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Some special formulas of the England class of fifth order Runge-Kutta schemes

by

P.A. Beentjes.

ABSTRACT
In this report two fifth order, six-point Runge-Kutta formulas will be

presented. Special attention is paid to enlarge the stability regions and to

minimize the truncation error of the schemes.
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1. INTRODUCTION

This paper deals with some special fifth order, six-point Runge-Kutta

formulas for the solution of initial value problems of the type

(1.1) y' = (%), vy = v(xy)-

The formulas to be presented are members of a class of Runge-Kutta schemes
given by ENGLAND [1]. The well-known schemes of SARAFYAN [6] and FEHLBERG
[2] also belong to this England family.

In section 2, we give definitions and consistency conditions for fifth
order, six—point Runge-Kutta formulas. Furthermore, the England class of
parameters satisfying these conditions will be discussed.

In section 3, schemes are derived with an extended region of stability as
well as schemes characterized by a small truncation error.

In section 4, test results of these formulas are compared with results of

other fifth order, six-point Runge-Kutta formulas.

2. RK56 FORMULAS; THE ENGLAND FAMILY

A six-point Runge-Kutta scheme for the solution of (1.1) is given by

K. = hf(xn,yn),
i-1
(2.1) Ki = hf(xn"'uih’yn"'jzo Aij Kj)’ i=1(1)5,

Fifth order accuracy of this scheme requires

(2.2) Yoep = I ) * on®),

n+

where §, the local analytical solution, satisfies



y' o= £y, y(x) =y, .

Formulas given by (2.1) and satisfying (2.2) will be called RK56 schemes.

By expanding y and ?(xh+1) in a Taylor series about X and equating

n+l
terms with equal powers in h, we are led to the following consistency con-
ditions for the parameters Hys Aij and ei, i=1(1)5, j=0(1)i-1 (see ZONNEVELD
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ENGLAND has given the following family of solutions of (2.3), Hyo i=1,2,4,5,

being free parameters

Woe_ 2
3 2 ’
lOu2 8u2+2
0, U. M
i1 2 . 2
Ail == i=2,3,4,5 (ai=3—12uif10ui),

2 Y



2
"3
Ayp =7 gy,

Hy O35

- =1 -
Y, 642Eu2+u4 4u2u4 2u3(3 10u2u4)]

42 My @) O9g
N A 842 %34
43 9 2 0. S 4
H3 @9 ©93
6] = 0,
. - 12 - 15(u3+u4+u5) + 20(u3u4+u4u5+u5u3)'-30u3 My Hs
2 9

601, 894 89, Sy5

(6., 1i=3,4,5 can be found by interchanging u, and
i & Hy
Hyo i=3,4,5 in the formula for 62).

The remaining parameters ASi’ i=2,3,4, satisfy
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This family has the property that, for every member, parameters
ei, i=0(1)4, exist, satisfying
N 4

= 1
(2.4) Vowg =Yg * .Z 0! K,

. 5
L= I, )+ o),
1=0

i.e. in every step a fourth order approximation to § can also be provided.
Note that this does not imply extra function evaluatioms.

By virtue of (2.4) we have the discrepance function

*

- yn+l’

that can be used to control the stepsize.



The parameters 6i, i=0(1)4, of the embedded formula (2.4) are given by

4
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(63 and 64 follow by interchanging Hy and Ha (u4) in

the formula for eé).

3. STABILITY AND TRUNCATION ERROR ANALYSIS

In this section, we investigate how to choose the free parameters of
the England formula in order to arrive '
(i) at schemes with an extended region of stability and
(ii) at schemes with a small truncation error.

Considering case (i) we restrict our investigations to the model
equation

(3.1) y' =98y, vy, =vy(xy, &ecC.

Application of any given England scheme to this problem leads to

_ ,n+l
Yn+1 A Yo°
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It is well known that stability of the computed solution is guaranteed if
|A(z)| £ 1.

Furthermore, restricting to all § € R , it is easily verified (see

VAN DER HOUWEN [5]) that B should equal .725590420168]0—3 in order to
make the stepsizes as large as possible (hmax Rﬁéﬁéﬁo. According to figure

3.1, two values of p, correspond with this special value of B. The greatest

2
value of Hy turns out to give the most preferable schemes. One of these

schemes is given in table 3.1.

Table 3.1

Parameters for a stabilized RK56 scheme

;= 2397 9755 2188 7719

u, = .3596 963 8283 1579

gy = 8641 4807 0993 4909

u, = (6+/6)/10

Mg = (6-V6) /10

8, = 1/9 64 = 1133 7183 4406 3626
6, =6, =0,=0] =0 05 =.5154 2899 9323 3072
0, = (16-V6) /36 03 = .0494 7703 5387 8394
0, = (16+/6) /36 6, = .3217 3823 0273 4672
Mo T M

Ayg = -0899 2408 2070 7895

Ay = -2697 7224 6212 3684

Ayg = -7628 7552 6076 9037

Ay = -2.8102 7540 6591 7028

Agp = 2.9115 4795 1508 2901

Ao = +0863 5521 5681 8012

Mg = A5y =0

Aog = -5918 6622 4879 5822

A, = .1667 2753 3716 9358

]
w



ASO = .1562 2831 0184 1035
A52 = ,2139 2740 2057 0159
A53 = -.0601 9013 5077 9534
A54 = .0450 8544 8558 5176

Next we consider case (ii). We remark that the leading term of the
truncation error of an RK56 scheme consists of 20 subterms, each of the

form

6
T P - b, v=1(1)20.

An expression Pv stands for a number of partial derivatives, depending on
the differential equation under consideration. On the other hand, the
coefficients Tv are functi?ns of the RK56 parameters, i.e. problem-indepen-
dent (for example T, = 8’756’.Cf' FEHLBERG [3]).

Therefore, regardless of the particular equation to be solved, we
might obtain small truncation errors by minimizing ITvI’ v=1(1)20. For this

purpose, we introduce some conditions by which several Tv vanish
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To satisfy these extra conditions, we must take

lJl 31‘[2’ US °
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Next, we take Hy = =jp in order to minimize T1 (see fig. 3.1).

With the last free parameter (“4)’ several interesting schemes are possible.
In our opinion, and justified by testresults, the most promising scheme is

the one given in table 3.2.



Table 3.2.

An RK56 scheme with a small truncation error

A..
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Finally, in figure 3.2, we have illustrated the stability regions of
the formulas given by tables 3.1 - 3.2.
The regions are symmetric with respect to the real z-axis. The

stability area of the formula given by table 3.2 is bounded by the dashed

line.



figure 3.1

The stability parameter 8 as a function of Hy

figure 3.2

Stability regions of two special RK56 methods
for equations of the type y' = 8y (z = hd)



4, TEST RESULTS

In this section, the test results of the following RK56 schemes are

given

RK1, the formula defined by table 3.1;
RK2, the formula defined by table 3.2;
RKS, Sarafyan scheme;
RKF, Fehlberg formula.
| Both RKS and RKF can be found in reference [2];

RKZ, Zonneveld formula [7].

Before testing, all methods above were implemented in a way as proposed

by ZONNEVELD [7]. This design provides the formulas with automatic stepsize

control.
In figures 4.1 - 4.4, test results are indicated by the following

marks:

x (RK])s + (RKZ}, Y (RKF)’ 0 (RKS) and O(RKZ)'

Significant digits

0 2000 4000

Number of Function evaluations

Figure 4.1
Results of problem 1
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Significant digits

Significant digits

1

! I I I 1 I L L

1000 2000

Number of Function evaluations

figure 4.2
Results of problem 2

L

1 1

1 I
400 600 300 1060

|
200

Number of Function evaluations

figure 4.3
Results of problem 3
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0 4000

Number of Function evaluations

figure 4.4
Results of problem 4

Test problems

All test problems were taken from FOX [4].

Problem 1
= 2 ’
Yl Y1 Yo

! ‘I/Yl’ Yl(o) = YZ(O) =1,

<
N
]

Integration interval [0,5].
Solution v, = l/y2 = ¥,

Results for y, are given in figure 4.1.

Problem 2
2
y' = y=-22 y() = 1.
y
Integration interval [0,5].

Solution y = /(2x+1).

Results are given in figure 4.2.

11
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Problem 3
2
y' = 10(y-x"), y(0) = .02,

Integration interval [0,1].

Solution y = .02 + .2x + xz.

Results are given in figure 4.3.

Problem 4

[y =y, +2y) - (W) vyt 3
S M ((Y1+u)2+Y§)3/2 (1 ey
" | (1-w)y, "2
P T T

yl(o) = .994, y2(0) =0, Yi(o) =0,

-2.03173263, wu = .012277471.

¥,(0)

Integration interval: orbit closure (period = 11.124340337266).

Results for y, are given in figure 4.4.

The results show that the method RK2 provides the best results for
three of the four test problems. Also formula RK1 is attractive, especially
in cases where the spectral radius of the Jacobian matrix of the problem
can grow to relatively large values (see problem 4). Furthermore, notice that
RKF and RKZ give nearly the same results (except for problem 4 where RKZ

failed to give significant solutions).
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