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ABSTRACT

We study the in�mum of functionals of the form
R


Mru �ru among all convex functions u 2 H1

0 (
) such

that
R


jruj2 = 1. (
 is a convex open subset of RN , and M is a given symmetric N � N matrix.) We

prove that this in�mum is the smallest eigenvalue ofM if 
 is C1. Otherwise the picture is more complicated.

We also study the case of an x-dependent matrixM .
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1. Introduction

There has been a recent surge of interest in variational problems where the class of admissible functions
is characterized by a convexity condition. These are problems of the form

inf

�Z



f(x; u;ru) ; u 2 C
�
;

where

C := �
' 2 H1

0 (
) ; ' is convex
	
:

Such problems arise independently in di�erent �elds such as mathematical physics (Newton's problem
of the body of least resistance, cf. [2], [6]), 
uid mechanics (cf. [1]), and mathematical economy (cf. [3]).
Even in the case of well-behaved (convex and coercive) functionals, problems of this type with

and without convexity constraint on u can be very di�erent (cf. [5]). The convexity constraint can
be expressed by Lagrange multipliers in the Euler-Lagrange equation associated with the problem;
these multipliers are second derivatives of a bounded symmetric nonnegative matrix of measures [7];
however, the optimal regularity of these measures is still an open question, and since their support
can be dense, the Euler-Lagrange equation is often of little practical value. This is for instance the
case in Newton's problem of the body of minimal resistance (cf. [6]).
While studying this minimal resistance problem the authors were confronted with the question of

the value of the in�mum of a quadratic functional of the gradient (that is,
R
f(r'), where f(V ) =

a+ b � V +MV � V ) over the set�
v 2 C ; 1 = kvk2H1

0
(
) =:

Z



jrvj2
�
:

Since
R r' = 0, this reduces to the minimization of

R
Mr' � r' in this set, or equivalently to the

minimization of
R
Mr' � r'= R



jr'j2 in C n f0g (we will implicitly ignore the zero function in the

following). This is the problem considered in this paper.
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It is well known that if 
 � R
N is an open set, and M a given symmetric matrix, then the in�mum

inf
�2H1

0
(
)

R

Mr� � r�R



jr�j2

is not attained (except if M 2 R Id) and equals the �rst eigenvalue �1(M) of M . This can be proved
by considering the sequence �n(x) := �(x) sin(nx�0) where � 2 C1

0 (
) is �xed and �0 2 R
N n f0g

satis�es M�0 = �1(M)�0; it is now easy to verify that
R


Mr�n � r�n=

R


jr�nj2 converges to �1(M)

as n!1.
We are interested here in the same minimization problem, under the additional constraint that

� 2 H1
0 (
) is convex (i.e., � 2 C). Since the set of convex functions is far from dense in H1

0 , and since
the sequence �n mentioned above obviously does not belong to C, it is quite surprising that we can
prove a similar result and obtain the same in�mum. Note that it is necessary to assume that the set

 is convex, since otherwise C = f0g.

2. Main results

Theorem 1 Let 
 � R
2 be a convex domain, and let M 2 R2�2 be a given symmetric matrix. Then

�1(M) � inf
�2H1

0
(
)

� convex

R

Mr� � r�R


 jr�j2
� ess inf

x2@

M�(x) � �(x) (2.1)

where �1(M) is the smallest eigenvalue of M and � : @
 ! S1 is the a.e. de�ned map giving the
normal exterior vector �(x) at x. In particular, if 
 has a boundary of class C1, then the previous
in�mum is exactly equal to �1(M).

The �rst inequality in (2.1) is obvious. Moreover, if 
 is of class C1, then the ess inf in the right-hand
side of (2.1) equals �1(M), since � is continuous and surjective.
If 
 is not of class C1, then the relationship between the �rst eigenvalue and the inf above is an

interesting open problem. It is simple to construct non-smooth boundaries such that the ess inf above
is nonetheless equal to �1(M), so that both inequalities reduce to equalities. In the alternative case,
however, the �rst inequality is strict:

Theorem 2 Under the same assumptions as Theorem 1, assume that

ess inf
x2@


M�(x) � �(x) > �1(M): (2.2)

Then the second inequality in (2.1) is strict.

In Section 6 we present an explicit counter-example which shows that the second inequality in (2.1)
can also be strict. The question whether in the general case the second inequality is saturated or not
remains, to our knowledge, open.
Note that statements and proofs are given here in dimension N = 2 for the sake of simplicity. The

general case is clearly similar.

3. Proof of Theorem 1

Proof. For the length of this proof we change notation: instead of using x as a two-dimensional
vectorial coordinate, we let x and y be two scalar coordinates, so that (x; y) denotes an element of R2

with respect to a given orthogonal basis. The di�erential operators @x and @y denote di�erentiation
with respect to these coordinates, and r = (@x; @y)

T . By choosing the basis appropriately, M takes
the form of the diagonal matrix diag (�1; �2); moreover

M =

�
�1 0
0 �2

�
= �1 I + (�2 � �1)

�
0 0
0 1

�
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impliesR
Mr� � r�R jr�j2 = �1 + (�2 � �1)

R
(@y�)

2R jr�j2 :
Let @
 be twice di�erentiable at (x0; y0) 2 @
, with normal �0 = (�x; �y). Since

M�0 � �0 = �1 + (�2 � �1)�
2
y;

the estimate (which we shall prove)

inf
�2H1

0
(
)

� convex

R
(@y�)

2R jr�j2 � �2y (3.1)

implies that

inf
�2H1

0
(
)

� convex

R

Mr� � r�R


 jr�j2
�M�(x0; y0) � �(x0; y0): (3.2)

The assertion of the theorem follows from (3.2) by remarking that every convex function|in particular,
the boundary @
|is twice di�erentiable almost everywhere [4, Section 6.4], and that therefore (3.2)
is valid for almost every (x0; y0) 2 @
.

It is therefore su�cient to prove (3.1) for this choice of (x0; y0) 2 @
. Since @
 is convex, it can be
parameterized in the form s 2 [�a; a] 7! (x(s); y(s)), with (x(0); y(0)) = (x0; y0), where a > 0 is half
the length of @
, and x, y are Lipschitz continuous functions whose derivatives _x; _y satisfy _x2+ _y2 = 1
almost everywhere. We take the parametrization in the positive direction.
Let " > 0 be a given number, (x"; y") a point in 
 (to be �xed in a while). We consider the largest

convex function �" de�ned in 
 satisfying �"(x"; y") = �1 and �" = 0 on @
. Its epigraph is a
(generalized) cone in R3 with vertex (x"; y";�1). This implies that

8t 2 [0; 1]; 8s 2 [�a; a]; �"(tx(s) + (1� t)x"; ty(s) + (1� t)y") = t� 1:

Hence we get by di�erentiation�
(x(s) � x")@x�" + (y(s)� y")@y�" = 1
_x(s)@x�" + _y(s)@y�" = 0:

That gives

@x�" =
_y

w"(s)
; @y�" = � _x

w"(s)
;

where w"(s) := _y(x � x")� _x(y � y"). We have w"(s) 6= 0 for all s since jw"(s)j is the distance from
the interior point (x"; y") 2 
 to the tangent of @
 at (x(s); y(s)). Since the Jacobian determinant in
the change of variable

(s; t) 7! (tx(s) + (1� t)x"; ty(s) + (1� t)y")

is t jw"(s)j we getZ



(@y�")
2 =

Z a

�a

Z 1

0

_x2

w2
"(s)

t jw"(s)j dt ds = 1

2

Z a

�a

_x2

jw"(s)j ds;
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and similarlyZ



jr�"j2 = 1

2

Z a

�a

1

jw"(s)j ds:

Since 
 is convex, there exists at least one point and at most a segment with exterior normal equal
to �0. If there is a segment, then let s1 � s � s2 parametrize the segment. By possibly changing the
choice of (x0; y0) we can ensure that (x0; y0) lies in the interior of the segment (since such a change
does not alter (3.1)). Since the parametrization was chosen for (x0; y0) to correspond to s = 0, we
have s1 < 0 < s2. If there is only one point, then we set s1 = s2 = 0. Both in the case of a segment
and in the case of a single point, we translate (x0; y0) to the origin so that (x(0); y(0)) = (0; 0).
We now choose the point (x"; y") on the normal to the origin at distance ", that is we set

x" := �"�x; y" := �"�y:

We thus have w"(s) = "�x _y(s)� "�y _x(s) +w0(s) where w0(s) := _yx� _xy does not depend on ". Note
that the assumed regularity of @
 at the origin implies that the functions _y, _x, and w0 are Lipschitz
continuous at s = 0.
Using _x2+ _y2 = 1, which implies that s parametrizes arc length, we can estimate w0(s) near s = 0:

jw0(s)j = j( _y;� _x) � (x; y)j � j(x; y)j � jsj :

Hence

lim
"!0

Z a

�a

ds

jw"(s)j =
Z a

�a

ds

jw0(s)j = +1: (3.3)

Since w"(s) 6= 0 for almost all s, and w0(s) 6= 0 for almost all s outside the interval [s1; s2], we can
now choose �(") � 0, such that

� If s1 = s2, �(")! 0 andZ �(")

��(")

ds

jw"(s)j

, Z a

�a

ds

jw"(s)j �! 1 as "! 0;

� If s1 < s2, �(") � 0.

The rationale behind this choice is that now in both cases

sup
��+s1<s<�+s2

_x2(s) �! �2y;

by the continuity of _x, andZ �(")+s2

��(")+s1

ds

jw"(s)j

, Z a

�a

ds

jw"(s)j �! 1

as "! 0. Denoting the integrals above by I� and I for short, we now observe thatZ a

�a

_x2

jw"j =

Z �+s2

��+s1

_x2

jw"j +
Z
[�a;��+s1][[�+s2;+a]

_x2

jw"j (3.4)

� I� sup
��+s1<s<�+s2

_x2(s) + (I � I�)


 _x2



L1(�a;a)
(3.5)
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which implies

I�1
Z a

�a

_x2

jw"j �! �2y (3.6)

as "! 0.
Writing (3.6) again with the original function �", we obtainZ




(@y�")
2

,Z



jr�"j2 �! �2y;

and therefore (3.1) is proved.

4. Case of a varying matrix

It is also possible to prove a result similar to Theorem 1 with a quadratic form depending on x.

Corollary 3 Let 
 � R
2 be a convex domain, and let M : 
 ! R

2�2 be a measurable map of
symmetric matrices. If @
 is di�erentiable at x0 2 @
 and there exists � 2 R such that

M(x)�(x0) � �(x0) � � for a.e. x 2 
; (4.1)

then

inf
�2H1

0
(
)

� convex

R


M(x)r� � r�R



jr�j2 � �:

Note that in condition (4.1) the vector �(x0) is �xed.

Proof. Fix " > 0. We claim that there exists a constant symmetric matrix fM satisfyingfM�(x0) � �(x0) � �+ "

that majorizes M , i.e. such that fM �M is positive semide�nite. Applying Theorem 1 to the matrixfM we �nd

inf
�2H1

0
(
)

� convex

R

M(x)r� � r�R


 jr�j
2 � inf

�2H1

0
(
)

� convex

R


fMr� � r�R

 jr�j

2 � ess inf
x2@


fM�(x) � �(x):

Since @
 is di�erentiable at x0,

ess inf
x2@


fM�(x) � �(x) � fM�(x0) � �(x0) � �+ ":

The corollary follows from the observation that " is an arbitrary positive number.
To prove the claim made above, we choose as a basis of R2 the vectors e1 = �(x0) and e2 = e?1 ,

and write M(x) as

M(x) =

�
a(x) b(x)
b(x) d(x)

�
;

with respect to this basis. The inequality (4.1) implies that a(x) � � a.e.

We now choose fM = diag(�+";K) for some large K > 0. Omitting the dependence on the variable
x,

det(fM �M) = (�+ "� a)(K � d)� b2

= ad� b2 � d(�+ ") +K(�+ "� a):

Since �+ "�a � " a.e. we can make this expression positive by choosing K large enough. This proves
the claim and concludes the proof of the corollary.
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5. A strict inequality: Proof of Theorem 2

Proof. Let us note J
(�) :=
R

Mr� � r� � R
 jr�j2 for short. As in the proof of Theorem 1, we

can assume that M =

�
0 0
0 1

�
, therefore J
(�) :=

R

(@y�)

2
� R


 jr�j
2
, and �1(M) = 0.

The assumption (2.2) implies that there are two points A = (xA; yA), B = (xB ; yB) in @
, and a
scalar C > 0 such that for (x; y) 2 
,

xA < x < xB and max

����� y � yA
x� xA

���� ; ���� y � yB
x� xB

����� � C: (5.1)

We write Ix for fy 2 R; (x; y) 2 
g.
If � 2 C1

0 (
) is convex, then the tangent plane at (x0; y0) 2 
 has the functional expression

p(x; y) = �(x0; y0) + (x� x0) @x�(x0; y0) + (y � y0) @y�(x0; y0):

By convexity, p(xA; yA) � 0 and p(xB ; yB) � 0, so that

�(x0; y0) + (yA � y0) @y�(x0; y0)

x0 � xA
� @x�(x0; y0) � �(x0; y0) + (yB � y0) @y�(x0; y0)

x0 � xB
:

Therefore, using (5.1),Z
Ix0

@x�(x0; y)
2 dy � 2min

�
1

x0 � xA
;

1

xB � x0

�2 Z
Ix0

�(x0; y)
2 dy + 2C2

Z
Ix0

@y�(x0; y)
2 dy:

With the Poincar�e inequality,Z
Ix0

�(x0; y)
2 dy � jIx0 j2

�2

Z
Ix0

@y�(x0; y)
2 dy;

we �nd, since by (5.1) we have jIx0 j � 2Cmin (x0 � xA; xB � x0),Z
Ix0

@x�(x0; y)
2 dy � 2C2

�
1 +

4

�2

�Z
Ix0

@y�(x0; y)
2 dy;

and therefore,Z



jr�j2 �
�
1 + 2C2

�
1 +

4

�2

�� Z



@y�
2:

This proves that

inf J
(�) > 0 = �1(M):

6. An example of non-saturation

The second inequality in (2.1) is always saturated if 
 is smooth; but for non-smooth 
, one can
construct a situation in which the inequality is strict.
Let 
 be the square


 = f(x; y) 2 R2 : jx� yj < 1 and jx+ yj < 1g;
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so that � = 1
2

p
2 (�1;�1)T , and let

M =

�
1 0
0 �1

�
:

Then M� � � = 0 on @
.
To construct a convex function � such thatR


Mr� � r�R


jr�j2 < 0;

we de�ne

�0(x; y) = max(x+ y; x� y;�x+ y;�x� y)� 1:

This function �0 is convex, belongs to H
1
0 (
), and r�0 = (�1;�1)T in 
; therefore Mr�0 � r�0 = 0

in 
.
The function � is de�ned as

�(x; y) = max(�0(x; y); �(y � 1));

for some 0 < � < 1. Setting 
0 = f(x; y) 2 
 : �(x; y) > �0(x; y)g, we have � = �0 in 
 n
0, so that
Mr� � r� = 0; in the set 
0, we have r� = (0; �)T , so that Mr� � r� = ��2 < 0. ConsequentlyZ




Mr� � r� < 0;

which implies that the inequality in (2.1) is strict.
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