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The solution of the order equations of a four-point, fourth order, two-step

Runge-Kutta method

by

P.A. Beentjes

ABSTRACT
In this report we present solutions of the order equations of a class

of four-point, fourth order, two-step Runge-Kutta method. The solutions in-

clude possible variation of integration steps.
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1. STATEMENT OF THE PROBLEM

In [1] VAN DER HOUWEN presents the following multipoint two-step Runge-

Kutta method
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where y is the result of a single-step Runge-Kutta formula which can be
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characterized by the array of Runge-Kutta parameters
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Fourth order consistency of (1.1) leads to the equations
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Shanks has already given the complete solution of fourth order, four-
point, single-step Runge-Kutta formulas (see [2]); in section 2 we will gen-
eralize these results for a four-point, fourth order formula using two steps

in a similar way.

2. SOLUTION OF THE PROBLEM

We will consider three different types of solutions.

Case I. Hps My and u3 are distinct.

From (1.4), (1.6) and (1.10) follow
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and similar expressions for 6, and 6.
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(1.5) and (1.9) lead to
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Next, from (1.8) and (2.1), we get

1
_6 %M T 12 %3
32 63112(111 u2)

Now only (1.7) is not yet fulfilled. A straightforward calculation, using the

expressions above, results in
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and gives the following condition
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Thus, case I gives a two-parameter (ul,uz) family of solutions.

Case II. Hp = Hye
Defining 52 = 9] + 62 it follows from (1.4), (1.6) and (1.10)
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thus, giving as in case I,
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To obtain expressions for the remaining parameters we proceed as in

case I. From (1.5) and (1.9) follow
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Finally we get from (1.7)
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Thus, case II results in a one-parameter (e.g. 62) family of solutions.
Case III. My = Hge

Proceeding as in case I and case II, we find
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Case III also gives a one-parameter (e.g. 91) family of solutions.

We now show that the choice Hy = Mg leads to a contradiction. (1.4),

(1.6) and (1.10) give the condition
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(1.5) and (1.9) lead to Hy = Za;-, which, substituted in (2.2) delivers

Wy = 0. But u, = 0 contradicts with (1.7).
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3. EXAMPLES

Below, we present two schemes, both representing case II of section 2.

(i) b=1, c = q=-1.
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These values lead to the following formula
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(ii) b= .3, ¢ = .1, q = —-1.

The scheme is given by
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Note, that the choice q = -1 refers to constant step integration. Fur-

thermore, we remark that the term —;n (of scheme (i)) and the term ;n appear-

ing in ;ﬁRK), cancel out.,
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