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On Time-Frequency Analysis and Time-Limitedness

P.J. Oonincx

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

We study two classical problems, namely the concentration of energy problem and the truncation problem. The

�rst problem deals with time-limited signals that have maximal energy in a certain frequency band. The second

problem is about estimating the spectrum of a signal, if this signal is only known at a certain interval. Solutions

of the �rst problem can be used to obtain good solutions for the second one by means of a preprocessing

algorithm, called tapering. The truncation problem and the tapering algorithm are also studied for time-scale

and time-frequency analysis, using the continuous wavelet transform and the Wigner-Ville representation.

1991 Mathematics Subject Classi�cation: 33C55, 44A15, 45C05, 62M15, 94A12.

Keywords and Phrases: Wavelets, tapers, prolate spheroidal wave functions, Wigner-Ville distribution, spectral

analysis, truncation problem.

Note: Work carried out under project PNA 4.2 "Wavelets" and supported �nancially by the Technology

Foundation (STW), project no. CWI44.3403.

1. INTRODUCTION

Spectral analysis by means of the Fourier transform, which provides the energy distribution of a sig-
nal over all frequencies, offers a valuable tool in signal analysis. However in practice, it is often not
sufficient to have only a time or frequency representation, e.g. when we are analysing transient sig-
nals. In order to study the behaviour of signals in both time and frequency domain, time-frequency
representations can be used. There is not a unique way of representing a signal in both time and fre-
quency, however a general class of representations, satisfying a set of desirable properties has been
given by Cohen [2]. Two of the best known time-frequency representations within this Cohen’s class
are the spectrogram (the squared modulus of the windowed Fourier transform) and the Wigner-Ville
representation. Both representations are discussed briefly in this report.

To obtain information about a signal’s behaviour both in time and in scale, the wavelet transform
can be used. This transform [5, 8] is often used for analysing the time-scale/frequency behaviour of
non-stationary signals, like most geophysical signals [6]. In this report we concentrate mostly on this
transform to analyse signals in the time-frequency domain.

A central problem in Fourier analysis is the representation of a signal in the frequency domain, if only
a segment of this signal is known in the time domain. This truncation can be due to measurement
restrictions. However for spectral estimation a noisy signal is sometimes truncated to reduce the ef-
fect of the noise. Obviously we cannot represent such a signal in the frequency domain in a proper
way. The Fourier transform takes the whole signal into account, while only a short segment is known.
This problem is known in literature as the truncation problem [12]. The frequency domain represen-
tation must now be seen as an estimation of the signal’s behaviour in frequency domain. A method
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to improve the estimation is to multiply the short segment by some window function. This method
is called tapering and is extensively discussed in this report. We also discuss the truncation problem,
when using the wavelet transform for a representation of a signal in both time and scale. The method
of tapering will be introduced and discussed in combination with the wavelet transform.

We start with some definitions and auxiliary results from Fourier theory.

In dealing with a signals 2 L2(IR), one can consider the spectrum̂s of s given by its Fourier
transform

ŝ(!) =
1p
2�

Z
IR

s(t)e�i!tdt:

The following inversion formula exists

s(t) =
1p
2�

Z
IR

ŝ(!)ei!td!:

The two integrals converge absolutely, ifs 2 S(IR), the Schwarz class of rapidly decreasingC1-
functions onIR, i.e. for eachk; l 2 IN

sup
��k;��l;t2IR

jt�@�s(t)j <1:

The Fourier transforms 7! ŝ is a bijection ofS(IR) and it can be uniquely extended to a Hilbert space
isometry ofL2(IR). Preservation of the inner product is expressed by Parseval’s formulaZ

IR

s1(t)s2(t)dt =

Z
IR

ŝ1(!)ŝ2(!)d!; (1.1)

for all s1; s2 2 L2(IR).
As a result we have Plancherel’s formula,Z

IR

js(t)j2dt =
Z
IR

jŝ(!)j2d!: (1.2)

The two equal sides of (1.2) give the energy of a signals 2 L2(IR). Fors 2 L2(IR), jŝ(!)j2 is called
the energy spectrum ofs.

Definition 1.1
A signals 2 L2(IR) is called time-limited if it is compactly supported, i.e.s(t) = 0; jtj > T , for a
certainT .
A signal s 2 L2(IR) is called band-limited if its Fourier transform is compactly supported, i.e.
ŝ(!) = 0; j!j > 
, for a certain
, which is called the bandwidth.

We defineTL(IR) andBL(IR) to be the spaces of all time-limited and band-limited signals inL2(IR),
respectively .
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Definition 1.2
A signals is called of exponential type if it extends to a holomorphic function onC/ and if there are
two positive constantsA and
 such that

js(z)j < Ae
jzj; 8z 2 C/ :
Lemma 1.3
If s 2 BL(IR), thens is of exponentional type.

Proof
Assumês(!) = 0 for j!j > 
. Then

s(t) =
1p
2�


Z
�


ŝ(!)ei!td!;

initially for t 2 IR, remains well-defined fort 2 C/ , and yields a holomorphic functions onC/ .
Further

js(z)j = j 1p
2�


Z
�


ŝ(!)ei!zd!j � 1p
2�


Z
�


jŝ(!)ei!z jd! � e
jzjp
2�


Z
�


jŝ(!)jd!

� e
jzjp
2�

vuutZ
IR

jŝ(!)j2d! �

vuuut 
Z
�


d! =

r

ksk22
�

e
jzj; 8z 2 C/ :

2

Lemma 1.3 can be extended to the Paley-Wiener theorem, a well-known result from Fourier theory;
for a complete proof, see [20].

Theorem 1.4 (Paley-Wiener)
If s 2 L2(IR) is holomorphic and of exponential type, thens 2 BL(IR). Conversely, ifs 2 BL(IR),
thens is holomorphic and of exponential type.

Since a holomorphic functions 2 L2(IR), vanishing at a certain interval, has to be identically zero,
the Paley-Wiener theorem immediately yield

Corollary 1.5
TL(IR) \BL(IR) = f0g.

It is clear, that when using the Fourier transform, we hide all information of the signal’s behaviour
in the time domain. To get information about a signal simultaneously in the frequency domain and
the time domain, we may replace the Fourier transform by one of two other integral transformations,
namely the windowed Fourier transform (WFT) and the continuous wavelet transform (CWT).

The WFT ofs 2 L2(IR) is defined by

~s(!; t) =
1p
2�

Z
IR

s(u)g(u � t)e�i!udu; (1.3)
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for a certain window functiong 2 L2(IR). Again an inversion formula exists

s(t) =
1p

2�kgk22

Z
IR2

~s(!; u)g(t � u)ei!t dud!:

Note that this formula only makes sense forg 6= 0 on a set with positive measure. Further, a counter-
part of Parseval’s relation has been derived

(s1; s2)L2(IR) =
1

kgk22
(~s1; ~s2)L2(IR2) 8s1;s22L2(IR);

which yields analogous to (1.2)Z
IR

js(t)j2dt = 1

kgk22

Z
IR2

j~s(!; t)j2 dtd! 8s2L2(IR):

The CWT ofs 2 L2(IR) is defined by

W [s](a; b) =
1p
jaj

Z
IR

s(u) (
u � b

a
) du;

for a certain 2 L2(IR), which is called the wavelet. Actually the CWT leads to a representation of a
signal in the time-scale domain. However, replacing the scale parametera by the reciprocal frequency
1=! and the space parameterb by the time parametert, yields a time-frequency representation similar
to the WFT. There exists the inversion formula

s(t) =
1

C 

Z
IR2

1p
jaj
W [s](a; b) (

t � b

a
)db

da

a2
; (1.4)

with C =
R
IR

j ̂(!)j2

j!j
d!. It is clear, that this formula only holds if0 < C <1. Wavelets for which

this condition hold are called admissible. In the sequel we only deal with admissible wavelets. Similar
to the WFT case, a counterpart of Parseval’s relation has been derived

(s1; s2)L2(IR) =
1

C 
(W [s1];W [s2])L2(IR2;a�2dadb) 8s1;s22L2(IR);

which yields analogous to (1.2)Z
IR

js(t)j2dt = 1

C 

Z
IR2

jW [s](a; b)j2 db
da

a2
8s2L2(IR): (1.5)

Amongst others, these results on the WFT and the CWT can be found in e.g. [5, 8].

The report is organised as follows. In Section 2 we deal with two classical problems, namely the prob-
lem of maximal energy of time-limited signals within a frequency band, and the truncation problem.
Section 3 discusses time-frequency and time-scale representations of signals, focusing on the CWT.
For this method we discuss problems when analysing short segments of a non-stationary signal with
long duration time. Possible solutions to these problems are considered in Section 4, using known
techniques from Section 2.
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2. TIME LIMITEDNESS: TWO CLASSICAL PROBLEMS

The first problem to be considered in this section is the concentration of energy in a certain frequency
band of a time-limited signal. So we consider fors 2 TL(IR) the ratio

�s(
) =


R
�


jŝ(!)j2 d!R
IR

jŝ(!)j2 d! : (2.1)

Here[�
;
] is the frequency band we are looking at. From Corollary 1.5 it is clear that0 � �s(
) <

1. Therefore it is interesting to study the problem of maximising�s(
) over alls 2 TL(IR), which
we will discuss in this section. In the past this problem has been discussed extensively e.g. by Landau,
Pollack and Slepian, see [9, 14, 16, 17].

One may also consider a similar problem, namely how to maximise

�s(T ) =

TR
�T

js(t)j2 dtR
IR

js(t)j2 dt

over alls 2 BL(IR), for a certainT > 0. Since the Fourier transform is a unitary operator onL2(IR),
these two problems are equivalent.

The second problem we consider in this section is the determination of the Fourier transformŝ(!)

of s 2 L2(IR), if s is only known on[�T; T ], for a certain fixedT > 0. Especially we consider
the case in whichs =2 TL(IR). Then the definition of the Fourier transform implies thatŝ cannot be
determined exactly; it can only be estimated.

1. The Concentration of Energy Problem
For the first problem we introduce the integral operatorA : L2(IR)! L2(IR) by

(As)(t) =
r

2

�

Z
IR

sin(
(t� u))

(t� u)
s(u)du; 8s2L2(IR): (2.2)

Observe that(As)^ = ŝ � �[�
;
]. HenceA is a Hermitian projection operator; in fact it is an
orthonormal projector. ForT > 0, let J : L2([�T; T ]) ! L2(IR) be the embedding given by

(Js)(t) =

�
s(t); if jtj � T;

0; if jtj > T:

Then the adjoint operatorJ� : L2(IR)! L2([�T; T ]), restricts functions onIR to [�T; T ]. Now

(J�AJs)(t) =
r

2

�

TZ
�T

sin(
(t� u))

(t� u)
s(u)du; jtj � T;

for all s 2 L2([�T; T ]). Since the integral kernel is inL2([�T; T ]2), J�AJ is a Hilbert-Schmidt
operator, hence compact.
It is also a positive definite operator. This can be seen as follows. Assume

(J�AJs; s)L2(IR) = (AJs; Js)L2(IR) = 0;
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for somes 2 L2(IR). ThencJs(!) = 0; ! 2 [�
;
], by (1.2). FurthermorecJs is analytic by
Theorem 1.4. Combining these results yieldscJs = 0, and thus alsoJs = 0.

Following Pollack and Slepian [14, 16], we consider possible solutionssmax 2 TL(IR), with supp
(smax) = [�T; T ], that maximise (2.1). Then

�smax(
) � (ŝmax; ŝmax)L2(IR) = (�[�
;
] � ŝmax; ŝmax)L2(IR):

Equivalently, using Parseval’s theorem,

�smax(
) � (smax; smax)L2(IR) = (Asmax; smax)L2(IR):

Sincesmax is a stationary solution of this equation, it must satisfy

(Asmax)(t) = �smax(t); jtj � T; (2.3)

a homogeneous Fredholm equation of the first kind. Solutionss 2 L2([�T; T ]) for this equation only
exist for a discrete set of real positive values of�, with the properties that1 > �1 > �2 > �3 > : : :

and limn!1 �n = 0. In general, the eigenvalues of a compact Hermitian operator are not neces-
sary distinct. However, for this particular operatorA, Pollack and Slepian have proved [14], that its
eigenvalues are distinct. The solutions of (2.3) for�1; �2; �3; : : : are denoted by 1;  2;  3; : : : . We
observe, that we have solved at this moment the problem of maximising (2.1). Namely,�smax = �1
and�smax is attained forsmax =  1.

It turns out, that the solutions of (2.3), known asProlate Spheroidal Wave Functions (PSWF), have
some nice properties, which we consider in the sequel of this section.

The PSWF 1;  2;  3; : : : can be chosen to be a real orthogonal complete set inL2([�T; T ]). By
defining

 n(u) =
1

�n
(AJ n)(u); juj > T;

for n 2 IN , we extend the solutions of (2.3) to the whole real axis. We show, that the n, extended to
IR, form a real orthogonal set inL2(IR). To do this, we recall, thatA is a projection operator in the
way that

(AJs1;AJs2)L2(IR) = (J�AJs1; s2)L2(IR):
With this property, we derive

( n;  m)L2(IR) =
1

�n�m
(AJ n;AJ m)L2(IR) =

1

�n�m
(J�AJ n;  m)L2(IR)

=
1

�n
( n;  m)L2([�T;T ]);

yielding, thatf n j n 2 INg is a real orthogonal set inL2(IR). Further it follows immediately from
this derivation, that

( n;  m)L2([�T;T ]) = �n�m;n;

after orthonormalisation of the PSWF inL2(IR).
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To get more insight in the behaviour of the eigenvalues�n, we observe that these�n are also eigen-
values of the operatorA(
T ) given by

(A(
T )w)(t) =

r
2

�


TZ
�
T

sin(t� u)

(t� u)
w(u)du; 8w2L2([�
T;
T ]): (2.4)

Now we can use the following theorem from [10].

Theorem 2.1
LetA(
T ) be as defined in (2.4) and letN(A(
T ); �); 0 < � < 1, denote the number of eigenvalues
of A(
T ) which are greater than or equal to�. Then

N(A(
T ); �) =
2
T

�
+

1

�2
log(

1� �

�
) log(
T ) + o(log(
T )): (2.5)

Theorem 2.1 is useful for considering the distribution of the eigenvalues�n for 
T large. The fol-
lowing theorem was shown by Slepian [18] without rigorous proof. The proof can be established
rigorously using Theorem 2.1.

Theorem 2.2
Let �n; n 2 IN , be the eigenvalues ofA(
T ). Then for all� > 0, there exists anM 2 IN , such that

1. �n < �; if n � (1 + �)2
T� ,

2. 1� �n < �; if 1 � n � (1� �)2
T
�

,

3. j�n � (1 + e��)�1j < �; if n � 2
T
�

+ �
�
log(
T ),

for 
T > M , and1 � � > 0 arbitrary small and fixed. In the third statement,� 2 IR is an arbitrary
parameter.

Proof
From Theorem 2.1 we get

N(A(
T ); �n) =
2
T

�
+

1

�2
log(

1� �n

�n
) log(
T ) + gn(
T );

with lim
T!1
gn(
T )
log(
T )

= 0. So

log(
1� �n

�n
) =

�2N(A(
T ); �n)� 2
T� � �2gn(
T )

log(
T )
;

yielding

�n = (1 + e
�
2
N(A(
T );�n)�2
T�

log(
T ) � e�
�
2
gn(
T )

log(
T ) )�1: (2.6)

SubstitutingN(A(
T ); �n) = (1 + �)2
T
�

into (2.6) yields

lim

T!1

�n = lim

T!1

(1 + e
2��
T
log(
T ) � e�

gn(
T )

log(
T ) )�1 = 0:
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Since the eigenvalues are ordered in descending order, statement 1 follows immediately from this re-
sult. Equivalently we derive statement 2 by substitutingN(A(
T ); �n) = (1� �)2
T� into (2.6).
Finally, by takingN(A(
T ); �n) =

2
T+�
�

, for some� 2 IR, in Eq. (2.6), statement 3 is achieved.
2

Obviously, nearly the first2
T
�

eigenvalues are close to unity, and nearly all others are close to 0, for

T large. Furthermore the number of eigenvalues not close to 0 or 1 grows likelog(
T ), for 
T
large.

Of course we could derive much more properties of the PSWF and the eigenvalues ofA(
T ). How-
ever for the relation with the other problems, discussed in this report, we only need the mutual orthog-
onality of the PSWF and the fact that approximately the first2
T

�
eigenvalues are close to unity, for


T large. This means, that almost all energy of the corresponding PSWF 1; : : :  2
T=� is contained
in the frequency band[�
;
]. For more properties of the PSWF, one may consult e.g. [9], [14] and
[16].

At the end of this discussion, we briefly consider the case, when we are dealing with a discrete-time
signal. For this discussion, we follow Slepian [17]. Without loss of generality we consider a band-
limited signal, with bandwidth
0, sampled with time intervals�t � 1=2
0. Then we can consider
also the problem of maximising the ratio�s(
) as defined in (2.1), with0 < 
 < 
0. Solutions to
this problem provide the discrete prolate spheroidal sequences (DPSS)�k 2 l2(f�N; : : : ; Ng); k =

0; : : : ; 2N , with N = T=�t. These sequences�k are the eigenvectors of the matrix eigenvalue
problem given byr

2

�
�t

NX
l=�N

An;l = �k�k(n); n = �N; : : : ; N; (2.7)

with A the(N �N) Toeplitz matrix given by

An;l =

(

; if n = l

sin(
(n�l))
(n�l)

; if n 6= l
(2.8)

Comparing (2.7) and (2.8) with (2.2) and (2.3), we see that this eigenvalue problem follows from
the eigenvalue problem in the continuous case by approximating the integral operatorA by means of
Riemann sums. Slepian proved, that both the eigenvectors�k and the eigenvalues�k satisfy similar
conditions as the PSWF k and their corresponding eigenvalues�k. Here we only mention the exis-
tence of this discrete-time problem. A detailed discussion of this problem can be found in literature
[13, 17, 19].

2. The Truncation Problem
For the second problem we assumes 2 L2(IR). However,s is only known at a certain interval
[�T; T ]. The problem, we are now dealing with, is to determine the Fourier transformŝ in terms of
the segments � �[�T;T ]. Sinces is not necessarily zero outside this interval, the Fourier transform
can only be estimated. Several methods can be used to estimateŝ, see e.g. [12]. Here we discuss a
method, called tapering, which is based on using window functions.
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Figure 1: The kernelDT

If we compute the Fourier transform ofs1 = s � �[�T;T ], we get

ŝ1(!) =
1p
2�

(ŝ � �̂[�T;T ])(!) =
1p
2�

(ŝ �DT )(!); (2.9)

whereDT (!) =

r
2

�

sin(!T )

!
.

Having a look at the kernelDT in Figure 1, we see that it consists of a broad main lobe around its
center and some smaller side lobes. This means, that due to the convolution product withDT , contents
of one frequency band can be transported into another frequency band via the side lobes ofDT . This
phenomena is called spectral leakage, [13]. Observe, that this phenomena does not automatically lead
to bad results concerning the estimation of the spectrum. Also the behaviour of the signal should
be taken into account. Following [13], an indication whether the estimationŝ1 is biased by spectral
leakage is given by the dynamic range ofs, given by the ratio

R(s) = 10 � log(
sup
!2IR

jŝ(!)

j

2

inf
!2IR

jŝ(!)j2): (2.10)

The bias in̂s1 can be attributed to spectral leakage ifs is a signal with high dynamic range. Especially
ŝ1 is badly biased at those frequencies!0, for which jŝ(!0)j2= sup

!2IR

jŝ(!)j2 is small. Note, that to

computeR(s), the unknown spectrum̂s of s is needed. In practice, if no knowledge ofs is available
outside the interval[�T; T ], it is hard to say whether the bias inŝ1 is due to spectral leakage. However
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for the spectra of geophysical data, high dynamical ranges often appear.

A technique to reduce spectral leakage is to replaceDT in (2.9) by some appropriate kernelDw.
In the time-domain this means that we have to multiplys by some appropriate window function
w 2 L2([�T; T ]), called a taper. An estimate ofŝ is then given by the Fourier transform ofsw = s �w,
namely

ŝw(!) =
1p
2�

(ŝ � ŵ)(!) = 1p
2�

(ŝ �Dw)(!): (2.11)

Besides the fact, that an appropriate taperw should minimise the bias in̂sw due to spectral leakage,
we also require that̂sw is asymptotically unbiased, i.e.

lim
T!1

ŝw(!) = ŝ(!); 8! 2 IR: (2.12)

It is obvious thatw = �[�T;T ] satisfies (2.12). For other tapers a sufficient condition, such that it
satisfies (2.12), is given in the following theorem.

Theorem 2.3
Let s 2 L1(IR) andwT 2 L1(IR), continuous at zero, with the properties, thatwT (0) = 1 and
w(t) = wT (t � T ). Then

lim
T!1

kŝwT � ŝk1 = 0:

Proof
We derive

jŝwT (!)� ŝ(!)j = j 1p
2�

Z
IR

(wT (t)� 1) � s(t)e�i!tdtj

� 1p
2�

Z
IR

jwT (t)� 1j � js(t)jdt

=
1p
2�

Z
IR

jw(t=T ) � 1j � js(t)jdt

=
1p
2�

Z
jtj�M

jw(t=T ) � 1j � js(t)jdt+

1p
2�

Z
jtj>M

jw(t=T ) � 1j � js(t)jdt

� 1p
2�

sup
jtj�M

jw(t=T ) � 1j � ksk1 +
1p
2�

(kwT k1 + 1) �
Z

jtj>M

js(t)jdt:

Let " > 0. Now chooseM > 0, such that
Z

jtj>M

js(t)jdt � "
p
�=
p
2(kwT k1 + 1). Further takeT

large, so thatsup
jtj�M

jw(t=T )� 1j � "
p
2�=2ksk1. Then we have

sup
!2IR

jŝwT (!)� ŝ(!)j � ":
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2

We observe, that [4] also mentions properties of good data tapers, as described in Theorem 2.3. How-
ever there,s belongs to a certain class of stationary processes.

In choosing an optimal taper to reduce spectral leakage, we need a measure for the bias in the estimate.
In the literature [1, 4, 13] most descriptions of the leakage phenomena deal with stationary stochastic
processes. A theoretical description of leakage in this manner can be found in [4]. Here we advance,
that taperswm that minimise spectral leakage should satisfy

kŝwm � ŝk1 = inf
w2L2([�T;T ])

kŝw � ŝk1: (2.13)

Since spectral leakage is a local phenomena, we have chosen a minimisation of the bias in theL1-
norm. By looking at other norms, we would sum the biases at different frequencies. If we are only
interested in a certain frequency bandY 2 IR, optimal tapersw 2 L2([�T; T ]) should minimise

sup
!2Y

jŝw(!)� ŝ(!)j:

It is hard to find a taper that satisfies (2.13), however we can give an upper bound forkŝw � ŝk1,
which controls the bias. In the following theorem we derive such an upper bound.

Theorem 2.4
Let s 2 L1(IR) andw; ŵ 2 L1(IR), with w(0) = 1. Then

8">0 9
>0 : kŝw � ŝk1 � "+

r
2

�
kŝk1

Z
juj>


jŵ(u)jdu: (2.14)

Proof
We derive

jŝw(!)� ŝ(!)j = jŝw(!)� w(0)ŝ(!)j

=
1p
2�
j
Z
IR

ŝ(! � u)ŵ(u)� ŝ(!)ŵ(u)duj

� 1p
2�

Z
IR

jŝ(! � u)� ŝ(!)j � jŵ(u)jdu

� 1p
2�


Z
�


jŝ(! � u)� ŝ(!)j � jŵ(u)jdu

+
1p
2�

Z
juj>


jŝ(! � u)� ŝ(!)j � jŵ(u)jdu:

Since we assumeds 2 L1(IR), it can be proved that̂s 2 C0(IR), the supremum-normed Banach space
of all continuous functions onIR, that vanish at infinity, see [15]. So let" > 0, then there exists an

 > 0, such thatjŝ(! � u)� ŝ(!)j � "

p
2�=kŵk1, for juj < 
. By choosing such an
, we get

1p
2�


Z
�


jŝ(! � u)� ŝ(!)j � jŵ(u)jdu � "

kŵk1


Z
�


jŵ(u)jdu � �:
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FurtherZ
juj>


jŝ(! � u)� ŝ(!)j � jŵ(u)jdu �
Z

juj>


(jŝ(! � u)j+ jŝ(!)j) � jŵ(u)jdu

� 2kŝk1
Z

juj>


jŵ(u)jdu:

Taking the supremum over all frequencies! completes the proof.
2

We observe, that a taperw that minimises the upper bound, given by (2.14), and that satisfies the
assumptions of Theorem 2.4, should have a spectral amplitudejŵ(u)j, which is well localised in a
small frequency bandjuj < 
. Note, that in the maximal energy problem, we searched for signals,
with a well localised energy spectrum in some frequency band[�
;
]. It is easy to verify [21], that
when considering a sampled band-limited signal, we can also derive

8">0 9
>0 : kŝw � ŝk1 � "+ 2

r
� � 


�
kŝk1

0B@ Z

<juj��

jŵ(u)j2du

1CA
1=2

; (2.15)

for s; w 2 L1(IR) \ L2(IR), andw(0) = 1. Tapers that minimise the upper bound (2.15) are the
DPSS, the solutions of (2.7), following from (2.1) in the discrete case.

One can also be interested in the biasjŝw(!)j2 � jŝ(!)j2. An upper bound for this bias is given in a
corollary of Theorem 2.4.

Corollary 2.5
Let s 2 L1(IR) andw; ŵ 2 L1(IR), with w(0) = 1. Then

8">0 9
>0 : jŝw(!)j2 � jŝ(!)j2 � (1 +
1p
2�
kŵk1) � kŝk1 �0B@"+r 2

�
kŝk1

Z
juj>


jŵ(u)jdu

1CA : (2.16)

Proof
If f 2 L1(IR) andg 2 L1(IR), then

kf � gk1 � kfk1 � kgk1;
see e.g. [21]. Therefore

kŝwk1 =
1p
2�
kŝ � ŵk1 � 1p

2�
kŝk1 � kŵk1;

using that̂s 2 C0(IR). With this result we derive

jŝw(!)j2 � jŝ(!)j2 � (jŝw(!)j+ jŝ(!)j) � (jŝw(!)j � jŝ(!)j)
� (kŝwk1 + kŝk1) � kŝw � ŝk1
� kŝk1(1 +

1p
2�
kŵk1) � kŝw � ŝk1:
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Figure 2: The Spectrum of the Bartlett taper.

Substituting (2.14) into this last result completes the proof.
2

Also other desirable properties of tapers can be taken into account, see [1]. However, here we are only
interested in tapers, that satisfy (2.12) and (2.13).
Some tapers, which are often used for spectrum estimation, are

1. The Bartlett taper:
w(t) = (1� jtj=T ) � �[�T;T ](t);

2. The Tukey taper:
w(t) = (1=2 + 1=2 cos(�t=T )) � �[�T;T ](t);

3. The Hamming taper:

w(t) = (0:54 + 0:46 cos(�t=T )) � �[�T;T ](t);

4. Thep%-cosine taper:

w(t) = �[��T;�T ](t) + (1=2 + 1=2 cos(�
t� �T

(1 � �)T
)) � (�[�T;��T ](t) + �[�T;T ](t));

with � = 1� p=100,
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5. The Blackman-Harris taper:

w(t) = (0:42 + 0:5 cos(�t=T ) + 0:08 cos(2�t=T )) � �[�T;T ](t):

In Figure 2, the spectrum of the Bartlett taper has been depicted. Comparing this figure with Figure 1,
we see that in the case of a Bartlett taper less energy is contained in the side lobes, compared toDT .
However, although these tapers have good overall properties, none of the tapers mentioned above are
optimal in a certain sense, like the minimisation of (2.13). In [7], an overview is given of all kinds of
discrete tapers with their properties. These discrete tapers can be obtained by sampling analog tapers
[12], the tapers we consider in this report.

3. TIME-FREQUENCY AND TIME-SCALE ANALYSIS

To investigate the behaviour of a non-stationary signals, we would like to get information abouts both
in the frequency and in the time domain. To achieve this, we might use a Cohen class time-frequency
representation [3]. Here we mention two well-known members of this class, namely

� The Spectrogram:

Pg[s](!; t) = j~s(!; t)j2; (3.1)

with ~s the WFT ofs, as defined in (1.3),

� The Wigner-Ville distribution:

WV [s](!; t) =
1

2�

Z
IR

s(t+ p=2)s(t� p=2)e�i!pdp: (3.2)

The following relation [3] exists between these two representations

Pg[s](!; t) =

Z
IR2

WV [s](f; u)WV [g](f � !; u� t) dfdu: (3.3)

We observe, that such a convolution type relation exists for all time-frequency representations of the
Cohen’s class.

Another approach is to investigate the behaviour ofs in the time-scale plane. For this purpose we use
a scalogramT , depending on a wavelet , defined by

T [s](a; b) = jW [s](a; b)j2: (3.4)

To derive a relation between the scalogram and the Wigner-Ville distribution, we use Moyal’s formula
[11]:

j(s1; s2)L2(IR)j2 = 2�

Z
IR2

WV [s1](!; t)WV [s2](!; t) d!dt:

Further we can write
T [s](a; b) = jW [s](a; b)j2 = j(s;  a;b)L2(IR)j2;
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with  a;b(t) =
1p
jaj
 ( t�ba ). Applying Moyal’s formula on the previous result and using scaling and

translation properties of the Wigner-Ville distribution [3], we arrive at the following relation

T [s](a; b) = 2�

Z
IR2

WV [s](!; t)WV [ a;b](!; t) d!dt

= 2�

Z
IR2

WV [s](!; t)WV [ ](a!;
t� b

a
) d!dt: (3.5)

When considering the behaviour of segments of a non-stationary signal, the Wigner-Ville representa-
tion might not be an appropriate tool, since it weights all parts of the signal equally and is therefore
highly nonlocal. Furthermore, the spectrogram has a uniform resolution in frequency space, which is
cumbersome when analysing multi-component signals, consisting of components with varying dura-
tions and frequency contents. In order to determine the behaviour of segments of a multi-component
signal, as described before, we shall concentrate in this report mainly on the wavelet transform.

The main problem we are dealing with, is to determineW [s](a; b) andT [s](a; b), for�T � b � T ,
if s 2 L2(IR) is only known within[�T; T ]. Although the wavelet transform is acting locally ons,
the following lemma shows thatW [s](a; b) can only be estimated in this case.

Lemma 3.1
Let have support[t1; t2] ands1 = s � �[�T;T ], with s 2 L2(IR). Then

W [s1](a; b) =W [s](a; b); �T � b � T;

if one of the following conditions ona holds

1. a 2 [�b�T
t2

; T�b
t2

]nf0g, if t1 � 0,

2. a 2 [ b�T
jt1j

; b+T
jt1j

]nf0g, if t2 � 0,

3. a 2 [max( b�T
jt1j

; �b�Tt2
);min( b+T

jt1j
; T�bt2 )]nf0g, if t1 < 0 < t2.

Proof
We write

W [s](a; b) �W [s1](a; b) =
1p
jaj

(

�TZ
�1

+

1Z
T

)s(t) (
t� b

a
) dt:

If  has support[t1; t2], thenW [s](a; b) �W [s1](a; b) = 0; if t�b
a
62 [t1; t2]; 8 jtj � T . This is

equivalent with

[at1 + b; at2 + b] \ IRn[�T; T ] = ; for a > 0; (3.6)

[at2 + b; at1 + b] \ IRn[�T; T ] = ; for a < 0: (3.7)

Assuming�T � b � T , we can distinguish three cases, both for (3.6) and for (3.7).
For t1 � 0, (3.6) changes intoat2+ b � T and (3.7) intoat2+ b � �T . Taking these results together
yields(�b� T )=t2 � a < 0 and0 < a � (T � b)=t2.
For t2 � 0, (3.6) becomesat1+ b � �T and (3.7) becomesat1+ b � T . Together these results yield
(T � b)=t1 � a < 0 and0 < a � (�T � b)=t1.
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Now taket1 < 0 < t2. Then (3.6) is equivalent withat1+b � �T^at2+b � T , which can be written
asa � min((�b� T )=t1; (T � b)=t2). Further (3.7) is equivalent withat1 + b � T ^ at2 + b � �T ,
which can be written asa � max((T � b)=t1; (�b� T )=t2)

2

To illustrate Lemma 3.1, we see in Figure 3 the CWT of some difference signals � s1 using the
Daubechies waveletD4, see [5]. It is depicted, thatW [s](a; b)�W [s1](a; b) = 0; for (a; b) within
the triangle, defined by0 < a � min( b+T

jt1j
; T�bt2 ). Also we see that, outside this triangle, some bias

exists inf(a; b) j 0 < a; �T � b � Tg, due to the fact thats1 is unknown outside[�T; T ]. Further,
we observe that the larger the support of the analysing wavelet is, the smaller the area without bias
becomes. Actually, for not compactly supported wavelets this bias can be noticed everywhere inIR.

In the next theorems, we derive relations both between the CWT ofs1 and the CWT ofs, and between
the scalogram ofs1 and the scalogram ofs.

Theorem 3.2
Let s 2 L2(IR). Then

W [s � �[�T;T ]](a; b) =
Z
IR2

KT (u; v; a; b)W [s](u; v) dv
du

u2
; (3.8)
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with KT (u; v; a; b) =W [ a;b � �[�T;T ]](u; v)=C .

Proof
Using the definition of the CWT we can write

W [s � �[�T;T ]](a; b) =
Z
IR

s(t)�[�T;T ](t) a;b(t) dt:

This can be rewritten, with inversion formula (1.4), as

W [s � �[�T;T ]](a; b) =

Z
IR

�[�T;T ](t) a;b(t) (
1

C 

Z
IR2

1p
juj
W [s](u; v) (

t � v

u
) dv

du

u2
) dt

=
1

C 

Z
IR2

W [s](u; v)

Z
IR

1p
juj
�[�T;T ](t)  a;b(t)  (

t� v

u
) dt dv

du

u2

=

Z
IR2

W [s](u; v)
1p
juj

1

C 

Z
IR

�[�T;T ](t)  a;b(t)  (
t� v

u
) dt dv

du

u2

=

Z
IR2

1

C 
W [ a;b � �[�T;T ]](u; v)W [s](u; v) dv

du

u2

=

Z
IR2

KT (u; v; a; b)W [s](u; v) dv
du

u2
;

with KT (u; v; a; b) =W [ a;b � �[�T;T ]](u; v)=C .
2

To derive a relation for the difference ofW [s](a; b) andW [s ��[�T;T ]](a; b), we prove the following
theorem.

Theorem 3.3: Reproducing kernel property
Let s 2 L2(IR). Then

W [s](a; b) =

Z
IR2

K(u; v; a; b)W [s](u; v) dv
du

u2
; (3.9)

with K(u; v; a; b) =W [ a;b](u; v)=C .

Proof
The proof follows the proof of Theorem 3.2, with�[�T;T ] replaced by1.
2

By taking the difference of (3.8) and (3.9), we arrive with some straightforward computations at an
expression for the difference between the CWT ofs and the CWT ofs1.
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Corollary 3.4
Let s 2 L2(IR). Then

W [s](a; b)�W [s � �[�T;T ]](a; b) =
Z
IR2

GT (u; v; a; b)W [s](u; v) dv
du

u2
; (3.10)

with GT (u; v; a; b) =W [ a;b �  a;b � �[�T;T ]](u; v)=C .

An expression for the difference of the scalogram ofs and the scalogram ofs1 can be derived easily
from (3.5), namely

T [s](a; b) � T [s � �[�T;T ]](a; b) = 2�

Z
IR2

WV [s](!; t)WV [ ](a!;
t� b

a
) d!dt�

2�

Z
IR2

WV [s � �[�T;T ]](!; t)WV [ ](a!;
t� b

a
) d!dt

= 2�

Z
IR2

�T [s](!; t)WV [ ](a!;
t� b

a
) d!dt; (3.11)

with

�T [s](!; t) = WV [s](!; t)�WV [s � �[�T;T ]](!; t)
= WV [s](!; t)� (WV [s] �! WV [�[�T;T ]])(!; t); (3.12)

with �! denoting the convolution product in the frequency domain. For the last result we used some
elementary properties of the Wigner-Ville representation [3].

The time-frequency representation�T [s](!; t) does not only play a role when comparing the scalo-
grams or the Wigner-Ville representations ofs ands1 with each other. Also�T [s](!; t) appears when
considering the difference of the spectrograms ofs ands1. From (3.3) we can derive in a straightfor-
ward way

Pg[s](!; t)� Pg[s � �[�T;T ]](!; t) =
Z
IR2

�T [s](f; u)WV [g](f � !; u� t) dfdu: (3.13)

At the end of this section we derive an expression for�T [s](!; t), in order to compute the differences
of the discussed time-frequency/scale representations ofs ands1. For this, we need the following
property of Wigner-Ville representations [3]

WV [s1 + s2](!; t) = WV [s1](!; t) +WV [s2](!; t) +

1

�
Ref
Z
IR

s2(t+ p=2)s1(t� p=2)e�i!pdpg: (3.14)
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Theorem 3.5
Let s 2 L2(IR) and let�T [s](!; t) =WV [s](!; t)�WV [s � �[�T;T ]](!; t). Then

�T [s](!; t) =
1

2�
(

�2(T+jtj)Z
�1

+

1Z
2(T+jtj)

)s(t+ p=2)s(t� p=2)e�i!pdp+

8>>>><>>>>:
1
�

Ref
2(T+t)R
2(T�t)

s(t+ p=2)s(t� p=2)e�i!pdpg; if 0 � t � T;

1
�Ref

�2(T+t)R
�2(T�t)

s(t+ p=2)s(t� p=2)e�i!pdpg; if � T � t < 0;

(3.15)

with s1 = s � �[�T;T ] ands2 = s� s1.

Proof
Substitutings1 = s � �[�T;T ] ands2 = s� s1 into (3.14) yields

WV [s](!; t)�WV [s � �[�T;T ]](!; t) =

WV [s2](!; t) +
1

�
Ref
Z
IR

s2(t+ p=2)s1(t� p=2)e�i!pdpg:

Writing outWV [s2](!; t) gives

WV [s2](!; t) =
1

2�

Z
IR

s2(t+ p=2)s2(t� p=2)e�i!pdp

=
1

2�

Z
I1(t)[I2(t)

s(t+ p=2)s(t� p=2)e�i!pdp;

with I1(t) = fp 2 IR j t+p=2 � �T ^ t�p=2 � Tg andI2(t) = f p 2 IR j t+p=2 � T ^ t�p=2 �
�Tg. These integration domains can be rewritten asI1(t) = (�1;min(�2T � 2t;�2T + 2t)] =

(�1;�2T � 2jtj] andI2(t) = [max(2T � 2t; 2T +2t);1) = [2T +2jtj;1), yielding the first term
of the right hand side of (3.15).
Further writing out

R
IR

s2(t+ p=2)s1(t� p=2)e�i!pdp givesZ
IR

s2(t+ p=2)s1(t� p=2)e�i!pdp =

Z
I3(t)\I4(t)

s(t+ p=2)s(t� p=2)e�i!pdp;

with I3(t) = fp 2 IR j t+p=2 � �T _ t+p=2 � Tg andI4(t) = f p 2 IR j �T � t�p=2 � Tg.
These sets can be rewritten asI3(t) = (�1;�2T�2t][[2T�2t;1) andI4(t) = [�2T+2t; 2T+2t].
Taking the intersection ofI3(t) andI4(t) yields

I3(t) \ I4(t) =
�

[2T � 2t; 2T + 2t]; if 0 � t � T;

[�2T + 2t;�2T � 2t]; if � T � t < 0:

Substituting this result into the domain of the preceding integral completes the proof.
2

We observe, that the integrals appearing in (3.15) are so-called pseudo Wigner-Ville representations
of s, [3].
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4. TAPERED WAVELET ANALYSIS

Assume the signals 2 L2(IR) is only known within[�T; T ]. Then from Lemma 3.1 it is clear, that
we have to estimateW [s](a; b) for (a; b) 2 IR2, outside one of the regions, defined in Lemma 3.1.
Now the idea is to treat this truncation problem in the same way as in Section 2, where we considered
the truncation problem when using the Fourier transform. Therefore, in order to reduce the bias in the
estimate, we multiplys by a taperw 2 L2([�T; T ]), before taking the CWT of the signal. However,
observe that the estimate is always unbiased in a region, as defined in Lemma 3.1, if the wavelet is
compactly supported. This observation yields the method of Tapered Wavelet Analysis (TWA):

1. If  has support[t1; t2]. Then defineV by the subset off(a; b) ja 6= 0;�T � b � Tg for
which

W [s � �[�T;T ]](a; b) =W [s](a; b);

cf. Lemma 3.1. Further, letV � = (IR+ � IR)nV . Then an estimate forW [s](a; b) is given by

fW [s](a; b) =W [s](a; b) � �V +W [s � w](a; b) � �V � ; (4.1)

2. If  is not compactly supported. Then an estimate forW [s](a; b) is given by

fW [s](a; b) =W [s � w](a; b); (4.2)

with w 2 L2([�T; T ]) a taper, appropriate for the CWT. If we defineV = ;, if  is not compactly
supported, then obviously the estimate ofW [s] is only biased outsideV , for all  . So in all cases the
taper only affects the biased values of the CWT.

Again the question arises which conditionsw has to satisfy.

As in Section 2, the first condition on the taper is that the TWA has to be asymptotically unbiased.
This can be written as

lim
T!1

fW [s](a; b) =W [s](a; b); 8 (a; b) 2 V �: (4.3)

In the same fashion, we derived sufficient conditions on a taper in Theorem 2.3, we come to a suffi-
cient conditions on a taper, such that it satisfies (4.3).

Theorem 4.1
Let s 2 L2(IR) andwT 2 L1(IR), continuous at zero, with the properties, thatwT (0) = 1 and
w(t) = wT (t � T ). Then

lim
T!1

kW [s � wT ]�W [s]k1 = 0:

Proof
We derive

jW [s � wT ](a; b)�W [s](a; b)j = j(s � wT � s;  a;b)j � ks � wT � sk2 � k a;bk2
= ks � wT � sk2 � k k2:

So
kW [s � wT ]�W [s]k1 � ks � wT � sk2 � k k2:
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To complete the proof, we will show

lim
T!1

ks � wT � sk2 = 0;

following the proof of Theorem 2.3.
We computeZ

IR

jwT (t)� 1j2 � js(t)j2dt =

Z
IR

jw(t=T ) � 1j2 � js(t)j2dt

=

Z
jtj�M

jw(t=T )� 1j2 � js(t)j2dt+

Z
jtj>M

jw(t=T )� 1j2 � js(t)j2dt

� sup
jtj�M

jw(t=T )� 1j2 � ksk22 + (kwT k1 + 1)2 �
Z

jtj>M

js(t)j2dt:

Let " > 0. Now chooseM > 0, such that
Z

jtj>M

js(t)j2dt � "2=2(kwT k1 + 1)2. Further takeT

large, so thatsup
jtj�M

jw(t=T )� 1j2 � "2=2ksk22. Then we have

ks � wT � sk22 � "2:

2

Observe, that a taper satisfying (4.3), by definition, satisfies

lim
T!1

T [s � w](a; b) = T [s](a; b); 8 (a; b) 2 V �: (4.4)

A measure for the bias in the TWA can be given in a similar way as in (2.13). In this report we search
for optimal taperswm for the TWA, in the sense that

kW [s � wm]�W [s]k1 = inf
w2L2([�T;T ])

kW [s � w]�W [s]k1: (4.5)

In the case, we are only interested in a certain regionY � V �, optimal tapersw 2 L2([�T; T ])
should minimise

sup
(a;b)2Y

jW [s � w](a; b) �W [s](a; b)j: (4.6)

Also now it is hard to find a taper that satisfies (4.5) or (4.6). In the following theorem, we derive an
upper bound for (4.6), which controls the bias.

Theorem 4.2
Let s 2 L1(IR);  2 L1(IR) andw; ŵ 2 L1(IR), with w(0) = 1. Further letY � V � be compact.
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Then

8">0 9
>0 : sup
(a;b)2Y

jW [s � w](a; b) �W [s](a; b)j

� "+

r
2

am�
kŝk1k k1

Z
juj>


jŵ(u)j du; (4.7)

with am = minfjaj j 9b2IR : (a; b) 2 Y g.

Proof
We observe that we can writeW [s](a; b) also as a convolution product, namely

W [s](a; b) = (s � � a)(b);

where � a(t) =  (�t=a)=
p
jaj. With the convolution product notation, we derive

jW [s � w](a; b) �W [s](a; b)j = j(sw � � a)(b)� (s � � a)(b)j
� k(sw � s) � � ak1
� ksw � sk1 � k � ak1
� kŝw � ŝk1 � k � ak1;

using Young’s inequality, see e.g. [21].
By definition k � ak1 = k k=pam, with am = minfjaj j 9b2IR : (a; b) 2 Y g. Now the proof is
established by substituting (2.14) into this result.
2

We see that tapers that minimise the upper bound in (2.14) also minimise the upper bound in (4.7).
However in the proof of Theorem 4.2 we neglected the possible scaling behaviour of the signal and
the taper. Therefore one might expect better estimations of the bias if the scale is taken into account
more precisely. Further research on this topic has to be done. A possible starting point for estimations
that depend more on scaling behaviour is given in the following theorem.

Theorem 4.3
Let s 2 L2(IR) andw 2 L2([�T; T ]). Then

W [s](a; b)�W [s � w](a; b) =
Z
IR2

Gw(u; v; a; b)W [s](u; v) dv
du

u2
; (4.8)

with Gw(u; v; a; b) =W [ a;b �  a;b � w](u; v)=C .

Proof
Following the proof of Theorem 3.2, with�[�T;T ] replaced byw, we get

W [s � w](a; b) =
Z
IR2

Kw(u; v; a; b)W [s](u; v) dv
du

u2
; (4.9)

withKw(u; v; a; b) =W [ a;b � w](u; v)=C . Taking the difference ofW [s] andW [s �w] by using
(3.9) and (4.9) completes the proof.
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2

One may also be interested in the bias appearing in the scalogram, due to tapering after truncation,
namelyT [s � w](a; b) � T [s](a; b). An upper bound for this bias is given in a corollary of Theo-
rem 4.2.

Corollary 4.4
Let s 2 L1(IR);  2 L1(IR) andw; ŵ 2 L1(IR), with w(0) = 1. Further letY � V � be compact.
Then

8">0 9
>0 : sup
(a;b)2Y

jT [s � w](a; b) � T [s](a; b)j

� (1 + kwk1) � ksk1 � k k1=
p
am) �

("+

r
2

am�
kŝk1k k1

Z
juj>


jŵ(u)j du); (4.10)

with am = minfjaj j 9b2IR : (a; b) 2 Y g.

Proof
We derive

jT [sw](a; b)� T [s](a; b)j = (jW [sw](a; b)j + jW [s](a; b)j) �
(jW [sw](a; b)j � jW [s](a; b)j)

� (jW [sw](a; b)j + jW [s](a; b)j) �
jW [sw](a; b)�W [s](a; b)j:

Using the convolution product notation , we get

jW [sw](a; b)j = j(sw � � a)(b)j � ksw � � ak1
� kswk1 � k � ak1 � ksk1 � kwk1 � k k1=

p
am;

and in the same fashion
jW [s](a; b)j � ksk1 � k k1=

p
am:

Substituting (4.7) into the previous result completes the proof.
2

For arbitrary tapersw 2 L2([�T; T ]), we can also derive another formula for the difference of the
scalogram of a signals and the tapered signals � w, similar to (3.11) and (3.12), namely

T [s](a; b) � T [s � w](a; b) = 2�

Z
IR2

WV [s](!; t)WV [ ](a!;
t� b

a
) d!dt�

2�

Z
IR2

WV [s � w](!; t)WV [ ](a!;
t� b

a
) d!dt

= 2�

Z
IR2

�w[s](!; t)WV [ ](a!;
t� b

a
) d!dt; (4.11)
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with

�w[s](!; t) = WV [s](!; t)�WV [s � w](!; t)
= WV [s](!; t)� (WV [s] �! WV [w])(!; t): (4.12)

Finally we come to a result, which relates the differences in the energy spectrum, the Wigner-Ville
representation and the scalogram of a signals and the tapered signals � w.

Theorem 4.5
Let s 2 L2(IR) andw 2 L2([�T; T ]). Let further

�w[s](!; t) =WV [s](!; t)�WV [sw](!; t):

Then

1. jŝ(!)j2 � jŝw(!)j2 =
R
IR

�w[s](!; t)dt;

2. T [s](a; b) � T [sw](a; b) = 2�
R
IR2

�w[s](!; t)WV [ a;b](!; t) d!dt;

with sw = s � w.

Proof
First we observe, that the Wigner-Ville representation satisfies the marginalZ

IR

WV [s](!; t)dt = jŝ(!)j2;

see [3]. Therefore

jŝ(!)j2 � jŝw(!)j2 =

Z
IR

WV [s](!; t)dt�
Z
IR

WV [sw](!; t)dt:

The second statement has been derived already in (4.11)
2

From this theorem it follows, that the bias appearing in the Wigner-Ville representation, is a measure
for the bias both in the energy spectrum and in the scalogram. Therefore further research on trunca-
tion problems and tapering, when using Wigner-Ville representations can be very useful to study the
described problems in this report.

5. CONCLUDING REMARKS

In this report we discussed the problem, that shows up when analysing segments of a signal with a
Fourier or wavelet transform. Then the analysis can only be an estimation of the frequency or scaling
behaviour of the signal. To improve this estimate, preprocessing the segments with a taper before
taking the Fourier transform can be useful. In this report we introduced the tapering algorithm also
in combination with the wavelet transform. Upper bounds for the errors in the estimates and suffi-
cient conditions on appropriate tapers have been derived both for the Fourier analysis and the wavelet
analysis. To analyse the energy spectra and the scalograms of segments, we derived relations between
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the truncation problem for the Wigner-Ville representation of a segment and the Fourier and wavelet
analysis of such a segment.

Also the maximal energy problem has been revisited. We have studied properties of the solutions to
this problem and we have shown how this problem is related to the truncation problem.

Results on tapers for wavelet analysis in this report neglect the possible scaling behaviour of an anal-
ysed segment and the taper. Therefore it is an aim of further research to find optimal (signal dependent)
tapers for wavelet analysis of segments of a signals. Another aim of research is to study the truncation
problem for the Cohen’s class time-frequency representations, since a direct link between the energy
spectrum, the scalogram and the Wigner-Ville representation exists.
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