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ABSTRACT

Air sparging in an aquifer below a less permeable horizontal layer is modeled using a two-phase 
ow approach.

Supported by numerical simulations we show that a steady state situation is reached. For an analysis of the

steady state we distinguish three di�erent 
ow regimes, which occur between the well screen and the unsaturated

zone. Just below the interface, that separates the high and the low permeable layers, a regime with almost

hydrostatic capillary pressures develops. We use this observation to derive an ordinary di�erential equation for

the pressure at the interface, which leads to an approximation of the air 
ow pattern just below and within

the low permeable layer. The approximation provides an estimate for the radius of in
uence as a function of

the physical parameters. The agreement between the analytical approximation and the numerical steady state

results is almost perfect when heterogeneity is increased. With a few modi�cations the analysis applies also to

a DNAPL spill above a less permeable layer. Comparison with an illustrative numerical simulation shows that

the analytical approximation provides a good estimate of the radial spreading of the DNAPL 
ow on top of and

within the low permeable layer.

1991 Mathematics Subject Classi�cation: 35K57, 65M60, 76S05, 76T05

Keywords and Phrases: two-phase 
ow, air sparging, soil layering, vertical equilibrium, analytical approximation,

numerical simulations

Note: Work carried out under project MAS1.3 "Partial Di�erential Equations in Porous Media Research".

1. Introduction

A method for remediating an aquifer which is contaminated by organic liquids (solvents, gasoline)

trapped in the saturated zone, is to inject air or oxygen into the aquifer. Injection of air into the

saturated zone, known as air sparging, may enhance microbial degradation and volatilization.

Experimental studies on air sparging on both �eld [Johnson et al., 1993; Lundegard and LaBrecque,

1995; Marley et al., 1992] and laboratory [Ji et al., 1993; Wehrle, 1990] scales intended to determine

the region in the saturated zone where air is present (radius of in
uence). These studies revealed that

variations in soil texture strongly a�ect the air 
ow. Air sparging is only possible in relatively coarse-

grained soils [Johnson et al., 1993] and in most cases air 
ow appears to occur in small continuous

channels.

The assumption of 
ow continuity allows modeling of air sparging as a multi-phase 
ow process

[McCray and Falta, 1996; Mohtar et al., 1994; Van Dijke et al., 1995]. Besides 
ow continuity, air-

phase compressibility may be a complicating factor in modeling air sparging. A previous paper [Van

Dijke et al., 1995], that was supported by a �eld study [Lundegard and LaBrecque., 1995], concluded

that in the steady state situation in which continuous channels to the vadose zone exist, compressibility

is likely to play a minor role.
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Considering air and water as two immiscible incompressible continuous phases, the e�ect of soil,


uid and well parameters on the radius of in
uence of a single injection well in a homogeneous medium

was analyzed [Van Dijke et al., 1995]. In many situations, however, aquifers contain less permeable

regions, which may control the main direction of air 
ow. Several numerical studies [McCray and

Falta, 1996; Unger et al., 1995] have demonstrated the e�ect of heterogeneities. In this paper we

model air sparging below a less permeable horizontal layer with large lateral extension. We assume

that the di�erent layers have similar structure but di�erent mean pore size, i.e. the similar media

assumption [Leverett , 1941; Miller , 1980]. We aim at investigating the air 
ow through layered soils,

in particular the quantitative e�ect of the degree of heterogeneity and the position of the interface,

that separates the layers, on the resulting radius of in
uence.

In Section 2 we present the transient model: the basic equations with their saturation dependent

relative permeability and capillary pressure functions and the geometry of the domain including the

two di�erent layers. To accomodate analysis of the steady state situation, we reformulate the problem

in dimensionless form and identify the governing dimensionless numbers. Thus, we present similar

equations with di�erent parameters for the two subdomains, which are linked by continuity of capillary

pressure and of the vertical air velocity component at the interface.

In Section 3 we analyze the steady state situation that occurs when air 
ow from the injection well to

the vadose zone has been established. Emphasis is given to the region just below the interface, where

air mainly spreads horizontally. We assume that 
ow in this region is ruled by vertical equilibrium,

despite a small vertical air velocity component across the interface. An ordinary di�erential equation

for the capillary pressure at the interface governs the radial extension of air below the interface.

In Section 4 we present the results of numerical simulations that are based on the transient model,

which show that indeed a steady state situation is approached. In terms of capillary pressure the

numerical solutions are compared to the analytical approximation. On the basis of our analytical ap-

proximation, we carried out a sensitivity analysis of the e�ect of the dimensionless numbers, especially

the measure of the heterogeneity, on the saturation pro�le at the interface.

Our analysis relates to a study on 
ow of dense nonaqueous phase liquid (DNAPL) on top of a

low permeable layer of �nite horizontal extension, which provides conditions for DNAPL in�ltration

into the layer in terms of the contrast in entry pressures [De Neef and Molenaar , 1997]. Therefore,

we show in Section 5 that with a few modi�cations, the present study may also reveal how DNAPL

leaks through a low permeable layer of large horizontal extension. An illustrative simulation shows

the analogy between the sparging and the DNAPL 
ow processes.

2. Model

According to [Van Dijke et al., 1995] we use for both air (a) and water (w) Darcy's Law

~Uj = �
k krj

�j
r (Pj + �j g Z); j = w; a (2.1)

and the mass balance equations

�
@ Sj

@ t
+r � ~Uj = 0 j = w; a; (2.2)

where k denotes soil intrinsic permeability, � soil porosity, Sj e�ective 
uid saturation, ~Uj 
uid Darcy

velocity, krj 
uid relative permeability, �j 
uid viscosity, Pj 
uid pressure, �j 
uid density and g

gravity. We assume that both 
uids are incompressible and that the soil is isotropic, but consists of

two layers.

The constitutive relations Sw + Sa = 1, the capillary pressure Pc = Pa � Pw, Sj = Sj(Pc) and

krj = krj(Sj) complete the set of equations (2.1) and (2.2). The dependence of capillary pressure and
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Figure 1: Schematic of the domain for air sparging. Air is injected at the well radias R = E between

Z = �L=2 and Z = L=2 with constant velocity Uin. Ht denotes the soil surface, H the initial position

of the water table and Z� the position of the interface between the low (top) and high permeable

(bottom) layers.

relative permeability on the saturations is given by the expressions [Parker et al., 1987]

Pc(Sa) =
�w g

�
((1� Sa)

�
1
m � 1)1�m (2.3)

krw(Sw) = S
1
2
w (1� (1� S

1
m
w )m) 2 (2.4)

kra(Sa) = S
1
2
a (1� (1� Sa)

1
m ) 2m; (2.5)

where 0 < m < 1 is a given constant. The parameter � > 0 di�ers for each layer and re
ects the

air-water capillary forces in a soil.

Equations (2.1) and (2.2) are solved in the two-dimensional axially symmetric domain of Figure 1

for time T > 0. The level Z = H corresponds to the initial position of the water table. Hence, the

water pressure along the top boundary of the domain, the soil surface Z = Ht, is Pw = �w g (H�Ht),

and the air pressure equals Pa = 0. For T > 0, air is injected with velocity Uin into this domain

through a vertical well screen with radius E > 0, located between Z = �L= 2. This yields a total

injection rate Q = 2�E LUin. The remaining part of the vertical line R = E that represents the well

casing, is impermeable.

We consider two subdomains, separated by an interface at depth Z = Z�, where

k =

�
k� for Z < Z�

k+ for Z > Z�
and � =

�
�� for Z < Z�

�+ for Z > Z�:
(2.6)

We assume that the two layers have similar structure, re
ected by a single m-value for the entire

domain, but that they have di�erent mean pore size. Hence, in agreement with the scaling theory of

similar media [Leverett , 1941; Miller, 1980] we take k+ = 
 2 k� and �+ = 
 ��, with constant k�

and �� and heterogeneity factor 0 < 
 < 1. At the interface Z = Z�, we have continuity of capillary

pressure Pc and of the vertical components of the Darcy velocities Uj;z.

With numerical simulations, which are described in Section 4, we show that 
ow approaches a

steady state. At steady state the water pressure is approximately hydrostatic [McCray and Falta,

1996; Van Dijke et al., 1995] and the mass balance

r � ~Ua = 0; (2.7)



4

describes air 
ow, with

~Ua = �
k kra

�a
r (Pc ��� g Z); (2.8)

where �� = �w � �a.

We introduce the dimensionless variables

r =
R

H
; z =

Z

H
; ~ua =

~Ua

Uin

; pc =
�� Pc

�w g
; (2.9)

where H , the depth of the well screen center below the water table, is chosen as a characteristic length.

Furthermore, we de�ne the dimensionless constants

" =
E

H
; z� =

Z�

H
; ht =

Ht

H
(2.10)

and

Ng =
k��� g

�a Uin

; Nc =
k� �w g

�a UinH ��
; A =

Q

UinH 2
(2.11)

which are the gravity number, the capillary number and the dimensionless well screen surface respec-

tively. The resulting equations are

r � ~ua = 0; (2.12)

with

~ua =

�
�Nc krar pc +Ng kra ~ez for z < z�

�
 Nc krar pc + 
 2Ng kra ~ez for z > z�;
(2.13)

where ~ez is the unit vector in the vertical direction. The capillary pressure function has transformed

into

pc(Sa) =

8<
:

�pc(Sa) for z < z�

1



�pc(Sa) for z > z�;

with �pc(Sa) = ((1� Sa)
�

1
m � 1)1�m: (2.14)

As shown in [Van Dijke et al., 1995] the combined dimensionless numbers

N1 =
Ng

Nc

=
��

�w
and N2 =

A

�Ng

=
Q�a

� k��� gH2
(2.15)

and the exponent m determine the steady state 
ow problems. The number N2 follows from the total


ow rate

2�

Z
1

0

r ua;z dr = A; (2.16)

Furthermore, z� and 
 characterize the position and the degree of heterogeneity.

3. Steady state flow analysis

To analyze the steady state situation we distinguish three regions which have di�erent air 
ow regimes

as shown in Figure 2. Provided that the distance between the well screen and the interface is large

enough, we assume that upwards from the well screen a region (I) exists where buoyancy-induced

forces dominate the vertical velocity component. In view of a study on DNAPL in�ltration above
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Figure 2: Air-invaded regions in the dimensionless domain with di�erent steady state 
ow regimes. In

regions I and III vertical 
ow is buoyancy-dominated. In region II the gravity and capillary forces

in vertical direction are of equal magnitude and air spreads mainly in radial direction. The regions

are radially enclosed by the free boundaries fI , fII and fIII respectively. The level z = 0 denotes the

position of the well screen, the level z = z� separates regions I and II , the level z = z� denotes the

interface between the layers and the level z = 1 the intial position of the water table.

a low permeable layer [De Neef and Molenaar , 1997] and supported by our numerical simulations,

we expect that just below the interface that separates the low and the high permeable subdomains,

a region (II) exists where the radial spreading of the air 
ow is much larger than in the buoyancy-

dominated region, whereas in the vertical direction capillary and gravity forces are of equal magnitude.

We assume that above the interface and below the water table (region III) the vertical 
ow is also

buoyancy-driven. The three regions are enclosed outward by the free boundaries r = fI(z), r = fII(z)

and r = fIII(z) respectively.

In region I saturations are signi�cantly smaller than one, which allows approximation of the re-

lations between saturation, relative permeability and (reduced) capillary pressure by simple power

law functions [Van Dijke et al., 1995]. The relations for the saturation and the (reduced) capillary

pressure in terms of the relative permeability are

Sa(kra) � nS k
pS
ra and �pc(kra) �

nD

pD
k pD
ra ; (3.1)

where

nS = m
4m

4m+1 ; pS =
2

4m+ 1
; nD =

2 (1�m)

4m+ 1
m

m�1
4m+1 ; pD =

2 (1�m)

4m+ 1
: (3.2)

Considering the well as a point source and neglecting the well screen diameter, the air 
ow is described

by a similarity solution, the Barenblatt-Pattle point source solution [Barenblatt , 1952; Pattle, 1959;

Van Dijke et al., 1995], that in terms of capillary pressure is given by

pc(r; z) =

8<
:

(
pD + 1

pD

N2

f 2(z)
)pD (1�

r 2

f 2(z)
) for 0 � r � f(z); z > 0

0 for r > f(z); z > 0:

(3.3)

The free boundary f separating the regions with and without air is given by

f(z) = f0 z
1

2 (pD+1) for z � 0 (3.4)
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with

f0 = (
4nD

N1

N2
pD )

1
2 (pD+1) (

pD + 1

pD
)
1
2 : (3.5)

This approximation is valid for (r; z) in region I , where fI(z) = f(z).

To develop an approximate solution for region II , we consider the continuity conditions at the

interface. Continuity of the vertical component of the velocity yields with (2.13)

lim
z"z�

�Nc kra
@ pc

@ z
+Ng kra � lim

z#z�

 2Ng kra (3.6)

assuming that above the interface buoyancy is dominant. Continuity of pressure yields with (2.14)

lim
z#z�

�pc = 
 lim
z"z�

�pc; (3.7)

which shows for 
 < 1 that saturations and relative permeabilities above the interface are smaller

than below, i.e.

lim
z#z�

kra < lim
z"z�

kra: (3.8)

Hence, we may neglect the righthandside of relation (3.6), and we obtain for the pressure gradient

just below the interface

@ pc

@ z
�

Ng

Nc

: (3.9)

Equation (3.9) is the vertical equilibrium assumption, which controls 
ow in region II . Neglecting for

convenience the transition zone between the buoyancy-dominated and the vertical equilibrium regime,

regions I and II meet at some level z = z� (0 < z� < z�) as shown in Figure 2. Here, we de�ne f�

as the radial position where fI changes into fII . Furthermore, f
+ indicates the radial position where

fII changes into fIII .

Especially if the contrast of material properties below and above the interface is large (
 � 1),

we expect that f� � f+. Consequently, we assume that the buoyancy-dominated regime only

slightly a�ects the vertical equilibrium regime. Hence, we analyze the 
ow in region II separately,

thus neglecting continuity with region I at z = z�, except that the total 
ow rate condition (2.16) is

satis�ed for every horizontal plane.

We vertically integrate in region II the hydrostatic pressure relation (3.9) till the interface, i.e.

pc(r; z) = p(r)�
Ng

Nc

(z� � z); (3.10)

which shows that the capillary pressure at the interface p(r) = pc(r; z
�) also determines the capillary

pressure elsewhere in the vertical equilibrium region. Furthermore, relation (3.10) speci�es a boundary

z = zf (r) for " � r � f+, where pc = 0, i.e.

zf (r) = z� �
Nc

Ng

p(r): (3.11)

We vertically integrate the mass balance equation (2.12) from zf to z�, which yields

@

@ r
(r

Z z�

zf

ua;r dz) + r ua;z(r; z
�) = 0 for " < r < f+: (3.12)
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To evaluate the integral, i.e. the e�ective horizontal 
ux, we derive from (3.10)

@ pc

@ r
=

d p

d r
and dz =

Nc

Ng

dpc; (3.13)

leading to

Z z�

zf

ua;r dz = �Nc

Z z�

zf

kra
@ pc

@ r
dz = �

N2
c

Ng

D(p)
d p

d r
: (3.14)

The e�ective 'di�usion' coe�cient is de�ned by D =
R p
0
�(�) d�, with �(pc) = kra(Sa(pc)), where �

is a dummy variable for integration over the range of pc values. By continuity the vertical velocity

component ua;z(r; z
�) is given by the righthandside of relation (3.6). Using also continuity of capillary

pressure (3.7), we obtain

�
N2
c

Ng

d

d r
(r D(p)

d p

d r
) + r 
 2Ng �(
 p) = 0: (3.15)

Integration of equation (3.12) over r from " to f+ and application of the mass balance condition (2.16)

at the interface yields the boundary condition

�2�
N2
c

Ng

(r D(p)
d p

d r
)jr=" = A (3.16)

where we have used that the 
ux (3.14) vanishes at r = f+. Hence, we must solve the boundary value

problem

8><
>:

d

d r
(r D(p)

d p

d r
)� r 
 2N2

1 �(
 p) = 0 for " < r < f+

�(r D(p)
d p

d r
)jr=" =

N2
1 N2

2
; p (f+) = 0;

(3.17)

for p(r), where we have used de�nitions (2.15) for N1 and N2. In Appendix 1 we show that at r = f+

the derivative
d p

d r
(f+) satis�es

d p

d r
(f+) = �


1+ 1
2 pD N1: (3.18)

Hence, we solve problem (3.17) simultaneously for p(r) and f+ as described in Appendix 1.

Using the solution p(r) in equation (3.11), we �nd z = zf (r). Intersection of z = zf (r) and

r = f(z) (3.4), yields the pair (f�; z�). Hence, we approximate capillary pressure for z < z� (region

I) by equation (3.3) and for z� < z < z� (region II) by equation (3.10) and the solution p(r) of

system (A 3). The free boundary r = fII(z) along region II is given by r = z�1f (z) for z� < z < z�.

Assuming that above the interface vertical 
ow is dominated by buoyancy and saturations are

small, we may expect that the pressure distribution satis�es approximately the similarity pro�le (3.3).

However, the radial extension of the air distribution is already so large at the interface, that upwards to

the unsaturated zone the radial spreading according to this pro�le will be small. Moreover, numerical

simulations show that in the vicinity of the water table the extension tends to decrease. Hence, we

approximate for region III

pc(r; z) = pc(r; z
�) for z > z�; (3.19)

with fIII(z) = f+:
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Table 1: Parameters and dimensionless numbers used in computations. Relative to the reference case

(case 1), 
 is varied for cases 2-6, z� for cases 7-10, N1 for cases 11-12, N2 for cases 13-14 and m for

cases 15-16.

case 
 z� m N1 N2 (10
�5)

1 0.600 0.500 0.700 16.0 20.0

2 1.00 0.500 0.700 16.0 20.0

3 0.800 0.500 0.700 16.0 20.0

4 0.700 0.500 0.700 16.0 20.0

5 0.500 0.500 0.700 16.0 20.0

6 0.400 0.500 0.700 16.0 20.0

9 0.600 0.188 0.700 16.0 20.0

10 0.600 0.313 0.700 16.0 20.0

11 0.600 0.688 0.700 16.0 20.0

12 0.600 0.875 0.700 16.0 20.0

13 0.600 0.500 0.700 7.99 20.0

14 0.600 0.500 0.700 32.0 20.0

15 0.600 0.500 0.700 16.0 50.0

16 0.600 0.500 0.700 16.0 4.00

17 0.600 0.500 0.800 16.0 20.0

18 0.600 0.500 0.556 16.0 20.0

4. Results

4.1 Numerical computations

Using a numerical model [Van Dijke et al., 1995] we solved the transient two-phase 
ow problem of

Section 2 described by equations (2.1-2.6) on the �nite domain E < R < Rb and �Hb < Z < Ht

(Hb > 0), where Rb and Hb were chosen such that injected air never reached these boundaries. We

imposed at the lower boundary a no-
ow condition (Uj;z = 0). At the right boundary we imposed

hydrostatic water pressures (Pw = �w g (H � Z)), no air 
ow below the water table (Ua;r = 0 for

Z < H) and hydrostatic air pressures above the water table (Pa = �a g (Ht�Z) for Z > H). The 
ow

domain was discretized by linear triangular �nite elements and time discretization was fully implicit.

The resulting algebraic equations were solved by the modi�ed Picard method, that gave good mass

balances [Celia et al., 1990] In R-direction we used 30 elements of linearly increasing width (the

width of the last element was 4.63 times the width of the �rst element). The Z-grid was uniform

with 0.25 m wide elements, except for a 0.5 m thick layer from the interface downward, where we

expected the vertical equilibrium regime. There, we used 5 elements of linearly decreasing thickness

(the thickness of the last element was 0.220 times the thickness of the �rst element at the top of the

layer). Convergence was obtained for the Picard iterations by adjusting the time steps. Computations

were done in non-transformed physical variables.

The following soil and 
uid parameters were �xed during all computations : �=0.400, �a=1:77�10
�5

Pa s, �a=1.24 kgm
�3, �w=1:30 �10

�3 Pas, �w=1:00 �10
3 kgm�3, g=9.8 m s�2, Uin = 7:07 �10�3 ms�3,

where the latter agrees with total injection rate of 8.00 m3 h�1. Parameters involving the boundary

conditions were : E=5.00�10�2 m, L=1.00 m, H=8.00 m, Ht=9.00 m. We varied the exponent m,

the dimensionless numbers N1 and N2 and the heterogeneity parameters 
 and z� with respect to the

reference case (case 1) as is summarized in Table 1. Variations in N1 and N2 were due to variations

in �� and k� respectively : for the reference case we used k� = 1:00 � 10�10 m2 and �� = 2:00 m�1.

The values of the parameters for these simulations re
ect a rather wide range of sandy soils (loamy

till coarse sand).

The numerical results revealed that in every case the air 
ow became stationary. De�ning the steady
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Figure 3: Dimensionless capillary pressure contours for (a) case 1 and (b) case 2.
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Figure 4: Dimensionless capillary pressure as a function of the radial coordinate at the interface for

di�erent times.

state time as the time whereafter the increase of air volume stored in the domain, see [Van Dijke et

al., 1995] is less than 1 percent, we found that this time varied between 1 and 5 h for all cases, except

for case 5 (7 h), case 6 (35 h) and case 18 (25 h). The simulations required large computation times :

roughly between 8 and 48 h on a HP 9000 735/125 workstation.

Results are presented in dimensionless form, see (2.9). We use capillary pressure (pc) as the main

variable, because it is continuous over the entire domain and has a non-zero gradient normal to the free

boundary, which makes it easy to determine the position of this boundary. In Figure 3 the capillary

pressure contours for case 1 and case 6 (large material contrast) at steady state are shown. These

contours show a sharp transition from the buoyancy-dominated region to the vertical equilibrium

region just below the interface. Furthermore, we observe that above the interface the solution is

almost constant in the z-direction. As the solution at the interface is characteristic for air injection in

layered media, we present in Figure 4 the development of capillary pressure at the interface towards

the steady state. After injected air has reached the water table (which occurred between 10 and 15

min), air still accumulates at larger radial distances untill a steady state is attained.

4.2 Applicability of the analytical approximation

In Figure 5 we present the capillary pressure contours for case 6 as computed according to the analysis

of Section 3 in regions I , II and III , which describe the situation between the upper part of the

well screen and the water table. Comparison with Figure 3.b shows good agreement between the two

solutions. In Figure 6 we show the numerical pn(r) and analytical pa(r) steady state capillary pressure

functions at the interface for case 1 and 6. Observe that the agreement is much better for the larger

material contrast (smaller 
) of case 6.

To quantify the agreement we compared the positions of the free boundary at the interface of the

numerical f+n and the analytical f+a solution. Despite the �ne discretization just below the interface

the numerical pro�les exposed small 
uctuations near the free boundary. Nevertheless, we were able to

accurately estimate f+n from the almost constant slope of the pro�le at the left side of the 
uctuations.

In Figure 7 we present the relative errors

� f+ =
f+n � f+a

f+a
(4.1)
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Figure 5: Analytical approximation of the dimensionless capillary pressure contours for (a) case 1 and

(b) case 6.
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(a)

(b)

Figure 6: Comparison of the numerically and analytically computed dimensionless capillary pressures

as a function of the radial coordinate for (a) case 1 and (b) case 6 at the interface.
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Figure 7: Relative errors � f+ of the position of the free boundary at the interface versus the normal-

ized dimensionless numbers. The 
-curve re
ects values of the parameters for cases 2-6, the z�-curve

for cases 7-10, the m-curve for cases 15-16, the N1-curve for cases 11-12 and the N2-curve for cases

13-14.

as functions of

~
 =




r
; ~z� =

z�

z�r
; ~m =

m

mr

; ~N1 =
N1

N1r

; ~N2 =
N2

N2r

; (4.2)

which are the dimensionless numbers of Table 1 that are normalized with respect to the numbers of

the reference case (subscript r). Observe that for larger values of z�, i.e. the distance between the

well and the interface, the agreement became worse, because the buoyancy-dominated solution below

the interface resulted in wider air cones, that lead to larger spreading at the interface. Furthermore,

we observe that the various soil and 
uid parameters, which are combined in N1, N2 and m, a�ect

the error � f+, but we expect that in every situation with su�ciently small 
 the vertical equilibrium

assumption is satis�ed and that the error � f+ is negligible. In most practical situations the value of


 is much smaller than for the reference case (
 = 0:600) and the analytical approximation performs

very well.

4.3 Sensitivity analysis

For remediation purposes mass transfer limitations to volatilization of organic contminants and to

biodegradation relate more directly to saturation than capillary pressure. Therefore, we present in

Figure 8 for several values of 
, but with the other parameters as in case 1, the saturation pro�les at

the upper side of the interface, which are based on the analytical approximation. Because for smaller


 the pro�le has a very long tail with almost zero saturations, we use the �rst moment

M =

R f+
"

r2 Sa(r; z
�) drR f+

"
r Sa(r; z�) dr

(4.3)

as a characteristic distance for the horizontal extension of these pro�les rather than the number f+.

M is shown in Figure 9 as a function of 
 for several sets of the dimensionless numbers m, N1 and

N2. For small contrasts we expect that the analytical approximation is not valid. To obtain an upper

bound 
s on the values of 
 for which we may apply the approximation, we computed the �rst moment

Ms of the similarity solution (3.3) at the interface for the homogeneous situation. Hence, we de�ne


s such that M(
s) =Ms and we present in Figure 9 M versus 
 up to this upper bound 
s.
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Figure 8: Analytical approximations of the saturation at the upper side of the interface as a function

of the dimensionless radial coordinate for several degrees of heterogeneity.

The analysis shows that the spreading is almost insensitive to variations of N2, but that it varies

signi�cantly with N1 and m. Observe that the analytical approximation does not depend on the

position of the interface z�, whereas the results of the numerical simulations reveal an e�ect of this

parameter which diminishes for decreasing 
, as we showed earlier.

5. Applicability of the analytical approximation to a DNAPL spill above a less per-

meable layer

The above given analysis of air sparging in a layered soil enables us to describe also DNAPL 
ow

below the phreatic surface towards and through a low permeable layer of large horizontal extension.

DNAPL 
ow above a low permeable layer of �nite horizontal extension was investigated by De Neef

and Molenaar [1997]. They assumed that to enter this layer DNAPL must overcome a positive entry

pressure. An analysis of the steady state situation for which all DNAPL migrates downward along

the lateral boundaries of the layer, revealed the conditions under which the entry pressure is exceeded

and DNAPL may in�ltrate into the low permeable layer.

To show the analogy with the sparging problem, we assume that a possible entry pressure has been

overcome and that at steady state all DNAPL 
ows through the low permeable layer. We assume

that the distance between the DNAPL source and the low permeable layer is large enough for the

development of a region with mainly horizontal 
ow in agreement with [De Neef and Molenaar , 1997].

Provided that the DNAPL can 
ow downward away from the interface, after su�ciently large time

a steady state situation is reached at the interface. Hence, the steady state solution for the vertical

equilibrium region provides an estimate of the maximum horizontal spreading at the interface.

With emphasis on steady state 
ow above and across the interface, we outline the modi�cations of

the air sparging analysis, that are necessary for the DNAPL 
ow problem. For this case, the interface

Z� of Figure 1 separates the high permeable top and low permeable bottom layers, such that (for

0 < 
 < 1)

k =

�
k� for Z > Z�

k+ for Z < Z�
and � =

�
�� for Z > Z�

�+ for Z < Z�;
(5.1)

with k+ = 

2

k� and �+ = 
 �� as before. Assuming that the horizontal extension of the source and

of the DNAPL 
ow �eld in the high permeable layer is small, horizontal spreading mainly occurs just
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(a)

(b) (c)

Figure 9: First moment M of the horizontal extension of the analytically approximated saturation

pro�les at the interface versus heterogeneity 
 for several values of (a) m, (b) N1 and (c) N2.
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above the interface. For convenience we still consider a domain with R > E to avoid singularities at

R = 0.

Equations (2.1) and (2.2) are used with the subscript a for air replaced by o for oil (DNAPL).

Because in this steady state situation the water velocity is not negligible due to the smaller di�erence

in density and viscosity [De Neef and Molenaar , 1997], we use instead of equation (2.8), the fractional


ow formulation for the oil velocity, see e.g. [Bear , 1972; Chavent and Ja�r�e, 1986],

~Uo = Fo ~Ut �
k krw

�w
For(Pc ��� g Z); (5.2)

where the oil fractional 
ow function Fo and the mobility ratio M are de�ned by

Fo =
kro

kro +M krw
and M =

�o

�w
; (5.3)

the total 
ow velocity ~Ut = ~Uw+~Uo and �� = �o��w. We introduce dimensionless variables according

to (2.9) and (2.10), where H is rede�ned as the distance between the well and the interface. Hence,

we obtain in dimensionless form

r � ~uo = 0; (5.4)

and

~uo =

�
Fo ~ut �M krw Fo (Ncr pc �Ng ~ez) for z > z�

Fo ~ut �M krw Fo (
 Ncr pc � 
 2Ng ~ez) for z < z�;
(5.5)

with the obvious substitution of the newly de�ned �� in Ng , N1 and N2.

Using similar assumptions as in equations (3.6-3.8) we arrive at the vertical equilibrium assumption

@ pc

@ z
� �

Ng

Nc

(5.6)

for the entire region of thickness zf � z� on top of the low permeable layer. If oil saturations are

small, we may assume that the total velocity ~ut = 0, i.e. counter-current 
ow ~uw = �~uo [De Neef and

Molenaar , 1997]. Following the derivation of Section 3 we obtain the boundary value problem for the

pressure at the interface p(r) :

8><
>:

d

d r
(r ~D(p)

d p

d r
)� r 
 2N2

1 �(
 p) = 0 for " < r < f+

�(r ~D(p)
d p

d r
)jr=" =

N2
1 N2

2
; p (f+) = 0;

(5.7)

where ~D =
R p
0
�(�) d�, with �(pc) = M krw(So(pc))Fo(So(pc)). However, as p and So are small, the

water mobility krw=�w is much larger than the oil mobility kro=�o and as a result the function �(p)

is approximately equal to �(p). Hence, the boundary condition

d p

d r
(f+) = �


1+ 1
2 pD N1 (5.8)

is also valid for problem (5.7). Furthermore, we conclude that for small p and So problem (3.17) is a

good approximation of problem (5.7).

The number f+ provides an estimate of the maximum spreading radius of DNAPL on top of the

low permeable layer.

To illustrate the analogy between the sparging and the DNAPL problems, we additionally carried

out a simulation for DNAPL in�ltration. In an axisymmetric domain with 0:05 � R � 10:05 m and
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0:0 � Z � 8:0 m the interface between the high permeable top and the low permeable bottom layer

was positioned at Z = 4:0 m. DNAPL in�ltrated at the top through a horizontal source with outer

radius 0.557 m at velocity 2:87 � 10�4 ms�1, which yields a total rate of 1.0 m3 h �1.

Initially water pressures were hydrostatic, such that the water table was positioned at Z = 10 m

and no DNAPL was present in the domain. The top, left and bottom boundary were inpermeable

to water, whereas at the right boundary the initial pressure distribution was imposed. The top

boundary (except for the source) and the left and right boundary were impermeable to oil, whereas at

the bottom boundary oil pressure heads were �xed at 10.0 m, i.e. equal to the initial water pressure

heads. These boundary conditions allowed water 
ow through the right boundary and oil out
ow

through the bottom boundary. Although the con�guration was slightly di�erent from the sparging

situation, we assumed that the di�erences did not a�ect the 
ow in the neighbourhood of the interface.

We imposed a heterogeneity of 
 = 0:60, whereas H = 4:0 m. For DNAPL we took �o = 1:50

m3 kgm�3 and �o = 0:65 � 10�3 Pas. All other parameters were taken as in case 1 for the sparging

problem. Consequently, we had z� = 1:0, m = 0:700, N1 = 4:0 and N2 = 7:33 � 10�3.

This simulation led also to a steady state situation with DNAPL 
owing mainly horizontally on

top of the interface. Compared to the sparging situation the time necessary to reach steady state was

much larger (i.e. about 85 h). At steady state the water pressure distributions were approximately

hydrostatic. In Figure 10 we present the steady state capillary pressure contours, which have essentially

the same pattern as the contours for the sparging situation with the same heterogeneity of Figure 3.a.

Comparison shows that in spite of the lower injection rate capillary pressures and radial extension are

larger for DNAPL than for air.

In view of the hydrostatic water pressures we approximated � by � in problem (5.7). We solved

this problem for the capillary pressures at the interface and compared the solution with the numerical

solution in Figure 10.b. The agreement between the two curves is as least as good as in Figure 5.a,

which is understandable in view of the larger radial spreading. Hence, the analytical approximation

is also useful to describe DNAPL 
ow over a low permeable layer and the agreement will strongly

increase when heterogeneity is increased. Since DNAPL 
ow proceeds much slower than air 
ow, the

steady state may not always be reached within realistic times. Still, the analytical approximation

provides a good estimate of the maximum radial extension of DNAPL 
ow in a layered soil.

6. Conclusions

We modeled air sparging into an aquifer below a less permeable horizontal layer as multi-phase 
ow

of two immiscible 
uids. The two layers were assumed to have similar structure but di�erent mean

pore size.

We found that 
ow approaches a steady state, that is characterized by three dimensionless numbers

which also control the 
ow problem for a homogeneous domain and by two numbers which correspond

to the position of the interface between the two layers and to the degree of material contrast respec-

tively. Analyzing the steady state situation we distinguished three regions with di�erent 
ow regimes.

In the lower layer above the well screen the vertical 
ow component is dominated by buoyancy-induced

forces. Just below the interface a regime with almost vertical 
ow equilibrium conditions develops,

where air tends to spread mainly horizontally. Above the interface the vertical 
ow component is

buoyancy-dominated. In the lowest region steady state 
ow is approximated by a similarity solution

that applies in homogeneous situations [Van Dijke et al., 1995]. We analyzed the region just below

the interface separately from the lowest region, but incorporated continuity of pressure and vertical


ow velocity at the interface towards the less permeable region. Assuming hydrostatic pressures we

derived a di�usion equation for the capillary pressure at the interface with a 'loss term' corresponding

to the 
ow through the interface. With a simple numerical procedure we obtained the solution of this

ordinary di�erential equation, which is non-zero within a �nite interval of the radial coordinate. This

solution determines the capillary pressures in the region below the interface and the free boundary en-

closing this region, beyond which air is absent. Between the interface and the water table we assumed

that no further changes occur in the radial direction compared to the solution at the interface.
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Figure 10: DNAPL in�ltration in a high permeable layer on top of a low permeable layer with a

heterogeneity 
 = 0:60 : (a) dimensionless capillary pressure contours and (b) comparison of the

numerically and analytically computed dimensionless capillary pressures as a function of the radial

distance at the interface.
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Using a numerical two-phase 
ow model we made transient computations for several values of the

dimensionless numbers. These computations were very time consuming. In every case we found that

the 
ow reached a steady state situation. However, the time that this was the case and the horizontal

spreading of air below the interface increased much with increasing heterogeneity and with increasing

values of the exponent m. Only for almost homogeneous 
ow domains, the position of the interface

relative to the well screen a�ected the steady state air 
ow signi�cantly.

We compared the numerical and analytical approximations of the steady state situation with em-

phasis to the solution at the interface. The agreement between the numerically and analytically

obtained radii of in
uence at the interface was very good when these radii were large compared to the

radii of the corresponding homogeneous situations. Else, the vertical equilibrium assumption was less

satis�ed or the 
ow below the region with vertical equilibrium a�ected the numerical solution at the

interface signi�cantly.

Because from the remediation point of view the saturation is one of the most important variables,

we considered the analytically obtained saturation pro�le at the interface. We observed that for large

values of the radii of in
uence saturations are almost zero in a large part of the pro�le. Therefore,

we carried out an analysis of the relation between the degree of heterogeneity and the �rst moment

of the horizontal extension of the saturation pro�le at the interface for several values of the remain-

ing dimensionless parameters. As was expected this spatial moment increases much with increasing

heterogeneity and is most sensitive to variations in the exponent m and the dimensionless number N1.

With minor modi�cations the present analysis enables also the description of the maximum radius of

horizontal spreading in case of DNAPL 
ow over a low permeable layer. We showed by a representative

numerical simulation that the time necessary to reach steady state for DNAPL in�ltration is much

larger than for air sparging. Furthermore, the radial spreading at the interface is larger and as a result

the agreement between numerical and analytical approximations is at least as good as in the sparging

situation.

Appendix 1 : Evaluation of the boundary value problem

For steady state 
ow the free boundary zf (r) is tangential to the air 
ow direction. This yields at

r = f+

d zf

d r
jr=f+ = lim

r!f+

ua;z(r; z
�)

ua;r(r; z�)
= lim

r!f+


2Ng �(
 p(r))

�Nc �(p(r))
d p

d r
(r)

; (A 1)

where we have used the righthandside of relation (3.6) for ua;z(r; z
�). We di�erentiate equation (3.11)

with respect to r and use it in relation (A 1), which yields

lim
r!f+

(
d p

d r
(r; z�))2 = lim

r!f+

2N2

1

�(
 p(r))

�(p(r))
: (A 2)

Using the power law approximation for �(p) (3.1), which is exact if k and p approach zero, we obtain

condition (3.18). Setting q = p 0, where primes 0 denote di�erentiation with respect to r, we transform

problem (3.17) into the system of �rst order equations8<
:

p 0 = q

q 0 = �
q

r
� �(p)

q 2

D(p)
+ �1

�(
 p)

D(p)
;

(A 3)

for r 2 ("; f+), with boundary conditions

(r D(p) q)jr=" = ��2; p (f+) = 0; q (f+) = ��3; (A 4)

where

�1 = 
 2N2
1 ; �2 =

N2
1 N2

2
; �3 = 


1+ 1
2 pD N1: (A 5)
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Using again the power law approximation for �(p) in system (A 3), we obtain additionally q 0(f+) =
�3

f+
pD

3 pD + 2
, with pD given by (3.2). Hence, we use a fourth order Runge-Kutta routine to inte-

grate (A 3) iteratively from r = f+ to r = ", while varying f+ untill the condition at r = " is

matched.
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