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ABSTRACT

A drift-di�usion model for semiconductors with nonlinear di�usion is considered. The model consists of two

quasilinear degenerated parabolic equations for the carrier densities and the Poisson equation for the electric

potential. We also assume Lipschitz continuous non linearities in the drift and generation-recombination

terms.

Existence of weak solutions is proven by using a regularization technique. Uniqueness of solutions is proven

when either the di�usion term ' is strictly increasing and solutions have spatial derivatives in L1(QT ) or when
' is non decreasing and a suitable entropy condition is full�lled by the electric potential.

1991 Mathematics Subject Classi�cation: 35K65, 35D05, 35B30, 78A35.

Keywords and Phrases: Quasilinear degenerated system, existence, uniqueness, semiconductors.

Note: Work partially carried out under project MAS 1.3 "Partial Di�erential Equations in Porous

Media Research".

1. Introduction

In solid state physics, the drift-di�usion equations are today the most widely used model to describe

semiconductor devices. The drift-di�usion models describe the ow of the electrons in the conduction

band of the semiconductor material and of the holes (or defect electrons) in the valence band of the

crystal, inuenced by the electric �eld. Mathematically, they form a system of parabolic equations for

the electron density u, the hole density v and the Poisson equation for the electric potential w that
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together with physically motivated auxiliary conditions form the problem

8>>>>>><
>>>>>>:

ut � div (r'(u)� b(u)rw) = F (u; v) in QT := 
� (0; T );

vt � div (r'(v) + b(v)rw) = F (u; v) in QT ;

��w = v � u+ C in QT ;

r'(u) � � = 0; r'(v) � � = 0; rw � � = 0; on �NT := �N � (0; T );

'(u) = '(uD); '(v) = '(vD); w = wD ; on �DT := �D � (0; T );

u(x; 0) = u0(x); v(x; 0) = v0(x); in 
:

(1.1)

where 
 � IRN (1 � N � 3) is the (bounded) domain occupied by the semiconductor crystal. Here,

C = C(x) denotes the doping pro�le (�xed charged background ions) characterizing the semiconductor

under consideration, '(s) is the pressure function, b(s)=s the mobility of the particles, and F (s; �) the

recombination-generation rate. The boundary @
 splits into two disjoint subsets �D and �N . The

carrier densities and the potential are �xed at �D (Ohmic contacts), whereas �N models the union of

insulating boundary segments.

The standard drift-di�usion model corresponds to '(s) = s; b(s) = s and F (u; v) = q(u; v)(u2i (x)�
uv); where q(u; v) is a positive function and ui(x) > 0 is the so-called intrinsic density. The standard

model can be derived from Boltzmann's equation under the assumption that the semiconductor device

is in the low injection regime (i.e. for small absolute values of the applied voltage). It is shown in

[24] that in the high injection regime the di�usion terms are no longer linear. An useful choice of

function '(s) is the one given by '(s) = s� for any s � 0 and with � = 5
3
:With this pressure function,

the equations in (1.1) become of degenerate type, and the existence of solutions does not follow from

standard theory. In this paper we present results including both the low injection case as well as the

high injection case.

The function ' can be interpreted in the language of gas dynamics. We assume that the particles

behave (thermodynamically spoken) as an ideal gas such that the gas law ' = u� holds (' denotes

the pressure, � the particle temperature). In the isothermal case � =const. the pressure turns

out to be linear: '(u) = u. In the isentropic case, however, the temperature (only) depends on the

concentrations. Then �(u) = u2=3 holds for particles without spin in adiabatic and hence for isentropic

states [10], which reads '(u) = u5=3. And an analogous expression holds for the holes.

In the isentropic (or high injection) case, the functions b(s) = s and F (u; v) = �uv(u� + v�) with

� = 2=3 are used in [24]. In the present paper we consider functions b(s) and F (u; v) under some

general assumptions which are ful�lled in all the above cases.

The standard (low injection) model has been mathematically and numerically investigated in many

papers (see [33], [34] and references therein). The existence and uniqueness of weak solutions have been

shown. The isentropic (high injection) model for b(s) = s and a monotonic function F (including the

non Lipschitz continuous case) was analyzed in [22], [23], [25] and [24]. There, the existence of weak

solutions has been proved. However, there is a lack on results concerning the uniqueness of solutions

when the system actually degenerates. Furthermore, there are no results for general mobility functions.

This paper is devoted to the proof of the existence and the uniqueness of weak solutions for monotone

pressure functions ' satisfying '0(0) = 0 and for general smooth functions b(s) and F (s; �) (see next

section for the precise assumptions).

The outline of the paper is as follows. In Section 2 we present the assumptions on the data of

the problem and prove the existence of weak solutions by means of a regularization technique that

involves the consideration of a non degenerate problem for which existence of solutions is proven by

a �xed point argument. In Section 3 we study the uniqueness of solutions and present three results

depending, mainly, on the behaviour of function ' (strictly increasing or non decreasing) and on the

regularity of solutions.
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2. Existence of solutions

In this section we prove the existence of weak solutions of problem (1.1). The main result is Theorem

2.1 where we prove the existence of such solutions in the most interesting case: when the parabolic

equations of (1.1) are of degenerate type. The transport terms div(b(u)rw) and div(b(v)rw) are the
main di�culty in the proof due to the fact that natural a priori estimates of the problem are obtained

in terms of '(u) (with '0(0) = 0) and their spatial derivatives meanwhile transport terms contain b(u)

and b(v) that, in general, are not bounded by the former.

This di�culty leads us to consider an auxiliar non degenerate problem for which we obtain existence

of weak solutions (Theorem 2.2) and that allows us, by means of techniques of regularization and

passing to the limit, to prove the result for the general formulation.

Before stating the �rst result we introduce a set of assumptions on the data as well as the de�nition

of weak solution of (1.1) and some consequences of the Sobolev's embedding theorems that we shall

use.

Assumptions on the data.

H1. 
 � IRN , N � 3, is an open, bounded and connected set. The boundary of 
, @
; is of class

C1;1 and its (N � 1)�dimensional Haussdorf measure is �nite; @
 splits in two disjoint components

�D (with positive measure) and �N (open in @
). We assume that for any function  satisfying8<
:

� 2 Ls(
)
 = 0 on �D
r �  = 0 on �N

(2.1)

the regularity  2W 2;s(
), for s 2 [1;1) holds. Finally, we suppose that T > 0 is �xed arbitrarily.

Definition. A function f : IRn ! IR is sublinear if there exists a positive constant c such that

jf(s1; :::; sn)j � c

 
1 +

nX
i=1

jsij
!
; 8 (s1; :::; sn) 2 IRn:

H2. We assume that

' 2 C([0;1)) \ C1((0;1)); '(0) = 0; ' non decreasing,

F 2 C0;1loc ([0;1)
2
; IR), (2.2)

b 2 C1loc([0;1)) is sublinear and satis�es

jb0(s)j � c (1 + '0(s)) ; 8 s 2 [0;1) ; (2.3)

for some constant c > 0.

H3. The auxiliary data satisfy

u0; v0 2 L1(
); u0 � 0; v0 � 0 in 
;

'(uD); '(vD) 2 L1(0; T ;H1(
)) \ L1(QT ) \H1(0; T ;L2(
));

wD 2 L1(0; T ;W 2;1(
)):

We also assume that C 2 L1(QT ):

H4. If both F and b are nonlinear then we assume that '�1 2 C0;�([0;1)), for some � 2 (0; 1).

We remark that the property assumed for (2.1) actually represents a condition on the contact

angles of the boundary segments �D and �N (see, e.g., [32]). In particular, if both components of the
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boundary are open and closed (so they do not meet) then the assumption is a well known result (see,

e.g., [41]). As stated in (2.2), in this article we shall consider a Lipschitz continuous recombination-

generation term F . The case of a monotone F was already treated in [24] obtaining similar results on

the existence of weak solutions under somehow stronger conditions on ' and b. As shown in [12], a

monotone non Lipschitz continuous recombination-generation term may imply the formation of dead

cores (sets where the components u; v of the solution vanish even when the initial data are strictly

positive) and play an important role in applications through the phenomenon known as vacuum

solutions (see [12]). We consider a notion of weak solution similar to that introduced in [1]:

Definition of weak solution. Set

V :=
�
z 2 H1(
) : z = 0 on �D

	
;

and assume H3. Then (u; v; w) is a weak solution of (1.1) if the following properties hold:

(i) u; v 2 L1(QT ), '(u) 2 '(uD)+L2(0; T ;V), '(v) 2 '(vD)+L2(0; T ;V) and w 2 wD+L2(0; T ;V)\
L1(QT ).

(ii)

Z T

0

hut; �i+
Z T

0

Z



(r'(u)� b(u)rw) � r� =
Z T

0

Z



F (u; v)�;Z T

0

hvt; �i+
Z T

0

Z



(r'(v) � b(v)rw) � r� =
Z T

0

Z



F (u; v)�;Z T

0

Z



rw � r� =
Z T

0

Z



(v � u� C) �

(2.4)

for any test function � 2 L2(0; T ;V) (notice that due to (2.2) F (u; v) 2 L2(QT )).

(iii) ut; vt 2 L2(0; T ;V 0) and the initial data are veri�ed in the following sense:

Z T

0

hut; �i+
Z T

0

Z



(u� u0) �t = 0;Z T

0

hvt; �i+
Z T

0

Z



(v � v0) �t = 0;

(2.5)

for any test function � 2 L2(0; T ;V) \W 1;1(0; T ;L2(
)) with �(T ) = 0.

We shall use the notation:

kjf jk := kfkL1(0;T ;L2(
)) + kfkL2(0;T ;V) ; 2� :=

8<
:

6 if N = 3;

s 2 [1;1) if N = 2;

1 if N = 1;

k�kLp := k�kLp(QT )
and k�kLp(Lq) := k�kLp(0;T ;Lq(
)) :

The following lemma is a consequence of Sobolev's Theorem and standard inequalities (see [20]):

Lemma 2.1 Suppose that f 2 L1(0; T ;L2(
)) \ L2(0; T ;V) and let

1 � r < 4(1� 1

2�
): (2.6)

Then there exist a positive constant C(
) such that

kfkLr(QT )
� C(
) kjf jk :

Next we state the main result of this section:
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Theorem 2.1 Assume H1-H4 and that the auxiliary data satisfy

k � u0; v0 � m � 0 a.e. in 
 and

'(ke�0t) � '(uD); '(vD) � '(me��1t) � 0 a.e. in �DT ;

for some non negative constants k;m; �0; �1: Then there exists a � � 0 independent of ' such that the

problem (1.1) has, at least, one weak solution verifying

ke�t � u; v � me��t � 0 a.e. in QT ;

u; v 2 C([0; T ] ;V 0);
w 2 L1(0; T ;W 2;s(
)) for all s 2 [1;1):

Moreover, if ' 2 C1([0;1)) thenp
'0(u)ru;

p
'0(v)rv 2 L2(QT ):

The proof of this theorem is based on the following previous result for the non degenerate problem:

Theorem 2.2 Assume H1-H3 and let ' be a sublinear strictly increasing function. Suppose that '�1

is Lipschitz continuous and that F is sublinear. Assume that

k � u0; v0 � m � 0 a.e. in 
 and

'(ke�0t) � '(uD); '(vD) � '(me��1t) � 0 a.e. in �DT ;

for some non negative constants k;m; �0; �1: Then there exists a � � 0 independent of ' such that

problem (1.1) has, at least, a weak solution verifying

ke�t � u; v � me��t � 0 a.e. in QT and (2.7)

u; v 2 C([0; T ] ;L1(
));
w 2 L1(0; T ;W 2;s(
)) for all s 2 [1;1):

The proof of Theorem 2.2 is based on a �xed point technique. To de�ne the �xed point operator in

Lp spaces we need, due to the lack of regularity of the term rb(u) � rw, to uncouple problem (1.1)

and to consider two auxiliary problems (see (2.10) and (2.11)). First we apply a �xed point argument

to obtain the existence of solutions, (u; v), of (2.10) and we also show that this solution satis�es (2.7).

Then, we solve problem (2.11) and use again a �xed point argument to couple the system, obtaining

in this way a weak solution of (1:1) with the property (2.7). The additional regularity is obtained by

applying general results on Lp spaces (see [39]).

Proof of Theorem 2.2.

Step 1. Let T > 0; 0 < � < c�; with c� a positive constant to be �xed and p an exponent satisfying

the following restriction:

r

r � 2
< 3 < p < r; (2.8)

with r given in (2.6). Consider the set

K :=
�
h 2 Lp(0; T ;W 2;p(
)) : �h 2 L1(QT ); h = 0 on �DT ; k�hkLp + krhkL2 � �

	
: (2.9)

Clearly,K is convex. Moreover, as 2 � Np
N�p

(due to the choice of p) it follows that k�wkLp+krwkL2 is

a norm in Lp(0; T ;W 2;p(
)) and thereforeK is weakly compact in Lp(0; T ;W 2;p(
)). These properties

of K will be used later to apply a �xed point argument. Given h 2 K we introduce the problems8>>>><
>>>>:

ut � div (r'(u)� b(u)rh) = F (u; v) in QT ;

vt � div (r'(v) + b(v)rh) = F (u; v) in QT ;

r'(u) � � = 0; r'(v) � � = 0; on �NT ;

'(u) = '(uD); '(v) = '(vD); on �DT ;

u(x; 0) = u0(x); v(x; 0) = v0(x); in 


(2.10)
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and 8<
:

��w = v � u� C in QT ;

w = wD on �DT ;

rw � � = 0 on �NT ;

(2.11)

with similar notions of weak solutions as for problem (1.1).

Step 2. De�nition of the �xed point operator for (2.10). Consider the problems8<
:

ut ��'(u) = f in QT ;

'(u) = '(uD) on �D; r'(u) � � = 0 on �N;

u(x; 0) = u0(x) in 


(2.12)

and 8<
:

vt ��'(v) = g in QT ;

'(v) = '(vD) on �D; r'(v) � � = 0 on �N;

v(x; 0) = v0(x); in 
;

(2.13)

with f; g 2 L2(QT ). Since these problems are uniformly parabolic, from well known results (see,

e.g., [1], [5], [30]) we have that (2.12) and (2.13) have a unique weak solution u; v 2 Lr(QT ) \
C([0; T ];L1(
)); '(u) 2 '(uD) + L2(0; T ;V), '(v) 2 '(vD) + L2(0; T ;V), where r was given in (2.6).

We introduce the set

K� :=
�
(f; g) 2 L2(QT�)� L2(QT�) : kfkL2 ; kgkL2 < R

	
; 0 < T � � T;

which is convex and weakly compact in L2(QT�)� L2(QT�), and the mapping Q : K� ! L2(QT�)�
L2(QT�) given by

Q(f; g) := (F (u; v)� div(b(u)rh); F (u; v) + div(b(v)rh)) ;
where u; v are the solutions of (2.12), (2.13). It can be shown that, as a consequence of (2.3) and the

sublinearity of F and b, the operator Q is well de�ned. Notice also that a �xed point of Q is a weak

solution of (2.10). To prove the existence of such a point we search for R and T � such that

(i) Q(K�) � K�; and

(ii) Q is weakly-weakly sequentially continuous in L2(QT�)� L2(QT�),

that will allow us to apply the Arino, Gauthier and Penot's �xed point theorem [4] to conclude the

result. Since problems (2.12) and (2.13) share the same structure we shall only work out the properties

that solutions of (2.12) satisfy, being those of (2.13) obtained in an identical manner.

Step 3. A priori estimates for problems (2.12) and (2.13) and proof of Q(K�) � K�: This last

condition reads as

Iu := kF (u; v)�rb(u) � rh� b(u)�hkL2 � R; (2.14)

and similarly for v. Taking � = '(u)� '(uD) as a test function for problem (2.12) we getZ



�(u(t)) +

Z
QT

jr'(u)j2 =

Z



�(u0)�
Z
QT

(u� u0)'(uD)t +

Z



(u(t)� u0)'(uD)

+

Z
QT

r'(u) � r'(uD) +
Z
QT

f ('(u)� '(uD)) ; (2.15)

with �(s) :=

Z s

0

'(�)d�. Using that '�1 is Lipschitz continuous and standard inequalities we get

from (2.15)

k�(u)kL1(L1) + kr'(u)k2L2 � �+ kfk2L2 ; (2.16)
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where � is a positive constant depending only on the initial and boundary data. Then, from Lemma

2.1 and f 2 K� we get

kukLr � c kjujk � c (� +R) : (2.17)

Since r > 2, we have

kukL2 � A0(T
�) kukLr � cA0(T

�) (� +R) ; (2.18)

with A0(T
�) := jQT� j

r�2
2r and, since ' is sublinear, we have that there exists a continuous non

decreasing function � : (0;1)! (0;1) such that

kr'(u)k2L2 � �+ �(T �); (2.19)

with �(T �)! 0 as T � ! 0 (see [16], Lemma 6). We are now ready to estimate the terms in (2.14): F

sublinear and (2.18) imply

kF (u; v)kL2 � cA1(T
�); (2.20)

with A1(T
�) := A0(T

�) (� + 2R)+ jQT� j1=2 and c a positive constant that shall vary along the proof.
Now, from (2.3), (2.19) and the regularity of h we get

krb(u) � rhkL2 � c kr'(u)kL2 krhkL1 � c (� + �(T �)) krhkL1 ; (2.21)

and since b is sublinear

kb(u)�hkL2 � kb(u)kL2 k�hkL1 � cA2(T
�) k�hkL1 ; (2.22)

with A2(T
�) := jQT� j

1
2 + jQT� j

r�2
2r (� +R). Gathering (2.20), (2.21) and (2.22) we obtain

Iu � cA1(T
�) + c (� + �(T �)) krhkL1 + cA2(T

�) k�hkL1 ;

and as we want Iu � R, it is su�cient to make

cA1(T
�) + c (� + �(T �)) krhkL1 + cA2(T

�) k�hkL1 � R: (2.23)

Since A1; A2; � are non decreasing continuous functions in IR+ , we have that, �xing R such that

R > cA1(T ) + c (�(u0; '(uD)) + �(T )) krhkL1(QT )
+ cA2(T ) k�hkL1(QT )

;

inequality (2.23) is satis�ed for all T � 2 [0; T ]. An identical argument allows us to get Iv � R.

Therefore, we have proven the existence of a radius R and an instant T � (that can be taken as

T � = T ) such that Q(K�) � K�:

Step 4. Continuity of Q. Consider any sequence (fj ; gj) � K� * (f; g) weakly in L2(QT ) �
L2(QT ); and let us show that

div(b(uj)rh)* div(b(u)rh) in L2(QT ) and

F (uj ; vj)* F (u; v) in L2(QT );

where uj , vj , u, v are the solutions of (2.12), (2.13) associated to fj ; gj , u; v, respectively. By (2.17)

we have that there exists a subsequence uj such that kujkLr � c kjuj jk � const. and therefore also

holds kujtkL2(0;T ;V0)
� c: Passing to a subsequence, if necessary, we obtain

uj * u weakly in Lr(QT );

uj ! u strongly in L2(QT ) and a.e. in QT ;

ruj * ru weakly in L2(QT );

ujt * ut weakly in L2(0; T ;V 0):
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Since F is sublinear, k(F (uj ; vj)kLr �const., because uj ; vj are bounded in Lr(QT ), so F (uj ; vj) *
~F , for some ~F 2 Lr(QT ). Moreover, the continuity of F together with the a.e. convergence of

uj ; vj implies that F (uj ; vj) ! F (u; v) a.e. in QT� , and therefore ~F � F (u; v), i.e. F (uj ; vj) !
F (u; v) in Lr(QT ): A similar argument shows that b(uj) ! b(u) in Lr(QT ): Finally div(b(uj)rh) =
rb(uj) � rh + b(uj)�h and since rb(uj) * rb(u) and b(uj) ! b(u) in Lr(QT ) and rh;�h 2
L1 it follows that div(b(uj)rh) * div(b(u)rh) in L2(QT ): Hence, Q is weakly-weakly sequentially

continuous. By the �xed point theorem [4] we have that there exists a weak solution (u; v) of (2.10)

with the same regularity obtained for the solutions of (2.12) and (2.13) when f; g 2 L2(QT ) is assumed.

Step 5. Lower bound and L1 regularity of u; v: We introduce the change of unknowns U := ue��t

and V := ve��t with � > 0 in problem (2.10) so (U; V ) satis�es8>>>>><
>>>>>:

Ut + �U � e��tdiv
�r'(e�tU)� b(e�tU)rh� = F̂ in QT ;

Vt + �V � e��tdiv
�r'(e�tV ) + b(e�tV )rh� = F̂ in QT ;

r'(e�tU) � � = 0; r'(e�tV ) � � = 0; on �NT ;

'(e�tU) = '(uD); '(e�tV ) = '(vD); on �DT ;

U(x; 0) = u0(x); V (x; 0) = v0(x); in 
;

with F̂ := e��tF (e�tU; e�tV ): To get the lower bound we compare U and V with the function z :=

me�(�+�)t for a suitable � > �1. By assumption, uD � me��1t � me��t and then we can take

Zu := min fU � z; 0g as test function obtainingZ



Zu (U � z)t ��
Z



zZu + �

Z



Z2
u + e��t

Z



r'(e�tU) � rZu =

= �e��t
Z



Zu
�rb(e�tU) � rh+ b(e�tU)�h

�
+

+e��t
Z



ZuF (e
�tU; e�tV ):

Since b is Lipschitz continuous (with constant Mb), by estimatingZ



Zub
0(e�tU)rZu � rh �Mb

Z



jrZuj2 +Mb krhk2L1
Z



Z2
u

and Z



Zub(e
�tU)�h =

Z



Zu
�
b(e�tU)� b(e�tz) + b(e�tz)

�
�h �

� ce�tMb k�hkL1
�Z




Z2
u +

Z



z jZuj
�

we obtain

d

dt

Z



Z2
u + �0

Z



z jZuj+ �0
Z



Z2
u � e��t

Z



ZuF (e
�tU; e�tV ); (2.24)

with �0 := � � cMb k�hkL1 , �0 := � �Mb krhk2L1 � cMb k�hkL1 , c > 0 and where we have used

that ��Zu = � jZuj : Since F is Lipschitz continuous we can use a similar argument to show that

ZuF (e
�tU; e�tV ) � c1Zu

�
Zu + Zv + F (e�tz; e�tz)

�
; (2.25)

with Zv := (V � z)� and c1 > 0. Adding to (2.24) the analogous inequality for V we get in the right

hand side of the resulting inequality the term

e��t
Z



F (e�tU; e�tV ) (Zu + Zv) ;
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which using (2.25) and the analogous estimate for ZvF (e
�tU; e�tV ) may be estimated as

e��t
Z



F (e�tU; e�tV ) (Zu + Zv) � c1

Z



�
Z2
u + Z2

v + z jZuj+ z jZvj
�
:

Then, for � �Mb krhk2L1 + cMb k�hkL1 + c1 and � � cMb k�hkL1 + c1 (notice that neither � nor

� depend on ') we obtain

d

dt

Z



�
Z2
u + Z2

v

� � 0;

from where the result follows. The estimate u; v 2 L1(QT ) is obtained in a similar way and we omit

therefore the proof (see, e.g., [20] for details).

Step 6. End of the proof of existence of local solutions of (1.1). Let ~T 2 (0; T ], to be �xed, h 2
~K (de�ned in (2.9) with T changed by ~T ) and u; v be solutions of (2.12), (2.13) associated to h.

Consider the problem (2.11) in Q ~T . Since u; v; C 2 L1(Q ~T ) (2.11) has a unique solution w 2
L1(0; ~T ;W 2;s(
)) � Lp(0; ~T ;W 2;p(
)); for all s 2 (p;1). De�ne P : ~K ! Lp(0; ~T;W 2;p(
)) by

P (h) = w; being w such solution. Notice that if w is a �xed point for P then (u; v; w) is a solution of

(1.1). To prove the existence of a �xed point we use the same technique than before, showing that

(i) P ( ~K) � ~K; i.e., �w 2 L1(QT ), and k�wkLp < � and

(ii) P is weakly-weakly sequentially continuous in Lp(0; ~T ;W 2;p(
)).

From (2.11):

k�wkLs � kukLs + kvkLs + kCkLs ; for all s 2 [1;1]: (2.26)

Multiplying the equation in (2.11) by w�wD and using H�older and Poincar�e's inequalities we obtain

krwkL2 � c (kukL2 + kvkL2 + kCkL2 + kwDkL2 + krwDkL2) : (2.27)

From (2.26), (2.27) and p > 2 we get

k�wkLp + krwkL2 � c (kukLp + kvkLp + kCkLp + kwDkL2 + krwDkL2) : (2.28)

By (2.8) we have p < r and therefore

kukLp � A( ~T ) kukLr � cA( ~T ) kjujk ; (2.29)

with A( ~T ) := jQ ~T j
rp

r�p . Assume that the estimate

kjujk � G(�; ~T ) (2.30)

holds, where G is continuous, bounded as a function of ~T and increasing with respect to � in an interval

(0; c�) with c� small enough. This estimate will be proven later on (see step 7). Then, from (2.29)

kukLp � cA( ~T )G(�; ~T ): A similar estimate holds for v. Since C 2 L1(Q ~T ) and wD 2 L1(0; T ;H1(
))

we have kCkLp+kwDkL2 +krwDkL2 = B0( ~T ) for a non decreasing continuous function B0 satisfying

B0(0) = 0. From (2.28) we deduce

k�wkLp + krwkL2 � A( ~T )G(�; ~T ) +B0( ~T );

and since we want to make k�wkLp � �, it su�ces to �nd a ~T > 0 such that

A( ~T )G(�; ~T ) +B0( ~T ) = �:

Since G is bounded as a function of � and A( ~T ); B0( ~T ) # 0 as ~T # 0 it is straightforward to see that

such ~T exists, so (i) is satis�ed.
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To prove the continuity we consider a sequence hn in ~K such that hn * h in Lp(0; ~T ;W 2;p(
))

and we show that wn * w in Lp(0; ~T ;W 2;p(
)), being wn; w solutions of (2.11) associated to hn; h.

Since hn 2 ~K, k�hnkLp � � < c�, and then from (2.30) we get kjunjk ; kjvnjk � G(c�; ~T ) �const., and
therefore, kunkLr ; kvnkLr �const. Then un * u in Lr(Q ~T ); and analogously for vn, and therefore

�wn * �w in Lr(Q ~T ) � Lp(Q ~T ); because p < r . We deduce from the �xed point theorem [4] that

P has a �xed point, (u; v; w), which is a weak solution of (1.1) in Q ~T with the regularity inherited

from problems (2.10) and (2.11). Moreover, since the estimates are continuous with respect to ~T we

can take ~T = T , so the solution is global in time. Let us, �nally, prove estimate (2.30):

Step 7. Estimating kjujk2 + kjvjk2 of problem (2.10). Taking '(u)�'(uD) as test function for (2.10)

and reasoning as in (2.15) (with f := F (u; v)� div(b(u)rw)) we get

k�(u)kL1(L1) + kr'(u)k2L2 � �+

Z
QT

F (u; v) ('(u)� '(uD)) + (2.31)

+

Z
QT

b(u)rh � r ('(u)� '(uD)) ;

with � depending only on the auxiliary data. Since F is sublinear we again get (2.20). De�ning

B(s) := b(s)'(s) �
Z s

0

b0(�)'(�)d� and using the assumptions on sublinearity on '; b and (2.3) we

get jB(s)j � c(1 + jsj+ s2): We haveZ
QT

b(u)rh � (r'(u)�r'(uD)) = �
Z
QT

(B(u)�B(uD))�h�

�
Z
QT

(b(u)� b(uD))rh � r'(uD):

The �rst term is estimated asZ
QT

(B(u)�B(uD))�h � kB(u)�B(uD)kLp0 k�hkLp �

� c
�
jQT j1=p

0

+ kuk2L2p0 + kuDk2L2p0

�
k�hkLp ;

and since h 2 K, and 2p0 � r due to the choice of p (see (2.8)), we deduce kukL2p0 � c kukLr � c kjujk
and thereforeZ

QT

(B(u)�B(uD))�h � c
�
jQT j1=p

0

+ kuDk2L2p0 + kjujk2
�
�:

Second term is estimated as follows:Z
QT

(b(u)� b(uD))rh � r'(uD) � kb(u)� b(uD)kLr(L2) krhkLp(L1) kr'(uD)kL2 ;

and since b is sublinear and 2 < r we haveZ
QT

(b(u)� b(uD))rh � r'(uD) � c kr'(uD)kLq(L2)

�
jQT j1=p

0

+ kuDkLr + kjujk
�
�

� �2 kjujk2 + c kr'(uD)k2L2 +

+c� kr'(uD)kLq(L2)

�
jQT j1=p

0

+ kuDkLr
�
:

Proceeding in a similar way for the v equation we get from (2.31) that�
kjujk2 + kjvjk2

�
� �1(�) + c

�
kjujk2 + kjvjk2

��
�+ �2

�
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with �1(�) := c1 + c2�; and c1; c2 depending on the norms of the auxiliary conditions and on T

(continuous and non decreasingly). Hence, de�ning G(�; T ) :=
�1(�)p

1� c (�+ �2)
with � 2 (0; c�) and

c� := min
�
1; 1

2c

	
we �nish.

Now we can a�ord the

Proof of Theorem 2.1. The proof uses a regularization technique and the Theorem 2.2. In view of

the constructive method that we shall use in one of the uniqueness results, we consider two di�erent

regularizations of problem (1.1) depending on whether ' is a strictly increasing or a non decreasing

function. In the �rst case we consider the following perturbation of the auxiliary data8<
:

'"(uD) = '(uD) + '("e��1t) on �DT ;

'"(vD) = '(vD) + '("e��1t) on �DT ;

u0" = u0 + "; v0" = v0 + " in 
;

(2.32)

for some �1 > 0; remaining the other auxiliary conditions the same, and we consider the function

'"(s) :=

8<
:

'("e��T ) exp
�
�(s� "e��T )

	
si s < "e��T ;

'(s) si s 2 ["e��T ; k];

'0(k)s+ '(k) � k'0(k) si s � k;

(2.33)

where k is an L1 bound of the auxiliary data and � :=
'0("e��T )

'("e��T )
, so the matching is C1, '"(0) > 0

and '0"(s) > 0 in s � 0. It is straightforward to check that the sequence of problems (1.1)" associated

to the data (2.32) and the function (2.33) satisfy the conditions of Theorem 2.2. Finally, since ' and

'" coincides in the range of u"; v" we may assume that ' � '".

In the second case, in which ' is non decreasing, we consider for each " > 0 the regularization

given by '"(s) := '(s) + "s (without any change in the auxiliary conditions) and proceed in a similar

way than above to show that the requirements of Theorem 2.2 are satis�ed, obtaining therefore

the existence of a sequence of solutions of (1.1)" with the regularity and properties stated in that

proposition.

A priori estimates. In both cases we proceed in a similar way: we use '"(u") � '(uD") as a test

function for the �rst equation in (1.1) and as in the step 7 of the proof of Theorem 2.2 we obtain

sup
0�t�T

Z



�(u"(t)) +

Z
QT

jr'(u")j2 + "

Z
QT

jru"j2 � C; (2.34)

with C independent of " (because the L1 bounds of u"; v" are independent of '"). Using now

� 2 L2(0; T ;V) as a test function we get�����
Z T

0

hu"t; �iV0;V
����� � kr'"(u")kL2 kr�kL2 + kb(u")kL1 krw"kL2 kr�kL2 +

+ kF (u"; v")kL2 k�kL2 ;

from where we deduce

ku"tkL2(0;T ;V0) � c; (2.35)

with c independent of ". A similar estimate holds for v". From the third equation of (1.1) we get

k�w"kL1(QT )
� kv" � u" + CkL1(QT )

� const. (2.36)
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Therefore, by (2.34)-(2.36) and standard compactness results we can extract subsequences (labeled

again by ") such that

u"*u weakly � in L1(QT );

'(u")* � weakly in '(uD) + L2(0; T ;V);
u"t * ut weakly in L2(0; T ;V 0);
"1=2u" * 0 weakly in L2(0; T ;V);
w"*w weakly � � weakly in L1(0; T ;W 2;s(
)); for all s <1:

(2.37)

From the compact imbedding L1(
) � H�1(
) and Corollary 4 (p. 85) of [39] we also have that

u" ! u in C([0; T ];V 0);
and since ' is continuous and non decreasing we have that ��'(�) is a maximal monotone graph in

L2(0; T ;V 0), and therefore, it is strongly weakly closed in such space (see, e.g., [8]), from where we

deduce that � = '(u).

Assume, now, that H4 holds. In order to pass to the limit on b(u") and F (u"; v") we shall prove

that u" ! u in Lq(QT ) for all q < 1: To do that we use a modi�cation of the arguments given in

[17], [31] (see also [19]). De�ning the space

H = fu 2 L2=�(0; T ;W�;2=�(
)); ut 2 L2(0; T ;V 0)g;
it is easy to see that un is uniformly bounded in H: Then, from the compact imbedding H � L2=�(QT )

we conclude that there exists a subsequence of un such that

un ! u strongly in L2=�(QT ) and a.e. in QT :

This fact together with the weak � convergence of u" to u in L1(QT ) implies that u" ! u in Lq(QT )

for all q <1. And similarly for v.

Identi�cation of the limit. With the above convergences we are ready to identify the limit (u; v; w) as

a solution of (1.1). Let � 2 L2(0; T ;V) be a test function. By (2.37) it is clear thatZ T

0

hu"t; �i !
Z T

0

hut; �i and

Z T

0

Z



r'(u") � r� !
Z T

0

Z



r'(u) � r�:

From the convergence a.e. in QT of u"; v" to u; v we get F (u"; v") ! F (u; v) a.e. in QT ; and since

F is Lipschitz continuous we obtain

kF (u"; v")kL2 � c (ku"kL2 + kv"kL2 + 1) � const.;

so F (u"; v")* ~F 2 L2(QT ). Lebesgue's theorem implies ~F � F (u; v), and thereforeZ T

0

Z



F (u"; v")� !
Z T

0

Z



F (u; v)�:

We also have that since b(u") is bounded in L1(QT ) (b is continuous in [0;1)) and since b(u") is

bounded in L1(QT ) and w" ! w in L2(0; T ;V) (due to the compact imbedding L2(0; T ;W 2;2(
)) �
L2(0; T ;V)) then we getZ

QT

b(u")rw" � r� !
Z
QT

b(u)rw � r�: (2.38)

It also holds rw 2 L1(QT ) because w 2 L1(0; T ;W 2;s(
)) for all s <1 and b(u")* b(u) in L2(QT )

because of the continuity of b and a.e. in QT convergences of u" to u. HenceZ
QT

b(u")rw � r� !
Z
QT

b(u)rw � r�: (2.39)
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We deduce from (2.38) and (2.39) thatZ
QT

(b(u")rw" � b(u)rw) � r� ! 0;

from where we have identi�ed u as the �rst component of a solution of (1.1). The other components

are handled in a very similar way and we skip therefore the proof. In the case in which H4 does not

hold, i.e., when both b and F are linear functions, the passing to the limit is easier since we do not

need to enssure the a.e. convergence of u"; v" to u; v. In this situation the identi�cation of the limit is

just a consequence of the weak convergences in (2.37). Finally, from [3], Theorem 2.2, we obtain the

additional regularityp
'0(u)ru;

p
'0(v)rv 2 L2(QT ):

To �nish, notice that since for all " > 0 we have, due to Theorem 2.2, that (2.7) holds for any " > 0

we deduce that this property also holds in the limit "! 0.

Remark. The technique we have used is also applicable when F (u; v) is a maximal monotone graph

(see [15] for a likely system but without transport terms). We also point out that functions '(u) and

'(v) (as well as b(u) and b(v)) may be di�erent as long as they ful�ll the assumptions given on the

data.

3. Uniqueness of solutions

As in the question of existence, the main di�culty to prove uniqueness of solutions relies in the

simultaneous presence of a transport term and a non linear (degenerate) di�usion term. This kind of

di�culty has already received the attention of many authors and has been solved for scalar equations

of the type

ut � div (r'(u) + b(u)e) = F (u); (3.1)

where e is a prescribed vector �eld. The most successful technique developed to prove uniqueness

of solutions of this problem is based on the use of the test function sign+(u1 � u2) in (3.1), where

u1; u2 are solutions in some sense. The core of this technique is to show that the solution has enough

regularity to de�ne the sign function as an admissible test function. This justi�cation has been carry

out by di�erent means. One of them, introduced by Kruzhkov in [28] to prove an L1 contraction

property of entropy solutions of hyperbolic equations, is based in doubling the time variable and

performing a passing to the limit in which these variables collapse. This technique has been also

applied to parabolic scalar equations (see, e.g., [29], [9], [18], [19] and [35]) and, recently, in [36], also

to certain systems of parabolic equations coupled through reaction terms (but not through transport

terms). However, systems coupled through transport terms in which transport is not dominated by

di�usion (say b0 � c'0 does not hold), have not been, as far as we know, solved by using this technique,

so other means have to be applied.

We present in this section three theorems on the uniqueness question for problem (1.1) that share

the duality technique in their proofs, i.e., the searching of suitable test functions that allow, by means

of di�erent arguments in each theorem, to conclude the uniqueness property.

The �rst result has been obtained by using a technique introduced by Antontsev, D��az and Do-

mansky [2] for a system of two-phase �ltration in porous medium. Here we assume (b0(s))
2 � c'0(s);

that holds in the important case when di�usion and transport are both linear and also in the case in

which they are degenerate in a suitable way. It is worth noting that this type of condition also arises

as su�cient condition to ensure the existence of strong solutions of (3.1) (see [6]).

The second result uses a technique introduced by Rulla [37] for a scalar equation in the Stefan

problem with prescribed convection. In this case we only assume that ' is non decreasing, but an

entropy type condition for the electric �eld on the Dirichlet boundary must be introduced: rw �� = 0
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on �DT . Conditions of this type are already classical in the literature of hyperbolic equations (see

[28]) and they arise as natural conditions that allow to select a unique solution (the so called entropy

solution) when uniqueness fails for weak solutions (see also [9]).

Our last theorem applies to the case in which problem (1.1) has strong solutions in the following

sense: u; v 2 L1(0; T ;W); with

W :=
�
h 2 W 1;p(
) : h = 0 on �D

	
: (3.2)

with p > N if N � 2 and p = 1 if N = 1. To obtain the result we used a method due to Kalashnikov

[26] which consists of making a comparaison between an arbitrary weak solution of (1.1) and the

weak solution constructed as the limit of a sequence of solutions of regularized problems (see Theorem

2.1). Our result is strongly based on the technique introduced by D��az and Kersner [13] to study

a one dimensional scalar equation (this technique was later used in [7] for an N�dimensional scalar
equation) and, to achieve it, we generalized a comparaison argument introduced in [13] to handle some

singular boundary integrals.

In the sequel we shall assume that the component w of solutions is non trivial in the sense that

krwkL2(QT )
6= 0. On the contrary, the system reduces to the equation ut ��'(u) = F (u; u� C); in

fact simpler than (3.1) that, as we already mentioned, is well understood.

Theorem 3.1 Suppose that assumptions H1-H3 hold and that there exists a constant M > 0 such

that

(b0(s))
2 �M'0(s) for any s > 0 (3.3)

and �
@

@si
F (s1; s2)

�2

�M'0(si); for any si > 0; i = 1; 2: (3.4)

Then problem (1.1) has a unique solution in the class of weak solutions such thatp
'0(u)ru;p'0(v)rv 2 L2(QT );

w 2 L1(0; T ;W 1;1(
)):

Proof. Suppose that (u1; v1; w1) and (u2; v2; w2) are two weak solutions of (1.1) and de�ne u := u1�u2,
v := v1 � v2; w := w1 � w2, Fi := F (ui; vi), i = 1; 2 and F̂ := F1 � F2. Then (u; v; w) satis�es8<

:
ut ��('(u1)� '(u2)) + div (b(u1)rw + (b(u1)� b(u2))rw2) = F̂ ;

vt ��('(v1)� '(v2))� div (b(v1)rw + (b(v1)� b(v2))rw2) = F̂ ;

��w + u� v = 0;

(3.5)

in QT with the auxiliary conditions8<
:

r'(ui) � � = 0; r'(vi) � � = 0; rw � � = 0 on �NT ;

'(ui) = '(uD); '(vi) = '(vD); w = 0 on �DT ;

u(x; 0) = 0; v(x; 0) = 0 in 
;

i = 1; 2. Taking  ; �; � as smooth test functions for each of the three equations in (3.5), integrating

by parts and adding the resulting integral identities we obtainZ



 (T )u(T ) + �(T )v(T ) =

Z
QT

u ( t +Au� +Bu � r + � + Fu ( + �)) +

+

Z
QT

v (�t +Av�� �Bvr� � � + Fv ( + �)) +

�
Z
QT

wdiv (b(u1)r � b(v1)r� +r�) ; (3.6)
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where Au :=
'(u1)� '(u2)

u
, Bu :=

b(u1)� b(u2)

u
rw2 and Fu :=

F (u1; v1)� F (u2; v1)

u
whenever

u 6= 0 and Au = Bu = Fu = 0 if u = 0, and similar de�nitions for Av;Bv and Fv: Notice that since

b 2 C1([0;1)); ui; vi 2 L1(QT ), F is Lipschitz continuous and rw2 2 L1(QT ) we have that Bu; Fu
and Bv ; Fv are bounded in L1(QT ). We de�ne the di�erential operators

L1( ; �; �) :=  t +A"
u� +Bu � r + � + Fu ( + �) ;

L2( ; �; �) := �t +A"
v�� �Bv � r� � � + Fv ( + �) ;

L3( ; �; �) := div (b(u1)r � b(v1)r� +r�) ;

with A"
u := Au+" and " > 0; (and a similar de�nition for A"

v) and set the following problem to choose

the test functions:8>>>>>><
>>>>>>:

L1( ; �; �) = u in QT ;

L2( ; �; �) = v in QT ;

L3( ; �; �) = 0 in QT ;

r � � = r� � � = r� � � = 0 on �NT ;

 = � = � = 0 on �DT ;

 (T ) = �(T ) = 0 in 
:

(3.7)

Lemma 3.1 Problem (3.7) has a unique solution with the regularity of the test functions of (1.1) (see

(2.4) and (2.5)). Moreover,

 ; �; � 2 H1(0; T ;L2(
)) \ L1(0; T ;H1(
)) \ L2(0; T ;H2(
));

and there exists a positive constant C(T ) independent of " such that

"

Z
QT

�
j� j2 + j��j2

�
� C(T ): (3.8)

Continuation of the proof of Theorem 3.1. Introducing in (3.6) these test functions we get

"

Z
QT

(u� + v��) =

Z
QT

�
u2 + v2

�
:

From Young's inequality (with parameter
p
") and (3.8) we obtainZ

QT

�
u2 + v2

� � p
"

Z
QT

�
u2 + v2

�
+
p
"C(T ):

Hence, taking the limit "! 0; we conclude that u � v � 0 a.e. in QT , that also implies w � 0 a.e. in

QT .

Proof of Lemma 3.1.

Step 1. A prori estimates. Due to (3.3) we can estimateZ



(Bu � r )� � �

Z



A"
u j� j2 +

M

�

Z



jr j2 ; (3.9)

for � > 0. A similar estimate holds, thanks to (3.4), for

Z



Fu ( + �)� . Multiplying the third

equation of (3.7) by � and using the regularity ui; vi 2 L1(QT ) and the continuity of b we getZ



jr�j2 � c0(T )

Z



�
jr j2 + jr�j2

�
(3.10)
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with c0(T ) � 0. Finally, multiplying the �rst equation of (3.7) by � and using (3.9), the analogous

expression for the F term and (3.10) we obtain

�1

2

d

dt

Z



jr j2 +
Z



A"
u j� j2 � c

�Z



jr j2 +
Z



jr�j2 +
Z
QT

u2
�
; (3.11)

for a suitable �. From the second equation of (3.7) we obtain a similar inequality for � which, being

added to (3.11) and taking into account that A"
u; A

"
v > " allows us to obtain

�1

2

d

dt

Z



�
jr j2 + jr�j2

�
+
"

2

Z



�
j� j2 + j��j2

�
� c

�Z



�
jr j2 + jr�j2

�
+

+

Z



�
u2 + v2

��
; (3.12)

where c is independent of ". On one hand, we deduce from Gronwall's Lemma thatZ



�
jr (t)j2 + jr�(t)j2

�
� c1(T )e

cT ; (3.13)

with c1(T ) independent of ", and, on the other hand, integrating (3.12) in (0; T ) and using (3.13) we

obtain

"

2

Z
QT

�
j� j2 + j��j2

�
� c2(T )e

cT ; (3.14)

with c2(T ) independent of ". So we deduced (3.8). Finally, from the third equation of (3.7) we have

that

�� = rb(v1) � r� + b(v1)�� �rb(u1) � r � b(u1)� ;

and from (3.3) and the regularity
p
'0(v1)rv1 2 L2(QT ) (see Theorem 2.1) we obtainZ




jrb(v1)j2 =
Z



b0(v1)
2 jrv1j2 � c

Z



'0(v1) jrv1j2 � const. (3.15)

Hence, using H�older and Young's inequalities and estimates (3.10) and (3.15) we obtain the L2(0; T ;H2(
)

regularity of �.

Step 2. Existence of solutions of (3.7). We proceed by a �xed point argument. First we consider the

set

K :=
n
h 2 L2(0; T �;V) : khkL2(0;T�;V) � R

o
;

where T � and R will be suitably chosen. It is clear that K is convex and weakly compact in

L2(0; T �;V). In this set we de�ne the mapping Q : K � L2(0; T �;V) ! L2(0; T �;V) by Q(�̂) := �;

where � is the unique solution of the problem L3( ̂; �̂; �) = 0, ( ̂; �̂) being the unique solution of

� L1( ̂; �̂; �̂) = u;

L2( ̂; �̂; �̂) = v;
(3.16)

with the same auxiliary conditions as in (3.7). Since u; v; �̂ 2 L2(QT�) we have that, thanks to the a

priori estimates in Step 1 of this proof, any weak solution of (3.16) has the regularity

 ̂; �̂ 2 H1(0; T �;L2(
)) \ L1(0; T �;H1(
)) \ L2(0; T �;H2(
)): (3.17)



3. Uniqueness of solutions 17

From this regularity and the linearity of the di�erential operators it follows the uniqueness of solutions

of (3.16). The existence of solutions of (3.16) is proven by uncoupling the problem and applying again

a �xed point technique. Assume for the moment that such a solution exists and, therefore, it is unique

and satis�es (3.17). We have then that the solution of L3( ̂; �̂; �) = 0 satis�es � 2 L2(0; T �;H2(
));

because it is a linear elliptic problem with smooth coe�cients and right hand side term in L2(QT�).

Notice that if Q has a �xed point, �̂, then ( ̂; �̂; �̂) is a solution of (3.7). To prove the existence of

such a �xed point we shall prove that

(i) Q(K) � K, for suitable R; T � > 0;

(ii) Q is weakly-weakly sequentially continuous in L2(0; T �;V),
and apply the �xed point theorem [4]. The �rst point is deduced from the previous a priori estimates,

which will be justi�ed thanks to the regularity of  ̂; �̂ and �. Taking T = T �, from (3.10) we get that

k�kL2(0;T�;V) � c0(T
�)

� ̂
L2(0;T�;V)

+
�̂

L2(0;T�;V)

�
;

and from (3.13) (and the corresponding estimate for �) we obtain ̂
L2(0;T�;V)

+
�̂

L2(0;T�;V)
� c1(T

�) k�̂kL2(0;T�;V) e
cT� :

It follows that

kQ(�̂)kL2(0;T�;V) � c3(T
�)ecT

�

R:

Notice that the functions ci(T
�) are continuous non decreasing with ci(0) = 0 (they depend on the

norms of the data in QT ) and therefore we can take T � small enough to obtain c3(T
�)ecT

� � 1,

deducing Q(K) � K. The second point is a direct consequence of the linearity and a priori estimates

and we omit the proof (see [20]). This �nishes the proof of the existence of a �xed point and, therefore,

of a local solution of (3.7). Notice that the continuity of the estimates with respect to the time implies

that T � = T for any T > 0, i.e., the solution is global in time. Finally, the uniqueness of solutions

is again a consequence of the linearity of the problem and the regularity of the solution. To �nish,

notice that the proof of existence of solutions of (3.16) may be performed in a similar way.

Now we state the second result on uniqueness of solutions of (1.1). The main feature of this theorem

is that it allows to consider a non linear di�usion, ', not necessarily strictly increasing. However, we

need to assume that an entropy type condition on the electric �eld holds on the Dirichlet boundary.

Theorem 3.2 Assume that H1-H3 hold and that b(s) = s. If

rw � � = 0 on �D � (0; T ); (3.18)

and

jF (s1; �1)� F (s2; �2)j � c1 [('(s1)� '(s2)) + ('(�1)� '(�2))] ; (3.19)

then problem (1.1) has a unique solution in the class of weak solutions such that

w 2 L1(0; T ;W 2;1(
)):

Remark. The equality in (3.18) is a consequence of the di�erent sign that the transport terms

have in the equations satis�ed by u and v. Indeed, suppose that there exist two solutions (u1; ~v; w1)

and (u2; ~v; w2). Then, under the conditions of the above theorem, with the equality sign in (3.18)

substituted by �, it is possible to show that u1 � u2 and w1 � w2 a.e. in QT .
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Proof of Theorem 3.2. Following the proof of Theorem 3.1 with b(s) := s, we deduce, from (3.6), the

following identityZ
QT

ut + vt� =

Z
QT

('(u1)� '(u2))� + urw2 � r + u�

+

Z
QT

('(v1)� '(v2))�� � vrw2 � r� � v�

�
Z
QT

wdiv (u1r � v1r� +r�)�
Z
QT

(F1 � F2) ( + �) :

We choose the test functions, for each t 2 (0; T ), as solutions of the problem8>>>><
>>>>:

�� (t) = u(t) in 
;

���(t) = v(t) in 
;

���(t) = div (v1(t)r�(t) � u1(t)r (t)) in 
;

r � � = r� � � = r� � � = 0; on �N ;

 = � = � = 0; on �D :

(3.20)

The existence, uniqueness and regularity of solutions is a consequence of the theory of linear elliptic

equations. Notice that since u; v 2 C([0; T ] ;V 0) we conclude that  (t); �(t) 2 V so, in particular,

v1(t)r�(t) 2 L2(
) and therefore �(t) 2 H1(
). Using these test functions we getZ



�
jr (T )j2 + jr�(T )j2

�
+

Z
QT

[u ('(u1)� '(u2)) + v ('(v1)� '(v2))] =

=

Z
QT

urw2 � r � vrw2 � r +

+

Z
QT

[r � r� �r� � r� + jF1 � F2j j + �j] :

(3.21)

Now we perform the arguments to handle the terms involving u. The terms involving v are similarly

hundled (with a change of sign). Due to the choice of the test functionsZ
QT

urw2 � r =

Z
QT

�� rw2 � r :

As in [37], let us show that (3.18) impliesZ
QT

�� rw2 � r � 1

2
kw2kL1(W 2;1)

Z
QT

jr j2 : (3.22)

Integrating formally by parts the left hand side of (3.22) we getZ



�� (rw2 � r ) =
Z



r � r (rw2 � r )�
Z
@


(rw2 � r ) (r � �) : (3.23)

See [37] for a rigorous derivation of this identity. Using the boundary conditions and  = 0 on �D
imply that r has the same direction as � we obtainZ

@


(rw2 � r ) (r � �) =
Z
�D

jr j2rw2 � �: (3.24)

Denoting by H(�) the Hessian matrix we get after integrating by partsZ



r � r (rw2 � r ) =

Z



r : H(rw2) : r � 1

2

Z



�w2 jr j2 +

+
1

2

Z
�D

jr j2rw2 � �: (3.25)
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Substituting (3.24) and (3.25) in (3.23) leads toZ



�� (rw2 � r ) =

Z



r : H(w2) : r � 1

2

Z



�w2 jr j2 �

�1

2

Z
�D

jr j2rw2 � �;

and using rw2 � � � 0 on �D (due to (3.18)) and the regularity assumed on w2 we obtain (3.22). For

problem (3.20) the estimate (3.10) also holds and then we haveZ
QT

(r � r� �r� � r�) � ~c

Z
QT

�
jr j2 + jr�j2

�
; (3.26)

with ~c > 0. Finally, H�older's, Young's and Poincar�e's inequalities together with (3.19) give usZ
QT

jF1 � F2j j + �j � "c1

Z
QT

h
('(u1)� '(u2))

2
+ ('(v1)� '(v2))

2
i
+

+C"c2

Z
QT

�
jr j2 + jr�j2

�
: (3.27)

Then, using that ' is Lipschitz continuous and non decreasing, and substituting estimates (3.22) (and

the corresponding for v), (3.26) and (3.27) in (3.21) and choosing "; � small enough we obtainZ



�
jr (T )j2 + jr�(T )j2

�
� C

Z
QT

�
jr j2 + jr�j2

�
;

with C > 0. We conclude, by Gronwall's inequality that r � r� � 0 a.e. in QT , from where the

assertion follows.

We �nally present our third result. Here we shall assume a condition on the Dirichlet boundary to

perform some estimates of a singular boundary integral.

Theorem 3.3 Assume that H1{H3 hold and suppose that there exists an open set ~B � �D such

that the (N � 1)�dimensional Haussdorf measure of ~B and �D coincides. Suppose that

' 2 C2((0;1)); with '0(0) = 0

and that there exist a positive constant C and a convex function � 2 C0([0;1)) \ C2((0;1)) such

that �(0) = 0,

0 < �0(r) � '0(r) and '(r) � C�(r) for r > 0: (3.28)

Then problem (1.1) has a unique solution in the class of weak solutions satisfying

u; v 2 L1(0; T ;W);

w 2 L1(0; T ;W 1;1(
));

with W given by (3.2).

Proof. Consider, as in the proof of Theorem 2.1, the sequence of regularized problems (1.1)" in which

we approximate solutions of the degenerate problem (1.1) by taking the auxiliary conditions given

by (2.32) where the remaining conditions are unchanged. We know from Theorem 2.2 that for each

" > 0 problem (1.1)" has, at least, a weak solution (u"; v"; w") with the same regularity as stated in

the mentioned theorem and converging to a weak solution of (1.1) (Theorem 2.1). Moreover, there

exist positive constants � and c, independent of ' and ", such that

c � u"; v" � "e��t a.e. in QT (3.29)



3. Uniqueness of solutions 20

and

krw"kL1(QT )
� c: (3.30)

Suppose that there exists another weak solution, (u2; v2; w2); of (1.1) and de�ne (U"; V";W") :=

(u" � u2; v" � v2; w" � w2). Then (U"; V";W") satisfy8>>>><
>>>>:

U"t ��('(u")� '(u2)) + div (b(u2)rW" + (b(u")� b(u2))rw") =

= F (u"; v")� F (u2; v2);

V"t ��('(v")� '(v2))� div (b(v2)rW" + (b(v")� b(v2))rw") =

F (u"; v")� F (u2; v2);

��W" + U" � V" = 0;

(3.31)

in QT and the auxiliary conditions8>><
>>:

'(uD") = '(uD + "e��1t); '(vD") = '(vD + "e��1t) on �DT ;

'(uD2) = '(uD); '(vD2) = '(vD); WD" = 0 on �DT ;

r'(uN") � � = r'(vN") � � = rW" � � = r'(u2) � � = r'(v2) � � = 0 on �NT ;

U"(x; 0) = V"(x; 0) = " in 
:

Taking for (3.31) smooth test functions  ; �; � with homogeneous mixed boundary conditions we getZ



 (T )U"(T ) + �(T )V"(T ) =

Z



 (0)U"(0) + �(0)V"(0) +

+

Z
QT

U" ( t +A"
u� +B

"
u � r + F "

u ( + �) + �) +

+

Z
QT

V" (�t +A"
v�� �B

"
vr� + F "

v ( + �)� �)�

�
Z
QT

W" (�� + div (b(u2)r � b(v2)r�))�

�
Z
�DT

[('(u")� '(u2))r + ('(v")� '(v2))r�] � �; (3.32)

with A"
u :=

'(u")� '(u2)

U"
, B"

u :=
b(u")� b(u2)

U"
rw" and F "

u :=
F (u"; v")� F (u2; v")

U"
whenever

U" 6= 0 and A"
u = B

"
u = F "

u = 0 if U" = 0 and a similar de�nitions for A"
v , B

"
v and F "

v . Due to (3.29)

and (3.30) and thanks to the condition (3.28) and to the Lipschitz continuity of b and F there exist

constants k0 and

k(") := "�1e�T�("e��T ) (3.33)

such that

0 < k(") � A"
z(x; t) � k0; (3.34)

and

max fjB"
z(x; t)j ; jF "

z (x; t)jg � k0: (3.35)

We consider sequences of C1(QT ) functions such that

A";n
z ! A"

z ; B
";n
z ! B

"
z; F ";n

z ! F "
z ; y bnz ! b(z2);
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strongly in L2(QT ) when n ! 1, for z = u; v, where A";n
z is taken monotone decreasing on n and

B
";n
z ; F ";n

z and bnz monotone increasing on n. Because of (3.34) and (3.35) and the L1(QT ) regularity

of solutions of (1.1) we have

0 < k(") � A";n
z � k0; and max fjB";n

z j ; jF ";n
z j ; jb";nz jg � k0 (3.36)

in QT . We write identity (3.32) asZ



 (T )U"(T ) + �(T )V"(T ) =

Z



 (0)U"(0) + �(0)V"(0) +

+

Z
�DT

[('(u")� '(u2))r + ('(v")� '(v2))r�] � � +

+

Z
QT

U" [(A
"
u �A";n

u )� + (B"
u �B

";n
u ) � r ] +

+

Z
QT

V" [(A
"
v �A";n

v )�� � (B"
v �B

";n
v )r�] +

+

Z
QT

U" (F
"
u � F ";n

u ) ( + �) + V" (F
"
v � F ";n

v ) ( + �) +

+

Z
QT

rW" � ((b(u2)� bnu)r � (b(v2)� bnv )r�)�

�
Z
QT

W" (�� + div (bnur � bnvr�)) +

+

Z
QT

U" ( t +A";n
u � +B

";n
u � r + F ";n

u ( + �) + �) +

+

Z
QT

V" (�t +A";n
v �� �B

";n
v � r� + F ";n

v ( + �)� �)

=: I1 + :::+ I9 (3.37)

and set the following problem to choose the test functions:8>>>>>>><
>>>>>>>:

 t +A";n
u � +B

";n
u � r + F ";n

u ( + �) + � = 0 in QT ;

�t +A";n
v �� �B

";n
v � r� + F ";n

v ( + �)� � = 0 in QT ;

�� + div (bnur � bnvr�) = 0 in QT ;

 = � = � = 0 on �DT ;

r � � = r� � � = r� � � = 0 on �NT ;

 (T; x) = ��u(x); �(T; x) = ��v(x) in 
;

(3.38)

with ��z 2 C10 (
); dist(�D; supp(�
�
z)) � � and ��z * sign fU(T )g in L1(
) as � ! 0.

Lemma 3.2 Problem (3.38) has a unique solution with the regularity of the test functions of (1.1)

(see (2.4) and (2.5)). Moreover,

 ; � 2 H1(0; T ;L2(
)) \ L1(0; T ;H1(
)) \ L2(0; T ;H2(
)); (3.39)

� 2 H1(0; T ;L2(
)) \ L1(0; T ;H1(
));

and their norms in these spaces are uniformily bounded with respect to n. Finally, there exists a

positive constant C(T ) independent of " such that

k kL1(QT )
; k�kL1(QT )

� C(T ): (3.40)
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Proof of Lemma 3.2. We can follow step by step the proof of Lemma 3.1 to get the existence,

uniqueness and regularity of solutions of problem (3.38). The new point we must show is that uniform

estimates hold in the norms of the spaces stated in Lemma 3.2. Notice that in the estimates (3.10),

(3.13) and (3.14) the dependence with respect to n of the coe�cients may be avoided thanks to (3.36)

and, therefore, we easily obtain that the norms of the solution in the spaces of (3.39) are independent

of n. However, the proof of (3.40) requires more work: Suppose that  ̂; �̂ 2 L1(QT ) and de�ne

z := � + bnu ̂ � bnv �̂: (3.41)

From the third equation of (3.38) we conclude that z satis�es8><
>:

�z = div
�
 ̂rbnu � �̂rbnv

�
in QT ;

z = 0 on �DT ;

rz � � = 0 on �NT :

By well known results (see [40]) we have the following estimate

kzkL1(
) � c

��̂rbnv
Lp(
)

+
 ̂rbnu

Lp(
)

�
;

from where we get

kzkL1(
) � c

��̂
L1(
)

krbnvkLp(
) +
 ̂ 

L1(
)
krbnukLp(
)

�
:

By assumptions u2; v2 2 L1(0; T ;W) and b 2 C([0;1)) and recalling the de�nition of z we obtain

k�kL1(0;T ;L1(
)) � c

� ̂
L1(QT )

+
�̂

L1(QT )

�
: (3.42)

On the other hand, given �̂ 2 L1(0; T ;L1(
)) we have that, thanks to the maximum principle of

Alexandrov (see [27]) the solutions of the two �rst equations of (3.38) (with � substituted by �̂) are

bounded in L1(QT ) uniformily in ". Therefore, this fact together with (3.42) and the �xed point

argument used to get existence of solutions imply that also the solution of the coupled problem (3.38)

satisfy these L1 estimates uniform in ".

Continuation of the proof of Theorem 3.3. With the test functions of Lemma 3.2 we have in (3.37)

that I7 = I8 = I9 = 0. Now we shall take limits in the resulting identity, �rst when n ! 1 and

then when "; � ! 0. Since we have uniform estimates of kr kL2(QT )
; kr�kL2(QT )

; k� kL2(QT )
and

k��kL2(QT )
with respect to n we deduce that I3; I4; I5 and I6 tend to zero when n!1. Therefore,

identity (3.37) is reduced toZ



�
��uU"(T ) + ��vV"(T )

�
= "

Z



( (0) + �(0))�

�
Z
�DT

[('(u")� '(u2))r + ('(v")� '(v2))r�] � �: (3.43)

Since, by Lemma 3.2, the estimates of k kL1(QT )
; k�kL1(QT )

are uniform with respect to " we get

"

Z



( (0) + �(0))! 0 as "! 0: (3.44)

The following Lemma will allow us to estimate the integral over the Dirichlet boundary:
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Lemma 3.3 Let A", B", g" 2 L1(QT ) with

k(") < A"; (3.45)

where k(") is given by (3.33). Consider the problem8>><
>>:

 t +A"� +B" � r + g" = 0 in QT ;

 = 0 on �DT ;

r � � = 0 on �NT ;

 (T; x) = ��(x) in 
;

with � > 0. Then, there exist a �(") > 0 and a positive constant c, independent of ", such that if

� < �(") then

r � � � �c
kB"kL1(QT )

k kL1(QT )

k(")
a.e. in �DT : (3.46)

Continuation of the proof of Theorem 3.3. Applying this lemma to the problem (3.38) we have that,

evaluating u" and u2 on �DT and using (3.46) and that kB"kL1(QT )
and k kL1(QT )

have bounds

which are independent of " we get

�
Z
�DT

('(u")� '(u2))r � � = �
Z
�DT

'("e��1t)r � � � c
'(")

k(")
;

where we have used that ' is increasing. By (3.28) and (3.33) we get '(") � ĉ"k("), for a certain

ĉ > 0, and thereforeZ
�DT

('(u")� '(u2))r � � ! 0 as "! 0:

A similar argument may be applied to the term involving v". Choosing �
�
u as

��u(x; t) :=

�
sign fU(x; T )g if x 2 
�;

0 if x 2 
n�
�;

where 
� := fx 2 
 : dist [@
; supp (U"(x; T ))] > �g (similar for ��v) we get, when "; � ! 0 thatZ



��uU"(T )!
Z



jU(T )j ;

(and analogously for the term involving v). We then deduce from (3.43) thatZ



jU(T )j+ jV (T )j � 0;

and, therefore, the desired result.

Proof of Lemma 3.3. Since @
 is regular, 
 satis�es the exterior sphere condition, i.e., for all x0 2 @

there exists a R1 > 0 and a x1 2 IRNn�
 such that

B(x1; R1) \ �
 = fx0g ;
where B(x1; R1) :=

�
x 2 IRN : jx� x1j < R1

	
: Let us �x x0 2 Interior(�D): It is clear that this set

is non empty because, by hypothesis, there exists an open set ~B such that ~B � �D: Therefore, there

exists a small enough � > 0 such that, by de�ning R2 := � + R1, it holds B(x1; R2) \ @
 � �D:

Moreover, since dist(@
; supp(��)) � �, we also have that �� � 0 in ! := 
 \ B(x1; R2): We shall
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use the notation k0(") := kgkL1(QT )
, k1(") :=

�
N�1
R1

+ 1
�
kBkL1(QT )

and k2(") := k kL1(QT )
: We

de�ne

L( ) :=  t +A"� +B � r and w(x; t) :=  (x; t) + �(r);

where (x; t) 2 !� (0; t), r := jx� x0j and � 2 C2([R1; R2]) will be chosen such that the maximum of

w in �! � [0; T ] is attained in fx0g � [0; T ], and such that �00(r) � 0 and �0(r) � 0. Assuming these

properties we get, due to (3.45), that w satis�es

L(w) = �g +A"�� +B � r� � k(")�00(r) + k1(")�
0(r)� k0("):

Choosing �(r) :=
k0(")

k1(")
r + C2e

�
k1(")

k(")
r
; with C2 an arbitrary constant, we obtain

k(")�00(r) + k1(")�
0(r) � k0(") = 0; �00(r) � 0 and

if C2 � k(")
k0(")

k21(")
e
k1(")

k(")
R2 then �0(r) � 0: (3.47)

Taking C2 with this restriction we have that L(w) � 0 in �! � [0; T ] and therefore, by the Maximum

Principle we deduce that w attains its maximum on the parabolic boundary of ! � [0; T ] : On this

boundary the values of w may be estimated as follows:8>><
>>:

w(x; t) = �(r) � �(R1) on (�D \ @!)� [0; T ] ;

w(x; t) =  (x; t) + �(r) � k2(") + �(R2) on (@B(x1; R2) \ @!)� [0; T ] ;

w(x0; t) = �(R1) on [0; T ] ;

w(x; T ) = �(r) + ��(x) � �(R1) in !;

where we have used that �� � 0 in !. It is a straightforward computation to see that we can choose

C2 (by making � small enough) such that (3.47) and �(R1) = k2(") + �(R2) hold. As a consequence

we obtain that rw(x0; t) � � � 0 and by the de�nition of w and taking � suitably we obtain

r (x0; t) � � � �ck1(")k2(")
k(")

in [0; T ] :
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