
I

STICHTING

MATHEMATISCH CENTRUM
2e 80ERHAAVESTRAAT 49

AMSTERDAM

MR 114

On infinite modes.

(Algol Bulletin, (1969), Nr 30, p 86-89.)

by

C.H.A. Koster

AB.30.3.3

O. Nodes

On inf'inite modes

AB30 p 86

C.H.A. Koster
Amsterdam, febr 1969

In .ALGOL 68 the 3 types of ALGOL 60 have been replaced by an unlim
ited number of modes. A mode is any tenninaJ. production of the meta.notion
MODE. The metaproduction rules for MODE form a context free grammar which
has an inf'ini te number of ter.minaJ. producti,ons. In an ALGOL 68 program the,
number of modes that are actually used is always finite, since all modes
that are used have to be the mode specified by some declarer of the pro
gram, or 'reference to' such a mode, or the mode enveloped by the original
of some denotation, and the number of such declarers and denotations is,
of course, finite. The programmer has the freedom to declare new modes by
means of a mode-declaration; e.g., he can use ~ as a shortening for
~ int by
E1) -mode lint= long~
or manipulate dates as a whole using
E2) ~ ~ = struct (~ year, month, day)
Here the modes specified by lint and by date are clearly finite terminal.
productions of MODE and thus of MOID. A production rule (R6.1.1.2) ·
E3) SORTEI'Y MOID unit: SORTETY unitary MOID clause.
implies, amongst others,
E4-) SORTEI'Y integral unit: SORTEI'Y unitary integral clause.
E5) SORTETY long integral unit: SORTETY unitary long integral clause.
E6) SORTErY [date] unit: SORTErY unitary [date] clause.
where "[date]" stands for the mode specified by date.
Since it is aJ.lowed to declare a mode in terms ofitself, it is possible
for a declarer to specify an infinite mode, e.g., the declaration
E7) ~person= struct (~ a, ref erson f)
causes person to specify the mode [person where 11 [person] 11 stands for
'structured with integral field letter a and reference to [person] field
letter f'. Also for this infinite mode, E3 implies
E8) SORTETY [person] unit: SORI1ETY uni ta.ry [person] clause.·
Forbidding the infinite modes would 'seriously diminish the power of the
language, since it would; e.g., make it impossible to have cha.ins of linked
structures like
E9) mode cell = struct (strln.5 content.a, ~ ~ next)
were thelastcell of a chain will have next equaJ. nil. -.•

1. Potential dangers of in:f'inite modes

In allowing infinite modes one must be'Ware of the following:

a. A value of a:ny mode must not take infinite storage space in the
computer. Example:
E 1 O) ~ ~ = struct ([1 : 1 O] full f, ~ s)
T'nis declaration is forbidden by R4:ri::zi'..c, since the actual-declarer
struct ([1: 10] ~ f, ~ s) "shows" ~. Every value of mode [full] is
composed of ten such values and an integer, in this way taking up infinite
room in the computer. An allowed declaration however is ·
E11) ~ ~ = struct (!!:!, [1:10] ~ t, ~ s)
because a reterence to a. row of fu1l 1s need not take infinite l'OOm 1n the

- ..

ABJO p 87

compute1·; every reference will take up only very few memory locations, d&
pend.ing on the implementation. And indeed, according to R4.4.4.c, E11 is
not forbidden.

b. No mode may allow ambiguous parsing of' the program. Consider
the clause
E12) (~!=ref!; ! t1, t2; t1:= t2)
In the assignation, the source t2 can be dereferenced any number of times,
and still the assignation would be syntactically correct; so the source is
ambiguous. Again, this declaration is not allowed by R4.4.4.c, since the
actual-declarer £::f ~shows!·

c. It must be decidable whether two modes used· in the program are
the same. Compare:
E13) mode nerson = struct (int age, ref person father)
E14) mode "01..lrson = st~ (in~ age, ref ~rson father)
and even
E15) mode parson= struct (int age, ref

struct (int age, ref parson father) father)·
If one tries WTiting out the modes specifiedby pe~, purson and~~~
by a process akin to developing (R7.1.2.b), one gets after n steps
E16) [person]= Ai n [person] Bin
where A= 'structured with integral field letter a letter g letter e and
reference to' and B = 'field letter f letter a letter t letter h letter e
letter r', and the ex~onentiation denotes repeated concatenation,
E17) [purson] = A f. n [purson] B t n
E18) [parson]= AA t n [parson] BB t n
After an infinite number of steps one would have
E79) [person]= A it- inf B ,1\ inf
E20) [purson] =At inf B t inf·
E21) [parson] = AA t inf BB t inf = A ,1\ inf B i inf
It is clear that the assumption [person]~ [purson] does not lead to a con
tradiction, nor does [person]= [parson].
The purpose of this note is to give an algorithm to decide the equivalence
of the modes specified by two given declarers in a program.

2 Eauivalence of modes

In the sequel we assume that in all declarers the virtual-, actual
and formal-row-of-rowers (R7. 1 ,1 .r) have been deleted, so that the declarers
contain no strict-:-lower-- or upper--bounds, etc.
The "defining declarer11 of a mode-indication is the actual-declarer following
the equals-symbol following the defining occurrence of that mode-indication
(R7.2.1.a), e.g., the defining declarer of lint is long int (E1).
A declarer Dis "expanded" by replacing in Damode::Iiidication by its defi
ning declarer. Expanding a declarer does not change the mode specified
by it.
The "ful.l expansion" of a declarer Dis the declarer obtained by expanding D
until no mode-indications are left in it, The full expansion of a declarer
which specifies a finite mode can be obtained finitely, but the full expan
sion of a declarer s:pecif~ing an infinite mode is an infinite tree (. See
K2.3.5.11).

.AB,30 p 88
Definition
Two declo.rers are "equivalent", i.e., specify one same mode, if the'ir full
expansions are the same tree.

E22) ~ ~ = ref]?_,]?_ = ~, £ = ~ ~
The full expansion of the)defining declarers of both~ and£ is~~, so
a and c specify one same mode.
E23) - ~ .£ = proc d, !:. = proc proc !:.
Whether the full expansions of d and e are the same tree depends, after
expanding once, on whether the full expansions of proc _sh and proc proc !:. are
the same tree, and so 'Whether those of _sh and :12roc ~ are the same 'tree, and
so whether those of ;proc .9: and :eroc !:. are, and so whether those of,!! and~
are. Thus, by induction, it is found that _sh and ~ are equivalent. .
The induction steps can be fonnul.ated:
Two mode-indications specify one same mode if, under the assumption that
they do, their defining declarers specify one same mode.
A mode-indication and a declarer specify one same mode if, under the asaum.P
tion that they do, the declarer specifies the same mode as the definilng
declarer of the mode indication.
This approach to the equivalence of declarers suggests the following
algo:r:l.thm :for deciding the equivalence of two declarers: .

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

3. Algorithm

If the two given declarers D and E are the same sequence of symbols,
then they are eq_uivalent;
·if D is a mode-indication, then D and E are equivalent :provided
either the assumption D = E has been made, or the assumption has
not been made and, making the assumption, E and the defining decla
rer of D are equivalent;
if Eis a mode-indication, then D and E·are interchanged and
Step 2 is taken;
if D and E are declarators beginning with a reference-to-symbol·
(R?.l,1.1,m,n), then they are equivalent provided the declarers
obtained from them by deleting the reference-to-symbol are equivaJ.ent;
if D and E are declarators beginning with a procedure-symbol
(R7. 1 • 1 • w) , then they are equivalent provided aJ.l corresponding
constituent virtual-parameters of the parameters-pack, if any, of
their virtual-plan (R7. 1. 1.x,aa) are equivalent, and, furthermore, the
virtual-declarers following their VirtuaJ.-plan either are virtual.-
void-declarers, or are equivalent; .
if D and E are declarators·beginning with a structure-symbol
. (R7. 1 • 1 • e), then they are equivalent provided in all corresponding
constituent field-declarators the declarers are equivalent and the
.field-selectors are the same;
if. D and E are declarators beginning with a su1>-symbol (R7. 1 • 1 • o, p),
then they are equivalent provided they contain the same number of con
stituent uppel'- and lowe::t:'-bounds, and the declarers following their
buS,:..Symbol are equi val.ent;
if' D and E are declarators beginning with a union-of➔ymbol (ITT .1.1.cc),
then they are equivalent provided to every constituent virtuaJ.-declarer ·
o-t: D there is an equivalent constituent virtual,-declarer ot E and vice
versa;
D and E are not equi Va.lent.

ABJO p 89

4. Concluding remarks

The mode-declarations of a program can be seen as rules in a detel\
ministic context free grammar, with the mode indications as nonterminals. The
algorithm uses knowledge of the possible structure of the rules (declarers) to
decide whether the (only) terminal production of two nontem.inals are the same
finite or infinite sentence. It is not customary to taJ..k about infinite senten
ces but there seem to be no problems involved in this special case. It is, of
course, in generaJ. undecidable whether the languages produced by tw grammars
are the same. ·

I will not prove that this algorithm in fact proves equivalence ac
cording to the definition given, but I will show that it always teminates. In
performing the algorithm some number of assumptions are made, and only by going
on making assumptions it could cycle. Every assumption 1s of the form M • D,
'Where M is a mode indication contained in the program, and D is a declarer
contained in the program. The number of such mode-indications and declarera
is finite, and so consequently is the number of possible assumptions. No a.s
sumption is made twice as can be seen from Step 2; so the algorithm terminates.

The algorithm has one drawback, as can be seen from
E22) ~ E! = E!, ,!?; = ~ .
It will find E! = ,!?;, in other words, it can not be finitely disproved tha.t ! and
,!?; specify one same1 mode. Indeed, E!, wich does not seem to specify 8llY mode, is
equivalent to every declarer. Luckily this type of :paradoxical mode-declaration
is forbidden by R4.4.4.c. · ·

The algorithm given looks formidable; in fact it is very :fast a.nd e:t-
f icient. A version of it has been programmed in ALGOL 60, and recognises in ne- ·
glectable t:ime the equivalence of
E23) ~ !!!l:. = struct (~ struct (~ ~ t1, ~ ~ t2} tl, ~ m1 t2)
E24) ~ ~ = struct (~ m3 t 1, ref struct (~ !l t 1 { ~ ~ t2) t2)
E25) ~ ~ = struct (ref struct (ref m2 t1, ~ ~ t2J tl<

ref struct (ref m3 t 1, ref m2 t2) t2J .
Th~ central procedure of the :program isin Af.GOL W -
E26) Boolean procedure equivalent (d1, d2); integer d1,d2;

g: same seq_uence of symbols (dl, d2) ~ equivaJ.ent:• ~ ~
if mode indication (d 1) then
begin 1f postulated. (d1, d2) then equivalent:•~~

begin postulate (d 1, d2};
equivalent:• equivalent (defining declarer (d 1), d2)

end
end else-
tlmodeindication (d2) then equivaJ.ent:• equivalent (d.2, di)~
equivalent:= same tree (~ d2);

The boolean-procedure equivalent performs step 1, 2 and 3 of the algorithm, and
delegates the rema::tning steps to same tree, which in turn relies hee.vily on
equivalent.

References:
R Re:port on the Algorithmic Languae;e ALGOL 68, version MR99 or MRlOO#.

A. van Wijngaarden (Editor). · ·
K The Art ot Computer Programming, Vol 1 / Fundamental Algo~thms,

1968; D.E. Knuth.

. .

