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On Time-Frequency Analysis and Time-Limitedness

P.J. Oonincx
cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

We study two classical problems, namely the concentration of energy problem and the truncation problem. The
first problem deals with time-limited signals that have maximal energy in a certain frequency band. The second
problem is about estimating the spectrum of a signal, if this signal is only known at a certain interval. Solutions
of the first problem can be used to obtain good solutions for the second one by means of a preprocessing
algorithm, called tapering. The truncation problem and the tapering algorithm are also studied for time-scale
and time-frequency analysis, using the continuous wavelet transform and the Wigner-Ville representation.

1991 Mathematics Subject Classification: 33C55, 44A15, 45C05, 62M15, 94A12.

Keywords and Phrases: Wavelets, tapers, prolate spheroidal wave functions, Wigner-Ville distribution, spectral
analysis, truncation problem.

Note: Work carried out under project PNA 4.2 "Wavelets” and supported financially by the Technology
Foundation (STW), project no. CWI44.3403.

1. INTRODUCTION

Spectral analysis by means of the Fourier transform, which provides the energy distribution of a sig-
nal over all frequencies, offers a valuable tool in signal analysis. However in practice, it is often not
sufficient to have only a time or frequency representation, e.g. when we are analysing transient sig-
nals. In order to study the behaviour of signals in both time and frequency domain, time-frequency
representations can be used. There is not a unique way of representing a signal in both time and fre-
quency, however a general class of representations, satisfying a set of desirable properties has been
given by Cohen [2]. Two of the best known time-frequency representations within this Cohen’s class
are the spectrogram (the squared modulus of the windowed Fourier transform) and the Wigner-Ville
representation. Both representations are discussed briefly in this report.

To obtain information about a signal’s behaviour both in time and in scale, the wavelet transform
can be used. This transform [5, 8] is often used for analysing the time-scale/frequency behaviour of
non-stationary signals, like most geophysical signals [6]. In this report we concentrate mostly on this
transform to analyse signals in the time-frequency domain.

A central problem in Fourier analysis is the representation of a signal in the frequency domain, if only

a segment of this signal is known in the time domain. This truncation can be due to measurement
restrictions. However for spectral estimation a noisy signal is sometimes truncated to reduce the ef-
fect of the noise. Obviously we cannot represent such a signal in the frequency domain in a proper
way. The Fourier transform takes the whole signal into account, while only a short segment is known.
This problem is known in literature as the truncation problem [12]. The frequency domain represen-

tation must now be seen as an estimation of the signal’'s behaviour in frequency domain. A method
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to improve the estimation is to multiply the short segment by some window function. This method
is called tapering and is extensively discussed in this report. We also discuss the truncation problem,
when using the wavelet transform for a representation of a signal in both time and scale. The method
of tapering will be introduced and discussed in combination with the wavelet transform.

We start with some definitions and auxiliary results from Fourier theory.

In dealing with a signak € L?(IR), one can consider the spectruiof s given by its Fourier
transform )
$(w) = — [ s(t)e ™dt.
(@)= = HZ 0

The following inversion formula exists

1 3 iw
s(t) = ﬁj][s(w)e tdw.

The two integrals converge absolutely,sifce S(IR), the Schwarz class of rapidly decreasifig®-
functions onlR, i.e. for eachk,l € IN

sup  [tP9%s(t)] < oo.
a<k,p<ltelR

The Fourier transform — § is a bijection ofS(/R) and it can be uniquely extended to a Hilbert space
isometry of L?(IR). Preservation of the inner product is expressed by Parseval’s formula

/ 51 (5 (0dt = / 1 () B (@) d, (1.1)

R R

for all s1, s3 € L(IR).
As a result we have Plancherel’s formula,

/|s(t)|2dt:/|§(w)|2dw. (1.2)
R R

The two equal sides of (1.2) give the energy of a signal L?(IR). Fors € L?(IR), |3(w)|? is called
the energy spectrum of

Definition 1.1

A signals € L%(IR) is called time-limited if it is compactly supported, i.e(t) = 0, |t| > T, for a
certainT'.

A signal s € L?(IR) is called band-limited if its Fourier transform is compactly supported, i.e.
$(w) =0, |w| > Q, for a certain?, which is called the bandwidth.

We definel' L(IR) and B L(IR) to be the spaces of all time-limited and band-limited signals*fiR),
respectively .
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Definition 1.2
A signal s is called of exponential type if it extends to a holomorphic functiorZband if there are
two positive constanta ands2 such that

s(z)] < Ael, vz e @.
Lemma 1.3
If s € BL(IR), thens is of exponentional type.

Proof
Assumes(w) = 0 for |w| > Q. Then

Q
1 2 twt
s(t) = Eé $(w)e™ dw,

initially for ¢ € IR, remains well-defined far € €, and yields a holomorphic functionhon €.
Further

1 QA iwz 1 i A iwz eS| i A
@ = o= [ sl < <= [l < S [l
—Q —Q —Q
Q O 3
< (w)]Pdw - /dw =1/ %eﬂz, Vz e C.

—Q

|

Lemma 1.3 can be extended to the Paley-Wiener theorem, a well-known result from Fourier theory;
for a complete proof, see [20].

Theorem 1.4 (Paley-Wiener)
If s € L2(IR) is holomorphic and of exponential type, thew BL(IR). Conversely, ifs € BL(IR),
thens is holomorphic and of exponential type.

Since a holomorphic function € LQ(B), vanishing at a certain interval, has to be identically zero,
the Paley-Wiener theorem immediately yield

Corollary 1.5
TL(IR) N BL(IR) = {0}.

It is clear, that when using the Fourier transform, we hide all information of the signal’s behaviour

in the time domain. To get information about a signal simultaneously in the frequency domain and
the time domain, we may replace the Fourier transform by one of two other integral transformations,
namely the windowed Fourier transform (WFT) and the continuous wavelet transform (CWT).

The WFT ofs € L?(IR) is defined by

~ 1 0 1) ,—twu
5(w,t) = Eﬂ[s(u)g(u —t)e”"“"du, (1.3)
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for a certain window functiog € L?(IR). Again an inversion formula exists

1 :
s(t) = 7/§(w,U)g(t—u)em dudw.
\/27r!|gll%m2

Note that this formula only makes sense go# 0 on a set with positive measure. Further, a counter-
part of Parseval’s relation has been derived

1 .
(s1,82)L2(R) = m(slaSZ)LQ(lRZ) Vo1 s2€L2(IR)

which yields analogous to (1.2)

/|s(t)|2 o2 E /| w, t)|? dtdw Vel (m)-
R

The CWT ofs € L?(IR) is defined by

u—b

Wy [s](a, b) ) du,

\/IF

for a certainy € L?(IR), which is called the wavelet. Actually the CWT leads to a representation of a
signal in the time-scale domain. However, replacing the scale paramiyethe reciprocal frequency
1/w and the space parameteby the time parametetr yields a time-frequency representation similar
to the WFT. There exists the inversion formula
t—0b,  da
BY(——=)db—, (1.4)

C’w/\/ﬁ (a a

with Cy, = [ %dw. It is clear, that this formula only holds (f < C'y, < oco. Wavelets for which
R

this condition hold are called admissible. In the sequel we only deal with admissible wavelets. Similar
to the WFT case, a counterpart of Parseval’s relation has been derived

1
(51752)L2(R) = C_¢(W¢[81]7 Wy [32])L2(R2;a—2dadb) Vs s2€L2(IR)5

which yields analogous to (1.2)
1 da
ﬂ%%zaﬁ%WMW%me (L5)
RQ

Amongst others, these results on the WFT and the CWT can be found in e.g. [5, 8].

The report is organised as follows. In Section 2 we deal with two classical problems, namely the prob-
lem of maximal energy of time-limited signals within a frequency band, and the truncation problem.
Section 3 discusses time-frequency and time-scale representations of signals, focusing on the CWT.
For this method we discuss problems when analysing short segments of a non-stationary signal with
long duration time. Possible solutions to these problems are considered in Section 4, using known
techniques from Section 2.
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2. TIME LIMITEDNESS. TwWO CLASSICAL PROBLEMS
The first problem to be considered in this section is the concentration of energy in a certain frequency
band of a time-limited signal. So we consider foe T'L(IR) the ratio

f [$(w)]? dw

Bs () = (2.1)

fl )P dw

Here[—(, Q] is the frequency band we are looking at. From Corollary 1.5 itis cleaftkap; (2) <

1. Therefore it is interesting to study the problem of maximisii¢2) over alls € T L(IR), which

we will discuss in this section. In the past this problem has been discussed extensively e.g. by Landau,
Pollack and Slepian, see [9, 14, 16, 17].

One may also consider a similar problem, namely how to maximise

fl (£)[? dt

= f SOPd

over alls € BL(IR), for a certainl’ > 0. Since the Fourier transform is a unitary operatoZ8alR),
these two problems are equivalent.

The second problem we consider in this section is the determination of the Fourier tradsfgrm
of s € L?(IR), if s is only known on[—T,T], for a certain fixed' > 0. Especially we consider
the case in whicls ¢ TL(IR). Then the definition of the Fourier transform implies thatannot be
determined exactly; it can only be estimated.

1. The Concentration of Energy Problem
For the first problem we introduce the integral operador L?(IR) — L?(IR) by

Sln t — u
\/7/ t — u (u)duv vsEL2(lR)' (2.2)

Observe tha(As)” = 3§ - x|_q]- HenceA is a Hermitian projection operator; in fact it is an
orthonormal projector. FGF > 0, letJ : L?([-T,T]) — L*(IR) be the embedding given by

_ [ os@), i H LT,
(JS)(“_{ 0, if |t|>T.

Then the adjoint operatof* : L?(IR) — L?([-T,T)), restricts functions od? to [T, T]. Now

(J* ATs)( \f / St = w) a1 < T,

for all s € L2([-T,T]). Since the integral kernel is ib? ([T, T)?), J*AJ is a Hilbert-Schmidt
operator, hence compact.
It is also a positive definite operator. This can be seen as follows. Assume

(J*AJs,s) 2wy = (AJs, Js) 2wy = 0,
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for somes € L?(IR). Thenﬁ(w) =0, w e [-9Q,9], by (1.2). Furthermords is analytic by
Theorem 1.4. Combining these results yields= 0, and thus alsd's = 0.

Following Pollack and Slepian [14, 16], we consider possible solutigng € T'L(IR), with supp
(Smax) = [—T, T, that maximise (2.1). Then

lgsmax (Q) ) (§m&X7 §max)l)(ﬂ{) = (X[fgyﬂ} . §m&X7 §maX)L2(R)

Equivalently, using Parseval’s theorem,

ﬁsmax (Q) ’ (SmaX7 SmaX)Lz(lR) = (ASIH&X7 SmaX)LQ(R)-

Sincesmax IS a stationary solution of this equation, it must satisfy

(Asmax)(t) = ptsmax(t), |t| < T, (2.3)

a homogeneous Fredholm equation of the first kind. Solutiond.? ([T, T') for this equation only

exist for a discrete set of real positive valuesuofvith the properties that > puq > po > ug > ...
andlim, ., u, = 0. In general, the eigenvalues of a compact Hermitian operator are not neces-
sary distinct. However, for this particular operatdy Pollack and Slepian have proved [14], that its
eigenvalues are distinct. The solutions of (2.3)4@r u2, 13, . . . are denoted by, 9,13, .... We
observe, that we have solved at this moment the problem of maximising (2.1). Namely—= i1
andgs, .. is attained fors,ax = 1.

It turns out, that the solutions of (2.3), known RBeolate Spheroidal Wave Functions (PSVWRave
some nice properties, which we consider in the sequel of this section.

The PSWF,1)9,3,... can be chosen to be a real orthogonal complete sét(p-7',7]). By
defining

Yulu) = i(Aanxu), ju > T,

for n € IN, we extend the solutions of (2.3) to the whole real axis. We show, that,thextended to
IR, form a real orthogonal set ih?(IR). To do this, we recall, thatl is a projection operator in the
way that
(.AJSl, AJSZ)LQ(R) = (J*.AJsl, SZ)LQ(R).
With this property, we derive
1 1,
(Vs bm)r2(my = (AJn, AJYm) 12 (R) = (J* AT, Ym) 12 ()

Hn Hn m,

1
- M_(¢n7 ¢m)L2([—T,T])7

yielding, that{s,, | n» € IN} is a real orthogonal set ih?(IR). Further it follows immediately from
this derivation, that

(%n Ym) L2(-1,17) = Bnbmin,
after orthonormalisation of the PSWFIr# (IR).
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To get more insight in the behaviour of the eigenvalugswe observe that thegs, are also eigen-
values of the operatod (Q27") given by

Sln
(A( \/7 / t—w) (w)du, Yyer2(—arom)- (2.4)

-QT
Now we can use the following theorem from [10].
Theorem 2.1

Let A(QT") be as defined in (2.4) and 18t(A(Q2T"), o), 0 < a < 1, denote the number of eigenvalues
of A(2T") which are greater than or equaldo Then

N(AQT), a) = m—T + —1 (1= ;O‘) log (QT) + o(log(QT)). (2.5)

Theorem 2.1 is useful for considering the distribution of the eigenvalye®r QT large. The fol-
lowing theorem was shown by Slepian [18] without rigorous proof. The proof can be established
rigorously using Theorem 2.1.

Theorem 2.2
Let i, n € IN, be the eigenvalues of(2T"). Then for alle > 0, there exists ad/ € IV, such that
1. pn <€ if n > (1+0)2EL,
2.1 —pn <eif 1 <n<(1-06)ZL,
3. |pn — (1 +e™) 71 < ¢ if n~ 2QTT + %log(QT),
for QT > M, andl > ¢ > 0 arbitrary small and fixed. In the third statemeht: IR is an arbitrary
parameter.
Proof

From Theorem 2.1 we get

2QT 1 1—pn
N(AQ), ) = == + =5 log(—") 1og(QT) + 9. (1),

n

with limor o0 1%7;((?2771‘)) =0. So

1— :un) 7T2]V(-A(QT)7 ;un) — 20T — 772971(QT)

lo = )
2 fin log(2T)
yielding
72 N(A(QT),un)—2QTr _ 72gn(QT) 4
o, = (1 +e Tog(QT) . e log(QT) ) . (2_6)

SubstitutingV (A(QT), ua) = (1 + 6)ZXL into (2.6) yields

267QT _ gn(QT) 1
lim p, = lim (14 els®D) . ¢ 10s(0))7" = (.
QT'—00 QT —o00
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Since the eigenvalues are ordered in descending order, statement 1 follows immediately from this re-
sult. Equivalently we derive statement 2 by substitutigA(QT'), u,) = (1 — 6) %X into (2.6).

Finally, by takingN (A(QT), un) = 2L for somef € IR, in Eq. (2.6), statement 3 is achieved.

O

Obviously, nearly the firs@ eigenvalues are close to unity, and nearly all others are close to 0O, for
QT large. Furthermore the number of eigenvalues not close to O or 1 growkdkeT’), for QT
large.

Of course we could derive much more properties of the PSWF and the eigenvaldé_B§f. How-

ever for the relation with the other problems, discussed in this report, we only need the mutual orthog-
onality of the PSWF and the fact that approximately the ﬁ%ﬁ eigenvalues are close to unity, for

QT large. This means, that aimost all energy of the corresponding PGWFE. 15q7/ is contained

in the frequency banfl-Q, ©2]. For more properties of the PSWF, one may consult e.g. [9], [14] and
[16].

At the end of this discussion, we briefly consider the case, when we are dealing with a discrete-time
signal. For this discussion, we follow Slepian [17]. Without loss of generality we consider a band-
limited signal, with bandwidtl2y, sampled with time intervalat < 1/2Q,. Then we can consider

also the problem of maximising the ratiy(Q2) as defined in (2.1), with < Q < Qy. Solutions to

this problem provide the discrete prolate spheroidal sequences (BR8S}({—N,... ,N}), k =

0,...,2N, with N = T/At. These sequencesg are the eigenvectors of the matrix eigenvalue
problem given by
D) N
\/jAt Z Ay = prvg(n),n=—N,... N, (2.7)
T
I=—N
with A the (IV x N) Toeplitz matrix given by
n Q, ifn=1 2.8)
n,l = in(Q(n—1 : .
@t if £

Comparing (2.7) and (2.8) with (2.2) and (2.3), we see that this eigenvalue problem follows from
the eigenvalue problem in the continuous case by approximating the integral opétaganeans of
Riemann sums. Slepian proved, that both the eigenvectoasd the eigenvalues;, satisfy similar
conditions as the PSW#,, and their corresponding eigenvalugs Here we only mention the exis-
tence of this discrete-time problem. A detailed discussion of this problem can be found in literature
[13, 17, 19].

2. The Truncation Problem

For the second problem we assumes L2(IR). However,s is only known at a certain interval
[—T,T]. The problem, we are now dealing with, is to determine the Fourier transfannterms of

the segment - x_7,77. Sinces is not necessarily zero outside this interval, the Fourier transform
can only be estimated. Several methods can be used to estinsse e.g. [12]. Here we discuss a
method, called tapering, which is based on using window functions.
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0 100 200 300 400 500 600 700 800 900 1000

Figure 1: The kerneDr

If we compute the Fourier transform ef = s - x(_r ), We get

) T, . 1 .
S1(w) = m(s * X[_T,T})(w) = m(s * Dr)(w), (2.9)
2 sin(wT')

whereDr(w) = —.

Having a look at the kerneD in Figure 1, we see that it consists of a broad main lobe around its
center and some smaller side lobes. This means, that due to the convolution produgtwitmtents

of one frequency band can be transported into another frequency band via the side |Ibhed bifs
phenomena is called spectral leakage, [13]. Observe, that this phenomena does not automatically lead
to bad results concerning the estimation of the spectrum. Also the behaviour of the signal should
be taken into account. Following [13], an indication whether the estimatida biased by spectral
leakage is given by the dynamic rangespfiven by the ratio

sup [3(w)?
R(s) = 10-log(L— inf |3(w)[?). (2.10)
| welR
The bias ins; can be attributed to spectral leakage i a signal with high dynamic range. Especially
§, is badly biased at those frequencigs for which |$(wp)|?/ sup |3(w)|? is small. Note, that to
welR

computeR (s), the unknown spectrurhiof s is needed. In practice, if no knowledge is available
outside the intervgT', T, itis hard to say whether the biasdnis due to spectral leakage. However
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for the spectra of geophysical data, high dynamical ranges often appear.

A technique to reduce spectral leakage is to replBgein (2.9) by some appropriate kernél,,.
In the time-domain this means that we have to multiplpy some appropriate window function
w € L?([-T,T)), called a taper. An estimate &fs then given by the Fourier transformgf = s-w,
namely

S _ sxw)(w) = L 3 * w

Besides the fact, that an appropriate tapeshould minimise the bias if,, due to spectral leakage,
we also require that,, is asymptotically unbiased, i.e.

lim §,(w) =3(w), Ywe€ R. (2.12)

T—o00

It is obvious thatw = x|_r ) satisfies (2.12). For other tapers a sufficient condition, such that it
satisfies (2.12), is given in the following theorem.

Theorem 2.3
Lets € L'(IR) andwr € L*(IR), continuous at zero, with the properties, that(0) = 1 and
w(t) = wr(t-T). Then

lim |3y, — §loc = 0.

T—00
Proof
We derive
|§wT(w)_§(w)| = |—F== ()e—iwtdt|
I
< —= [ |lwr(®) — 1] - |s(t)|dt
)
1
= —= [ [w(t/T) —1]-|s(t)|dt
[
- J% / wlt/T) — 1] s(o)lde +
|t|<m
o= [ o) =1l sl
|t\>M
1 1
< mﬁglw(t/ﬂ—ll.!Is!l1+ﬁ(y|wy|w+1). / 1s(6)]dt.

[t|>M

Lete > 0. Now chooseM > 0, such that / |s(t)|dt < ev/T/V2(||wrloo + 1). Further takel

[t|>M

large, so thatsup |w(t/T) — 1] < ev/2r/2||s||1. Then we have
<M

sup |Swp(w) — §(w)| <e.
welR
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We observe, that [4] also mentions properties of good data tapers, as described in Theorem 2.3. How-
ever thereg belongs to a certain class of stationary processes.

In choosing an optimal taper to reduce spectral leakage, we need a measure for the bias in the estimate.
In the literature [1, 4, 13] most descriptions of the leakage phenomena deal with stationary stochastic
processes. A theoretical description of leakage in this manner can be found in [4]. Here we advance,
that taperswv,,, that minimise spectral leakage should satisfy
18w, = 8lloo = w€L21(r[1§T’T]) 15w — 8]l oo- (2.13)

Since spectral leakage is a local phenomena, we have chosen a minimisation of the biads>t the
norm. By looking at other norms, we would sum the biases at different frequencies. If we are only
interested in a certain frequency ba¥idz IR, optimal tapersy € L?([—T, T]) should minimise

sup |34 (w) — 3(w)].

weY
It is hard to find a taper that satisfies (2.13), however we can give an upper boujg,fer §||o,
which controls the bias. In the following theorem we derive such an upper bound.

Theorem 2.4
Lets € L'(IR) andw,w € L' (IR), with w(0) = 1. Then
Yoo Jaso st—suwsw\f fslee [ Tl @14
|u|>0
Proof
We derive
3w (w) = 3(w)| = [8uw(w) —w(0)$(w)]
- #|/§(w—u)u§(u)—§(w)7i)(u)du|
R
< # [ 15w = 561 i) ldu
IR
Q
< iﬁéw(w—u) $()| - o ()

/ 16w — ) — §(w)] - [t (u) .
\u|>Q

Since we assumede L!(IR), it can be proved that € Cy(IR), the supremum-normed Banach space
of all continuous functions ofi?, that vanish at infinity, see [15]. So let> 0, then there exists an
>0, such thats(w — u) — §(w)| < ev22r/||w||1, for |u| < 2. By choosing such aft, we get

Q
1
— [ |$(w—u) — §(w)] - |w(u)|du < — | (u)|du < e.
\/2%4 w /
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Further
|$(w —u) = 8(w)] - [w(u)|du < ([8(w —w)| + [3(w)]) - [0 (u)|du
|u| >0 [u|>Q
< 2sle [ lo(w)du.
|u|>0

Taking the supremum over all frequenciesompletes the proof.
O

We observe, that a taper that minimises the upper bound, given by (2.14), and that satisfies the
assumptions of Theorem 2.4, should have a spectral amplitiidg |, which is well localised in a
small frequency bantl:| < €2. Note, that in the maximal energy problem, we searched for signals,
with a well localised energy spectrum in some frequency Qastel €2]. It is easy to verify [21], that
when considering a sampled band-limited signal, we can also derive

1/2

. . =8, .
Vero3nsa ¢ 8w = il S e 42/ Tl | [ lotw)Pau| (2.15)

<|u|<m

for s,w € L'(IR) N L?(IR), andw(0) = 1. Tapers that minimise the upper bound (2.15) are the
DPSS, the solutions of (2.7), following from (2.1) in the discrete case.

One can also be interested in the bjigs(w)|? — |3(w)|?. An upper bound for this bias is given in a
corollary of Theorem 2.4.

Corollary 2.5
Lets € L'(IR) andw,w € L' (IR), with w(0) = 1. Then

. . . .
Veso dos0 @ [fww)]’ — 3w)]” < (1+ TWHUJHI) 8]0 -

Nors

e+\/gy|§y|w / () | - (2.16)

[u|>Q
Proof
If f € L°(IR) andg € L'(IR), then

1 * glloo < [ flloo - llgll1,
see e.g. [21]. Therefore
A L L. .
18wlloo = \/—Q—WHS * [0 < Ellslloo Al
using thats € Cy(IR). With this result we derive
3w @) =137 < (Bw(@)] +13W)]) - (13w(w)] = 15w)])

< (Bwlloo +113llo0) - [|8w — 3l

IN

1
8lloo(I + —=|lw||1) - [|3w — 3||oco-
J3lloe (14 —=lhi) 180 = &l
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Figure 2: The Spectrum of the Bartlett taper.

Substituting (2.14) into this last result completes the proof.
O

Also other desirable properties of tapers can be taken into account, see [1]. However, here we are only
interested in tapers, that satisfy (2.12) and (2.13).
Some tapers, which are often used for spectrum estimation, are

1. The Bartlett taper:
w(t) = (L= [tl/T) - xj—r1(t),

2. The Tukey taper:
w(t) = (1/2 +1/2cos(nt/T)) - x1-1,1)(t),

3. The Hamming taper:

w(t) = (0.54 + 0.46 cos(mt/T)) - x[—1,1)(t),
4. Thep%-cosine taper:

w(t) = X[—aT,o1)(t) + (1/2 +1/2 COS(W(t —of ) - (X[=1,—a1] () + X[a1,77(t)),

1—a)T

with o = 1 — p/100,
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5. The Blackman-Harris taper:

w(t) = (0.42 + 0.5 cos(nt/T) + 0.08 cos(2nt/T)) - x[—1,1(t)-

In Figure 2, the spectrum of the Bartlett taper has been depicted. Comparing this figure with Figure 1,
we see that in the case of a Bartlett taper less energy is contained in the side lobes, compared to
However, although these tapers have good overall properties, none of the tapers mentioned above are
optimal in a certain sense, like the minimisation of (2.13). In [7], an overview is given of all kinds of
discrete tapers with their properties. These discrete tapers can be obtained by sampling analog tapers
[12], the tapers we consider in this report.

3. TIME-FREQUENCY AND TIME-SCALE ANALYSIS

To investigate the behaviour of a non-stationary signale would like to get information aboutboth

in the frequency and in the time domain. To achieve this, we might use a Cohen class time-frequency
representation [3]. Here we mention two well-known members of this class, namely

e The Spectrogram:
Pg[s](w,t) = |§(w7t)|27 (31)
with 5 the WFT ofs, as defined in (1.3),

e The Wigner-Ville distribution:

WVis)(w,t) = % / s(t+ p/2)s(t — p/2)e “Pdp. (3.2)

R

The following relation [3] exists between these two representations

P,[s)(w, ) = / WVIsI(f, W)W Vg(f — w,u—t) dfdu. (3.3)
R2

We observe, that such a convolution type relation exists for all time-frequency representations of the
Cohen’s class.

Another approach is to investigate the behavious iof the time-scale plane. For this purpose we use
a scalogran?’;,, depending on a wavelet, defined by

Ty[s)(a, b) = [Wiyl[s](a,0)|*. (3.4)
To derive arelation between the scalogram and the Wigner-Ville distribution, we use Moyal’s formula
[11]:
(51, 52) 2 2 = 2 / WV Ts1](w, )W V5] (w, 1) dwdt.
R2

Further we can write
Ty[s)(a,b) = [Wy[s](a,b)]> = |(s,%ap)r2(m) |,
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With 1, (1) = ﬁz/)(%). Applying Moyal's formula on the previous result and using scaling and
translation properties of the Wigner-Ville distribution [3], we arrive at the following relation

Tylsl(ab) = o / WV s (@, )W Vb (w, £) dovdt
R2
- / WV[s](w,t)WV[gb](aw,#) dwt. (3.5)
R2

When considering the behaviour of segments of a non-stationary signal, the Wigner-Ville representa-
tion might not be an appropriate tool, since it weights all parts of the signal equally and is therefore
highly nonlocal. Furthermore, the spectrogram has a uniform resolution in frequency space, which is
cumbersome when analysing multi-component signals, consisting of components with varying dura-
tions and frequency contents. In order to determine the behaviour of segments of a multi-component
signal, as described before, we shall concentrate in this report mainly on the wavelet transform.

The main problem we are dealing with, is to deterniiig[s|(a, b) andT},[s](a, b), for =T < b < T,
if s € L2(IR) is only known within[—T, T']. Although the wavelet transform is acting locally en
the following lemma shows thav’, [s](a, b) can only be estimated in this case.

Lemma 3.1
Let have supporlt, o] andsy = s - x(_r1), With s € Ly(IR). Then

Wyls1](a,b) = Wy[s](a,b), —T <b<T,
if one of the following conditions omn holds

l.ac [_(;_T

MO}, if t1 >0,

2. a e [5F, BEIN0}, if 2 <0,

H =
|
e-

It
b

3. a€ [ma,x(ﬁ, tzT) mln(b‘;{, th )\{0}, if t1 <0 < to.
Proof
We write
1 i LN
Wy[s](a,b) — Wy[si](a,b) /+/ dt.
lal J

If 4 has supporft:, t], thenWy[s](a,b) — Wy[s1](a,b) = 0, if = & [ti,t5], V|| > T. Thisis
equivalent with

[at; + b,ate + ) N R\[-T,T] =0  fora >0, (3.6)
[ate 4+ b,aty + b N R\[-T,T] =0  fora <O0. (3.7)

Assuming—T < b < T', we can distinguish three cases, both for (3.6) and for (3.7).

Fort; > 0, (3.6) changes intat, + b < T and (3.7) intaaty + b > —T'. Taking these results together
yields(—b—T)/ta <a < 0and0 < a < (T —b)/ta.

Fort, <0, (3.6) becomest; +b > —T and (3.7) becomest; + b < T'. Together these results yield
(T—b)/t1 <a<0andd <a < (=T —b)/t;.
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difference signal without tapering

CWT of difference signal

{

fl;'l\ il ‘-:‘-‘W‘lx-l‘“

time
B T ]

Scale of colors from MIN to MAX

Figure 3: Area without bias

Now taket; < 0 < to. Then (3.6) is equivalent wittit1 +b > —T Aate+b < T, which can be written
asa < min((—b—T)/t1, (T — b)/t2). Further (3.7) is equivalent wittit; + b < T Aate +b > —T,
which can be written ag > max((T — b)/t1, (—=b —T)/t2)

O

To illustrate Lemma 3.1, we see in Figure 3 the CWT of some difference sigrat; using the
Daubechies waveldd,, see [5]. It is depicted, tha¥’,[s](a, b) — Wy [s1](a,b) = 0, for (a, b) within

the triangle, defined by < a < min(%, Tt—g”). Also we see that, outside this triangle, some bias
exists in{(a,b) | 0 < a, =T < b < T}, due to the fact that; is unknown outsidé—T", T']. Further,

we observe that the larger the support of the analysing wavelet is, the smaller the area without bias

becomes. Actually, for not compactly supported wavelets this bias can be noticed everywiRere in

In the next theorems, we derive relations both between the CWT aid the CWT of, and between
the scalogram of; and the scalogram &f

Theorem 3.2
Lets € L?(IR). Then
du
Wols - x(-z71)(a,b) = / K (u, v; 0, D)Wy 8] (u, v) dv-, (3.8)

RQ
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with K7 (u,v;a,b) = Wylthep - X[—T,T]](Ua”)/0¢-

Proof
Using the definition of the CWT we can write

vwwmqﬂ@mzfmummm%mwt
IR

This can be rewritten, with inversion formula (1.4), as

1 1 t—w du
Wyls - x-rml(a,b) = [ x7m)ep(t) (5 Wolsd o)) o) ar
ﬂ[ Cy J Vlul :
! 1 —v du
T O R/Z Wy [s](u, v) ﬂ[ \/mxm,m(t) zﬁa,b(t)«,b(t —) dt dv—
1 1 Pa— du
= /CLW'(/)[Q/JG,[; 'X[fT,T}](u’U) W¢[3](U,U) dvi_/g
RZ
= /KT(UaU;aa b) Wy[s](u,v) dvi—g,
R?

with K7 (u,v;a,b) = Wylthep - X[fT,T]](va)/CdJ'
O

To derive arelation for the difference Bfy[s](a, b) andWy[s- x[_7,11](a, b), we prove the following
theorem.

Theorem 3.3 Reproducing kernel property
Lets € L%(IR). Then

Wylsla,) = [ Kl osa,0)Wlsl(w0) v, (3.9)
IR? !
with K(“a v;a, b) = W¢[Q/)a,b] (U’7 U)/Cw
Proof
The proof follows the proof of Theorem 3.2, with_- 1 replaced byl.
O

By taking the difference of (3.8) and (3.9), we arrive with some straightforward computations at an
expression for the difference between the CWE ahd the CWT ofs;.
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Corollary 3.4
Lets € L%(IR). Then
du
Wyls](a,b) — Wyls - xj—r,ml(a,b) = /GT(u,v;a, bYWy [s](u,v) dv?, (3.10)
IR2

with Gr(u,v;a,0) = Wy [ap — ap - X—1,17) (1, 0) [Cyp.

An expression for the difference of the scalograns aind the scalogram &f; can be derived easily
from (3.5), namely

Tylsl(a,b) — Tyls - x(—r;r)l(a,b) = 27 / WV Is|(w, )WV (aw, t;—b) dwdt —

IR2

o / WVIs - xi_r.7)(w, )WV ] (0w, ?) dwdt
RQ

— o / 6T[s](w,t)WV[@b](aw,¥) dodt,  (3.11)
RQ

with
orfsl(w,t) = WV[s|(w,t) = WVI[s - x-r](w,1)
= WVIsl(w,t) = (WVIs] %o WV[x[-111])(w, 1), (3.12)
with x,, denoting the convolution product in the frequency domain. For the last result we used some

elementary properties of the Wigner-Ville representation [3].

The time-frequency representation[s](w, t) does not only play a role when comparing the scalo-
grams or the Wigner-Ville representationssadnds; with each other. Alsér[s|(w, t) appears when
considering the difference of the spectrograms ahds;. From (3.3) we can derive in a straightfor-
ward way

Pyfs)(w,1) — Pyfis - xi_raai)(@,1) = / S (F )WV (g (f — w,u — t) dfdu. (3.13)
RQ

At the end of this section we derive an expressionigs|(w, t), in order to compute the differences
of the discussed time-frequency/scale representationsaofl s;. For this, we need the following
property of Wigner-Ville representations [3]

WV [s1 + so](w,t) = WV]si](w,t) + WV[so](w,t) +
“Re{ [ st + 0205100 p B ). (3.14)
IR
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Theorem 3.5
Lets € L*(IR) and letép[s](w, t) = WV [s](w,t) — WV[s - x_r/m)(w,t). Then
. —2(T+[t)) 00
srllwt) = oo [ [ st p2sE eyt
S0 T
2(T+t) _
iRe{ [ s(t+p/2)s(t—p/2)e “Pdp}, fO<t<T,
2(T'—t)
—2(T+t) (3.15)

iRe{ [ s(t+p/2)s(t—p/2)e™Pdp}, if —T <t <0,
—2(T—t)
with s1 = s - x[_q,7p @ndsy = s — s1.

Proof
Substitutings; = s - x[_7,7] andsy = s — s1 into (3.14) yields

WV[S]((")’ t) — WV[S : X[fT,T]](wv t) =

WV 5] (w, ) + %Re{ / so(t + p/2)s1(t — p/2)e “Pdp}.
IR

Writing out W V[ss](w, t) gives
1 -
WViso](w,t) = %/32(t+p/2)32(t —p/2)e "“Pdp
R

= 2i / s(t+p/2)s(t — p/2)e”“Pdp,
™
11 (Ul (t)
withI1(t) ={p € R | t+p/2 < —T ANt—p/2 > T}andl(t) ={p € R | t+p/2 > T Nt—p/2 <
—T}. These integration domains can be rewritte/ d$) = (—oo, min(—27" — 2¢, —2T + 2t)] =
(—o0, —2T —2|t|] andIy(t) = [max (2T — 2t,2T + 2t), 00) = [2T + 2|t|, 00), yielding the first term
of the right hand side of (3.15).
Further writing out so(t + p/2)s1(t — p/2)e “Pdp gives
R

[t pm= e = [ sty oD
R I3(t)N14 ()
with I3(t) = {p e R | t+p/2 < —T V t+p/2 > T}andl,(t) = {pe R | —T <t—p/2 < T}.
These sets can be rewrittengét) = (—oo, —27—2t]U[2T —2t, 00) andly(t) = [-2T+2t,2T+2t].
Taking the intersection aof;(¢) and,(¢) yields
[ [2T —2t,2T + 21], ifo<t<T,
L(#) N 1t = { [—2T +2t,—2T — 2t], if —T <t <0.

Substituting this result into the domain of the preceding integral completes the proof.
O

We observe, that the integrals appearing in (3.15) are so-called pseudo Wigner-Ville representations
of s, [3].
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4. TAPERED WAVELET ANALYSIS

Assume the signal € L2(IR) is only known within[—T, T]. Then from Lemma 3.1 it is clear, that

we have to estimat®,[s](a, b) for (a,b) € IR?, outside one of the regions, defined in Lemma 3.1.
Now the idea is to treat this truncation problem in the same way as in Section 2, where we considered
the truncation problem when using the Fourier transform. Therefore, in order to reduce the bias in the
estimate, we multiply by a tapen € L%([-T,T]), before taking the CWT of the signal. However,
observe that the estimate is always unbiased in a region, as defined in Lemma 3.1, if the wavelet is
compactly supported. This observation yields the method of Tapered Wavelet Analysis (TWA):

1. If ¢ has supporft,, t2]. Then defineV by the subset of (a,b) |a # 0,—T < b < T} for
which

W’l/1 [S : X[fT,T}](a'a b) = W@/) [S](aa b)a
cf. Lemma 3.1. Further, l18t* = (IR* x IR)\V. Then an estimate fd,[s](a, b) is given by

Wy [s](a,b) = Wyls](a,b) - xv + Wyls - w](a,b) - xv-, (4.1)
2. If 4 is not compactly supported. Then an estimatel#Qys](a, b) is given by
Wyls)(a,b) = Wy[s - w](a, b), (4.2)

with w € L%([-T,T)) a taper, appropriate for the CWT. If we defilie= 0, if v is not compactly
supported, then obviously the estimatd/f[s] is only biased outsid&’, for all /. So in all cases the
taper only affects the biased values of the CWT.

Again the question arises which conditioclnsas to satisfy.

As in Section 2, the first condition on the taper is that the TWA has to be asymptotically unbiased.
This can be written as
Lim Wy [s](a,b) = Wy[sl(a,b), V(a,b) € V*. (4.3)
—00

In the same fashion, we derived sufficient conditions on a taper in Theorem 2.3, we come to a suffi-
cient conditions on a taper, such that it satisfies (4.3).

Theorem 4.1
Let s € L?(IR) andwr € L°°(IR), continuous at zero, with the properties, that(0) = 1 and
w(t) = wp(t-T). Then

Jim [Wyls - wr] = Wy s]loe = 0.

Proof
We derive
[Wyls - wr](a,b) — Wyls](a,b)] = [(s-wr —5,%ap)| < |ls-wr — sz - [|apll2
= |ls - wr —sll2 - [[#]|2-
So

Wyls - wr] = Wyls]lleo < lls - wr = sllz - [9]l2-
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To complete the proof, we will show
lim HS W — SH2 = 0,
T—o00

following the proof of Theorem 2.3.

We compute
/hw%w—lﬁ-B@WWt==(/hMUT)—HZWAwFﬂ
IR IR
- /’hMWT>—1P-wun%ﬁ+
1<
/’hMWT>—u2w4wFﬁ
[t|>M
< sup [w(t/T) — 112 |sl3 + (Jwrfo + 1) /”|sa>Pdt
[t|<M

[t|>M

Lete > 0. Now chooseM > 0, such that / |s(t)]2dt < €?/2(||wr ]| + 1)%. Further takeT

[t|>M
large, so thatsup |w(t/T) — 1]? < £2/2]|s||3. Then we have

|t|<M
s - wp — sH% < g2

|

Observe, that a taper satisfying (4.3), by definition, satisfies

lim Ty[s - w](a,b) = Ty[s](a,b), ¥ (a,b) € V*. (4.4)

T—o0
A measure for the bias in the TWA can be given in a similar way as in (2.13). In this report we search
for optimal taperswv,,, for the TWA, in the sense that

Wyls - wpm] — W, oo = inf Wyls - w] — W, -y 4.5
Wl -]~ Wylsllo = | nt ([ Wols -] = W] 4.5

In the case, we are only interested in a certain redioc V*, optimal tapersw € L?([-T,T])
should minimise

sup |Wy[s - w](a,b) — Wyls](a, b)]. (4.6)
(ah)eY

Also now it is hard to find a taper that satisfies (4.5) or (4.6). In the following theorem, we derive an
upper bound for (4.6), which controls the bias.

Theorem 4.2
Lets € L'(IR), € L*®(IR) andw,w € L'(IR), with w(0) = 1. Further lety’ C V* be compact.
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Then
VesoJaso © sup [Wls - wl(a,b) — Wyls)(a,b)]
(a,b)ey
2 . .
< et /2 llsolbllso / ()| du, @.7)
amT

With a,, = min{|a| | Jper : (a,b) € Y}

Proof
We observe that we can writ&,[s](a, b) also as a convolution product, namely

Wiy[s](a,b) = (s % 4ba) (b),
wherey, (t) = v(—t/a)/+/]a]. With the convolution product notation, we derive
[Wy[s - w](a,b) — Wy[s](a,b)| | (50 # 9a) (b) — (s % 4ba) (b))
(80 — ) * Q/v)aHoo

Isw = sll1 - 1%al o

||<§w - §Hoo ' H@Z)aHOOa

VAN VANVAN

using Young's ipequality, see e.g. [21].

By definition ||14||cc = [|¥]l//@m, With a,, = min{|a| | Jper : (a,b) € Y}. Now the proof is
established by substituting (2.14) into this result.

O

We see that tapers that minimise the upper bound in (2.14) also minimise the upper bound in (4.7).
However in the proof of Theorem 4.2 we neglected the possible scaling behaviour of the signal and
the taper. Therefore one might expect better estimations of the bias if the scale is taken into account
more precisely. Further research on this topic has to be done. A possible starting point for estimations
that depend more on scaling behaviour is given in the following theorem.

Theorem 4.3
Lets € L%(IR) andw € L?([-T,T]). Then
d
W] (a,b) — Wyls - w](a, b) = /Gw(u,v; a, b)) Wy [s](u, v) dvu—’;, (4.8)

IR2

with G (u, v; a,b) = Wy[thap — Pap - w](u,v)/Cy.

Proof
Following the proof of Theorem 3.2, withy_r 1 replaced byw, we get

Wyls - w](a,b) :/Kw(u,v;a,b)W¢[s](u,U) dvi—g, (4.9)

IR2

with K, (u, v; a,b) = Wy [, - w](u,v) /Cy. Taking the difference oV, [s] andW,[s - w] by using
(3.9) and (4.9) completes the proof.
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O

One may also be interested in the bias appearing in the scalogram, due to tapering after truncation,
namelyTy[s - w](a,b) — Ty[s](a,b). An upper bound for this bias is given in a corollary of Theo-
rem4.2.

Corollary 4.4
Lets € LY(IR),v € L*°(IR) andw,w € L'(IR), with w(0) = 1. Further lety’ C V* be compact.
Then

VesoJaso : sup [Tyls-wl(a,b) — Tyls)(a,b)|
(a,b)eY
< (L fwlloe) - 15l - [8lloo/v/m) -
(e + 8llsolloc / b ()| ), (4.10)
" [u|>Q

with a,,, = min{|a| | Jper : (a,b) € Y}.

Proof
We derive
Ty[sw](a,b) — Ty[s](a,0)| = ([Wylsuw](a,b)| + [Wyls](a,b)])
(IWy[sw](a,b)| — [Wy[s](a, b))
< ([Wylswl(a, b)| + [Wy[s](a, b))
(Wy[sw](a,b) — Wy[s](a, b)|

Using the convolution product notation , we get
(Wylswl(a: b)) = [(sw*Pa)(®)] < lI5w * Palloo
< Alswll - [[Yalloe < lislly - llwlloe - 9]l / v/am,

and in the same fashion
[Wy[s](a, b)| < Isll1 - ¥l / /@

Substituting (4.7) into the previous result completes the proof.
O

For arbitrary tapersy € L?([-T,T]), we can also derive another formula for the difference of the
scalogram of a signal and the tapered signal w, similar to (3.11) and (3.12), namely

Tyls)(a,b) — Tyls - w](a,b) = 27T/WV[8](w,t)WV[Q/)](aw, ?) dwdt —
RQ
o / WVTs - w(w, )WV ] (0w, ?) duwdt
RQ
- / 5w[s](w,t)WV[z/;](aw,¥) dw, (4.12)

IR2
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with
du[sl(w,t) = WV[sl(w,t) = WV]s - w](w,?)
= WV][s](w,t) — (WV][s] %, WV]w])(w,1). (4.12)

Finally we come to a result, which relates the differences in the energy spectrum, the Wigner-Ville
representation and the scalogram of a sigrahd the tapered signal w.

Theorem 4.5
Lets € L?(IR) andw € L*([-T,T)). Let further

dp[s](w,t) = WVs|(w,t) — WV [sy](w,t).
Then
L 3 = 3w(@)]* = [ dw[s](w, t)dt,
IR

2. Ty[s)(a,b) — Ty[su](a,b) = 27rlRf2 Ow(s](w, )WV [thg p](w, t) dwdt,

with s, = s - w.

Proof
First we observe, that the Wigner-Ville representation satisfies the marginal

/WV[S](w,t)dt = 3(w)P?,
R

see [3]. Therefore

13(w)]? — |50 (W)]? = /WV[S](w,t)dt - /WV[sw](w,t)dt.
R R

The second statement has been derived already in (4.11)
|

From this theorem it follows, that the bias appearing in the Wigner-Ville representation, is a measure

for the bias both in the energy spectrum and in the scalogram. Therefore further research on trunca-
tion problems and tapering, when using Wigner-Ville representations can be very useful to study the

described problems in this report.

5. CONCLUDING REMARKS

In this report we discussed the problem, that shows up when analysing segments of a signal with a
Fourier or wavelet transform. Then the analysis can only be an estimation of the frequency or scaling
behaviour of the signal. To improve this estimate, preprocessing the segments with a taper before
taking the Fourier transform can be useful. In this report we introduced the tapering algorithm also

in combination with the wavelet transform. Upper bounds for the errors in the estimates and suffi-
cient conditions on appropriate tapers have been derived both for the Fourier analysis and the wavelet
analysis. To analyse the energy spectra and the scalograms of segments, we derived relations between
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the truncation problem for the Wigner-Ville representation of a segment and the Fourier and wavelet
analysis of such a segment.

Also the maximal energy problem has been revisited. We have studied properties of the solutions to
this problem and we have shown how this problem is related to the truncation problem.

Results on tapers for wavelet analysis in this report neglect the possible scaling behaviour of an anal-
ysed segment and the taper. Therefore it is an aim of further research to find optimal (signal dependent)
tapers for wavelet analysis of segments of a signals. Another aim of research is to study the truncation
problem for the Cohen’s class time-frequency representations, since a direct link between the energy
spectrum, the scalogram and the Wigner-Ville representation exists.
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