Distributed Object Com-
puting (EDOC’98), November 3–5, San Diego, pp. 46–55.

Hoffner, Y., Field, S., Grefen, P., Ludwig, H., 2001a. Contract driven
creation and operation of virtual enterprises. Computer Networks –
the Int. Journal of Computer and Telecommunications Networking 37,
111–136.

Hoffner, Y., Ludwig, H., Grefen, P., Aberer, K., 2001b. CrossFlow:
integrating workflow management and electronic commerce. ACM
SIGecom Exchanges 2, 1–10.

Hollingsworth, D., 1995. The Workflow Reference Model, Workflow
Management Coalition Documents, TC00-1003, Workflow Manage-
ment Coalition.

ILOG, 2006. ILOG JRules, <http://www.ilog.com/products/jrules/>.
Immonen, A., Niemelä, E., Matinlassi, M., 2005. Evaluating the integra-

bility of COTS components – software product family viewpoint. In:
Beydeda, S., Gruhn, V. (Eds.), Testing Commercial-off-the-Shelf
Components and Systems. Springer, Berlin, Heidelberg, pp. 141–167.

International Organization for Standardization, 2006. ISO/IEC FCD
9126-1: Information Technology – software quality characteristics and
metrics – Part 1: Quality characteristics and subcharacteristics.

Ionita, M., Hammer, D., Obbink, H., 2002. Scenario-based software
architecture evaluation methods: an overview. In: Workshop on
Methods and Techniques for Software Architecture Review and
Assessment at the International Conference on Software Engineering,
Orlando, FL, USA.

Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P., Odgers, B., 2000.
Autonomous agents for business process management. International
Journal of Applied Artificial Intelligence 14, 145–189.

Klein, M., Kazman, R., 1999. Attribute-based architectural styles,
Carnegie Mellon University Technical Reports, CMU/SEI-99-TR-
022, Carnegie Mellon University.

Kruchten, P., 1995. Architectural blueprints – the ‘‘4+1” view model of
software architecture. IEEE Software 12, 42–50.

Ludwig, H., Dan, A., Kearney, R., 2004. Cremona: An architecture and
library for creation and monitoring of WS-agreements. In: Proceedings
of the 2nd International Conference on Service Oriented Computing.
ACM Press, New York, pp. 65–74.

Maciaszek, L.A., 2001. Requirements analysis and system design. Devel-
oping Information Systems with UML. Addison Wesley.

Masum, H., Zhang, Y., 2004. Manifesto for the reputation society. First
Monday 9.

Merz, M., Griffel, F., Tu, T., Müller-Wilken, S., Weinreich, H., Boger, M.,
Lamersdorf, W., 1998. Supporting electronic commerce transactions
with contracting services. International Journal on Cooperative
Information Systems 7, 249–274.

Milosevic, Z., Bond, A., 1995. Electronic commerce on the Internet: what
is still missing? In: Proceedings of the 5th Annual Conference of the
Internet Society, INET’95, Honolulu, Hawaii.

Milosevic, Z., Jøsang, A., Dimitrakos, T., Patton, M.A., 2002, Discre-
tionary enforcement of electronic contracts. In: Proceedings of the
Sixth International Enterprise Distributed Object Computing Confer-
ence, September 17–20, 2002, Lausanne, Switzerland, IEEE Computer
Society, pp. 39–50.

Nahmias, S., 1997. Production and Operations Analysis. McGraw-Hill.
Oracle, 2006. Oracle E-Business Suite, Release 11.5.10.2. <http://

www.oracle.com/applications/e-business-suite.html>.
Papazoglou, M., 2007. Web Services: Principles and Technology. Prentice

Hall.
Petritsch, H., 2006. Service-Oriented Architecture (SOA) vs. Component

Based Architecture. Vienna University of Technology, Vienna.
Quirchmayr, G., Milosevic, Z., Tagg, R., Cole, J., Kulkarni, S., 2002.

Establishment of virtual enterprise contracts. In: Hameurlain, A.,
Cicchetti, R., Traunmuller, R. (Eds.), Vienna University of Technol-
ogy, vol. 2453. Springer-Verlag, London, pp. 236–248.

Rozanski, N., Woods, E., 2005. Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives. Addison-
Wesley Professional.

Savvion, 2006, Savvion Business Rules. <http://www.savvion.com>.
Tanenbaum, A.S., 1992. Modern Operating Systems. Prentice Hall.
Turban, E., Lee, J., King, D., Chung, H., 2000. Electronic Commerce – A

Managerial Perspective. Prentice Hall.
Wigand, R., Picot, A., Reichwald, R., 1997. Information, Organization

and Management: Expanding Markets and Corporate Boundaries.
John Wiley and Sons Ltd.

Zdravkovic, J., Kabilan, V., 2005. Enabling business process interoper-
ability using contract workflow models. In: Meersman, R., Tari, Z.,
Hacid, M.-S., Mylopoulos, J., Pernici, B., Babaoglu, O., Jacobsen, H.-
A., Loyall, J.P., Kifer, M., Spaccapietra, S. (Eds.), On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE,
OTM Confederated International Conferences, CoopIS, DOA, and
ODBASE 2005, vol. 3761, October 31–November 4, 2005, Agia Napa,
Cyprus, Springer, pp. 77–93.

Samuil Angelov is an assistant professor in the Department of Technology
Management at Eindhoven University of Technology. In the period 1998–
2003, he worked for the Bulgarian Academy of Sciences, Sofia University,
and Twente University. He received his Ph.D., in February 2006 at the
Technical University of Eindhoven. During and shortly after his master
studies, he was involved in the European INCO COPERNICUS project
‘‘MALL 2000”. During his Ph.D. studies, he participated in the SOBI
project managed by the Telematica Institute. In his Ph.D. studies, he
concentrated on the design of an information system for highly automated
electronic contracting. His research work led to a number of international
publications. He is regularly involved in reviews of papers for interna-
tional conferences and journals. He is a member of the international
association SOCOLNET. His research interests are in the field of enter-
prise and information system modeling and concentrate on the domain of
electronic commerce and electronic contracting.

Paul Grefen is a full professor in the Department of Technology Man-
agement at Eindhoven University of Technology, where he chairs the
Information Systems subdepartment and leads the ICT Architectures
group. He received his Ph.D., in 1992 from the University of Twente.
From 1992 until early 2003, he held assistant and associate professor
positions in the Computer Science Department at the University of
Twente. He was a visiting researcher at Stanford University in 1994. He
was involved in the WIDE ESPRIT project, which focused on advanced
database support for workflow management systems, and the CrossFlow
IST project, which aimed at cross-organizational workflow support for
dynamic virtual enterprises. Currently, he is involved in the CrossWork
IST project focusing on process support in the automotive industry and
the XTraConServe NWO project working on contracted transactional
services. He has been a member of the program committees of a large
number of international conferences and a regular reviewer for several
international journals. He is an associate editor of the International
Journal of Cooperative Information Systems. His current research inter-
ests include architectural design of complex information systems, high-
level transaction management, advanced workflow management, and
contract support in electronic business.

http://www.ilog.com/products/jrules/
http://www.oracle.com/applications/e-business-suite.html
http://www.oracle.com/applications/e-business-suite.html
http://www.savvion.com

	An e-contracting reference architecture
	Introduction
	Required qualities in a reference architecture for e-contracting
	Required functional qualities
	Required non-functional system qualities
	System qualities discernable at runtime
	System qualities not discernable at runtime

	Required non-functional architecture qualities

	Design approach
	First level of decomposition of ERA
	Top-level components and their organization
	Collaboration model
	Structural model
	Behavioral model


	Second level of decomposition of ERA
	Decomposition of the Contracting Manager component
	Definition User Interface (DUI) and Design components
	Knowledge Updater (KU) component
	Enactment Server component
	Evaluator component
	Control User Interface (CUI) component
	Internal Mapper and Internal Broker components

	Decomposition of the Partner Selector component
	Management data (PS), Evaluations, Selection rules data components
	Selector component
	Information Collector component
	Definition UI (PS) component

	Decomposition of the Contractor component
	Negotiator component
	Contract Finalizer (CF) component
	Definition UI (C) component
	MC/SA, Negotiation rules, Management data (C) components

	Decomposition of the Enactor component
	Data Manager (DM) component
	External Enactment Server (EES) component
	Dispute Handler component
	ECD, Enactment rules, Management data (E) components
	Enactment Mapper, Internal Broker components
	Definition UI (E) component

	Decomposition of the Secure Messenger component
	Cryptographer component
	Authenticator component
	Message Verifier component
	External Mapper component
	Communication Monitor (CmM) component


	Third level of decomposition of ERA
	Decomposition of the Contract Finalizer component
	Contract Establisher (CE) component
	Signer component
	Contract Distributor component

	Decomposition of the Dispute Handler component
	Dispute Resolution Manager (DRM) component
	Direct Data Synchronizer (DDS) component

	Decomposition of the Data Manager component
	Verifier component
	Updater component
	Data Update Notifier (DUN) component


	Evaluation of ERA
	Functional completeness of ERA
	Theoretical evaluation of ERA for completeness
	Empirical evaluation of ERA for completeness

	Applicability of ERA
	Oracle contracts and ERA
	Contracto and ERA
	The Business Contract Framework
	HP e-contracting architecture
	Crossflow e-contracting architecture

	Usability of ERA
	Feasibility of ERA
	Level of automation of ERA
	Modifiability, integrability, interoperability, security, and flexibility qualities of ERA
	Following the steps of ATAM
	Main improvements from applying ATAM
	Results from applying ATAM
	Relation between architectural decisions and qualities
	Sensitivity points, tradeoff points, risks, and non-risks


	Discussion

	Conclusions
	Utility trees for non-functional qualities
	List of architectural approaches
	Architectural approaches at the first level of ERA
	Architectural approaches at the second level of ERA

	References


