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ABSTRACT
Among the most common purposes of control are the tracking of reference signals and the rejection of distur-

bance signals in the face of uncertainties. The related design problem is called the ‘robust regulation problem’.

Here we investigate the trade-off between the robust regulation constraint and the requirement of robust sta-

bility. We first formulate the robust regulation problem as an interpolation problem, and derive from this a

number of simple necessary conditions for the robust regulation problem to be solvable with a given stability

margin. Then we show that these conditions are also sufficient provided the given stability margin is achievable

at all.
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Keywords and Phrases: regulator synthesis, robust stability, interpolation, Nyquist curve, Grassmannian mani-

fold.
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1. Introduction

The problem of finding a controller to make the closed-loop system follow or reject signals generated
by an ‘exosystem’ in the presence of small parameter variations is called robust regulation. This
problem has been extensively studied from various points of view in the seventies and early eighties,
see for instance the books by Wonham [33, Ch.8] and Basile and Marro [7, Ch.6] and the references
therein. Another important design objective is robust closed-loop stability. Various formulations are
possible; here we shall work with unstructured perturbations, and more specifically we use the model
based on normalized coprime factorizations. The problem of designing a controller that optimizes the
robustness of closed-loop stability with respect to this perturbation class has been solved by Glover
and McFarlane in [19, 24].

The purpose of the present paper is to investigate the relation between the design requirements of
robust regulation and robustness of stability. We determine the conditions under which there is a trade-
off between these two requirements, and we determine the nature of this trade-off. A similar problem,
with the robustness of stability in the sense of normalized right coprime factorizations replaced by a
general H∞ objective, was studied by Abedor et al. [1] and Sugie et al. [29]. Although the problem
studied in this paper can be formulated as an H∞ optimization problem with certain interpolation
constraints, the point here is to show that for the important special case of robust regulation there
is a remarkably simple solution, which is not readily apparent from the more general framework (see
Thm. 5.2 and Prop. 5.4 below).

The present paper is a continuation of [8, 9] in which the regulator problem is characterized as
an interpolation problem on the subspace-valued function associated to controller and the trade-off
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between the regulation requirement and robust stability is established. The treatment is based on
a mixture of classical ideas from the geometric theory of linear systems with rational interpolation
theory, via the concepts of subspace-valued functions. The idea of associating to a finite-dimensional
linear system with m inputs and p outputs a function from the extended complex plane to subspaces
of (m + p)-dimensional space can be traced back to Martin and Hermann [23]. Qiu and Davison
[26] and the second author [27] have contributed to showing that subspace-valued functions provide
a suitable framework for defining a distance measure between linear systems and describing robust
stability properties.

Here, we use the same formulation as in our earlier papers [8, 9] to show that the robust regulation
requirement is equivalent to an interpolation condition on a subspace-valued function associated to the
controller. Finite-dimensional geometry then readily leads to necessary conditions for the solvability
of the robust regulation problem when a stability margin γ is imposed. We show that these conditions
are also sufficient when another (obvious) condition is also satisfied, namely that the given margin is
achievable at all, i. e., without taking the regulation requirement into account.

The paper is organized as follows. A precise problem formulation is given in section 2. As a first step
to solving the problem, conditions for robust regulation in interpolation form are given in section 3.
The proof of the corresponding result is rather technical and so is relegated to an appendix. Section 4
presents necessary conditions for the problem of robust regulation with robust stability to be solvable.
With a constructive proof of the sufficiency side in section 5, we arrive at the main result of the paper.
After a discussion of the nonuniqueness of solutions in section 6, a worked example is provided to
illustrate the constructive solution procedure. Finally, conclusions follow in section 8.

2. Problem formulation and preliminaries

The standard state-space formulation of the ‘regulator problem’ or ‘servo problem’ (cf. for instance
[33]) starts with a finite-dimensional linear time-invariant system of the following form:

ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t) (2.1)
ẋ2(t) = A22x2(t) (2.2)
y(t) = C1x1(t) + C2x2(t). (2.3)

The variable x1 denotes the state of the plant; x2 is the state of an ‘exosystem’ that generates signals
which can be disturbances or references. The matrix A22 has its eigenvalues on the imaginary axis,
allowing the reference/disturbance signals to be steps, ramps, sinusoids, etc. To the plant is connected
a linear time-invariant compensator of the form

ż(t) = Fz(t) + Gy(t) (2.4)
u(t) = Hz(t) + Jy(t). (2.5)

The closed-loop system takes the form

d

dt

 x1

z
x2

 (t) = Ae

 x1

z
x2

 (t) (2.6)

y(t) = [C1 0 C2]

 x1

z
x2

 (t) (2.7)

where

Ae =

 A11 + B1JC1 B1H A12 + B1JC2

GC1 F GC2

0 0 A22

 . (2.8)
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The compensator is said to satisfy the internal stability requirement if the closed-loop system is stable
when x2(t) = 0, that is, if

σ

([
A11 + B1JC1 B1H

GC1 F

])
⊂ C− (2.9)

where σ denotes spectrum and C− is the open left half plane. The compensator is said to satisfy the
regulation requirement if the regulated output y(t) converges to zero for all possible initial conditions,
so if

X+(Ae) ⊂ ker[C1 0 C2] (2.10)

where X+(Ae) denotes the unstable subspace of Ae.

We shall consider the regulation problem under the following standing assumptions.

Assumptions The system (2.1–2.3) satisfies

(A1) the pair (A11, B1) is stabilizable;

(A2) the pair (C, A) given by

C = [C1 C2], A =
[

A11 A12

0 A22

]
(2.11)

is detectable;

(A3) all eigenvalues of A22 are on the imaginary axis;

(A4) C1 has full row rank.

These are fairly usual assumptions for the regulator problem which are either necessary conditions
for the solvability or cause no essential loss of generality. For an explanation and justification see
for instance [14, 33, 9]. The classical “regulator problem with internal stability” (cf. for instance [33,
Thm. 8.1] is the following.

Problem 1 (regulator problem with internal stability: RPIS)
Given the plant and exosystem (2.1–2.3), find a compensator of the form (2.4–2.5) such that both the
internal stability requirement and the regulation requirement are satisfied.

In reality the values of the system parameters are not exactly known and it is desired that the
properties of internal stability and output regulation are preserved for small variations around the
nominal parameters. To discuss robustness issues, assume (as in [33, p. 194]) that A22, C1, C2 are fixed
(precisely known) while A11, A12, B1 are subject to uncertainty. Regard (A11, A12, B1) as a data point
in RN with N = n2

1 + n1n2 + n1m where n1, n2 and m are the dimensions of the vectors x1, x2 and u
respectively. The compensator is said to satisfy the robust regulation requirement if

X+(Ae) ⊂ ker[C1 0 C2] in a neighborhood of (A11, A12, B1) in RN . (2.12)

The associated design problem is formulated as follows.

Problem 2 (robust regulation problem with internal stability: RRIS)
Given the plant and exosystem (2.1–2.3), find a compensator of the form (2.4–2.5) such that the
internal stability requirement (2.9) and the robust regulation requirement (2.12) are satisfied.

Necessary and sufficient conditions for RPIS and RRIS to be solvable along with synthesis procedures
of a suitable compensator are well known. One may refer to [33, Thm. 8.1] for RPIS and [33, Thm. 8.5]
for RRIS where this problem is called ‘the regulator problem with structurally stable synthesis’. Now
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we want to add the element of robust stability. To formulate this, we devote some space to a few
definitions and results that will also play a crucial role in the development below.

As in [8, 9], we define some subspace-valued functions as follows. The plant parameters (A11, B1, C1)
determine the subspace-valued function

P(s) =

[y

u

]
| ∃x s. t.

[
sI −A11 0 −B1

C1 −I 0

]  x
y
u

 = 0

 , P(∞) = im
[
0
I

]
. (2.13)

In the same way, the controller determines the subspace-valued function

C(s) =

[y

u

]
| ∃z s. t.

[
sI − F −G 0

H J −I

]  z
y
u

 = 0

 , C(∞) = im
[

I

J

]
. (2.14)

To the full system (2.1–2.3) we associate

M(s) = Π ker
[

sI −A 0 −B
C −I 0

]
, M(∞) = im

[
0
I

]
(2.15)

where B = [B′1 0]′ and Π denotes the natural projection from X ×Y×U to Y ×U . All functions take
values in the set of subspaces of the product space Y ×U , which is an (m+ p)-dimensional space if m
is the number of inputs and p is the number of outputs. The functions above may be considered as
functions on the extended complex plane C ∪ {∞}, but we shall only need their values on the closed
right half plane C+ := {s ∈ C | Re s ≥ 0}∪{∞}. The subspace-valued functions were defined in state
space terms above. In terms of factorizations over RH∞, one has the following (cf. for instance [10,
Lemma 2.4]).

Lemma 2.1 Consider a set of state space parameters (A, B, C, D), and assume that (A, B) is stabi-
lizable and that (C, A) is detectable. Let N(s)D−1(s) = D̃−1(s)Ñ(s) be respectively a right and a
left coprime factorization over RH∞ of the transfer matrix G(s) = C(sI − A)−1B + D. Under these
conditions, one has

im
[

N(s)
D(s)

]
= ker[D̃(s) −Ñ(s)] =

[y

u

]
| ∃x s. t.

[
sI −A 0 −B

C −I D

]  x
y
u

 = 0

 (2.16)

for all s ∈ C with Re s ≥ 0, and

im
[

N(∞)
D(∞)

]
= ker[D̃(∞) −Ñ(∞)] = im

[
D
I

]
. (2.17)

The lemma shows how a subspace-valued function may be given by an image representation (cor-
responding to a right coprime factorization) or by a kernel representation (corresponding to a left
coprime factorization). As a notational convention, we use script letters for subspace-valued functions
and the corresponding roman letters for kernel and image representations, using a tilde to distinguish
kernel from image representations (so for instance P(s) = ker P̃ (s) = imP (s)).

To measure robustness, we use the concept of the minimal angle between two subspaces Y and Z of
a unitary space X , which is defined as follows (see for instance [20, p. 339]):

sinφ(Y,Z) = min{||y − z|| | y ∈ Y, z ∈ Z, ||y|| = 1}, 0 ≤ φ ≤ 1
2π. (2.18)

This notion may be used to define the following measure of the robustness of closed-loop stability:

sinφ(P , C) := min
s∈C+

sinφ(P(s), C(s)). (2.19)
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In various equivalent formulations, the above measure has also been used for instance in [31, 19, 16,
32]. One possible motivation for this particular measure is the observation that the plant-controller
combination is stable if and only if

C(s)⊕P(s) = Y × U for all s ∈ C+. (2.20)

as can be proved easily (see for instance [8, Lemma 2.5]). It has been shown in [27] that the minimal
angle is the appropriate measure of the robustness of complementarity of two subspaces Y and Z, in
the sense that it gives exactly the distance (in the sense of the gap) of Y to the set of subspaces that
are not complementary to Z. Below we shall also need the following formula for the cosine of the
minimal angle (see for instance [27]):

cosφ(Y,Z) = ||ΠZ |Y || (2.21)

where ΠZ is the orthogonal projection onto Z.

After this, we can formulate the robust stabilization problem as follows.

Problem 3 (robust stabilization problem with margin γ: RSP(γ))
Given the plant (2.1–2.2) and γ with 0 < γ < 1, find a compensator of the form (2.4–2.5) that satisfies
the robust stability requirement

min
s∈C+

sinφ(P(s), C(s)) > γ. (2.22)

Necessary and sufficient conditions for the solvability and a parametrization of all solutions of RSP(γ)
have been given by Glover and McFarlane [19]. The main problem that will be discussed in this paper
is defined as follows.

Problem 4 (robust regulation problem with robust stability margin γ: RRRS(γ))
Given the plant and exosystem (2.1–2.3) and γ with 0 < γ < 1, find a compensator of the form (2.4–
2.5) such that the robust regulation requirement (2.12) and the robust stability requirement (2.22)
are simultaneously satisfied.

3. Interpolation conditions for robust regulation

It is our purpose in this section to give the robust regulation condition (2.12) a more manageable form.
For this we shall follow the interpolation approach of [8]. This requires again the introduction of some
definitions. For a given rational matrix function M(s) of size p×m and a given natural number r, we
define a new matrix function of size rp× rm by

M [r](s) =



M(s) 0 · · · · · · 0

M ′(s) M(s) 0
...

...
. . . . . . . . .

...
...

. . . . . . 0
1

(r−1)!M
(r−1)(s) · · · · · · M ′(s) M(s)


. (3.1)

We call M [r](s) the r-fold blow-up of M(s). See also [8] for a more intrinsic definition. We shall
sometimes use the notation [M(s)][r] instead of M [r](s), in particular when M(s) is a partitioned
matrix, and in such cases even write [M(s)][r](λ) instead of M [r](λ). The following formula for the
blow-up of a product readily follows from the definition [8, Lemma 3.1].

Lemma 3.1 For any matrix functions T (s) ∈ Rp×m(s) and S(s) ∈ Rm×l(s) and any r = 1, 2, . . . one
has (TS)[r](s) = T [r](s)S[r](s).
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A minor problem is that the blow-up does not commute with matrix partitioning; indeed, if A and
B are linear mappings from X to Z and from Y to Z respectively, then [A B][r] is a mapping from
(X × Y)r to Zr, but [A[r] B[r]] is a mapping from X r × Yr to Zr. To get a proper correspondence
we need an operator from X r × Yr to (X × Y)r that we call the mingling operator. It is defined by

Mi : (x1, · · · , xr, y1, · · · , yr) 7→ (x1, y1, · · · , xr, yr). (3.2)

We shall use the mingling operator between various spaces and even use its obvious generalization to
products of more than two factors, employing the same symbol Mi every time; this abuse of notation
should cause no confusion.

In addition to the blow-ups of matrix functions, we shall also need blown-up versions of the various
subspace-valued functions that were introduced above. For the functions P(s) and C(s) defined in
(2.13) and (2.14) respectively, these can be defined via either image or kernel representations as follows:

P [r](s) = ker P̃ [r](s) = imP [r](s) (3.3)

C[r](s) = ker C̃[r](s) = imC[r](s). (3.4)

It follows from [8, Lemma 3.3, 3.4] that this definition is unambiguous. The subspace-valued function
M(s) is not of constant dimension on the closed right half plane and so we use a more circuitous
definition:

M[r](s) = Π[r] ker
[

sI −A 0 −B
C −I 0

][r]

, M[r](∞) = im
[

0
I

][r]

. (3.5)

For ease of notation, we introduce

K = {
[y

u

]
| y = 0} (3.6)

and denote the natural projection from Y × U to Y by K̃ = [I 0], so that

K = ker K̃ = im
[
0
I

]
. (3.7)

Regarding K̃ as a constant matrix-valued function, we can also consider K̃ [r] which is simply a
block diagonal matrix with K̃ on the diagonal entries, and K[r] = ker K̃ [r]. By the multiplicity of an
eigenvalue of a matrix we mean the length of the longest Jordan chain associated with that eigenvalue.

The main result of [8] can now be formulated as follows.

Theorem 3.2 A controller of the form (2.4–2.5) is a solution to the regulator problem with inter-
nal stability if and only if the associated subspace-valued function C(s) satisfies the internal stability
condition (2.20) and the interpolation conditions

C[r](λ) ∩M[r](λ) ⊂ K[r] for all λ in σ(A22) of multiplicity r. (3.8)

We call the conditions (3.8) interpolation conditions since they impose conditions on the subspace-
valued function C(s) at specific points (namely the exosystem poles), although the condition (3.8) of
course does not prescribe C(λ) completely. By formulating the conditions for the solvability of the
regulator problem in this way, it is evident that the conditions are sensitive to variations in the plant
since the subspace-valued function M(s) depends on the plant. Dropping the intersection leads to a
stronger condition which is however no longer dependent on the plant and so is robust with respect to
any linear plant with the same number of inputs and outputs. In the theorem below, which is the first
main result of this paper, we establish that this ‘robustified’ version is indeed exactly the condition
that one needs to solve the robust regulation problem as formulated above. Plausible as the result
may be, its proof is unfortunately rather technical and we have relegated it to the appendix.
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Theorem 3.3 A controller of the form (2.4-2.5) is a solution to the robust regulation problem with in-
ternal stability if and only if the associated subspace-valued function C(s) satisfies the internal stability
condition (2.20) and the interpolation conditions

C[r](λ) ⊂ K[r] for all λ in σ(A22) of multiplicity r. (3.9)

Remark 3.4 Condition (3.9) implies that the controller has p poles at λ of multiplicity at least r.
This is in accordance with the internal model principle which states that the controller should contain
a suitably reduplicated model of the dynamic structure of the exogenous signals for robust regulation
[33, 14, 12].

4. Necessary conditions

We first note a result that can be obtained easily by using the interpolation form (3.9) of the robust
regulation condition. By the following lemma, we get an upper bound on the achievable robustness
of stability (compare (2.20) and (3.9) to (4.1) below).

Lemma 4.1 Let P ,K be subspaces of a unitary space W satisfying P+K =W. Then for any subspace
C satisfying

C ⊕ P =W and C ⊂ K (4.1)

we have

φ(P , C) ≤ φ(P⊥,K⊥) (4.2)

and equality is achieved for C = K ∩ (K ∩ P)⊥.

Proof From the singular value characterization of the minimal angle (see for instance [27, Prop. 2.4])
we have φ(P , C) = φ(P⊥, C⊥). So (4.2) follows from the definition of the minimal angle and the
constraint K⊥ ⊂ C⊥. For C = K ∩ (K ∩ P)⊥ we have P ∩ C = {0}, and since P + K = W it follows
by counting dimensions that C + P = W. Therefore, φ(P ,K ∩ (P ∩ K)⊥) = φ(P⊥,K⊥ + (P ∩ K)) =
φ(P⊥,K⊥). 2

Remark 4.2 In the important special case of square systems (m = p), the only possible choice for a
subspace C satisfying (4.1) is C = K and the upper bound (4.2) trivially becomes φ(P , C) = φ(P ,K).
In general this is smaller than φ(P ,K∩M), the upper bound due to regulation constraints as derived
in [9]. The difference between φ(P ,K) and φ(P ,K∩M) represents the price one has to pay, in terms
of constraints on the achievable robustness of stability, for insisting on robust regulation as opposed
to plain regulation. For single-input-single-output systems, however, this price is zero. Indeed, for
such systems the space Y × U is just two-dimensional whereas P(λ) is one-dimensional for all λ, and
M(λ) contains P(λ) as a proper subspace for λ ∈ σ(A22) as a consequence of the definition (2.15)
and the detectability assumption (A2). Therefore one must haveM(λ) = Y × U for λ ∈ σ(A22) and
consequently K ∩M(λ) = K. So for SISO systems, one can get robustness of regulation at no extra
cost in terms of effects on the robustness of closed-loop stability.

Obviously, a second necessary condition for RRRS(γ) to be solvable is that the robust regulation
problem with internal stability is solvable. The necessary and sufficient conditions for this are classical;
we state them here in the terminology of subspace-valued functions. Our setting allows a quick proof
of these conditions.

Theorem 4.3 Under the assumptions (A1-A4), there exists a controller of the form (2.4–2.5) that
satisfies both the internal stability requirement (2.20) and the robust regulation requirement (3.9) if
and only if

K+ P(λ) = Y × U for all λ ∈ σ(A22). (4.3)
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Proof First assume that RRIS is solvable. Let C(s) be the subspace-valued function of the controller
which is a solution of the problem. By Thm. 3.3 C(λ)⊕P(λ) = Y×U and C(λ) ⊂ K for all λ ∈ σ(A22).
It follows that P(λ) +K = Y × U for all λ ∈ σ(A22).

To prove the reverse implication, let P (s) be an image representation for the subspace-valued
function associated to the plant and Ĉ(s) be an image representation for a stabilizing controller, i. e.
imP (s)⊕ im Ĉ(s) = Y ×U for all s ∈ C+. For each eigenvalue λ of A22 with multiplicity r determine
a subspace Cλ = imCλ satisfying Cλ⊕ (K∩P(λ)) = K; then Cλ ⊂ K and Cλ⊕P(λ) = Y ×U . Because
of the latter condition there exist lower triangular matrices Qλ ∈ Crm×rp and Tλ ∈ Crp×rp of the
form

Qλ =


Q0 0 · · · 0
Q1 Q0 · · · 0
...

...
...

Qr−1 Qr−2 · · · Q0

 , Tλ =


T 0 0 · · · 0
T 1 T 0 · · · 0
...

...
...

T r−1 T r−2 · · · T 0

 (4.4)

such that

P [r](λ)Qλ + C
[r]
λ Tλ = Ĉ[r](λ). (4.5)

By a simple interpolation of Lagrange-Hermite type (see for instance [2]), one can determine Q(s) ∈
RHm×p

∞ satisfying the interpolation conditions 1
k!Q

(k)(λ) = Qk (k = 0, . . . , r − 1). Now let C(s) =
Ĉ(s) − P (s)Q(s). Note that imC(λ) ⊕ imP (λ) = Y × U for all λ ∈ C+; therefore C(s) is an image
representation of a stabilizing controller. Moreover, by taking derivatives it follows from Lemma 3.1
and (4.5) that C[r](λ) = Ĉ[r](λ) − P [r](λ)Q[r](λ) = C

[r]
λ Tλ. Thus imC[r](λ) = imC

[r]
λ ⊂ K[r] and by

Thm. 3.3 C(s) is an image representation for a solution of RRIS. 2

Remark 4.4 By dualizing the proof of [8, Lemma 5.1] it can be shown that the condition (4.3) is
equivalent to the requirement that the matrix[

λI −A11 B1

C1 0

]
has full row rank for all λ ∈ σ(A22), which is a well known condition for the solvability of the robust
regulation problem with internal stability [33]. Another equivalent formulation is

sinφ(P⊥(λ),K⊥) > 0 for all λ ∈ σ(A22). (4.6)

By Lemma 4.1, the numerical value of the left hand side has a clear meaning: it is an upper bound
on the achievable robustness of stability. See also Prop. 5.4 below.

5. Construction of solutions to RRRS

The solution of the robust stabilization problem is given in [19, Thm. 4.1]. Image representations of
all controllers which satisfy the robust stability condition (2.22) are obtained by solving the Nehari
extension problem

|| P̃ ∗(s)− C(s) ||∞ <
√

1− γ2 (5.1)

where P̃ ∗(s) denotes P̃T (−s), and P̃ (s) is a kernel representation for the subspace-valued function
of the plant normalized such that P̃ (s)P̃ ∗(s) = I. By Nehari’s theorem (cf. for instance [13]) the
minimum of ||P̃ ∗(s)−C(s)||∞ is given by ||ΓP̃∗ ||, the norm of the Hankel operator with symbol P̃ ∗. So
a controller satisfying the robust stability condition (2.22) exists if and only if

γ < (1− ||ΓP̃∗ ||2)1/2. (5.2)
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For C(s) to be a solution of the robust regulation problem with robust stability it should also satisfy
the interpolation conditions

imC[r](λ) ⊂ ker K̃ [r] for all λ ∈ σ(A22) of multiplicity r. (5.3)

Therefore our problem is to find C(s) ∈ RH
(m+p)×p
∞ which satisfies (5.1) and (5.3) simultaneously.

The solution of this problem relies on the following lemma from [9] which is about finding a Nehari
extension of an RL∞ function which also satisfies a set of interpolation conditions on the imaginary
axis (compare also [21, Thm. 3]).

Lemma 5.1 Let R(s) ∈ RLq×p
∞ , finitely many purely imaginary complex numbers λi and matrices

Wik ∈ Cq×p (k = 0, 1, . . . , ri − 1) be given. There exists W (s) ∈ RLq×p
∞ such that

W (s)−R(s) ∈ RHq×p
∞ (5.4)

||W (s)||∞ < 1 (5.5)
W (k)(λi) = Wik (k = 0, 1, . . . , ri − 1) for all i (5.6)

if and only if ||ΓR|| < 1 and ||Wi0|| < 1 for all i.

The necessity of the conditions of Lemma 5.1 is obvious from the norm constraint (5.5) and Nehari’s
theorem. Sufficiency of the conditions is constructively shown in the proof of Thm. 3.1 in [9]. For
the reader’s convenience we summarize the construction. First, the solution to the Nehari problem
(5.4–5.5) is parametrized as

W = (Θ11G + Θ12)(Θ21G + Θ22)−1 (5.7)

where the matrix

Θ(s) =
[

Θ11(s) Θ12(s)
Θ21(s) Θ22(s)

]
can be constructed explicitly from state space data for R(s) [18, 4, 5], and G(s) ∈ RHq×p

∞ is a free
parameter such that ||G(s)||∞ < 1. The next step is to translate the interpolation conditions on W (s)
into the parameter G(s). For this, define matrices W ri

i ∈ Criq×p and F ri ∈ Crip×p by

W ri
i = col (Wi0, Wi1, . . . , Wi,ri−1) (5.8)

F ri = col (I, 0, . . . , 0) (5.9)

and let Nri
i = col (Ni0, Ni1, . . . , Ni,ri−1), Dri

i = col (Di0, Di1, . . . , Di,ri−1) be defined by

Mi
[

Nri
i

Dri
i

]
= (Θ[ri](λi))−1Mi

[
W ri

i

F ri

]
. (5.10)

Then the interpolation conditions on G(s) are given by

G[ri](λi)Dri
i = Nri

i . (5.11)

Finding an RH∞ matrix G(s) that satisfies the interpolation conditions (5.11) and the norm constraint
||G(s)||∞ < 1 is a boundary Nevanlinna-Pick problem [2, 3]. It is shown in [9, Lemma 3.5] that under
the conditions of Lemma 5.1 a solution always exists. Finally, W (s) is calculated from (5.7). The fact
that the boundary Nevanlinna-Pick problem comes up in connection with regulation constraints in an
H∞ context has been recognized before in [28].

The main result of the present paper is stated in the theorem below which shows that the smaller of
the upper bounds given by (5.2) and Lemma 4.1 determines the achievable robustness of stability.
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Theorem 5.2 Define the subspace-valued function P(s) by (2.13) and K by (3.6). Let P̃ (s) be a
normalized kernel representation for P(s). Under the assumptions (A1-A4), the problem RRRS(γ) is
solvable if and only if

γ < min { min
λ∈σ(A22)

sinφ(P⊥(λ),K⊥),
√

1− ||ΓP̃∗ ||2 }. (5.12)

Proof The necessity of the condition follows from the upper bounds on robustness of stability derived
in Lemma 4.1 and given by (5.2). So assume that the condition holds. Write R(s) = (1−γ2)−1/2P̃ ∗(s);
then R(s) is normalized such that ||ΓR|| < 1. Let Π be the orthogonal projection on K⊥. For every
eigenvalue λ of A22 of multiplicity r define matrices W 0, . . . , W r−1 of size (m + p)× p by

W 0 = ΠR(λ) (5.13)
W k = R(k)(λ) k = 1, . . . , r − 1. (5.14)

Note that ||W 0|| = (1 − γ2)−1/2||ΠP̃ ∗(λ)|| = (1 − γ2)−1/2 cosφ(K⊥,P⊥(λ)) < 1. Hence by Lemma
5.1 there exists W (s) ∈ RL

(m+p)×p
∞ such that W (s) − R(s) ∈ RH

(m+p)×p
∞ , ||W (s)||∞ < 1 and

W (k)(λ) = W k for k = 0, . . . , r − 1. Let C(s) =
√

1− γ2(R(s) −W (s)). Then ||P̃ ∗(s) − C(s)||∞ =√
1− γ2||W (s)||∞ <

√
1− γ2. Hence C(s) is an image representation of a solution for the robust

stabilization problem with margin γ [19]. On the other hand,

C(λ) = (I −Π)P̃ ∗(λ) (5.15)
C(k)(λ) = 0 (k = 1, . . . , r − 1). (5.16)

Hence imC[r](λ) ⊂ K[r] and it follows from Thm. 3.3 that C(s) is also a solution of RRIS. Therefore
C(s) is an image representation of a solution for RRRS(γ). 2

The sufficiency part of the proof is constructive; we illustrate the computational procedure by an
example in section 4. State space parameters for the compensator can be obtained from an image
representation as in [15] for instance.

Remark 5.3 An estimate of the order of the compensator designed by the method of Thm. 5.2 can
be obtained as follows. Let n1 denote the order of the plant and n2 be the degree of the minimal
polynomial of A22. Comparing the state space formulas given in [2, pp. 410–411] with the construction
in [9] (formulas (A.1–3)), one finds that there is an (m+ p)× p matrix G(s) of order at most pn2 that
has norm less than one and that satisfies interpolation conditions at the exosystem poles with total
multiplicity n2. The order of the matrix Θ(s) generating all solutions of the Nehari problem (5.1) is
2n1. Thus W (s) calculated by the linear fractional transformation (5.7) has order at most 2n1 + pn2.
The matrix (1− γ2)−1/2P̃ ∗(s) that we use in the role of R(s) is antistable and has order n1. So the
image representation of the compensator is given by the stable part of W (s) (see (5.4)), and its order,
which is equal to the McMillan degree of the controller, is at most n1 + pn2. We note that this order
does not exceed the sum of the orders required for the internal model and robust stabilization.

The angle appearing in the upper bound (5.12) can also be expressed in terms of coprime factorizations,
as follows.

Proposition 5.4 Let N(s)D−1(s) = D̃−1(s)Ñ (s) be normalized left and right factorizations respec-
tively, and write P (s) = [N(s)

D(s)
]. For all λ ∈ iR, the following holds:

sinφ((im P (λ))⊥, im [ I
0 ]) =

√
1− ||D̃(λ)||2 = σmin(N(λ)) (5.17)

where σmin(N(λ)) is the smallest singular value of N(λ) if N(λ) has full row rank, and is 0 if N(λ)
does not have full row rank.
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Proof Since [ D̃∗(λ)

−Ñ∗(λ)
] [D̃(λ) − Ñ(λ)]∗ is a normalized image representation of (imP (λ))⊥, it follows

from (2.21) that cosφ((im P (λ)⊥, im [ I
0 ]) = ||D̃∗(λ)|| = ||D̃(λ)||. For the second equality one can employ

a standard argument: since the matrix [
D̃(λ) −Ñ(λ)
N∗(λ) D∗(λ)

]
is unitary, one has in particular ||D̃(λ)ξ||2 + ||N∗(λ)ξ||2 = 1 for all ξ with ||ξ|| = 1, so that

||D̃(λ)||2 = max
||ξ||=1

||D̃(λ)ξ||2 = 1− min
||ξ||=1

||N∗(λ)ξ||2 = 1− σ2
min(N(λ)).

2

6. Modifying a given solution

The problem RRRS(γ) only calls for solutions achieving a certain degree of robustness of stability, and
so solutions are not expected to be unique. The freedom that remains may be used to achieve additional
design goals. We shall assume here that this design freedom will take the form of ‘fine-tuning’ around a
given compensator which already satisfies the robust regulation and robust stabilization requirements.
Our task is then to describe the changes that may be made in the compensator without impairing these
requirements. For this purpose we first show how compensators can be parametrized in such a way
that the robust regulation property is guaranteed. Then a sufficient condition for robust stabilization
can be stated in terms of the parameter. It is possible to give a complete parametrization of the
solutions to RRRS(γ) via a reduction to a boundary Nevanlinna-Pick problem, but as this would
require a substantial further development we shall not pursue this line here.

Let P (s) be an image representation for the subspace-valued function associated to the plant and
C0(s) be an image representation for a particular solution of RRIS. Image representations of all
stabilizing controllers are given by the Kučera-Youla parametrization [22, 34]

C(s) = C0(s)− P (s)Q(s) (6.1)

where Q(s) ∈ RHm×p
∞ is a free parameter. It is clear from (3.9) that the compensator given by (6.1)

will also satisfy the robust regulation requirement if and only if

K̃ [r]P [r](λ)Q[r](λ) = 0 for all λ ∈ σ(A22) of multiplicity r (6.2)

where K̃ = [I 0] (cf. (3.7). We can relate this to a divisibility property via the following result [8,
Prop. 3.5].

Lemma 6.1 Let Q(s) ∈ RHm×p
∞ and H(s) ∈ RHm×m

∞ and suppose that H(s) is nonsingular. Under
these conditions, there exists Ψ(s) ∈ RHm×p

∞ such that Q(s) = H(s)Ψ(s) if and only if imQ[r](λ) ⊂
imH [r](λ) for each zero λ of H(s) with multiplicity r.

Write K̃P (s) = N(s), to emphasize that this matrix appears as the numerator matrix in a right co-
prime factorization of the plant transfer matrix. An equivalent formulation of the solvability condition
(4.3) of the robust regulation problem with internal stability is then that N(λ) is of full row rank for
all λ ∈ σ(A22). Let V (s) be a unimodular matrix such that

N(s)V (s) = [M(s) 0] (6.3)

where M(s) is a p× p square matrix. Let h(s) be a biproper RH∞ function whose numerator is the
minimal polynomial of A22 and define

H(s) = V (s)
[

h(s)Ip 0
0 Im−p

]
. (6.4)
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Then it can be easily verified that H(s) is nonsingular and imH [r](λ) = kerN [r](λ) for all zeros λ of
H(s) of multiplicity r which coincide with the eigenvalues of A22; moreover H(s) has no other zeros
in C+. Hence by Lemma 6.1 the general solution of (6.2) can be written as

Q(s) = H(s)Ψ(s) (6.5)

for some arbitrary RHm×p
∞ matrix Ψ(s). Combining (6.1) and (6.5) we obtain a parametrization of

all solutions of RRIS.

Proposition 6.2 Consider the system (2.1-2.3) under the assumptions (A1-A4). Let P (s) be an
image representation for the subspace-valued function P(s) associated to the plant as defined by (2.13).
Assume that the robust regulation problem with internal stability is solvable and let C0(s) be an image
representation of the function C0(s) associated to a particular solution. Let H(s) be defined as in
(6.4). Under these conditions, the general form of an image representation C(s) of a solution of the
robust regulation problem with internal stability is given by

C(s) = C0(s)− P (s)H(s)Ψ(s) (6.6)

where Ψ(s) is an arbitrary element of RHm×p
∞ .

This parametrization explicitly shows the constraints one has to impose on the Kučera-Youla parametriza-
tion of all stabilizing controllers in order to obtain controllers that achieve robust regulation: the
‘central’ controller C0(s) is a solution of RRIS, and the free parameter is left divisible by H(s) which
contains the minimal polynomial of A22 in its p nontrivial invariant factors. The appearance of the
minimal polynomial of the exosystem may be viewed as another manifestation of the internal model
principle already referred to in Remark 3.4. A similar parametrization of solutions in terms of a divisi-
bility property has been given by Vidyasagar [30, Thm.7.5.2]; since Vidyasagar’s problem formulation
is different from ours the two parametrizations are however not directly comparable.

Suppose now that the central controller C0(s) is chosen such that the robust stability condition
(2.22) is satisfied. Then robust stability will be preserved by any controller that is obtained from (6.6)
by choosing a ‘sufficiently small’ Ψ(s).

Proposition 6.3 In the situation of the previous proposition, let C0(s) be a normalized image repre-
sentation of a particular solution to the robust regulator problem with robust stability margin γ. Write
γ = sinφtol with 0 ≤ φtol ≤ 1

2π. If the parameter Ψ(s) is chosen such that

||Ψ(λ)|| <
1

||P (λ)H(λ)|| sin(φ(P(λ), C0(λ)) − φtol) (6.7)

for all λ ∈ iR, then the controller C(s) obtained from (6.6) will also be a solution to RRRS(γ).

The proof of the proposition is immediate from the following geometric lemma.

Lemma 6.4 Let P and C be complementary subspaces of a unitary space, and suppose that the matrix
C is a normalized image representation of C (i.e. imC = C and C∗C = I). If C′ is a matrix such
that ||C − C′|| < sinφ(P , C), then the subspace C′ defined by C′ = imC′ is also complementary to P,
and we have

φ(P , C′) ≥ φ(P , C)− arcsin ||C − C′||. (6.8)

Proof According to Lemma 2.2 in [11], we have

φ(P , C)− φ(P , C′) ≤ arcsin δ(C, C′) (6.9)

where δ(C, C′) denotes the gap between the subspaces C and C′ (i.e. the norm of the difference of the
orthogonal projections on the two subspaces, see for instance [17, Ch. IV.7]). Moreover, Lemma 8 of
[10] (applied in dual form, and with use of the assumption that C is normalized) implies that

δ(C, C′) ≤ ||C − C′||. (6.10)
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The statement of the lemma now follows immediately. 2

The design freedom that is reflected here can be used to achieve objectives other than robust regulation
and robust stability. The bound (6.7) may for instance be used to determine the step size in an iterative
optimization routine. After a step has been taken, the modified controller may be taken as a new
center and the iteration step may be repeated.

7. Example

Consider the system described by

ẋ1(t) = ax1(t) + x2(t) + u(t) (7.1)
ẋ2(t) = −ωx3(t) (7.2)
ẋ3(t) = ωx2(t) (7.3)
y(t) = x1(t). (7.4)

The equations represent a first-order plant subject to a sinusoidal disturbance x2(t) of frequency ω.
The objective is to find a controller of the form (2.4–2.5) such that the variable y(t) converges to zero
in the presence of uncertainties in (7.1) and the robust stability requirement (2.22) is fulfilled. As
a typical example of a system subject to a sinusoidal disturbance, consider the tracking mechanism
of a compact disk player. If the hole in the CD that is being played is slightly off-center, there will
be a periodic disturbance at the frequency given by the rotation speed of the disk. If the rotation
frequency is known, it is a natural objective to use this information in a controller design.

The subspace-valued function associated to the plant is given by

P(s) = ker[s− a −1]. (7.5)

Normalized kernel and image representations for P(s) are

P̃ (s) =
1

s +
√

a2 + 1
[s− a −1], P (s) =

1
s +
√

a2 + 1

[
1

s− a

]
. (7.6)

Note that the exosystem poles are at s = ±iω so the upper bound on the robustness of stability
imposed by the robust regulation constraint is computed from (5.17) as

sinφ(P⊥(iω),K⊥) =
1√

ω2 + a2 + 1
. (7.7)

Since we are working with real systems it is sufficient to do the computations for only one of the
complex conjugate poles. Note that the above expression tends to zero as ω tends to infinity; so
the constraint imposed by the regulation requirement becomes more severe as the frequency of the
disturbance signal goes up. The achievable robustness of stability, not taking into account the robust
regulation constraint, is calculated from (5.2):

(1− ||ΓP̃∗ ||2)
1
2 =
√

2
2

(1− a√
a2 + 1

)
1
2 . (7.8)

So the problem RRRS(γ) is solvable if and only if γ is less than the smaller of the two bounds given
by (7.7) and (7.8). Since we are in the SISO case, the bound imposed by robust regulation is the same
as the bound imposed by plain regulation (cf. Remark 4.2).

The robust regulation constraint is restrictive with respect to robustness of stability when the bound
given in (7.7) is less than the one given by (7.8). One easily verifies that this occurs when

ω2 > a2 + 1 + 2a
√

a2 + 1. (7.9)
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Figure 0.1: ‘Critical curve’ for first-order systems. Sinusoidal disturbances at frequencies
corresponding to points on the Nyquist curve inside the area enclosed by the
curve can not be regulated against without compromising the achievable ro-
bustness of closed-loop stability.

In particular, the regulation constraint is restrictive at all frequencies for open-loop stable first-order
plants with dc gains less than

√
3; this ties in with the result found in [9] for regulation against

constant disturbances. For other first-order systems, the ‘critical’ frequency can be found as the
frequency corresponding to the point where the Nyquist curve of the plant intersects the curve given
in Fig. 0.1.

To simplify the calculations we shall explain the construction of an actual controller for the specific
values of the parameters given by

a = 0, ω = 2. (7.10)

In this case the upper bound on the achievable stability margin calculated from (7.8) is
√

2/2 whereas
the one due to robust regulation constraint is

√
5/5. So we should be able to find a controller achieving

a robustness margin of at least γ, where γ is any number less than
√

5/5 = 0.4472. Let us take for
instance γ = 0.4. Following the sufficiency proof of Thm. 5.2 define α = (1 − γ2)−1/2 = 1.0911 and
write

R(s) = αP̃ ∗(s) =
[

1
1

]
α

s− 1
+

[
α
0

]
. (7.11)



7. Example 15

Let ΠR(s) denote the orthogonal projection of R(s) on K⊥ = im [10 ]. We are looking for a Nehari
extension W (s) of R(s) which satisfies the norm bound ||W (s)||∞ < 1 and the interpolation condition

W (iω) = ΠR(iω) =
α

iω − 1

[
iω
0

]
. (7.12)

Obviously the second interpolation condition at s = −iω will be automatically satisfied by requiring
that W (s) be real. All rational Nehari extensions of R(s) satisfying the norm bound ||W (s)||∞ < 1
are given by

W = (Θ11G + Θ12)(Θ21G + Θ22)−1 (7.13)

where G(s) is an arbitrary function in RH2×1
∞ of norm less than one and the matrix Θ(s) is computed

from the formulas in [5] as

Θ(s) =
α

(2− α2)(s2 − 1)

 −α(s + 1) −α(s + 1) 2(s + 1)
−α(s + 1) −α(s + 1) 2(s + 1)
−2(s− 1) −2(s− 1) 2α(s− 1)

 + I. (7.14)

Next, we translate the interpolation condition (7.12) into the free parameter G(s). For this, we solve
the equation

Θ(iω)
[

N(ω)
D(ω)

]
=

[
W (iω)

1

]
(7.15)

and then set G(iω) = N(ω)D−1(ω). This gives

G(iω) =
α

(2− α2)ω2 + α2 + 2

[
(2− α2)ω2 + 2
2 + i(2− α2)ω

]
. (7.16)

Now we need to solve the boundary Nevanlinna-Pick problem of finding an RH∞ function G(s) of
norm less than one that satisfies (7.16). Note that ||G(iω)|| < 1 so a solution always exists [9, Lemma
3.5]. The general procedure of solving boundary Nevanlinna-Pick problems is described in [2, 3]. For
the assumed values of the parameters a first-order solution (in four decimals) is

G(s) =
[

0.8890
0.4367 ψ(s)

]
, ψ(s) =

s− 0.7081
s + 0.7081

. (7.17)

Note that the first component of G(s) is constant and the second component is taken as a multiple of
an inner function to satisfy the interpolation condition (7.16) and the norm constraint ||G(s)||∞ < 1.
Substituting (7.17) in (7.13) we get

W (s) =
s + 1

(s− 1)(0.8095s2 + 0.8706s + 1.5602)

[
0.7197s2 + 0.3938s + 0.6543

0.3535s2 + 1.4142

]
. (7.18)

The image representation of the controller is computed from

C(s) = R(s)−W (s) =
1

0.8095s2 + 0.8706s + 1.5602

[
0.1636s2 + 0.6543

−0.3535s2 + 0.1762s− 0.2881

]
. (7.19)

The controller transfer function is given by

c(s) =
−2.1615s2 + 1.0770s− 1.7615

s2 + 4
. (7.20)

The controller has poles at s = ±2i as it should have to satisfy the robust regulation requirement.
The eigenvalues of the closed-loop system are placed at λ1,2 = −0.5807± 1.1934i, λ3 = −1 and the
actual robustness of stability achieved by this controller is sinφ(P , C) = 0.4030 which is indeed better
than the required margin γ = 0.4.
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8. Conclusions

A basic result of regulator theory is that, for robust regulation to be possible, the numerator matrix
in a right coprime factorization of the plant has to have full row rank at the exosystem poles. As
a quantitative measure of how close the full rank condition is to being not satisfied, one might take
the minimum of the singular values of the evaluations of the numerator matrix at the exosystem
poles. In this paper we have found that the number obtained this way characterizes the achievable
robustness of closed-loop stability under the restriction of robust regulation, if robustness of stability is
understood in the sense of normalized coprime factorizations. To be precise, any degree of robustness
of closed-loop stability can be obtained that is both less than the cited number (which might be called
the ‘servo bound’) and less than the least upper bound of robustness degrees achievable by arbitrary
linear compensators (which might be called the ‘overall bound’). Moreover, we have shown how to
construct robust regulators that achieve such a degree of robustness of stability and how to modify
a given controller in order to accommodate other design purposes without sacrificing the robustness
properties.

Although the solution of the problem presented in the paper is constructive, computation by hand
quickly becomes laborious as was already clear in the simple example that was presented above. There
is a need for sophisticated software that is able to deal efficiently with the required interpolations,
in one form or another. We have suggested in section 6 how the design methodology proposed here
could be incorporated in a more general controller design procedure, but an actual implementation of
this of course requires much more work; this would include of the study of the effect of various design
parameters, such as the choice of a metric on input/output space and more general plant weightings.
A theoretical problem that we have left open is the parametrization of all solutions to RRRS. Also
it would be of interest to consider the trade-offs of other performance requirements with robustness
of stability. In the case of disturbance decoupling it has been found in [6] that the trade-off is not as
benign as in the case of robust regulation that was considered in this paper.

Appendix

The following lemmas will be needed in the proof of Thm. 3.3. The first lemma is a standard result;
see for instance Lemma A in [28]. The second lemma is immediate for instance from [35, Lemma
2.15].

Lemma A.1 Let V ∈ Ck×` and Z ∈ Cj×` be given matrices such that rankV = `. There exists
A ∈ Cj×k such that ||A|| ≤ ε and AV = Z if and only if Z∗Z ≤ ε2V ∗V .

Lemma A.2 Let A, B be Hermitian matrices such that B > 0, A ≥ 0. Then there exists α > 0 such
that αA−B ≤ 0.

We want to show that if the subspace-valued function of the controller satisfies (3.8) and (2.20)
but does not satisfy (3.9), then an arbitrarily small perturbation in A12 violates condition (3.8) and
the controller fails to satisfy the regulation requirement. In order to state and prove this result
it is convenient to introduce some notation. The perturbed value of A12 is denoted by Â12 and
the subspace-valued function associated to the plant and exosystem corresponding to the perturbed
values is denoted by M̂(s). Let vr = col (v0, . . . , vr−1) denote a generalized eigenvector chain of
A22 associated with the eigenvalue λ of multiplicity r, i. e. A22v0 = λv0, A22vi = λvi + vi−1 for
i = 1, . . . , r − 1, or equivalently

(sI −A22)[r](λ)vr = 0. (A.1)

Define

Σ(s) =
[

sI −A11 0 −B1

C1 −I 0

]
(A.2)
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and consider the condition

Σ[r](λ)Mi

 xr

yr

ur

 ∈ [
A12

−C2

][r]

span (vr) (A.3)

where yr = col (y0, . . . , yr−1) ∈ Yr and xr, ur are defined likewise. For λ ∈ σ(A22) of multiplicity r
the subspaceM[r](λ) can be written as

M[r](λ) =
{

Mi
[

yr

ur

]
∈ (Y × U)r | ∃xr , vr s. t. (A.1) and (A.3) hold

}
. (A.4)

Under the conditions of Thm. 3.2 the subspaces P(λ) and C(λ) are complementary for λ ∈ σ(A22),
andM(λ) contains P(λ) as a proper subspace (this follows from our detectability assumption (A2)).
So we have C(λ) ∩M(λ) 6= {0}. In the sequel we need a somewhat stronger result, as given in the
next lemma.

Lemma A.3 In the setting of Section 2, let λ be an eigenvalue of A22 of multiplicity r and Π :
(Y×U)r 7→ Y×U be the projection defined by Πcol (y0, u0, . . . , yr−1, ur−1) = col (y0, u0). Assume that
the subspace-valued function of the controller satisfies C(λ)⊕P(λ) = Y × U . Under these conditions,
we have Π(C[r](λ) ∩M[r](λ)) 6= {0}.
Proof Let P̃ (s) be a kernel representation for the subspace valued function of the plant and M̃(s) be
a kernel representation for the sequence of subspace valued functionsM[r](s) defined by (3.5). It has
been shown in [8, Lemma 5.4] that M̃(s) can be written in the form M̃(s) = H̃(s)P̃ (s) where H̃(s) is
a square and nonsingular RH∞ matrix such that the nontrivial elementary divisors of H̃(s) are the
same as those of sI−A22. Let C(s) be an image representation for the subspace-valued function of the
controller. Since the subspaces P(λ) and C(λ) are complementary, P̃ (s)C(s) has no zeros or poles at λ
so that H̃(s)P̃ (s)C(s) = M̃(s)C(s) has a zero of order r at λ. Therefore there exists a vector function
y(s) analytic in a neighborhood of λ such that y(λ) 6= 0 and the first r coefficients in the Taylor series
expansion of M̃(s)C(s)y(s) are zero, i.e., C[r](λ)col (y(λ), . . . , 1

(r−1)!y
(r−1)(λ)) ∈ M[r](λ). Noting that

C(λ) has full column rank, we see that 0 6= C(λ)y(λ) ∈ Π(C[r](λ) ∩M[r](λ)). 2

Lemma A.4 Assume that for λ ∈ σ(A22) of multiplicity r the subspace-valued function C(s) of the
controller satisfies C[r](λ) ∩M[r](λ) ⊂ K[r], C(λ) ⊕ P(λ) = Y × U and C[r](λ) 6⊂ K[r]. Under these
conditions, there exists for any ε > 0 a matrix Â12 such that ||Â12 −A12|| ≤ ε and C[r](λ)∩M̂[r](λ) 6⊂
K[r].

Proof Let 0 6= Mi col (0r, ur) ∈ C[r](λ) ∩M[r](λ). By the previous lemma, we may assume without
loss of generality that u0 6= 0. There exist xr and a generalized eigenvector chain vr of A22 such that

Σ[r](λ)Mi

 xr

0r

ur

 =
[

A12

−C2

][r]

vr. (A.5)

Note that v0 6= 0 because col (0, u0) 6∈ P(λ). Since C[r](λ) 6⊂ K[r] there exist yr
c ∈ Yr, ur

c ∈ Ur such
that yr

c 6= 0, Mi col (yr
c , ur

c) ∈ C[r](λ). Because C1 has full row rank by assumption (A4), there exist
ξ0, . . . , ξr−1 such that C1[ξ0, . . . , ξr−1] = [yc,0, . . . , yc,r−1]. Define zr = col (z0, . . . , zr−1) as

Σ[r](λ)Mi

 ξr

yr
c

ur
c

 = Mi
[

zr

0r

]
. (A.6)

Because of the independence property of generalized eigenvectors, the matrix [v0, . . . , vr−1] has full
column rank. So, by Lemma A.2, there exists α > 0 such that

α2 [z0, . . . , zr−1]
∗ [z0, . . . , zr−1] ≤ ε2 [v0, . . . , vr−1]

∗ [v0, . . . , vr−1] . (A.7)
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Then by Lemma 3.2 there exists Aε such that ||Aε|| ≤ ε and Aε[v0, . . . , vr−1] = α[z0, . . . , zr−1]. Take
Â12 = A12 + Aε; then Â12 satisfies the norm constraint in the statement of the lemma. Moreover,

Σ[r](λ)

Mi

 xr

0r

ur

 + αMi

 ξr

yr
c

ur
c

 =
[

A12

−C2

][r]

vr + αMi
[
zr

0

]
=

=
[

A12

−C2

][r]

vr +
[

Aε

0

][r]

vr =
[

Â12

−C2

][r]

vr. (A.8)

Thus Mi
[

0r

ur

]
+ αMi

[
yr

c

ur
c

]
∈ M̂[r](λ) ∩ C[r](λ) which proves that M̂[r](λ) ∩ C[r](λ) 6⊂ K[r]. 2

Finally we are able to prove the theorem.

Proof (of Thm. 3.3) Assume that conditions (2.20) and (3.9) are satisfied. Since eigenvalues of a
matrix are continuous functions of its elements, the internal stability requirement (2.20) is satisfied in
a neighborhood of (A11, A12, B1) and (3.9) is satisfied for all values of the plant parameters. Therefore
the controller is a solution of the RRIS. Conversely, if (3.9) is not satisfied it follows from Lemma A.4
and Thm. 3.2 that the controller cannot be a solution of RRIS. 2
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