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ABSTRACT

The IEEE 1394 architecture standard defines a high performance serial multimedia bus that allows several com-

ponents in a network to communicate with each other at high speed. In the physical layer of the architecture,

a leader election protocol is used to find a spanning tree with a unique root in the network topology. If there is

a cycle in the network, the protocol treats this as an error situation. This paper presents a formal model of the

leader election protocol in the language IOA as well as a correctness proof. The verification shows that under

certain timing restrictions the protocol behaves correct. The timing constants proposed in the IEEE 1394 standard

documentation obey the requirements found in this proof.
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1 Introduction

The IEEE 1394-1995 serial bus standard [10] defines an architecture that allows several compo-
nents to communicate at very high speed. Originally, the architecture was designed by Apple
(FireWire). Currently, more than 70 companies are involved in the standardisation effort. Al-
though the IEEE 1394-1995 standard has been finalised, the architecture is still being refined
and adapted. Part of this ongoing work is reflected in the IEEE P1394a standard proposal
document [11], which is intended to be a supplement to IEEE 1394-1995. In this paper, 1394
will refer to IEEE 1394-1995 unless otherwise stated.

The IEEE 1394 standard allows several components to be connected either with cables and
IEEE 1394 chips (cable environment), or with an IEEE 1394 backplane in one physical device
(backplane environment). We restrict our attention to the cable environment situation, and
refer to the whole of components, cables, etc. as the network.

Like in the OSI model, the IEEE 1394 architecture has several layers of which the physical
layer is the lowest. This layer takes care of the actual communication on the bus, which happens

∗ A short version of this report appeared in S. Gnesi and D. Latella, editors, Proceedings of the Fourth
International Workshop on Formal Methods for Industrial Critical Systems (FMICS’99), pages 3–29, May 1999.
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by sending signals on a wire by asserting voltages. The physical layer is responsible for the
knowledge that a component has of the network topology and of components present, and for
issues such as timing of asynchronous and synchronous communication and arbitration for use
of the bus. These tasks are taken care of in several phases. The first phase in the physical layer
is the bus reset phase, which is entered whenever a component is powered up, when the network
topology changes or an error is discovered, or on request of higher layers in the architecture.
After completion of the bus reset phase, the tree identify phase starts. In the three identify
phase the network topology is determined by spanning a tree in the network. The root of the
tree will act as the bus master. After the tree identify phase, the self identify phase follows in
which all components inform the rest of the network of their capabilities and get a unique ID.
Finally, in the normal operation phase, the arbitration for and actual use of the bus by higher
layers and applications takes place.

In this paper we study the tree identify phase in the physical layer. The components employ
a leader election protocol to span a tree in the network, with the root acting as the leader. A
side effect of the protocol is that it detects whether there is a cycle in the network, and if so,
does not terminate with a leader but halts in the initial phase of the protocol and issues error
messages. Our intention is to prove that an abstraction of the protocol, which is as close to the
description in the IEEE 1394 documents [10, 11] as possible, works correct. There already are
some correctness proofs for other abstractions of this protocol [4, 26, 7, 28]. We reuse part of
this work for proving the correctness of our model of the protocol. This is done by establishing
an implementation relation between the most detailed model from [7] and our more detailed
model of the protocol. In this way, our verification adds to a stepwise refinement of IEEE 1394
in which more detail is added to models in each step.

The verification is carried out by establishing timed trace inclusion between timed I/O au-
tomata through a timed refinement [16, 17, 19]. The I/O automata are presented in the IOA
language [5]. We reuse an untimed I/O automaton from [7] to which we add a harmless time-
passage action to turn it into a timed I/O automaton and use timed refinements as presented
in [19]. As mentioned in [19], we could equally well establish an untimed refinement between
the timed I/O automata, so timed trace inclusion follows if the time-passage action is visible in
both models. Some related work that is interesting in the timed vs. untimed respect is the work
presented in [23], which discusses safety and failure refinements between timed and untimed CSP
models [3]. Some results are presented for failure refinements between communicating processes,
which may be useful in the I/O automata setting.

The proofs show that under the assumptions made, the behaviour of the models is correct
when we use the timing constants proposed in IEEE 1394-1195 and IEEE P1394a. It still remains
to be seen whether further refinement of the models preserves the correctness.

This paper is organized as follows. Section 2 explains the IEEE 1394 tree identify, discusses
related verifications and presents our abstraction. Section 3 introduces our I/O automata models
of the tree identify protocol and shortly discusses the IOA language. Section 4 is an intermezzo
about network topologies, in which general results are derived that we need in the verification.
Section 5 presents the formal verification of the protocol. In Section 6 we sum up the conclusions
that can be drawn from this exercise. We have added Appendix A to give the basic definition
and principles used in this verification. Here we also present a new result for reusing invariants
in a stepwise refinement proof, which is used in Section 5, as well as new sufficient conditions
for feasibility, which are used in Section 5.3.

Note that to improve readibility, we often use Lamport’s list notation [13] for conjunction or
disjunction in formulas.
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2 The protocol

In this section, the IEEE 1394 tree identify phase is described, other verifications of this protocol
are discussed, and our our abstraction is introduced. The IOA models are presented in Section 3.
The tree identify phase has already been described in several articles. The following text and
pictures borrow from [4].

2.1 The IEEE 1394 tree identify phase

We refer to the components connected to 1394 bus as devices. Each device has a number of
ports which are used for bidirectional connections to other devices. Each port has at most one
connection. The device at the other side of the connection is called the peer device. The tree
identify phase follows on completion of the bus reset phase, which is started as soon as a total
reset of the network is demanded. This can occur on request of applications, or because the
network configuration has changed or an error situation has been detected. The bus reset phase
clears all topology information except local information on a device, namely which ports have
connections. During the tree identify phase a spanning tree is constructed in the network. After
the tree identify phase completes, the tree structure will be used in the normal bus operation.
An example of a network topology at the start of the tree identify phase is presented in Figure 1.

Figure 1: Initial network topology

parent?

Figure 2: Intermediate configuration

Informally, the basic idea of the protocol is as follows: each device starts in the initial phase, in
which it may receive a “parent request” on from a peer device on one of its ports. The receiving
device then sends an acknowledgement message to the peer device and adds the port to its
collection of children. A peer device which is connected to the child port, is then considered
to be a child in the tree structure. See Figure 2. When a device is in the initial phase and it
has no more than one port left on which no communication has taken place yet, it can send
a parent request on that port and leave the initial phase. It is obvious that leaf devices (i.e.
devices with one connected port) have exactly one such port at the start of the protocol, so they
can send their parent request and leave the initial phase immediately. In this manner, a tree is
constructed that grows from the leaves inward, until all ports of one device are children, and
that device is the root of the tree. See Figure 4.

It is possible that two devices end up asking each other to be the parent. This situation is
called “root contention”. The devices both signal the reception of a parent request on a port on
which they already sent a parent request, and turn to a symmetry breaking protocol in which
random bits are used. See Figure 3. This root contention protocol has been formally specified
and verified in [28].

When a cycle is present in the network, all the devices that are on such a cycle will not get
a parent request from their peers on the cycle. So they will have more than one port on which
no parent request was received, and can therefore not send a parent request themselves or leave
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parent?

Figure 3: Two contending devices Figure 4: Final spanning tree

the initial phase. Also devices that are not on a cycle, but are wedged between two or more
cycles will not get a parent request on at least two ports, and will not send a parent request
themselves or leave the initial phase. Such a situation is solved by a timer which is started at
the start of the tree identify phase, and which is supposed to expire only in the situation of a
cycle in the network. When there is a cycle in the network, a root should not be elected, since
the operation of the bus in the following phases relies on the topology being a tree structure.

A device may influence its own chances at becoming root by waiting for some time before
sending the parent request, even if it is already possible to proceed. A device will only do so if
it has the flag force root set to true.

Devices may enter the tree identify phase at different times. This is due to the difference
in the moments at which different devices signal that the bus reset phase (preceding the tree
identify phase) should be entered.

2.2 Other verifications of the protocol

Parts of the IEEE 1394 architecture have been formally specified and/or verified in several
articles [14, 12, 4, 7, 27, 26, 28]. Of these, [14, 12, 27] focus on the link layer. The articles
[4, 26, 7, 28] study the tree identify phase of the physical layer, like this paper does. In Figure 5
we give an overview of the results of these articles, and their relation to the research presented
in this paper. The results of the different articles are in the dashed boxes. The names of the
formal models are listed, arrows between these indicate a (proved) implementation relation. The
vertical position of a model name indicates the level of abstraction of that model with respect
to the IEEE 1394 documentation. Very abstract models do not consider implementation details
such as timing, signals etc. The most detailed models incorporate more detail from the IEEE
1394 documentation. In the picture, we have given some models the same vertical position to
indicate that they have a comparable degree of detail. We now explain the results of each article
in short.

Devillers, Griffioen, Romijn and Vaandrager [4] have shown that the election in the tree
identify phase works correct, under the assumption that there are no cycles in the network,
that the network topology is fixed throughout the protocol, that a root contention situation is
solved in one atomic step, and that no device tries to become root by having the corresponding
force root flag set to true. The models are at a high level of abstraction: there is no timing and
communication is modelled with finite queues. The models are I/O automata [16, 17] presented
in a precondition/effect style. The proofs use invariants and simulation techniques from [18].
The proofs have been checked with the theorem prover PVS [22].

Shankland and van der Zwaag [26] have also shown that the election in the tree identify phase
works correct, under the assumption that there are no cycles in the network, that the network
topology is fixed throughout the protocol, and that no device tries to become root by having
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Figure 5: An overview of research on the IEEE 1394 tree identify phase

the corresponding force root flag set to true. The models are at a high level of abstraction:
there is no timing and communication is modelled with finite queues. The models are presented
in µCRL [8], a process algebra language with data. The proofs use invariants and the cones
and foci method from [9]. Note that the paper gives no proof that the root contention protocol
actually terminates within bounded time, since for the verification it is enough to show that it
can terminate.

Griffioen and Vaandrager [7] have shown that the election in the tree identify phase works
correct, under the assumption that the network topology is fixed throughout the protocol, that
a root contention situation is solved in one atomic step, and that no device tries to become
root by having the corresponding force root flag set to true. The models are at a high level
of abstraction: there is no timing and communication is modelled with finite queues. The
models are I/O automata [16, 17] presented in the IOA language [5]. The paper introduces a
new simulation proof technique, called normed simulations. The proofs use invariants and the
proposed simulation technique. The proofs have been checked with the theorem prover PVS
[22]. Note that cycle detection is done with a predicate that takes the structure of the whole
network into account, and does not use timing information, as in IEEE 1394. The predicate
used implies that nodes that are part of a cycle will detect this with an error message. In IEEE
1394 (and in the models presented in this paper), the error situation is also detected by nodes
that are not part of a cycle themselves, but wedged in between of two cycles.

Stoelinga and Vaandrager [28] have shown that the root contention solving protocol in the tree
identify phase works correct under the assumption that the network topology is fixed throughout
the protocol. The models are at an intermediate level of abstraction: on the one hand timers
and probabilities are used, but on the other hand communication is modelled with finite queues.
The models are probabilistic timed I/O automata [24, 25] presented in the IOA language [5].
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The paper introduces two simulation proof techniques, which are special cases of the simulation
techniques in [24, 25]. The proofs use invariants and the proposed simulation techniques.

The model of the protocol that is presented in [4] is essentially the same as one of the I/O
automata examples in the book Distributed Algorithms by Lynch [15]. A correctness proof of
this protocol is not given in [15]. The models that either include cycle detection or the root
contention protocol are can be considered refinements of the protocol in [15].

2.3 This verification

As can be seen in Figure 5, this paper aims to give an implementation relation between the
most detailed model from [7] and a more detailed model. In this way, our verification adds to a
layered verification of IEEE 1394 in which models are refined, that is, more and more detail is
added in each step. In order to keep our proof obligations manageable, we do not add too much
detail, and hence our model has an intermediate degree of detail with respect to IEEE 1394.

The verification is carried out by establishing trace inclusion between timed I/O automata
through a refinement [16, 17, 19]. The I/O automata are presented in the IOA language [5].

The most detailed model of [7] is an untimed model. This means that the cycle detection
is done with a predicate that takes the structure of the whole network into account. In this
verification, we want to establish that cycle detection based on the timing in IEEE 1394 works
correct. In order to do this, we add timers to the model which expire when the leader election
takes too much time. We also add timing information to the messages sent, in order to model
the delay in communication in IEEE 1394. As argued above, this paper uses a different predicate
for cycle detection than the one used in [7], in order to conform to the error behaviour of IEEE
1394. As in [7] we assume that the network topology is fixed throughout the protocol, that a
root contention situation is solved in one atomic step that no device has the force root flag set
to true, and that communication can be modelled with finite queues.

Since our aim is to show that whenever timers in the model expire, there is indeed a cycle
in the network, and that the timers will expire in case of a cycle in the network, we are trying
to show that the timers do not expire too soon or too late. In our proofs we use invariants
that express worst case scenarios in terms of delay. So we are actually performing a worst case
analysis on the timing proposed in IEEE 1394. In this way, we establish a relation between the
parameters of the protocol in terms of minimal and maximal values.

We expect that in a next refinement step it is possible to include the result from [28], to get
closer to the IEEE 1394 behaviour without much effort. The next refinement step could then
be to add a force root flag to the model, thus expressing that devices behave a little different
to increase their chances at leadership. In order to obtain a correctness statement about IEEE
1394 with all its detail, it still has to be shown that modelling the IEEE 1394 communication of
voltages on wires by messages and finite queues is correct. We expect that in this situation, we
will not just have a judgement on correctness, but we will also be able to say how the timing
constants in IEEE 1394 could/should be adjusted.

Our assumptions As a specification of the desired behaviour, we have taken the most detailed
model TIP3 from [7]. In [7] it is shown that the behaviour of TIP3 meets the requirements for
the tree identify phase.
TIP3 is a very abstract model of the tree identify phase, in the sense that it abstracts from

a lot of details. We introduce a model TIP4, which is more detailed than TIP3, and prove that
it is a refinement of TIP3. In this way, the correctness of the behaviour of TIP4 can be derived
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from the correctness of the behaviour of TIP3.
Our justification for still leaving out many implementation details that may affect the cor-

rectness of the protocol, is that we intend to reuse as much as possible of the proofs already
established. This can only be done in a manageable way if we do not add too many details at
once. As it is, the proofs for our verification are already quite lengthy and involved. See also
Section 6 for a discussion of our results.

The abstractions have been chosen as follows.

• In TIP3, it is assumed that the devices signal a cycle by merely checking the network
topology. In TIP4, the devices use a timer, which conforms to IEEE 1394.

• In both TIP3 and TIP4, communication between devices is modelled by sending messages
on queues. In a IEEE 1394 network, the devices communicate by asserting signals (defined
in terms of voltages) on wires for a certain time.

• In both TIP3 and TIP4, it is assumed that no device has the force root flag set to true.

• In both TIP3 and TIP4, the network is assumed to be connected and to be fixed throughout
the protocol. There may be cycles in the topology.

• In both TIP3 and TIP4, the root contention situation is solved in one atomic step, as
opposed to the IEEE 1394 protocol which involves picking random bits, and which repeats
until the symmetry is broken. Note that the root contention protocol has been formally
specified and proved correct in [28].

• In both TIP3 and TIP4, all devices enter the tree identify phase at the same time.

• In TIP3, no timing is used whatsoever. In TIP4, timing is used for determining whether
the network topology contains a cycle (see above), and for determining the actual delivery
time of messages. The IEEE 1394 delay between the moment of sending and reception
and processing of a signal is caused by difference in clocks of the devices, the length and
propagation delay of the wires, and the difference in the tree identify phase enter moment
of the sending and receiving device. In TIP4, the delay of message is determined at the
moment that the message is being received. This delay may vary between the bounds
caused by difference in clocks of the devices, and by the length and propagation delay of
the wires. Although the second factor is constant, we have modelled the choice of delay
to be completely free for each receive operation. Since we are after the bounds on the
timing constants in relation to the network topology with respect to detecting cycles, we
are establishing the property that the cycle detection timer will not expire too soon or too
late. Therefore we are actually performing a worst case analysis. The worst case scenarios
for IEEE 1394 and our model are the same, under the assumption that all devices enter
the tree identify phase at the same moment.

3 IOA models

We present two models in the IOA language [5] of the tree identify protocol, namely TIP3 and
TIP4. The IOA model for TIP3 comes (almost) literally from [7] and gives an abstract and
untimed model of the protocol behaviour. It has been shown in [7] that this model has the
desired behaviour of electing exactly one device for root if there is no cycle in the network. If
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signature
internal childrenknown(d: Dev),

addchild(d:Dev, p:Port),
receivemes(d:Dev, p:Port, m:Mes),
solverootcontent(d:Dev, p:Port)

output root(d:Dev),
loopdetect(d:Dev)

time δ

Figure 6: Signature for TIP3 and TIP4.

there is a cycle in the network, all devices that are part of this cycle will detect this and give an
error message.

The IOA language The IOA language facilitates precise and readable descriptions of I/O
automata [16, 17]. Since our models are timed, we have added a time action, according to the
definition in [19].

IOA contains the basic types Bool, Nat, Int and Real with their standard operators. In
addition type constructors Array, Seq (finite sequences) and Set (finite sets) are part of the
language. The notation [ ] is used for array subscripting, an array with a value e in all cells
is denoted by const(e). The operation ` appends an element at the end of a sequence and
the operations head and tail have the usual meaning. We assume the type Time which is the
(predefined) type Real restricted to nonnegative values.

We assume the extra types Mes to represent the different message contents that may be
exchanged between devices, as follows:

Type Mes enumeration of parent, ack

In Section 4 we give several definitions and operations that concern network topologies. Given
a network N = 〈D,P, dev, peer〉, we assume the types Dev=D and Port=P and all operations
as defined in Section 4.

The TIP models The signature part for both models is shown in Figure 6. The connected
network N = 〈D,P, dev, peer〉 is a parameter for both models. In addition, the constants
MinDelay, MaxDelay, MinLpdtime, and MaxLpdtime are parameters for TIP4. We assume
MinDelay ≤ MaxDelay and MinLpdtime ≤ MaxLpdtime.

The IOA description of TIP3 is shown in Figure 7. The action definitions are almost equal to
those of TIP4, so we refer to the explanation below. The model TIP3 comes (almost) literally
from [7]. The first change is the addition of the time action, whose precondition is true, and
whose effect is empty. The second change is the use of the oncycle predicate, which recognizes
not just devices that are on an ordinary cycle, but also devices that are on a path between
two cycles (see Section 4). Our verification shows that these devices also detect a cycle in the
protocol and give an error message (see property I12 in Definition 5.1, Section 5.1).

The IOA description of TIP4 is shown in Figure 8. The model TIP4 is a proper timed IOA
model: there is a state variable time which is used as a global clock, and per message queue
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automaton TIP3
states

child: Set[Port] := {}
mq: Array[Port,Seq[Mes]] := const({})
init: Array[Dev,Bool] := const(true)
rc, root, lpd: Array[Dev,Bool] := const(false)

transitions
internal childrenknown(d)

pre init[d] ∧ size(ports(d)-child) ≤ 1
eff init[d] := false;

for p in ports(d) do if p ∈ child
then mq[p] := mq[p] ` ack
else mq[p] := mq[p] ` parent fi od

internal addchild(d,p) where d = dev(p)
pre init[d] ∧ head(mq[peer(p)]) = parent
eff child := insert(p, child);

mq[peer(p)] := tail(mq[peer(p)])
internal receivemes(d,p,m) where d = dev(p)

pre ¬ init[d] ∧ ports(d)-child = {p} ∧ head(mq[peer(p)]) = m
eff if m = parent then rc[d] := true fi;

mq[peer(p)] := tail(mq[peer(p)])
internal solverootcontent(d,p) where d = dev(p)

pre rc[d] ∧ rc[dev(peer(p))]
eff child := insert(p,child);

rc[d] := false;
rc[dev(peer(p))] := false

output root(d)
pre ¬ init[d] ∧ ¬ root[d] ∧ ports(d) ⊆ child
eff root[d] := true

output loopdetect(d)
pre oncycle(d) ∧ ¬ lpd[d]
eff lpd[d] := true

time δ where δ > 0
pre true
eff

Figure 7: Automaton TIP3.
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automaton TIP4
states

child: Set[Port] := {}
mq: Array[Port,Seq[Mes]] := const({})
delay: Array[Port,Time] := const(0)
init: Array[Dev,Bool] := const(true)
rc, root, lpd: Array[Dev,Bool] := const(false)
time: Time := 0

transitions
internal childrenknown(d)

pre init[d] ∧ size(ports(d)-child) ≤ 1
eff init[d] := false;

for p in ports(d) do delay[p] := 0;
if p ∈ child
then mq[p] := mq[p] ` ack
else mq[p] := mq[p] ` parent fi od

internal addchild(d,p) where d = dev(p)
pre init[d] ∧ head(mq[peer(p)])=parent ∧ delay[peer(p)] ≥ Mindelay
eff child := insert(p, child); mq[peer(p)] := tail(mq[peer(p)])

internal receivemes(d,p,m) where d = dev(p)
pre ∧ ¬ init[d] ∧ ports(d)-child = {p}

∧ head(mq[peer(p)])=m ∧ delay[peer(p)] ≥ Mindelay
eff if m = parent then rc[d] := true fi;

mq[peer(p)] := tail(mq[peer(p)])
internal solverootcontent(d,p) where d = dev(p)

pre rc[d] ∧ rc[dev(peer(p))]
eff child := insert(p,child);

rc[d] := false; rc[dev(peer(p))] := false
output root(d)

pre ¬ init[d] ∧ ¬ root[d] ∧ ports(d) ⊆ child
eff root[d] := true

output loopdetect(d)
pre init[d] ∧ ¬ lpd[d] ∧ time ≥ MinLpdtime
eff lpd[d] := true

time δ where δ > 0
pre ∀ d,p:

∧ ¬ pre(childrenknown(d)) ∧ ¬ pre(root(d))
∧ if init[d] ∧ ¬ lpd[d] then time+δ ≤ MaxLpdtime fi
∧ if mq[p] 6={} then delay(mq[p])+δ ≤ MaxDelay fi

eff time := time+δ
for p in Port do delay[p] := delay[p]+δ od

Figure 8: Automaton TIP4.
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there is a variable delay that is reset for each message sent on the corresponding queue. A
message is available at least after MinDelay time units have passed or ultimately after MaxDelay
time units have passed. The condition for detecting a cycle in the network also depends on time,
and not (as in TIP3) on the predicate oncycle which is based on the structure of the network.
It is our goal to show that cycle detection will occur if and only if there really is a cycle present
in the network.

We now give a short explanation of each action of TIP4. Whether a device is in the initial
phase is reflected in the state variable init. When init is true, only actions addchild and
childrenknown can be enabled. With addchild a parent request may be received (if the value
of delay indicates that the parent request is available) and the corresponding port is added to
the collection of children. The action childrenknown marks the end of the init phase. It can
only be performed when there is at most one port left which is not a child port, and when it is
performed, an acknowledgement is sent to all peer devices that are connected to a child port
and a parent request is sent to the peer device connected to the port that is not a child, if
any. If a device is on a cycle, then it does not ever reach the state in which childrenknown is
enabled, because two of its ports are connected to peer devices which are also on a cycle. In this
situation, the action loopdetect should be performed. In TIP3, the cycle is detected with the
oncycle predicate. In TIP4, a timer signals that the device stays in the init phase too long,
and therefore must be on a cycle. As soon as a device has left the init phase, it must wait for a
message on the one remaining port that is not a child. If there is no such port, then the device
is the root of the tree, and can perform the root action. If there is such a port, then the action
receivemes can be performed as soon as the message is available. The expected message is an
acknowledgement, after which the contribution of the device to the leader election is over. If an
unexpected parent request is received, then the device is in root contention with the peer device
that sent the parent request. The peer device has received or will receive the parent request
that was sent earlier, and thus has signalled or will signal the root contention. As soon as both
devices have signalled root contention, the action solverootcontent can be performed to break
the symmetry and add one of the two ports involved to the child collection. The device whose
port is added to child can then perform the root action. The time action signals the passing
of time, by increasing the value of time. Time passage may not occur if there are other actions
that cannot be delayed any further. Actions childrenknown and root are urgent, which means
that they should happen at the first moment when they are enabled. Actions addchild and
receivemes are also urgent, but they are enabled only when a message becomes available. Since
the message is available only when the value of delay is in the interval [MinDelay, MaxDelay], we
require that the value of delay does not pass beyond the right-hand border of this interval. The
action loopdetect depends on the the value of time and can happen anywhere in the interval
[MinLpdtime, MaxLpdtime], so we require that time does not pass beyond MaxLpdtime. The only
action that is not mentioned in the precondition of the time action, is solverootcontent. The
reason for this is that in the IEEE 1394 documentation, there is a small sub-protocol with timers
that is used to break the symmetry, instead of the one action that represents this sub-protocol
in TIP4. Since this sub-protocol is not guaranteed to end in finite time (due to randomly drawn
bits), we cannot say at what time the action solverootcontent will take place. Hence we have
put not requirement on the time action for solverootcontent. The root contention solving
protocol is discussed and proved correct in [28].
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4 Network preliminaries

This section gives some definitions and properties of network topologies which are needed in the
verification.

4.1 Networks

Definition 4.1 A network is a quintuple 〈D,P, dev, peer〉, where

• D is a non-empty set of devices.

• P is a set of ports.

• dev : P → D.

• peer : P → P with for all p: peer(peer(p)) = p and p 6= peer(p).

For d ∈ D, we define the abbreviation ports(d) = {p ∈ P |dev(p) = d}.
Given D′ and d ∈ D′, the predicate leaf(D′, d) holds iff ∀p1, p2 ∈ ports(d) : dev(peer(p1)) ∈
D′ ∧ dev(peer(p2)) ∈ D′ → p1 = p2.

The network consists of a collection of devices, each of which has a set of ports. Each port is
connected to one other port with a cable, which is captured by the function peer. Each port
has a connection and no port is connected to itself. The cable connection itself is referred to as
a cable hop. Since for each p ∈ P , dev(p) is defined, it follows that P =

⋃
d∈D ports(d).

Throughout this paper, we fix a networkN = 〈D,P, dev, peer〉 and let variables p, p′, p′′, p0, . . .
range over ports in P , and d, d′, d0, . . . over devices in D.

4.2 Paths, cycles

The following definitions and lemmas are necessary to identify paths, cycles, etc. in the network.

Definition 4.2 A path π is a non-empty sequence of ports π = p0p1 . . . pn, such that:

• n is odd

• p0 6= pn

• for all i > 0, if i is odd then pi−1 = peer(pi) else dev(pi−1) = dev(pi))

We denote the first and last port of π with first(π) = p0 and last(π) = pn. We denote the
length of π with length(π) = (n + 1)/2. We denote the path obtained by reversing π with
reverse(π) = pn . . . p0.
Path π is a path from d1 to d2 if dev(first(π)) = d1 and dev(last(π)) = d2. We say that a
device d is on π iff there is a port p in π such that d = dev(p). A cycle is a path π = p0 . . . pn
such that dev(p0) = dev(pn).
The predicate oncycle(p) is true iff there is a cycle such that p is on it. The predicate oncycle(d)
is true iff there is a port p ∈ ports(d), such that oncycle(p) holds.

A path reflects a walk through the network by the concatenation of cable hops, in which a p1p2

cable hop may not be followed immediately by the reverse hop p2p1. The length of a path is
the number of cable hops included in that path. A cycle may include a path π which is wedged
in between smaller cycles ρ and τ , resulting in the shape of a pair of glasses: ρπτreverse(π).
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Ports that are part of a cycle (of whatever shape) remain inactive during the protocol, as we
will show later.

Lemma 4.3 If π = p0p1p2 . . . pn is a cycle, then p2 . . . pnp0p1 and reverse(π) are also cycles.

Lemma 4.4 oncycle(p)→ oncycle(peer(p))

Lemma 4.5 oncycle(p)→ size({p′|p′ ∈ ports(dev(p)) ∧ oncycle(p′)}) ≥ 2

Proof Let π = p0p1 . . . pn be a cycle such that p = pi.
If i = 0, then by definition of a cycle, dev(pn) = dev(p), and by definition of a path, pn 6= p.
If i is even and i > 0, then by definition of a path, dev(pi−1)− dev(p) and pi−1 6= p.
If i = n, then by definition of a cycle, dev(p0) = dev(p), and by definition of a path, p0 6= p.
If i is odd and i < n, then by definition of a path, dev(pi+1)− dev(p) and pi+1 6= p. �

Lemma 4.6 Let N = 〈D,P, dev, peer〉 be a connected network, and d1, d2 ∈ D.
If oncycle(d1), oncycle(d2), and π is a path from d1 to d2, then for each p ∈ π : oncycle(p)

Proof Let ρ be a cycle such that d1 is on it. Let τ be a cycle such that d2 is on it. We will
show for each port p in π that oncycle(p), as follows.

Let π = p0 . . . pn. If pi is in ρ or τ , then oncycle(pi). We take a fragment π′ = pi . . . pj from
π such that i > 0 implies that pi−1 in ρ or in τ , and j < n implies that pj+1 in ρ or in τ , and for
each port p on π′, p is not on ρ and not on τ . If we can construct a cycle such that the fragment
π′ is part of it, we are done.

Note that by definition, dev(pi) is on ρ or on τ , and dev(pj) is on ρ or on τ .
In the following case distinction we leave out all cases which are symmetric to a case proved

earlier.

1. pi = pj .
We assume w.l.o.g. that dev(pi) is on ρ. Let ρ = ρ1ρ2 such that dev(pi) = dev(last(ρ1)) =
dev(first(ρ2)) and length(ρ1) is even. By assumption, last(ρ1) 6= pi = pj 6= first(ρ2).
We construct the path ρ2ρ1π

′ and see that it is a cycle.

2. pi 6= pj .
We assume w.l.o.g. that dev(pi) is on ρ and dev(pj) is on τ . Let ρ = ρ1ρ2 such that
dev(pi) = dev(last(ρ1)) = dev(first(ρ2)) and length(ρ1) is even. Let τ = τ1τ2 such
that dev(pj) = dev(last(τ1)) = dev(first(τ2)) and length(τ1) is even. By assumption,
last(ρ1) 6= pi 6= first(ρ2) and last(τ1) 6= pj 6= first(τ2). We construct the path
ρ2ρ1π

′τ2τ1reverse(π′) and see that it is a cycle.

�

4.3 Connected networks

The following definitions and lemmas are necessary to identify the distance of devices in the
network to the edge of the network, that is, how many times we have to take all the leaf devices
away before a device becomes a leaf in the remaining set. The distance measure defined here
will be used in the protocol to quantify the worst-case time that it takes for a device to complete
its part in the protocol.

Definition 4.7 N is connected if for each two devices d, d′ ∈ D there is a path from d to d′.
If N is connected, we denote the maximum length of the shortest path in N between any two
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devices by MaxHop = max({n|d1, d2 ∈ D ∧ n = min({length(π)|π is path from d1 to d2})}).
The function Steps is defined by the following equation:

Steps(D′, d) =
{

0 if leaf(D′, d) or oncycle(d)
1 + Steps(D′′, d) otherwise

where D′′ = D′ − {d′ ∈ D′|leaf(D′, d′)}

We abbreviate Steps(d) = Steps(D, d).
The function Shrink is defined by the following equation:

Shrink(D′, n′) =
{
D′ if n′ = 0
Shrink(D′′, n′ − 1) otherwise

where D′′ = D′ − {d′ ∈ D′|leaf(D′, d′)}

We abbreviate Shrink(n) = Shrink(D,n).

The value MaxHop, which is an upper bound to the mininum number of cable hops between any
two devices, is used in the IEEE documentation as a restriction on the networks on which the
protocol is to operate.

The function Steps gives the one but greatest distance between a device and a leaf in the
network. This number is determined by the number of steps it takes for such a device to become
a leaf, when in each step all leafs are removed. For a device that is part of a cycle, the value of
Steps has no meaning and will not be used.

The function Shrink gives the set of devices that remains when in each step the leaf devices are
removed and this is repeated for the indicated number of times, starting with the given set. The
correspondence between Steps and Shrink is obvious: if Steps(d) = n then leaf(Shrink(n), d)
holds and if Steps(d) ≥ n then d ∈ Shrink(n).

In the remainder of this paper, we assume that N is connected.

Lemma 4.8 Let d ∈ D such that ¬oncycle(d).
If Steps(d) = n then size({p′ ∈ ports(d)|oncycle(dev(peer(p′)) ∨ Steps(dev(peer(p′))) ≥
n}) ≤ 1.

Proof By contradiction. Assume ¬oncycle(d) and Steps(d) = n. Let p, p′ ∈ ports(d) such
that p 6= p′ and oncycle(dev(peer(p))∨Steps(dev(peer(p))) ≥ n and oncycle(dev(peer(p′))∨
Steps(dev(peer(p′))) ≥ n. Since Steps(d) = n, either oncycle(d) or leaf(Shrink(n), d). Since
we assumed ¬oncycle(d), apparently leaf(Shrink(n), d). By our assumption dev(peer(p)) and
dev(peer(p′)) are both in Shrink(n). But p 6= p′, which contradicts leaf(Shrink(n), d). We
conclude that size({p′ ∈ ports(d)|oncycle(dev(peer(p′)) ∨ Steps(dev(peer(p′))) ≥ n}) ≤ 1.
�

Lemma 4.9 For each d ∈ D

Steps(d) ≤
{
bMaxHop/2c if ∀d′ ∈ D : ¬oncycle(d′)
max(0, MaxHop− 1) otherwise

Proof By contradiction.

1. Suppose ∀d ∈ D : ¬oncycle(d).
Suppose Steps(d) = m > bn/2c. We show that we can construct a shortest path π with
length(π) > n, by starting with d and extending the path in each step with one cable hop
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in two directions. We use induction on n′ ∈ {1, . . . ,m} in the following hypothesis:
There is a path p0 . . . p4n′−1 with Steps(dev(p0)) ≥ m−n′ and Steps(dev(p4n′−1)) ≥ m−n′
and there is no other path from dev(p0) to dev(p4n′−1).

• (Base step) n′ = 1
Since m > 0, certainly ¬leaf(Shrink(m − 1), d), and since leaf(Shrink(m), d),
there must be p, q ∈ ports(d) such that p 6= q and dev(peer(p)) and dev(peer(q)) in
Shrink(m−1). Fix p, q. Clearly, Steps(dev(peer(p))) ≥ m−1 and Steps(dev(peer(q))) ≥
m − 1. Consider peer(p)pqpeer(q). This is a path if peer(p) 6= peer(q). Since
¬oncycle(d′) for all d′ ∈ D, we see that dev(peer(p)) 6= dev(peer(q)), so peer(p) 6=
peer(q). If was another path from dev(peer(p)) to dev(peer(q)) then this would
contradict the assumption that ¬oncycle(d′) for all d′ ∈ D. We conclude that
π = peer(p)pqpeer(q) is a path that meets the requirements.

• (Induction step) n′ = n′′ + 1 ≤ m and the hypothesis holds for n′′

Let π = p0 . . . p4n′′−1 such that Steps(dev(p0)) ≥ m− n′′ and Steps(dev(p4n′′−1)) ≥
m − n′′ and there is no other path from dev(p0) to dev(p4n′′−1). We abbreviate
d1 = dev(p0) and d2 = dev(p4n′′−1) for the first and last device of π. Since n′′ <
m, Steps(d1) > 0 and Steps(d2) > 0. So ¬leaf(Shrink(m − n′′ − 1), d1) and
¬leaf(Shrink(m − n′′ − 1), d2). So there must be p, p′ ∈ ports(d1) and q, q′ ∈
ports(d2) such that p 6= p′, q 6= q′, and dev(peer(p)), dev(peer(p′)) dev(peer(q)),
and dev(peer(q′)) in Shrink(m−n′′−1). Fix p, p′, q and q′. Now for x ∈ {p, p′, q, q′} :
Steps(dev(peer(x))) ≥ m − n′′ − 1 = m − (n′′ + 1) = m − n′ We assume without
loss of generality that p 6= p0 and q 6= p4n′′−1. Consider peer(p)pπqpeer(q). This
is a path if peer(p) 6= peer(q). Since ¬oncycle(d′) for any d′ ∈ D, we see that
dev(peer(p)) 6= dev(peer(q)), so peer(p) 6= peer(q). If there was another path
from dev(peer(p)) to dev(peer(q)) then this would contradict the assumption that
¬oncycle(d′) for all d′ ∈ D. We conclude that peer(p)pπqpeer(q) is a path that
meets all the requirements for the induction step.

We conclude that there is a shortest path in the network of length 2m. Since m > bn/2c,
certainly 2m > (2bn/2c) + 1 ≥ n. So 2m > n and we have a contradiction.

2. Suppose ∃d′ ∈ D : oncycle(d′).
Suppose Steps(d) = m > max(0, n− 1). Then m > 0 and by definition of Steps, certainly
¬oncycle(d). We show that we can construct a path π with length(π) > n, by starting
with d and a neighbour of d on a cycle, and extending the path in each step with one cable
hop to a neighbour which is not on a cycle. We use induction on n′ ∈ {0, . . . ,m} in the
following hypothesis:
There is a path p0p1 . . . p2n′+1 with oncycle(dev(p0)), Steps(dev(p2n′+1)) ≥ m− n′ and
for all 1 ≤ i ≤ 2n′ + 1: ¬oncycle(dev(pi)), and there is no shorter path from dev(p0) to
dev(p2n′+1).

• (Base step) n′ = 0
Suppose there is no p ∈ ports(d) such that oncycle(dev(peer(p))). Since N is
connected, there must be π, d′ such that π is a path π = p0 . . . pn from d′ to d with
oncycle(d′) and for each i > 0 : ¬oncycle(dev(pi)). Fix d′, π. Since oncycle(d′)
and ¬oncycle(dev(p1)), we can use Lemma 4.8 to conclude that Steps(dev(p1)) >
max({Steps(dev(p′)|p′ ∈ ports(dev(p1)) ∧ p′ 6= p1}). Then it is not hard to show
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(using induction and Lemma 4.8) that ∀i ∈ {1, 3, . . . , n − 2} : Steps(dev(pi)) ≥
Steps(dev(pi+2)). Then we easily have ∀i ∈ {1, 3, . . . , n} : Steps(dev(pi)) ≥ m.
Since d is chosen arbitrarily with Steps(d) > n − 1, any of the devices on π except
dev(p0) would do. So we assume without loss of generality that there is a p ∈ ports(d)
such that oncycle(dev(peer(p))). Fix p.
We now have Steps(d) ≥ m, ¬oncycle(d), and oncycle(dev(peer(p)). We see that
peer(p)p is a path that meets the requirements, since there cannot be a shorter path
from dev(peer(p)) to d.

• (Induction step) n′ = n′′ + 1 ≤ m and the hypothesis holds for n′′

Let π = p0 . . . p2n′′+1 such that oncycle(dev(p0)) , Steps(dev(p2n′′+1)) ≥ m − n′′
and for all 1 ≤ i ≤ 2n′′ + 1: ¬oncycle(dev(pi), and there is no shorter path from
dev(p0) to dev(p2n′′+1). We abbreviate d′ = dev(p2n′′+1) to indicate the last device
in π. Since n′′ < m, Steps(d′) > 0. So ¬leaf(Shrink(m − n′′ − 1), d. So there
must be p, p′ ∈ ports(d′) such that p 6= p′, and dev(peer(p)) and dev(peer(p′))
in Shrink(m − n′′ − 1). Fix p, p′. Now for x ∈ {p, p′} : Steps(dev(peer(x))) ≥
m − n′′ − 1 = m − (n′′ + 1) = m − n′. We assume without loss of generality that
p 6= p2n′′+1.
Consider πppeer(p). This is a path if peer(p) 6= p0. Suppose that peer(p) = p0.
Then p = p1 and dev(p1) = d1, hence p2 . . . pn is a cycle, which contradicts our
assumption. We conclude that peer(p) 6= p0 and πppeer(p) is a path.
Suppose that oncycle(dev(peer(p))). Then by Lemma 4.6 we have that for all
1 ≤ i ≤ 2n′′+1, oncycle(dev(pi)), which contradicts our assumption. So we conclude
that ¬oncycle(dev(peer(p))).
Suppose a shorter path than πppeer(p) exists from dev(p0) to dev(peer(p)). This
enables us to conclude that oncycle(dev(peer(pi))) with pi ∈ π, which contradicts
our assumptions. So we conclude that no shorter path than πppeer(p) exists from
dev(p0) to dev(peer(p)).
We see that the path πppeer(p) meets all the requirements for the induction step.

So there is a shortest path in the network of length m+ 1. Since m > n− 1, m+ 1 > n
and we have a contradiction.

�

5 Verification

In this section we prove that the IEEE 1394 tree identify protocol is correct relative to our
model. In Section 5.1 some properties are given which have been proved invariant for the model
TIP3in [7]. Some additional properties are given, which are be proved invariant for the model
TIP4, provided that the invariants for TIP3 are also invariant for TIP4. This provision is solved
in the next section, Section 5.2, in which it is proved that under certain timing restrictions
the behaviour of TIP4 is included in the behaviour of TIP3. The proofs in Section 5.2 allow
us to conclude that the safety aspects of cycle detection and root election in TIP4 meet the
IEEE 1394 requirements. In Section 5.3 we prove some liveness properties for TIP4. Finally, in
Section 5.4 we discuss whether the IEEE 1394 timing constants obey the restrictions that we
found in Section 5.2.



5. Verification 17

The proofs in Sections 5.1 and 5.2 use simulation techniques from [19] which are listed in
Appendix A. These appendices also present a new result for using invariants in stepwise re-
finement, which is useful for this verification because it allows us to reuse invariants properties
from [7] without extra effort. In Appendix A.2, some new sufficient conditions for feasibility can
be found. These lessen the proof burden when proving that there are no time deadlocks in the
model.

Throughout this section we fix a connected network N = 〈D,P, dev, peer〉 as the parameter
for TIP4. We let s,t range over states of TIP4, δ over Time, and m over Mes.

5.1 Invariants for TIP3 and TIP4

We first define the properties, of which some are taken from the PVS code used to check the
proofs for [7]. All of the following properties are necessary for the proofs in Sections 5.2 and 5.3.

Definition 5.1 I1(d) ∆= init[d]→ ¬rc[d]

I2(p) ∆= init[dev(p)]→ mq[p] = {}

I3(p) ∆= init[dev(p)]→ peer(p) 6∈ child

I4(d) ∆= init[d] ∨ size(ports(d)− child) ≤ 1

I5(p) ∆= length(mq[p]) ≤ 1

I6(p) ∆= p ∈ child→ mq[peer(p)] = {}

I7(p) ∆= rc[dev(p)]→ mq[peer(p)] = {}

I8(p) ∆= rc[dev(p)]→ peer(p) 6∈ child

I9(p) ∆= ∨ init[dev(p)]
∨ head(mq[p]) = parent
∨ peer(p) ∈ child
∨ rc[dev(peer(p))]
∨ p ∈ child

I10(p) ∆= mq[p] 6= {} → delay[p] ≤ MaxDelay

I11(d) ∆= ∧ ¬oncycle(d) ∧ init[d]→ time ≤ Steps(d) ∗ MaxDelay
∧ ¬oncycle(d) ∧ time > Steps(d) ∗ MaxDelay
→ ∀p′∈ ports(d) :

head(mq[p′]) = parent
→ time− delay[p′] ≤ Steps(d) ∗ MaxDelay

I12(d) ∆= ∧ MinLpdtime > max(0, MaxHop− 1) ∗ MaxDelay
∧ init[d]
∧ ¬oncycle(d)
→ time < MinLpdtime

I13(d) ∆= oncycle(d)→ init[d]
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I14(d) ∆= oncycle(p) ∧ ¬lpd[d]→ time ≤ MaxLpdtime

We let I1
∆=
∧
d I1(d), I2

∆=
∧
p I2(p), et cetera.

Some of the properties in Definition 5.1 have been taken from [7], from which we also repeat the
following result.

Lemma 5.2 Properties I1, I2, I3, I4, I5, I6, I7, I8, and I9 are invariant for TIP3.

Even though the predicate oncycle has a different meaning in [7], we can assume that the proofs
[7] still hold here, since the oncycle predicate is not used in the proofs.

Now we prove that under the assumption that some of the properties from Definition 5.1 hold
in each reachable state for TIP4, it follows that others hold in each reachable state for TIP4 as
well. In Section 5.2, the assumptions will be fulfilled by the corresponding properties for TIP3.

Lemma 5.3 1. I10 is inductive relative to (I2 ∧ I5) for TIP4.

2. I11 is inductive relative to (I1 ∧ I3 ∧ I5 ∧ I9) for TIP4.

3. For each s ∈ reachable(TIP4), s |= I11 implies s |= I12.

4. I13 is inductive relative to I3 for TIP4.

5. I14 is inductive relative to I13 for TIP4.

Proof

1. Trivial.

2. Suppose ¬oncycle(d).
Initially, s.time = 0 and ∀p : s.mq[p] = {}. Since Steps(d) ≥ 0, Steps(d) ∗ MaxDelay ≥
0 = s.time. Since ∀p ∈ ports(d) : s.mq[p] = {}, it follows that s |= I11.

Suppose from s
a→ t and s |= I1 ∧ I3 ∧ I5 ∧ I9 ∧ I11. We have to show that t |= I11. Fix n

such that n ∗ MaxDelay ≤ s.time < (n+ 1) ∗ MaxDelay.

We make the following case distinction.

(a) s.time > Steps(d) ∗ MaxDelay
By s |= I11 we see that ¬s.init[d]. By the effect of a, we conclude that ¬t.init[d].
Now we just need to show for each p′ ∈ ports(d) that if head(t.mq[p′]) = parent, then
t.time−t.delay[p′] ≤ Steps(d)∗MaxDelay. Assume p′ ∈ ports(d) and head(t.mq[p′]) =
parent. By ¬s.init[d], s |= I5 and the precondition and effect of a, head(s.mq[p′]) =
parent. Since s |= I11, it follows that s.time− s.delay[p′] ≤ Steps(d) ∗ MaxDelay.

i. ∀δ > 0 : a 6= δ
Then by the effect of a, t.time = s.time, and by ¬s.init[d] and the precondition
and effect of a, t.delay[p′] = s.delay[p′]. So t.time − t.delay[p′] = s.time −
s.delay[p′] ≤ Steps(d) ∗ MaxDelay and it follows that t |= I11(d).

ii. a = δ
Then t.time = s.time + δ, and t.delay[p′] = s.delay[p′] + δ. So t.time −
t.delay[p′] = s.time + δ − (s.delay[p′] + δ) = s.time− s.delay[p′] ≤ Steps(d) ∗
MaxDelay and it follows that t |= I11(d).

(b) s.time ≤ Steps(d) ∗ MaxDelay
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i. ¬s.init[d]
By the effect of a, ¬t.init[d]. The remainder is equal to the proof for Step 2a.

ii. s.init[d]
A. ∀δ > 0 : a 6= δ

Then by the effect of a, t.time = s.time, so t.time ≤ Steps(d) ∗ MaxDelay,
hence for each p′ ∈ ports(d), trivially t.time − t.delay[p′] ≤ Steps(d) ∗
MaxDelay and it follows that t |= I11(d).

B. a = δ ∧ s.time + δ ≤ Steps(d) ∗ MaxDelay
Then for each p′ ∈ ports(d), trivially t.time − t.delay[p′] ≤ Steps(d) ∗
MaxDelay and it follows that t |= I11(d).

C. a = δ ∧ s.time + δ > Steps(d) ∗ MaxDelay
The effect of a leads to a violation of property I11, so we have to show that
our assumption on a leads to a contradiction.
First we prove by contradiction that for each d′ with ¬oncycle(d′) and
Steps(d′) < Steps(d), it follows that ∀p′ ∈ ports(d′) : s.mq[p′] = {} ∨
head(s.mq[p′]) = ack. Suppose ¬oncycle(d′), Steps(d′) < Steps(d) and
head(s.mq[p′]) = parent. By s |= I11, we see that s.time − s.delay[p′] ≤
Steps(d′)∗MaxDelay. Since t.time− t.delay[p′] = s.time+δ−(s.delay[p′]+
δ) = s.time − s.delay[p′] ≤ Steps(d′) ∗ MaxDelay, and since s.time + δ >
Steps(d) ∗ MaxDelay ≥ (Steps(d′) + 1) ∗ MaxDelay, we get s.delay[p′] + δ >
MaxDelay, which in contradiction with our assumption that s enables δ.
Now we prove by contradiction that for each d′ with ¬oncycle(d′) and
Steps(d′) ≤ Steps(d), it follows that ¬s.init[d′]. Fix d′ such that ¬oncycle(d′),
s.init[d′] and there is no d′′ with Steps(d′′) < Steps(d′) and s.init[d′′]. Let
P ′ = {p′ ∈ ports(d′)|¬oncycle(dev(peer(p′))) ∧ Steps(dev(peer(p′))) ≤
Steps(d′) − 1}. By Lemma 4.8, size(ports(d′) − P ′) ≤ 1. Fix p′ ∈ P ′

and d′′ = dev(peer(p′)). Note that Steps(d′′) < Steps(d′) ≤ Steps(d). By
our assumption, ¬s.init[d′′]. By s.init[d′] and s |= I3, we see peer(p′) 6∈
s.child. By s.init[d′] and s |= I1, we see ¬s.rc[d′]. Combining all of this
with our observation that s.mq[peer(p′)] = {} ∨ head(s.mq[peer(p′)] = ack
and s |= I9, we get p′ ∈ s.child. So size(ports(d′)) − s.child = 1. Since
s.init[d′], s enables childrenknown(d′) which is in contradiction with our
assumption that s enables δ. We conclude that ¬s.init[d′].
From this observation, it trivially follows that ¬s.init[d] which is in con-
tradiction with our assumption. It follows that a 6= δ ∨ s.time + δ ≤
Steps(d) ∗ MaxDelay.

3. Let s ∈ reachable(TIP4) such that s |= I11. Assume MinLpdtime > max(0, MaxHop − 1) ∗
MaxDelay ∧ s.init[d] ∧ ¬oncycle(d). By s.init[d] ∧ ¬oncycle(d) and s |= I11, s.time ≤
Steps(d) ∗ MaxDelay. Note that for each n ≥ 0, bn/2c ≤ max(0, n − 1). Combining this
with Lemma 4.9, we get Steps(d) ≤ max(0, MaxHop− 1). So s.time ≤ max(0, MaxHop− 1) ∗
MaxDelay < MinLpdtime and it follows that s |= I12.

4. Suppose oncycle(d).

Initially, s.init[d], hence s |= I13.

Suppose s a→ t and s |= I3 ∧ I13. By oncycle(d) and s |= I13, we see that s.init[d].
If a 6= childrenknown(d) then t.init[d] = s.init[d], so it suffices to show that a 6=
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childrenknown(d). By Lemma 4.5 and oncycle(d), there must be p1, p2 ∈ ports(d) such
that p1 6= p2 and oncycle(dev(peer(p1))) and oncycle(dev(peer(p2))). Since s |= I13,
we see that s.init[dev(peer(p1))] and s.init[dev(peer(p2))]. Since s |= I3, we see that
p1 6∈ s.child and p2 6∈ s.child. Since p1 6= p2, we see that size(ports(d) − s.child ≥ 2,
hence s does not enable childrenknown(d).

5. Trivial.

�

Note that by Items 2 and 3 it follows that I12 is inductive relative to (I1 ∧ I3 ∧ I5 ∧ I9 ∧ I11) for
TIP4.

5.2 TIP4 implements TIP3

We use the properties established in Section 5.1 to obtain that TIP4 implements TIP3. As an
implementation relation we take inclusion of admissible timed traces. From Section 5.1, it follows
that the behaviour of TIP4 meets these properties only when the parameters obey the following
relation: MinLpdtime > max(0, MaxHop− 1) ∗ MaxDelay. Therefore, we assume throughout this
section that this relation holds.

In order to obtain the implementation relation, we construct a function that is to be proved
a weak timed refinement from TIP4 to TIP3. Given the complicated relations between the
invariants for TIP3 and the properties for TIP4, we have been forced to either prove the properties
for TIP4 that depend on invariants for TIP3 anew, or to prove the invariance of the properties
for TIP4and the weak refinement in one proof, or to come up with a more elegant solution.
The latter approach has given rise to some new sufficient conditions, which are presented in
Appendix A.

To avoid confusion, all state variables from TIP3 are subscripted with 3, and all state variables
from TIP4 are subscripted with 4. Since the action signatures are equal, we do not use these
subscript on the action names.

Definition 5.4 The function ref from states of TIP4 to states of TIP3 is defined to be the
identity function on state variables with the same name.

Lemma 5.5 Let s ∈ states(TIP3). For all I ∈ {I1, I2, I3, I4, I5, I6, I7, I8, I9}, ref(s) |= I implies
s |= I.

Proof Trivial. �

Lemma 5.6 1. s ∈ Start(TIP4) implies ref(s) ∈ Start(TIP3).

2. s a→TIP4 t, s |= I10 ∧ I11 ∧ I12 ∧ I13 ∧ I14 and ref(s) |= I1 ∧ I2 ∧ I3∧ I4 ∧ I5 ∧ I6 ∧ I7 ∧ I8 ∧ I9

implies ref(s) a→TIP3 ref(t).

Proof

1. Suppose s ∈ Start(TIP4).

Since the initial requirements are the same for every state variable in TIP3 as for the state
variable with the same name in TIP4, and the state variables with the same name have
the same value in s and in ref(s), ref(s) ∈ Start(TIP3) follows from s ∈ Start(TIP4).
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2. Suppose s a→TIP4 t s |= I10∧I11∧I12∧I13∧I14 and ref(s) |= I1∧I2∧I3∧I4∧I5∧I6∧I7∧I8∧I9.
s ∈ reachable(TIP4) and ref(s) ∈ reachable(TIP3).

Since for each a, the effect in TIP3 is equal to the effect in TIP4 on all state variables from
TIP3, it follows that whenever ref(s) a→TIP3 t

′, then t′ = ref(t).

If a 6∈
⋃
d loopdetect(d), then we see that the precondition of a in TIP4 trivially implies

the precondition of a in TIP3, hence if s a→TIP4, then ref(s) a→TIP3. So we just need to
show that if a = loopdetect(a), then ref(s) a→TIP3.

Suppose a = loopdetect(a). By precondition of a in TIP4, ¬s.lpd4[d] and s.time4 ≥
MinLpdtime. From ¬s.lpd4[d] we see ¬ref(s).lpd3[d]. By s.time4 = lpdtime4[d] and
s |= I12 we see that either ¬s.init4[d] or oncycle(d). By precondition of a in TIP4 we see
that s.init4[d], and we conclude that oncycle(d). Hence ref(s) enables a.

�

Corollary 5.7 I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13 and I14 are invariant for TIP4.

Proof By Lemmas 5.2, 5.3, 5.5 and 5.6 we can use Lemma A.2. �

Corollary 5.8 The function ref is a weak timed refinement from TIP4 to TIP3 with respect
to (I10 ∧ I11 ∧ I12 ∧ I13 ∧ I14) and (I1 ∧ I2 ∧ I3 ∧ I4 ∧ I5 ∧ I6 ∧ I7 ∧ I8 ∧ I9)

Proof By Lemmas 5.2, 5.3, 5.5 and 5.6 we can use Lemma A.2. �

The implementation relation now follows easily.

Theorem 5.9 t-traces(TIP4) ⊆ t-traces(TIP3).

Proof Combine Corollary 5.8 with Theorem 6.14 from [19]. �

5.3 Liveness results for TIP4

In this section we show some liveness results for model TIP4. As in Section 5.2, we assume that
the parameters of TIP4 meet the following relation: MinLpdtime > max(0, MaxHop−1)∗MaxDelay.

The liveness results are the following. We first show that TIP4 has no time deadlocks. For
this, some new sufficient conditions are used, which are presented in Appendix A.2. Then we
prove that when a cycle is present, it will be detected, and that otherwise a root will be elected.
Notice that we cannot use results from TIP3, since notions as quiescence and fairness are not
present at the timed level.

First we need to define a measure on reachable states, to indicate the number of discrete
actions that must be performed before passing of time will be enabled again.
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Definition 5.10 The function Measure gives a pair for each state s from TIP4, as follows:

Measure(s) = 〈I, C +R+M + L〉
where
I = size({d|s.init[d]})
C = size(P − s.child)
R = size({d|¬s.root[d]})
M = size({p|s.mq[p] 6= {}})
L = size({d|¬s.lpd[d]})

The ordering ≺ is the lexicographic ordering on pairs of naturals, based on the ordering < on
naturals.

Since < is well-founded, ≺ is also well-founded.
Now we prove the properties that we need for deadlock freedom, namely that when no discrete

action is enabled, then the passage of time is enabled, and that at every moment in time at most
a finite amount of discrete activity can occur.

Lemma 5.11 For each s ∈ reachable(TIP4) the following holds:

1. s enables an action from acts(TIP4).

2. If s a→ t and ∀δ > 0 : a 6= δ, then Measure(t) ≺ Measure(s) otherwise Measure(t) =
Measure(s).

Proof

1. It suffices to show that if s does not enable a for all a ∈ acts(Tipvier) −
⋃
δ>0{δ}, then s

enables δ for some δ > 0, which we prove by contradiction.

Suppose that for all a ∈ acts(TIP4), s does not enable a. Apparently s does not enable
any δ > 0, so either s.time = MaxLpdtime and ∃d : s.init[d] ∧¬s.lpd[d], or ∃p : s.mq[p] 6=
{} ∧ s.delay([p]) ≥ MaxDelay.

Suppose s.time = MaxLpdtime, s.init[d] and ¬s.lpd[d]. Then s enables loopdetect(d)
and we have a contradiction.

Suppose s.mq[p] 6= {} and s.delay[p] ≥ MaxDelay. Let head(s.mq[p]) = m. Since MaxDelay ≥
MinDelay, s.delay[p] ≥ MinDelay. Using Invariant I2, we get ¬s.init[dev(p)], and us-
ing Invariant I6 we get peer(p) 6∈ s.child. Suppose p ∈ s.child. Using Invariant I3 we
get ¬s.init[dev(peer(p))]. Then s enables receivemes(dev(peer(p)), peer(p),m) and we
have a contradiction. So p 6∈ s.child. Using Invariant I7, we see that ¬s.rc[dev(peer(p))].
Combining all of this with I9 we get m = parent. Suppose s.init[dev(peer(p))]. Then s
enables addchild(dev(peer(p)), peer(p)) and we have a contradiction. So ¬s.init[dev(peer(p))].
Then s enables receivemes(dev(peer(p)), peer(p), parent) and we have a contradiction.

2. Let Measure(s) = 〈Is, Cs +Rs +Ms + Ls〉 and Measure(t) = 〈It, Ct +Rt +Mt + Lt〉.

(a) a = childrenknown(d)
By precondition of a, ¬s.init[d] and by effect of a, t.init[d]. So It < Is. We conclude
that Measure(t) ≺ Measure(s).
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(b) a = addchild(d, p)
By effect of a, t.init = s.init, t.root = s.root and t.lpd = s.lpd, hence It =
Is, Rt = Rs and Lt = Ls. By precondition of a, head(s.mq[peer(p)] = parent.
Combining this with Invariant I5, we get s.mq[peer(p)] = {} ` parent. By the
effect of a, t.mq[peer(p)] = tail(s.mq[peer(p)]) = {}, so Mt = Ms − {peer(p)},
hence Mt < Ms. Combining head(s.mq[peer(p)] = parent with Invariant I6 we get
p 6∈ s.child. By effect of a, t.child = s.child∪ {p}. So Ct < Cs. By effect of a We
conclude that Measure(t) ≺ Measure(s).

(c) a = receivemes(d, p,m)
By effect of a, t.init = s.init, t.child = s.child, t.root = s.root and t.lpd =
s.lpd, hence It = Is, Ct = Cs, Rt = Rs and Lt = Ls. By precondition of a,
head(s.mq[peer(p)] = m. Combining this with Invariant I5, we get s.mq[peer(p)] =
{} ` m. By the effect of a, t.mq[peer(p)] = tail(s.mq[peer(p)]) = {}, so Mt =
Ms − {peer(p)}, hence Mt < Ms. We conclude that Measure(t) ≺ Measure(s).

(d) a = solverootcontent(d, p)
By effect of a, t.init = s.init, t.root = s.root, t.mq = s.mq and t.lpd = s.lpd, hence
It = Is, Rt = Rs, Mt = Ms and Lt = Ls. By precondition of a, s.rc[dev(peer(p))].
Combining this with Invariant I8 we get p 6∈ s.child. By effect of a, t.child =
s.child ∪ {p}. So Ct < Cs. We conclude that Measure(t) ≺ Measure(s).

(e) a = root(d)
By effect of a, s.init = t.init, s.child = t.child, t.mq = s.mq and t.lpd = s.lpd,
hence It = Is, Ct = Cs, Mt = Ms and Lt = Ls. By precondition of a, ¬s.root[d], and
by effect of a, t.root[d]. So Rt < Rs. We conclude that Measure(t) ≺ Measure(s).

(f) a = loopdetect(d)
By effect of a, s.init = t.init, s.child = t.child, s.root = t.root and s.mq = t.mq,
hence It = Is, Ct = Cs, Rt = Rs and Mt = Ms. By precondition of a, ¬s.lpd[d], and
by effect of a, t.lpd[d]. So Lt < Ls. We conclude that Measure(t) ≺ Measure(s).

(g) a = δ
By effect of a, s.init = t.init, s.child = t.child, s.root = t.root, s.mq = t.mq and
t.lpd = s.lpd. Hence It = Is, Ct = Cs, Rt = Rs, Mt = Ms and Lt = Ls, and we
conclude that Measure(t) = Measure(s).

�

Now we show that TIP4 cannot get into a time deadlock by its own discrete activity. A timed
I/O automaton that has this property is called feasible.

Theorem 5.12 TIP4 is feasible.

Proof It can easily be seen that TIP4 fulfills the requirements for Lemma A.3. This lemma
fulfills one of the requirements in Theorem A.4. The other requirement is fulfilled by the Measure
function and the result in Proposition 5.11. It follows from Theorem A.4 that TIP4 is feasible.
�

We now show that whenever there is a cycle in the network, it is detected by the protocol.

Theorem 5.13 Let α be an admissible execution of TIP4.
If oncycle(d) then α contains an occurrence of lpd(d).
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Proof Since time proceeds in α without bound, and since initially s.lpd[d] is false and since
s.lpd[d] can only be made true by an occurrence of lpd(d), it suffices to show that for each
reachable state s in TIP4, if s.time > MaxLpdtime, then s.lpd[d]. This follows easily from
Invariant I14. �

Unfortunately, it is not possible to prove that if there is no cycle in the network, then within
finite time a root will be elected. This is due to the unknown duration of the root contention
solving sub-protocol. The following theorem shows that if no root contention occurs, then indeed
a root is elected in finite time.

Theorem 5.14 Let α = s0a1s1 . . . be an admissible execution of TIP4.
If ∀d : ¬oncycle(d) and ∀i, d : ¬si.rc[d], then ∃d such that α contains an occurrence of root(d).

Proof Assume ∀d : ¬oncycle(d). We observe the following:

1. Time proceeds in α without bound.

2. In each reachable state s in TIP4 the following holds. For all d: if s is an initial state then
¬s.root[d], and if s.root[d], then each execution leading to s must contain an occurrence
of root(d).

3. If there is a state s in α and a d such that ports(d) − s.child = {}, then α contains an
occurrence of root(d).

This is easily seen by a few observations. Fix s and d such that ports(d)− s.child = {}.
First, s.init[d] or s.root[d] or s enables root(d). If s.root[d], then by Item 2 we conclude
that α contains an occurrence of root(d). If s.init[d] then s enables childrenknown(d).
If s enables childrenknown(d) or root(d), then s does not enable any δ > 0. If s enables
childrenknown(d) and s a→ t then either a = childrenknown(d) and t enables root(d) or
t enables childrenknown(d). If s enables root(d) and s a→ t then a = root(d) or t enables
root(d).

4. In each reachable state s in TIP4 the following holds. If ∀p ∈ P either p ∈ s.child or
peer(p) ∈ s.child, then there exists a d such that ports(d) − s.child = {}.
Suppose ∀p ∈ P either p ∈ s.child or peer(p) ∈ s.child and there is no d such that
ports(d) − s.child = {}. Construct a longest path π = p0 . . . pn such that for each
i ∈ {0, 2, . . . , n − 1} : pi 6∈ s.child and for all i, j ∈ {0, 1, 3, 5, . . . , n} : i 6= j → dev(pi) 6=
dev(pj). Since pn−1 6∈ s.child, and pn = peer(pn−1) certainly pn ∈ s.child. Suppose
that p ∈ dev(pn) : p 6∈ s.child. If dev(peer(p)) = dev(pi) for some i ∈ {0, . . . , n}, then
we can construct a cycle, and we have a contradiction. So dev(peer(p)) 6= dev(pi) for all
i ∈ {0, . . . , n}. But then we can construct a longer path than π to meet the requirements,
and we have a contradiction. So we conclude that there is no p ∈ dev(pn) : p 6∈ s.child,
hence ports(dev(pn))− s.child = {}.

We now show that there is a state s in α and a d such that ports(d) − s.child = {}. By
definition of α, there exists an i such that si.time > (bMaxHop/2 + 1c + 1) ∗ MaxDelay and
∀j < i : sj .time ≤ (bMaxHop/2c + 1) ∗ MaxDelay. Fix i.
By Lemma 4.9 and ∀d : ¬oncycle(d), we have ∀d : Steps(d) ≤ bMaxHop/2c, hence ∀d :
(Steps(d) + 1) ∗ MaxDelay < si.time. Using invariant I11 we get ∀d : ¬si.init[d]. Using
invariant I4 we get ∀d : size(ports(d)− si.child) ≤ 1.
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constant value reference
min cable length 0 no restriction specified
max cable length 4.5 m Section 1.1, Page 1, 1394-1995
max cable hops 16 Section 1.1, Page 1, 1394-1995
propagation delay ≤5.05 ns/m Section 4.2.1.4.3, Page 74, 1394-1995
min CONFIG TIMEOUT 166.6 µs Table 7-14, Page 89, 1394-1995

166.6 µs Table 8-14, Page 90, P1394a
max CONFIG TIMEOUT 166.9 µs Table 7-14, Page 89, 1394-1995

166.9 µs Table 8-14, Page 90, P1394a

Table 1: IEEE 1394 timing constants

Suppose ∃d : size(ports(d) − si.child) = 0. Fix d. It follows that ports(d) − si.child = {}.
By Item 3 we may conclude that α contains an occurrence of root(d).
Suppose ∀d : size(ports(d) − si.child) = 1. Suppose ∃p : p 6∈ si.child ∧ peer(p) 6∈ si.child.
Fix p. By our assumption we have ¬s.rc[dev(peer(p))]. Combining this with ¬s.init[dev(p)]
and By invariant I9, we get head(si.mq[p]) = parent. Combining this with ¬oncycle(dev(p))
and Invariant I11, we get si.time− si.delay[p]) ≤ Steps(dev(p)) ∗ MaxDelay. Since si.time >
(Steps(dev(p)) + 1) ∗ MaxDelay, we have si.delay[p] > MaxDelay which is in contradiction with
Invariant I10. We conclude that there is no p such that p 6∈ si.child∧peer(p) 6∈ si.child. Since
∀p : p ∈ si.child∨ peer(p) ∈ si.child we can use Item 4 to conclude that there is a d such that
ports(d)− si.child = {}. Fix d. By Item 3 we may conclude that α contains an occurrence of
root(d).

�

5.4 Are the IEEE 1394 timing constants correct?

Table 1 gives the IEEE 1394 timing constants, and a reference to where they are to be found
in the documentation. Here, 1394-1995 refers to [10] and P1394a refers to [11]. Note that the
constants are the same for 1394-1995 and P1394a. From these numbers, we get the constants
used for the formal verification as follows:

MinDelay = min cable length ∗ propagation delay = 0ns
MaxDelay = max cable length ∗ propagation delay = 22.72ns

MinLpdtime = min CONFIG TIMEOUT = 166.6µs
MaxLpdtime = max CONFIG TIMEOUT = 166.9µs

MaxHop ≤ max cable hops = 16

The question is then, do these constants meet the requirement for correct implementation?
We found in Theorem 5.9 that the model behaves correctly if the relation MinLpdtime >
max(0, MaxHop−1)∗MaxDelay holds. Since (16−1)∗22.72 ns = 340.80 ns < 166.9µs, the answer
is yes. If the devices in IEEE 1394 enter the tree identify phase at the same time, if there is no
device with the force root flag set to true, and if our model of the IEEE 1394 communication is
correct, then we can say the following with certainty: If a loop is in the network, it is detected,
and that if there is no loop in the network, no loop will be detected and a root will be chosen.

The difference between the actual MinLpdtime value and the minimal value as required by
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our relation is rather large. One could wonder whether this implies that the limitations set by
IEEE 1394 and P1394a can be loosened. This could be done by decreasing the MinLpdtime
value, increasing the number of nodes allowed, increasing the delay between nodes (by allowing
greater cable lengths), or a combination of these. However, the times at which the tree identify
phase is entered can differ among nodes. The constant responsible for the duration of the bus
reset signal being sent is based on a worst-case scenario for any node to notice that a bus reset
period has started. This constant has a value of about 166 µs, and can be used as an indication
of the difference in starting times for the tree identify phase. If the times can indeed be that far
apart for peer nodes, the loop detection timer should be in the same order of magnitude to not
run the risk of detecting a loop when it is not there. Moreover, the use of the force root flag
increases the delay in participating in the tree identify phase even further. We conclude that it
is not yet clear whether the IEEE 1394 and P1394a bounds are correct and may be loosened.

6 Conclusions

The verification shows that under the assumptions made, the IEEE 1394 definition of the tree
identify phase meets the requirements. Exactly one root is chosen when there is no cycle present,
and a cycle is detected if and only if there is a cycle present in the network. It is obvious from
the proofs that the refinement step from an untimed model to a timed model in combination
with the desired property of correct cycle detection is a complicated one. More proofs about
network topologies are needed to make a quantitative analysis of the worst case scenarios. Also
the invariant properties that are specific to the model TIP4 become more complicated. The
effort invested in the construction of these proofs adds up to about two months. We hope that
in further refinement steps these proofs can be reused with little effort.

As to the remaining IEEE 1394 details that we have not considered, we believe that the
addition of the delay in entering the tree identify phase will not affect the correctness of the
protocol. Also the addition of the root contention solving protocol with its verification from
[28] will probably not touch the critical behaviour parts of the root election or cycle detection.
However, the correctness of a model obtained by adding the force root flag and the assumption
that the message queues model the IEEE 1394 signal communication is not that obvious. An
extension of this work may show that either IEEE 1394 timing bounds can be tightened or
should be loosened.

The advantage of the layered verification in this case is that we do not need to prove anything
about the safety properties of root election, since our refinement proof give us safety immediately.
Establishing the refinement was not as easy as expected, because of the complicated reuse
of invariants at the abstract level. The extra lemma that was needed shows that the proof
obligations can still be divided over small, clear proof steps.

Establishing the desired liveness properties that express that indeed a cycle is detected when
there is a cycle in the network topology and indeed a root is elected otherwise, do not follow
from the ‘implements’ relation, since we have only proved inclusion of admissible traces. In an
untimed verification, liveness properties are proved by showing a fair trace inclusion, that is,
each fair trace from the more detailed model is also a fair trace in the more abstract model.
In most cases, the liveness property holds trivially for any fair trace of the abstract model,
and therefore also for any fair trace of the detailed model. In a timed verification, liveness is
often expressed in terms of timing bounds. Then again the (admissible) trace inclusion yields
correctness. In our case, both of these methods do not work. We are comparing a timed model
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to an essentialy untimed model and hence have no fairness that carries over from the more
abstract level to the (timed) detailed level. On the other hand, we have no timing requirement
for when the root should be elected. So we have had to prove the liveness completely on the level
of model TIP4, without reusing proofs from the level of TIP3. In most cases and especially in
timed verifications, proving safety involves many properties from which the greater part of the
proof obligations for the liveness properties already follows. It can be argued from Section 5.3
that here the remaining proof obligation is not trivial. Nevertheless, we consider model TIP4 to
be highly complex, and expect that in other timed verifications it will be easier to show that once
time has proceeded beyond a certain point, the safety properties combined with the feasibility
proofs give the desired liveness properties.

We conclude that for proving safety and liveness properties in a situation with only untimed
models or with only timed models, a layered verification is a very suitable proof method which
allows one to ‘divide and conquer’ the proof obligations. In a situation where timed and untimed
behaviour are compared, we think that other methods should be used in addition, or the degree
of refinement should be very low in order for a layered verification to diminish the amount of
work to be done in each layer. It would be very benificial if the proofs constructed for this paper
were checked with a proof checker. Careful manual inspection can never replace the confidence
obtained by such automated inspection. Some results have been obtained in checking invariant
proofs for I/O automata, both timed and untimed, as can be seen in [2], and several papers which
are under construction [1]. We expect that such an effort will be considerable, but manageable.
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A Safe and Timed I/O Automata

In this appendix we review some basic definitions from [6, 21, 19], and we give sufficient condi-
tions for including invariants in refinement proofs when the invariants at the refined level depend
on invariants at the abstract level. These conditions are presented in Lemma A.2. Lemma A.6
is the timed version, which is used in the verification in this paper.

A.1 Safe I/O automata

A safe I/O automaton B consists of the following components:

• A set states(B) of states (possibly infinite).

• A nonempty set start(B) ⊆ states(B) of start states.

• A set acts(B) of actions, partitioned into three sets in(B), int(B) and out(B) of input ,
internal and output actions, respectively.
Actions in local(B) ∆= out(B) ∪ int(B) are called locally controlled .

• A set steps(B) ⊆ states(B) × acts(B) × states(B) of transitions, with the property that
for every state s and input action a ∈ in(B) there is a transition (s, a, s′) ∈ steps(B).

We let s, s′,.. range over states, and a,.. over actions. We write s a→B s′, or just s a−→ s′ if B is
clear from the context, as a shorthand for (s, a, s′) ∈ steps(B).

Enabling of actions An action a of a safe I/O automaton B is enabled in a state s iff s a−→ s′

for some s′. Since every input action is enabled in every state, safe I/O automata are said to
be input enabled. The intuition behind the input-enabling condition is that input actions are
under control of the environment and that the system that is modeled by a safe I/O automaton
cannot prevent the environment from doing these actions.
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Executions An execution fragment of a safe I/O automaton B is a finite or infinite alternating
sequence s0a1s1a2s2 · · · of states and actions of B, beginning with a state, and if it is finite also
ending with a state, such that for all i, si

ai+1−→ si+1. An execution is an execution fragment that
begins with a start state. We write execs∗(B) for the set of finite executions of B, and execs(B)
for the set of all executions of B. A state s of B is reachable if it is the last state of some finite
execution of B. We write rstates(B) for the set of reachable states of B.

Traces Suppose α = s0a1s1a2s2 · · · is an execution fragment of B. Let γ = a1a2 · · · . Then
the trace of α is the sequence (γdin(B) ∪ out(B)), denoted by γ̂. With traces(B) we denote the
set of traces of executions of B. For s, s′ states of B and β a finite sequence of input and output
actions of B, we define s

β⇒B s′ iff B has a finite execution fragment with first state s, last state
s′ and trace β.

Invariants Let P,Q ⊆ states(B). P is invariant for B if it is a superset of the reachable states
of B, i.e. rstates(B) ⊆ P . P is inductive relative to Q if start(B) ⊆ P and if for each s′ ∈ P ∩Q:
s′

a→B s implies s ∈ P .

Refinements Let A and B be safe I/O automata. A refinement from A to B is a function
r : states(A)→ states(B) that satisfies:

1. If s ∈ start(A) then r(s) ∈ start(B).

2. If s′ a→A s then r(s′)
β⇒B r(s), where β = â.

Let A and B be safe I/O automata with invariants P and Q, respectively. A weak refinement
from A to B, with respect to P and Q, is a function r : states(A)→ states(B) that satisfies:

1. If s ∈ start(A) then r(s) ∈ start(B).

2. If s′ a→A s, s′ ∈ P , and r(s′) ∈ Q, then r(s′)
β⇒B r(s), where β = â.

Theorem A.1 Let A and B be safe I/O automata. If there exists a (weak) refinement from A
to B, then traces(A) ⊆ traces(B).

Using abstract and refined invariants in a refinement Let A,B be safe I/O automata.
The following lemma gives sufficient conditions for a weak refinement from A to B when one
wants to use P1, P2, Q such that Q is invariant for B, P1 is invariant for A depending on Q and
the definition of the refinement function, and P2 is invariant for A depending on P1.

Lemma A.2 Let A,B be safe I/O automata. Let Q be invariant for B and P2 be inductive
relative to P1 for A. Let r : states(A)→ states(B) such that

1. r(s) ∈ Q implies s ∈ P1,

2. s ∈ start(A) implies r(s) ∈ start(B), and

3. s′ ∈ P2, r(s′) ∈ Q and s′
a→A s implies r(s′)

β⇒B r(s), where β = â.

Then



A. Safe and Timed I/O Automata 31

1. P1, P2 are invariant for A.

2. r is a weak timed refinement from A to B with respect to P2 and Q.

Proof

1. By induction.
IH(n) = ∀s, α : (s ∈ rstates(A) ∧ α ∈ execs(A) ∧ α = s0 a1 s1 . . . sn ∧ s = sn)

→ (r(s) ∈ rstates(B) ∧ s ∈ (P1 ∩ P2 ))

• Base step: n = 0.
By definition of α, s ∈ start(A). By definition of r, r(s) ∈ start(B) so certainly
r(s) ∈ rstates(B). Since Q is invariant for B, r(s) ∈ Q. By definition of r, s ∈ P1.
Since s ∈ start(A), and since P2 is inductive relative to P1 for A, s ∈ P2.
• Induction step: ∀n ≤ n′ : IH(n).

Let s ∈ rstates(A) ∧ α ∈ execs(A) ∧ α = s0 a1 s1 . . . sn′an′+1 sn′+1 ∧ s = sn′+1 . Since
s0a1s1 . . . sn′ ∈ execs(A), certainly sn′ ∈ rstates(A). Combining this with n′ ≤ n′,
we get IH(n′). Since IH(n′), r(sn′) ∈ rstates(B) ∧ sn′ ∈ (P1 ∩ P2 ). Since r(sn′) ∈
rstates(B) and Q is invariant for B, r(sn′) ∈ Q. Since sn′

an′+1→ A sn′+1 and by

definition of r, r(sn′)
β⇒B r(sn′+1) with β = ân′+1, hence r(sn′+1) ∈ rstates(B),

hence r(sn′+1) ∈ Q. By definition of r, sn′+1 ∈ P1. Since sn′ ∈ (P1 ∩ P2) and
sn′

an′+1→ A sn′+1 and since P2 is inductive relative to P1 for A, sn′+1 ∈ P2.

2. By Item 1, the assumption that Q is invariant for B and by definition of r.

�

A.2 Timed I/O Automata

A timed I/O automaton A is a safe I/O automaton whose set of actions includes R+, the set
of positive reals. Actions from R+ are referred to as time-passage actions. Other actions are
referred to as discrete actions. Performing one or more consecutive time-passage actions is called
idling. We let d, d′, . . . range over R+ and, more generally, t, t′, . . . over the set R of real numbers.
The set of visible actions is defined by vis(A) ∆= (in(A) ∪ out(A))− R+.
We assume that a timed I/O automaton satisfies the following axioms.

S1 If s′ d−→ s′′ and s′′ d′−→ s, then s′ d+d
′−→ s.

For the second axiom, an auxiliary definition is needed. A trajectory for a step s′ d−→ s is a
function w : [0, d]→ states(A) such that w(0) = s′, w(d) = s, and

w(t) t
′−t−→ w(t′) for all t, t′ ∈ [0, d] with t < t′.

Now we can state the second axiom.

S2 Each step s d−→ s′ has a trajectory.

Axiom S1 gives a natural property of time, namely that if time can pass in two steps, then it
can also pass in a single step. The trajectory axiom S2 is a kind of converse to S1; it says that
any time-passage step can be “filled in” with states for each intervening time, in a “consistent”
way. Executions of timed I/O automata correspond to what are called sampling computations
in [20].
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Timed Traces The full externally visible behaviour of a timed I/O automaton can be inferred
from its executions as follows: suppose α = s0a1s1a2s2 · · · is an execution fragment of a timed
I/O automaton A. For each index j, let tj be given by

t0 = 0,
tj+1 = if aj+1 ∈ R+ then tj + aj+1 else tj.

The limit time of α, notation α.ltime , is the smallest element of R≥0 ∪{∞} larger than or equal
to all the tj . We say α is admissible if α.ltime = ∞, and Zeno if it is an infinite sequence but
with a finite limit time. The timed trace t-trace(α) associated with α is defined by

t-trace(α) ∆= (((a1, t1)(a2, t2) · · · )d(vis(A)× R≥0 ), α.ltime).

Thus, t-trace(α) records the visible actions of α paired with their times of occurrence, as well as
the limit time of the execution. A pair β is a timed trace of A if it is the timed trace of some finite
or admissible execution of A. Thus, we explicitly exclude the timed traces that originate from
Zeno executions. We write t-traces(A) for the set of all timed traces of A, t-traces∗(A) for the
set of finite timed traces (the timed traces derived from the finite executions), and t-traces∞(A)
for the set of admissible traces (the timed traces derived from the admissible executions).

Moves We say s′
p
;A s is a t-move of A if A has a finite timed execution fragment α =

s0a1s1 . . . sn such that s′ = s0, s = sn and p = t-trace(α).

Feasibility Let A be a timed I/O automaton. We say A is feasible if each element of
t-traces∗(A) is the prefix of some element of t-traces∞(A).

Giving the proof for feasibility can be hard or tiresome. However, in some cases it follows
rather straightforwardly from the definition of the timed I/O automaton. We give the following
sufficient conditions, divided over two results, of which the first is rather simple, and the second
is a bit more involved.

Lemma A.3 Let A be a timed I/O automaton with clock variables X and discrete variables
Y . If

1. The precondition of time action d is of the following form, in which φ,ψ1, . . . , ψn are
Boolean expressions over variables in Y , x1, . . . , xn ∈ X and c1, . . . , cn ∈ R+:

¬φ ∧ (ψ1 → x1 + d ≤ c1) ∧ · · · ∧ (ψn → xn + d ≤ cn)

2. The effect of time action d is of the following form:

∀x ∈ X : x := x+ d

3. For each s ∈ reachable(A):

(s |= φ)→ ∃a : s a→ ∧ a is discrete

4. For each s ∈ reachable(A) and 0 ≤ i ≤ n:

(s |= ψi ∧ xi ≥ ci)→ ∃a : s a→ ∧ a is discrete
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then for each s ∈ reachable(A) and d > 0, the following holds:

∨ s
d→

∨ ∃a : s a→ ∧ a is discrete
∨ ∃d′, a, s′ : d′ < d ∧ s d′→ s′

a→ ∧a is discrete

Proof Let s ∈ reachable(A), d > 0 and s does not enable d. Then s |= ¬(¬φ∧ (ψ1 → x1 + d ≤
c1) ∧ · · · ∧ (ψn → xn + d ≤ cn)), which can easily be rewritten to s |= φ ∨ (ψ1 ∧ x1 + d >
c1) ∨ · · · ∨ (ψn ∧ xn + d > cn).

Suppose s |= φ. By Assumption 3, there is a discrete action a such that s a→, and the result
follows.

Suppose s |= ¬φ. Then s |= (ψ1 ∧ x1 + d > c1) ∨ · · · ∨ (ψn ∧ xn + d > cn). Take J to be the
set of indices for which the disjunct is true, that is, J = {i|1 ≤ i ≤ n ∧ s |= ψi ∧ xi + d > ci)}.

Suppose that for some i ∈ J , s |= xi ≥ ci. Then by Assumption 4, there is a discrete action a
such that s a→, and the result follows.

Suppose that for all i ∈ J , s |= xi < ci. Take d′ to be the smallest value such that for
some i ∈ J , s |= xi + d′ = ci. Fix i. It is clear that for each 1 ≤ j ≤ n which is not in

J , s |= xj + d′ ≤ cj . By assumption, s |= ¬φ, so we now see that s enables d′. Let s d′→ s′.
By Assumption 2, and s |= xi + d′ = ci, the effect of d′ is such that s′ |= xi = ci. Now by
Assumption 4, there is a discrete action a such that s a→, and the result follows. �

Theorem A.4 Let A be a timed I/O automaton. If

1. For each s ∈ reachable(A) and d > 0, the following holds:

∨ s
d→

∨ ∃a : s a→ ∧ a is discrete
∨ ∃d′, a, s′ : d′ < d ∧ s d′→ s′

a→ ∧a is discrete

2. Function M : states(A) → D is a measure function, ≺ is a well-founded ordering on D,
and C ∈ R+ is a constant such that for each s, s′ ∈ reachable(A): s a→ s′ implies that if a
is discrete and s does not enable C, then M(s′) ≺ M(s), otherwise M(s′) � M(s).

then A is feasible.

Proof Suppose α ∈ t-traces∞(A). We define the function f that recursively builds an admissible
execution from any state, as follows:

f(s) =


s C f(s′) if s C→ s′

s a f(s′) if s
C
6→ ∧ s a→ s′

s d s′ a f(s′′) if s
C
6→ ∧ (∀a′ : a is discrete → s

a′

6→) ∧ s
d→ s′

a→ s′′

Note that f(s) may pick a and d in an arbitrary way when s does not enable C. For the proof
this has no consequence.

Let α = α′as and let β be the execution resulting from α′af(s). By Assumption 1, β can be
constructed.

Suppose β is not admissible. Then there is an infinite suffix in β in which each occurrence
of a time step implies that the time passing is smaller than C. Without loss of generality we
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assume that the suffix starts after the prefix α′, that is, in the part which is constructed by
f . By definition of f , no state in this suffix enables C, so there are no two adjacent time
steps in this suffix. We see that there are infinitely many occurrences of discrete actions in the
suffix. Combining this with the fact that each state in the suffix does not enable C we have
a contradiction with Assumption 2, our decreasing measure function. We conclude that β is
admissible. �

Implementation relation LetA andB be timed I/O automata. A implements B if t-traces(A) ⊆
t-traces(B).

Refinements Let A and B be timed I/O automata. A timed refinement from A to B is a
function r : states(A)→ states(B) that satisfies:

1. If s ∈ start(A) then r(s) ∈ start(B).

2. If s′ a→A s then r(s′)
p
;B r(s), where p = t-trace(s′as).

Let A and B be timed I/O automata with invariants P and Q, respectively. A weak timed
refinement from A to B, with respect to P and Q, is a function r : states(A) → states(B) that
satisfies:

1. If s ∈ start(A) then r(s) ∈ start(B).

2. If s′ a→A s, s′ ∈ P , and r(s′) ∈ Q, then r(s′)
p
;B r(s), where p = t-trace(s′as).

Theorem A.5 Let A and B be timed I/O automata. If there exists a (weak) timed refinement
from A to B, then t-traces(A) ⊆ t-traces(B).

Using abstract and refined invariants in a timed refinement We now present the timed
version of Lemma A.2, since the timed version is used in the verification in this paper.

Lemma A.6 Let A,B be timed I/O automata. Let Q be invariant for B and P2 be inductive
relative to P1 for A. Let r : states(A)→ states(B) such that

1. r(s) ∈ Q implies s ∈ P1,

2. s ∈ start(A) implies r(s) ∈ start(B), and

3. s′ ∈ P2, r(s′) ∈ Q and s′
a→A s implies r(s′)

p
;B r(s), where p = t-trace(s′as).

Then

1. P1, P2 are invariant for A.

2. r is a weak timed refinement from A to B with respect to P2 and Q.

Proof Similar to the proof for Lemma A.2. �


