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ABSTRACf 
TJ1is paper is a written version of a talk delivered by t/1e 
0111l10r before tl1e Nederlands Rekenmac/,ine Genootschap 
( Dr,tc/1 Associatio11 for Co111puting Mac/1inery) on May 
28., I 968, at An1sterda111. 

• 

A s11rvey is given of the n1ost pop1,lar and s11ccessful 
1111111erical n1et/1ods for calc,,lating tl1e eigenvalues and 
eige11vectors of fi1I/ real 1t1atrices. Attention is focused on 
n1et/1ods for ge11eral n1atrices; met/1ods for syn,metric 
111atrices are treated only as special cases. Tlze successive 
topics are: an introd11ction wit/1 an 01,tline of the theory; 

.red11ci1,g si111ilarity transforn1ations, in particular, Wil
kinson's and Ho11se/1older's transformation to Hessen
berg for,n; 111ethods to ca/c11/ate eigenva/11es of Hessen
berg 111atrices, viz. t/1e QR met/1od and nondeflating 
n1et/1ods 11sing Hyman"s for,nula; methods to calculate 
eigenvectors of Hessenberg matrices., viz. inverse intera
tion and t/1e QR met/1od; Osborne"s equilibration; Eber-
/ein .. s generalized Jacobi process. · . 

l INTRODUCTION 
During the last decade, the art of computing eigenvalues 
and eigenvectors of square matrices has made consider
able progress. Numerical methods nowadays are 
available V.'hich work satisfactorily for most matrices 
occurring in practice. For real symmetric (and complex 
He1·11·1itian) matrices in particular, we have quite stable 
numerical processes whose convergence can be guaran-
teed. . 
We shall try to give a survey of the most popular and 
. sti.ccessf ul methods for calculating eigenvalues and 

. eigenvectors, restricting ourselves to methods for full · 
(i.e., nonsparse) real square matrices. We shall pay atten
tion mainly to the general problem in ,vhich the matrix is 
not assumed to be symmetric, and deal with methods for 
symmetric matrices only as special cases of the general 
methods. 
To define the problem and some related notions., let M 

. be a matrix of the order n. The ,,eigenvalues'' of M are 
· · those real or complex numbers A for which the linear 

system Mx = AX has a n·onnull solution vector x, 
• 

called ,,eigenvector't" of M corresponding to >... The 
eigenvalues of M are the zeros of det (M-).1), which is a · . 
polynomial of degree n in A, the ,,characteristic polyno- . 
mial'' of M. Hence, M has at most n distinct eigenvalues, · 
and at least one eigenvector corresponds to each eigen
value. A ,,similarity transfo1 tnation'" is a transfo11nation 
which, to each nth order matrix M, associates the matrix 
s-1 MS, where S is any nonsingular nth order matrix. 
The matrices M and S-1MS are called ,,similar~,. 
Similarity transformations are important, because they 

. leave the eigenvalues invariant, and transform the eigen
vectors in the following simple way: if xis an eigenvector 
of s-1 MS corresponding to the eigenvalue· A, then Sx is 
an eigenvector of M corresponding to· A. 

· Mat.rix M is called ,,diagonalizable•", if it is similar to a 
· diagonal matrix:. M ·XAX-1• The eigenvalu~ of M· 

are the diagonal element.s of the similar diagonal matrix . 
• • 

• 

• 

• 

• 

• 

• 

A, the columns of the transr orming matrix X are the 
corresponding eigenvectors of M, and the rows of X-1 

are the corresponding eigenvectors of the transposed 
matrix MT .. If M is diagonalizable and has multiple 

• 

eigenvalues, then the eigenvectors of M and MT are not 
unique, but may always be chosen (and are preferably 
chosen) such that the matrix of eigenvectors of M and 
MT are each other's inverse. (The eigenvectors of M and 
MT then f orin a ,, biorthogonaJ•' system.) If M has only 
simple eigenvalues, then it is diagonalizable, and its 
eigenvectors are unique up to a scalar factor. 
Computing eigenvalues and eigenvectors is considerably 
simpler for real symmetric· (and complex Hermitian) 

• 

matrices than for other ones, use a real symmetric 

• 

• 

' 

• 

. (complex Hermitian matrix) has the f o)Jowing nice 

• 

• 

' 

properties: · 
1 all eigenvalues are real; • 

2 the matrix is diagonalizable; · · 
3 the eigenvectors can be chosen such that the matrix 

of eigenvectors is real orthogonal; (3': complex 
unitary). 

• 

Nearly as ~sy to handle are the normal matrices, which 
are characterized by properties (2) and (3'); in other 
words, a matrix is normal if it can be written in the 

• 

form UAU-1> where A is diagonal and U unitary. · 
The eigenvalues of normal matrices are well conditioned; ., 
i.e., small changes in the elements of a normal matrix . 
cause small changes in the eigenvalues. Eigenvectors are 
ill conditioned if they correspond to closely clustered 
eigenvalues. If two eigenvalues coincide, then any linear 
combination of two (linearly) independent corresponding 
eigenvectors is again an eigenvector; this explains why 
two eigenvectors corresponding to close eigenvalues are 
very sensitive to pertur_bations of the elements of the· 
matrix. 

• 

The computation of eigenvalues and eigenvectors of 
nonnormal matrices may be con1plicated for the follow
ing two reasons. 

1 If the matrix has multiple eigen':'alues, then it may 
be nondiagonalizable.. A nondiagonalizable nth 

. order matrix does not have n linearly independent 
eigenvectors. (its eigensystem is ,,defective''). The 
notion ,,eigenvector'' may be generalized to ,.prin

. cipal vector'' corresponding to an eigenvalue l. 
i.e., a nonnull vector, x, satisfying 

(M-Al)jx = o, 
where the integer j, the ,,grade·~ of x, is chosen as 
small as possible. If M is diagonalizable, then all its · 
principal vectors are of grade 1, i.e., are ordinary 

. · eigenvectors. The computation of principal vectors 
of grade > 1 is a nearly unexplored area (see, ho,v~ · 

· ever, J. M. V~rah [14]), and will not be discussed 
here. . . 

2 .The eigenvalues of a m.atrix may be ill conditioned,. 
even if the matrix is diagonalizable. Let M 
XAX-1, where A is diagonal. Let IIXtl denote the 
•• spectral n,orm•• or ·X. i.e..~ the square root of the 

• • 

• • 
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T 
largest eigenvalue of i x. Then we have the follow-
• tng: 
T1,e,>re,11 (Bauer and Fike [4] [I, p. 87]) 
If>. is any eigenvalue of the perturbed matrix M + 
IM, then there is an eigenvalue >., of M such that 

i i,->..t " llX-1 II IIX II 118 M ll. . 

• 

ln other words, the n1inin1um, .~ of l!X-111 llXII 
fo.r all per111issible eigenvector matrices X of M is a 
nlCasure for the sensitivity of the eigenvalues to 
perturbations of the elen1ents o.f M. If M is normal, 
then µ **"' l and the eigenvalues are well conditioned. 
On the other hand, if M is far from no1·1nal (es
JX-'Cially if M is rather close to a nondiagonalizabte 
matrix), then IL is considerably larger than l, and 
the eigenvalues (or at least some of them) arc ill 
con,ditioned .. More specifically, a rr.easure for the 
sensitivity of a (simple) eigenvalue ). of M is the 
quantity 

• 

' 
where x is a corresponding eigenvector of M and y 
of MT, and where llx ll denotes the Eucli · · vector 
norm. 

Besides the spectral no11n n·.entioned above, one uses 
the following ,natrix no1·ms, which ate much · to 
calculate: 
the Ei1elidean matrix no,1in 

a 

11Mtts '.£ JM1Jl1 

i,. j - 1 

and the infinity DOl'Jll 

t!Mlf 
00 

· lll&X 
i 

a 

:E fM1JI. 
• } - 1 

• 

• 

In particular, we use matrix norms to define realistic 
tolerances for the various stages of calculating eigen
values and eigenvectors. These tolerances have the 
form: 1natrix norm times som.e specified dimensionless 
parameter (e.g., the machine precision). 
The theory of matrices and methods to compute eigen
values and eigenvectors are extensively treated in J. H. 
Wilkinson [l ], A. S .. Householder [2] and D. K. Faddeev 
and V. N. Faddeeva. [3J .. In particular~ [l] deals with 
various numerical methods from a practical standpoint, 
including error analyses and a nts of the methods 
based on the practical experien,oe o,f the aut.hor. From 
this book, we have taken a great deal of the 1nateri.al 
presented here. Our survey is certainly not complete.. 
The research on this s.ubject is very acti"Vey and there arc 
several inteicsting developments which we shall not 
discuss, in particular, the calculation of bounds for a. 
computed eigensystem [14],. and met to imptova 
approximate eigensysteins [l. p. 637-646). 

• 

2 REDUCING SIMILARITY TRANSFORMA-
TIONS 

• 
A n1atrix, H, is ,,upper-Hessenbcrg'' or ,,.almost upper-
triangular .. , if the clements below its first subdiagonal are 
zero; i.e., H 1j ;:;m O for i > j + 1. A matrix, T, is ,,tridia
gonal,', if all elements outside the main diagonal and 
the adjacent codiagonals are zero; i.e.., T•• 1,1111, O for 
li-jl > 1. 
A - · · F \..- · '" ·r · · "- d. r 1c 1natnx. is,., · ro~ntu,s,, 1 1t is t,~ . arect sumo c:~ 

F .· • ,iua 1natrices, which are oC the form 
• 

••• 

0 .... 
F=-. 

• • 
• • • • 

... ,- 0 1 

The characteristic po,lyno,mial of F is 

Ar - br-1l..r-l ..• -b1l.- bo; 

be 
0 

• • • 

0 

therefore F is also called the ,.,companion r1M1trix'' of 
this polynomial. 

2.1 R~d11ction to Hesse116€rK Forni 
For reducing a genera.I matrix to a similar upper• 
Hessenberg matrix, there exist completely satisfactory, 
stable transformations. We discuss two of them which 
are most commonly used, viz. Wilkinson's and HollK• 
holder's transformation. 
Wilkinson"s transfo.11nation [t, p. 357-368] is a 
triangular transfor1natio,n with stabilizing interchangei, .. 
The transf 01 xning matri.x is the product of a permutation 
matrix., P, and a unit lower-triangular t'natrix, L (,,unit ... 
1neans that the diagonal e · · ts are 1 ). Thus, if M is 
the given rnatrix and H the iC$ulting upper-Hessenberg 
11ia.trix, then we have 

H L-1P-1MPL 

Th,e interchanges are chosen such th,at !Lisi < I for all 
i and j. Moreover, one can choose the elements LiJ, 
i > 2 arb,itrarily; in practice, o·ne chooses them equal 
to 0. The process resembles the triangular decomposition 

. used to solve linear systems. The transformation is more 
accurate if the scalar products involv·ed a:rc calculated in 
extra precision. The number of operations (each 
operation c:onsisting of a multiplication and an addition) 
ro,ughly equals ¾ n3 for 1.arge n. 
In exceptional cases. the transforrnation might lead to 
growing of the pivots (i.e., the elements chosen in ea1ch 

· step which are going to be the subdiagonal elen1ents of 
the resulting Hessenberg matrix) by a factor up, to 
2•-1 (in a similar way as might occur in triangular de- • 
compositi,on with partial pivoting [1. p. 212}) .. Further
fflOl"l\ 1natrix L m.ight be ill conditi · .. Either would 
cause a substaintiai loss of accuracy. No analysis o~r these 
. ·. . .. , .. · •. •· · ·. appears to have boon made; in · ·· • ·)cc. 
Wi.lk1inson•s tn.nsfo1rme.tion tums out to be · , ·. satis-
factory. 

. . . oldcr"s [2. p~ 162) [5} [t. p. 
.·. ,. · · · 299. p. 347-35.,3] is an ·. · . · · ... · nal t1·a..rormatioa,. 

'1'1.. -#. • .. P • •"'- - · t ... ,- 2 ' •.. 1,IIO t111~, · .... '' • ·. g mauax., •• lS ·1,f,l!g : .·. •. 11:te~ UI R - .. 

Many methods for caicuJating the eigenvalues aoo/or 
eigenvectors of a matrix start with a siniilarity transfor
mation reducing the 1na,•ri.x to one ba'Yiag a ~I t~a1 
which is much •easier' to ·.·· .· .. · le.. ~me impoataat spcci11I 
~ -.1.., .. i-,_ ~ - f d.. .. "" d ,. ·Orms vu ·· · ··.Ulla .., i ..,..as o: a J,tea. 1.e.,# · · ·· · . . · · .· ••11. .. .. 11 ....... •trices. wtwca are · -. • 

' 
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where u i;a a column vettor and t a scalar satisfying 
ku"'u - -2 (thts condition insures orthogonality of the 
matrix). In the jth t,louseh<&lder mat·rix. j tD I, .... ~ n-2. 
the fint j elements o·f u are zero., and the other elements 
of u arc chosen such that the desired zeros are introduced 
in the jth column of the rnatrix. Although part of tho 
calculations involves scalar products, only marginally 
nlt)re accuracy is obtained if the scalar products are 
calculated in extra pi·ecision. The number of operations 

(i.e., multiplications and additions) roughly equals i n1 

for large n, so Householder's transformation is a factor 
two slo~r than Wilkinson's. On the other hand, 
Householder·s transformation is completely stable. 
For a symmetric matrix Householder's transformation 
has the great advantage that symmetry is preserved 
(because the transf orn1ation is orthogonal); so the 
amount of work is considerably reduced, the number of 
operat•ons ro·ughly being equal to i n* for large n. 
The resulting similar n,at~ix, is tridiagonal, sin,ce it is 
sym·metric and Hessenberg. t1 . 

2.2 F11rther Reductions 
After reducing the given tl'\atrix to a · similar upper
Hesscnberg matrix, one r·,,ay perf 01·n1 a further reduc
tion to tridiagonal or Frobenius form. 
A tridiagonal matrix similar to an upper-flessenberg 
matrix may be obtained by means of the transposed 
Wilkinson process without interchanges; i.e .• the trans
forming matrix is a unit upper-triangular matrix, U, 
and the resulting matrix has lower-Hessenberg form. 
t,,1oreover, the upper-Hessenberg fo1·r11 turns out to be 
preserved., so that the 1esuiting similar matrix is tridiago
nal.. Alas, stabilizing interchanges cannot be used, 
because they would destroy the upper-Hcssenberg fot 1n. 
Using no interchang~ however, the process may be 
unstable., and, in fact, bt·eaks down if a zero pivot occurs. 
One may try to avoid this by choosing another first 
column of U. No satisfactory process seems to be known. 
In practice, it is often advisable to use double ( or multi
ple) precision in the reductio,n to tridiagonal f 01'"1n. We 
shall not go further into t,his [1, p. 395 404] .. 
The reduction of an Hessenbcrg matrix to Frobenius · 
form amounts to calculating the coefficients of the 
ch.aracteristic polynomial.. This method is often very 
unstable as the eigenvalues may be much more sensitive 
to errors in the coefficients of the characteristic poly-. 
nomial than to errors in the ele1ncnts of the given 
Hessenberg matrix. In general, the reduction to Frobe
nius form is much less satisfactory than the reduction 
to tridiagonal f 011n [I, p. 405 ,,,411 ]. 

• 

3 EIGENVALUES OF HESSENBERG · 
MATRICES 

There exist two 111a in ty·pes of methods for: calculating 
eigenvalues.. viz. •deflating and n ·• · ting snethods.. 
In a deflating 111ethod, the order of the matrix in · 
is decreased as soon as an eigenvalue has been found; in 
a nondeflating 11ieth,od, the order o,f the 1natrix involved 
remains constlfnt. 

3 .. 1 A Deflating Method: QR lterat&M 

• 

The m-0st satisfactory method. , .· ... · "·· ·. ys,, for a.ding tho 
eigenvalues of an upper-.H~1 •.· · · .... ·. Jna:tl'bt Isl~ G .. F •. , 
Francis' QR ilC11ttion (6] [I, p. 5~1' sqq} (1) ~) (14). . 
Let H (•• J, be. a given (noc J\CCCnarlly up · · •. · ... ·· ·• · · .·· .. ·. · .. · .MIi) , · · : · 

. 

rn.trix.. For le am,. O, l ,.2, ••• " .,,e first cakulato the de
composition 

(3.1.l) Hfk) 111n Q<•>R(tc), 

where Qi•l in orthogonal and R• k) upper-triangular. 
This decompositio•n may be obtained mat · · · · tically 
(the numerical computation uses a ditre1~1t forn1·ula) 
by means of Gram-Schmidt orthogonalization, which is 
pcrfo111led inn stages u follows. (We drop the super
scripts ... (k) ..... ) 
In the jth stage, j ,. I, ...... n, the jth columns or Q and R. 
arc calculated according to the fo1r11ulas 

• 

(3.1.l.) 

t + 1 

RtJ l: Q1r1H kJ, i 1, •• ., j-1, 
Jt-1 

J - 1 N 

Q1J (say) 11
,,, .. H1J- ~ Q111RkJ, i .. +"• l, .... n, 

k-t 

\ 
1/2 

• 

"' Q1J ::::=, Oti/R1,, i •1111 I, ••. , n. 
From these forrnulas it easily follows that the d,e .. 
composition (3.1. l) is always .· . ible, and. if H is non-

• 

singular and one im the extra condition that the . 
diagonal clements of R be positive, then also unique: 

. moreover. it is obvious that, if His upper-Hesscnberg. 
then also Q. 

• 

After calculating th,e decomposition (3.1.1), we sub--
sequcntly f or111 the product 

(3. 1.3) Htk+l) #41, R(k ►Q(k). 

Thus't H«ll+i, is obtained from Htk) by an o,rthogonal 
similarity transformation: 

(3.1.4) Hfk+l) ilk@ (Q(k))-1Hfk>Q4k). 

Moreover, if H' kJ is upper-Hessertberg, then also 
ffCk-t-1 >, since R<1t> is upper ... tri.angular and Qc 11 , u •. . ... 
Hessenberg. 
'I"he sequence thus obtained satisfies the following: 

· · .· m (F1·ancls [61) 
If HC9 > is a nonsingular matrix having eigenvalues of 
di.stinct modulus, then the sequence or matrices H ( 1r, 
co:nverges to an upper-triangular matrix. 
From now on., we assume that H<8 > i.s upper-Hcs,cnberg,. 
If H<8> can be diagonalized and its subdiagon,al elerne11ts 

H (()) . 1 -t · · · · '---- Htl) h J +t• 1 =11 == , ..... n ,. are nonzero. t,n;11 . as no 

multiple eigenvalues. Moreover. we have: 

I,, fnr,11,r•f Ii!! .In¥ 11·}rt,·1·,1 .If! 11 



vergcACe factor being I >~• 111 l•-l I, where la is the 
eigenvalue of &nlallat • , ulus and la-1 the next 
IMQllest. So,. thi, convergence is usually too slow. In 
orrder to a ·· .. ·• up con . · .•.· •. ·nc:a. ooo ,,.. a .,.,shift'' 
11mtegy, i.e.,. the a · ,fi · . lu (3 •. 1.1) a,ld (l.l.3) are 

·if-.1 aa f olk>wa: .. 

,11here ,,._. is a suitably cboNli 
choose either 

(3 .. 1.6) 

or preferably 

i.e., the eigenvalut": of the lower right hand two-by-two · 

submatrix of H'k> closest to H~~•. (Francis pro.· •· .. to 
• 

perform the first iteration steps with shift s<k> ..... 0, and 
to start using the shift s•k; "'""" µ<tr~, when µ<k• has be
come invariant within one binary digit precision; this 
s,trategy makes it more likely that the eigenvalues will be 
found in order of increasing modulus..) 
These shift strategies yield a process which., if it is 
convergent converges nearly always quadratically for 
diagonalizable n1atrices (or cubically for symmetric 
matrices). The choice s'k> µ.<kl mentioned above ,nay 
tum out to be nonreal. In that case the shift strategy ,nay 
be modified in one of the th,·ee following ways: 
l for real matr~ces having only 1eal eigenvalues (in 

particular real symmetric ,na~rices), one may choose 
st le, ···· ,, real part of µck>; 

2 for complex (or real) matrices, one r,1ay choose 
s«>t> ,,a,« µ.<k>, and use complex arit ....... ic .•· r 
necessary [ 6] [7]. 

This ,,single'' QR iteration process requir·cs roughly 
12n1 teal multiplications per step. 
3 for real matrices having complex eigenvalues the 

previous strategy is ible, but expensive.. A much 
faster process is obtained by ch.oosing 
sCk) ,;; 11: µ.fk)• 5Ck + 1) '""" iiCk). • 

' 

This .,,double't' QR iteration process [6] [8] [14] has the 
advantage that, from a real iterate Hl•>,. one obtains a 
real iterate HCk + 1 > which can be calculated in rW"'At 

arithmetic requiring only Sn1 real multiplications per 
douQle step. . 

Deflatio11 

• 

(e..g.~ < some no,·xn of Ht'6 > ti1nes the .. · inc , · · , ), 
this cletJlellt can be~cted so that H(k> tdy 
~~b . . 

, H1 M · 
(3.1 .. 8) • 

0 Ha 
• 

' 

' 

• 

where H 1 is of the order i, Ha of the O•rder n - i, 0 is the 
n - i by i null natrix and M an i by n - i matrix. ')"'he 

eigenvalues of this matrix are equal to those of HI and 
H1. Thus, the problem of finding the eigenvalues of Hf•t 
is reduced to two probiems involving smaller rn:atrices. 

In particular, if H~:• ... 1 o,r H~~~ 11 _ 1 is negligibie, then H1 

is of order l or 2. and its ei,genvalues can be calculated 
.. directly; thus, the problem is red , to finding the 

eigenvalues of H 1 of order n - J or n - 2. The process is 
completed if the s.uo:~5$ive reductions have produced 
matrices of 1 oc 2 only. 

Convc,ze1t~ 
Since a 1natrix H2 ef order 1 or 2 can be hand)ed directly, 
one calls a QR iteration process ,,,,cor1 .. t ... if either 

H (k) H(k) 0 U. he h"fts an-I Or· a-la-I converges to · . · sing t S l · , 

dacribed above, especially (3.1. 7) and the modifications, 
the p converges in the great majority o.f Cl$4!S_. but, 
unfortunately, there exiu inatrices for which no conver-
geoc,c occurs; •e.~ the nth onic:t · .· • · tatloa · 
(11>2) . ; 

0 
l 

(3.1.9) 0 
• • • 

.0 

••• 

••• 

0 1 
'o 

• • • 

I ••• 0 · 

is invariant under the QR transformatio,n with 
zero s.hift; moreover, accord,ing to either shift strategy 
1·1lentioned above, the shift equals O; so obviously no 
conve oocurs. Qne might choose a shift sCk> illilf 

µtk> + rxH ~:_1 where « is suitably chosen (1, p. 511] 

[8]. Using this shift strategy, the process is convergent 
f O•r matrix (3. l .9) and, p,robably for the great majority of 
matrices, b,ut presumably for any constant a there are 
other ma tries for which this shift strategy will fail. 

' 

For symm,etric tridiagonal 111at~ the iterates H' 1t> 
reinain symmetric tridiagonal, since each step is an 
orthogonal sim,ilarity transfor111ation (3.1.4); moreover, 
the shift strategies (3.1 .. 6) and (3.1.7) both yield a 
convergent process [9). . 

Adwzntages 

I A.s th1e QR step is an orthogonal similarity trans
for1nati,on (3.1.4), the condition number µ. (see 
page 119) of the eigenvalues of the matrix renlains 
invariant. This property makes the p · numeri
cal I y very stabl·e. 

· 2 Dcfiation reduces the problem t·o prob,lems invol
ving matrices of lower order. Moreover. after de
flation, the nlatr_ix Hi involved is usually closer to 
the limit than an ar,bitrary upper-Hessenbetg nlatrbt 
of the same order. 

3 Nonco,nver · · . seldom occun.. Ao:ording to 
J. H. Wilkinson [I, p .. 5381 the d.oub•le QR itaation. 
with shifts accordtn,g to (3.1 .. 7) ud .· · .. · ··. · · km,. is the 
»most . . . ·. . ul . poe1a1ADe 91 any 
I have •ned .. "' 

• • 
•• 121 . 

' 
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3.2 Ni · · . · · 11etlff1 M#t. f • 

'T"I...- ·s..,.,. • • I • I _, _...., 1111°', 1:1' 
1 -~ c,.ractertstte po,. · . · ·. • ·. • QI an opper"•F1•es1Cn . 
matrix H 1nay be evaluatod ·•· · · · .• ing to Hy·man•s 
formula as follOW'S (10) [I. p. 426-429).. We calculate a 
vector x such that all components of ·(H-l.l)x . t the 
tint are zero and x. • I .. We· • · .···· fmd 

(3.2.1) 
' 

x, ... , •• · (H11 -A)xa + E H1JX1 
,1.,.,,+1 

and obtain the value of the characteristic pol · · . ial of 
Hat l. according to · 

(J .. 2.2) det(H-ll) ■m• 

II II 

<H,1-l)x1 + ,:: H1JXJ n c-HJ}-1). 
1-1 J-2 

If some of the subdiagonal elements H,1-1 a.re O or 
negligible. we may either partition the matrix as above 
(3.1.8) and hanjle H1 and H: se?arately, o·r replace these 
negligible elements by some ti11·cshold (e.g., some norrt1 
of H times the machine precision). 
Thus,. we may assu1ne that the subdiagonal el•e1ne11ts are 
nonzero,. and, since we are searching for zeros of the 
characteristic polyn•omial,. we r11ay di ard tM no 
factor 

II 

II (-HJ,-1) .. 
.s-1 • 

Thcrcf o,re we replace (3 .. 2.2) by 
• 

ll 

(3.2.3) f().) i%l,I• (H11-A)X1 + L H1JXJ. 
J-t 

• 

and search for the zeros of f(l), or rather. after finding 
the eigenvalues >.. 1, .... , Xi-1, we search for a zero of 

l-t • 

(3.,2.4) f,(l} f(1)/ JJ (l-l1). 
J-1 

The zeros of f(l.) or f1(l) may be ~Jculated by inc.ans of 
any standard iteration process [1. p. 435· 461]. If all 
eigenvalues are real, then one may use linear inter
polation, Newton or Laguerre. To find complex 
eigenvalues, one may use quadratic int · Iation (for
mula of Muller (l. p. 43.5] or Traub (1., p. 484]), Bairstow 
(adapte·d to polynomials in the fo1·1n (3.2.3) [1, p. 449-
451 ]) and Laguerre [l 1] [12]. 
The derivatives needed for Newton and Laguer·re 
iteration are obtained by differentiating (3 .. 2.1) and 
(3.2.3); the resulting forr11ulas are rather similar, and 
the number of operations for calculatin·g r (A) or r' (l) 
is nearly the same as for calculating f(l.). 

A dwin tag es and D i.fadvantage:s 
1 In the wholc p ·. the original matrix His used, 

so that we may ex · . to obtain more accurate 
e.igenvalues t.han in the QR method, especially if the . 
J .. _ - • • atter requ,rres many 1terat1ons... 

2 Since no deflation is pen • .... ·, duste1·s oif ei 
values . · trouble: nu,mcrator and ·; · •· · · • . • ·i1,ator 
in (3.2.4) ·. · .· . 11:w.y bec1:xne O or.··.··· · scna.11,. so t,ha,t 

• 

• 

• 

no figure or ft(>..) is found . ly; convergence is 
me1·ely Jinc:ar and often ~low; the multiplicity or the 
eigenvalues may be difficult to determine; somc
ti1nes it is not known whether a calculated eigen
va)·ue is real or not. so that on•e cannot properly 
divide the eigenvalues into pairs of complex 
conjugate eigenvalues and real ones. 

3 No iteration process is known which converges for 
all (Hessenberg) matrices. The most successful 
seems to be Lagucrre·s rormu.la. 

4 Since no deflation is perforrned. the . ·. . . s is 
considerably slower than QR iterations; e.g.,. 
iteration according to Laguerre's formula turns out 
to be about three times slower (on the Electro.Jogica 
XS) than the QR method. 

' 

Symmetric Matrices 
Symmetric tridiagonal matrices whose codiago·nal 
elements are nonzero possess the important property 
that the determinants of ·the principal minors (the ith 
princip,at minor being the sub1natrix consisting of the 
first i rows and columns) form a Stur·rn sequenice; the 

. signs of th,ese dete1·r11inants compieteiy deter111ine the 
number of eigenvalues si·nalller (or larger) than the 
argument at which these determinants were evaluated. 
Using this property one can cak;uJ,at•e the eigenvalues by 
means of bisection, preferably combined with linc.ar 
interpolation ( or one of the other processes mentioned 
above) [I, p. 299-315] [8}. ·.·. methods for symmetric 
matrices certainly do not have the disadvantages 111en

tioned above for the general case, but, in fact, are com
petitive with QR iteration. 

4 EIGENVECTORS OF HESSENBERG 
MATRICES 

Eigenvectors may be calculated by means of inverse 
iteration or, if the QR 111ethod is used for calculating the 
eigenvalues, by means of a diiect method using the 

· results of the QR iteration .. After calculating the eigen
vectors of a Hessenberg matrix H, one obtains the 

. eigenvalues of the similar matrix M ,·:• 111 SHS-1 by 1neans 
of back transf orrnation: if x is an eigenvector of H, 
then Sx is the corresponding eigenvector of M. 

• 

4.1 Inverse Iteration 
Let H be a given (not necessarily Hesscnberg) triatrix of 
the order n, ). a!l approximate eigenvalue o,f H, and 
x<0 > an n-vect,.,r. For k :,• 11 .0,1,2, .. ,.., we calculate yt1r1 

by solving the linear system 
• 

·(4 .. 1.1) (H-).J)y<ic> =1, .. , x«1t> 
(by 11·1C.ans or Gaussian elimination with row inter
changes),, and obtain x<k+1> bynotrnafizing y<k>: 

. 1 
,( 4.. t .. 2) x~ 1r+1, »11' . . t1t>. Uy< kt , 

' 

If His di . • izable and x1, ••• , x. arc n ·•· 
dependent eigenvalues of 1-J. then we can write 

xtk ► •·11 • 11 «iXt + ... + «.Xtt,. 

• 
1-
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So* if ).1 is well separated from the other eigenvalues, ). 
is a reasonable appr·oximation to )..1,, and «1 does not 
(nearly) vanish, then the sequence of vectors x< k) 

converges (rapidly) to the eigenvector x1. In practi~ 
one or two iteration steps nearly always suff1ee .. If H is a 
diagonalizable matrix having multiple ( or closely 
clustered) eigenvalues,, and one wants to find linearly 
independent corresponding eigenvectors., then one,, 
obYiously~ cannot use the same numerical approxima
tion ). twice in the inverse iteration. Wilkinson re,narked 
[I, p. 328] that, in this case,, the invers,e iteration is very 
semitive to small changes in A, so that replacing >.. by 
another nearby value and perf 011ning another inverse 
ite1atioo, one finds an approximate eigenvector which 
is not alm0&t linearly dependent from the previously 
calculated one( s ). 
If H is symmetric, then one obtains a set of orthogonal 
eigenvectors by calculating the component orthogonal 
to the eigenvectors already found (here one needs to 
consider only those eigenvectors which belong to close 
eigenvalues). This orthogonal component is calculated in 
each inverse iteration step and tised as starting vector 
xtkJ for the next step [8]. If His not sy , one c·an 
similarly obtain a biorthogonal set of eigenvectors of H 
and HT. 
If H is real and ). complex nonreal, then we have the 
following four. . · ible strategies [I, p. 6 ]. 
I We may use co,mplex arithmetic where • 

'I"his strategy is impl1emented in [8]. 
2 We 11-.ay · entirely with ieal arithmetic as 

follows. 
We write A '". ~ + i11, x(k) p(k> + iq<Jc> 
y<11> u(k> + iv•1r:>, and equate 1·eal and bnagioa,·y 

. in(4.1.1). This gives , 

(4 .. 1.3) (H-(I)utk> + TJV<k> p<k>, 

(4.1.4) -'¥,lfk) + {H~J)vfk) q(lt). 

After solving this 1eal system of the order 2n, we 
no,rmalize u<Ji:> + iv<kJ and obtain p<k+li + iq<11:+1 >. 
This strategy requi,es about twice as much . 
and time, and is therefore n,ot acceptable. 

3 From (4.1.3) and (4.1.4) we can easily derive the 
equations 

(4.1.S) ((H-tI)1 + 7l2I)u<1r:> = (H-~I)p<k> - "lQfk>, 
• 

4 

Wilkinson remarks [l, p. 630] that using these 
formulas in the inverse iteration step,, one does not 
obtain a good approximation to an eigenvector. 
One may calculate u(Jcl by solving (4.1.5)., and v<•J 
from (4.1 .. 3), and then norn1alize to produce p(11:+1» 
and qfk+1). This strategy requires more _ (viz. 
for storing the matrix HS) but sl.ightly less tirnc · ·, . 
stra ··. , · ( 1), and is imp,leniCDted by Varah in 
[13] [14J. 

4.2 Calculaitng Eigenttctors Using QR Iteralioll 
'lbe QR iteration produces an Jl · . · .·. ·· . · ·· ·. gwar · · ·. ' trix : 
U ' " f .. • si- "'Ja .. ti..-·, , • . apart rom rou •· · g 1{!11:tors, n =mtr 1-0 .•Uliii · 
. - . - ,, gwe11 r11atnx H. Th~ we have , 

' • > ' 

H QUQ-1 . , 
" 

, 

• 

where Q is the product of the rotations Q• 11 , and the 
rotations transforming the. two-by-two bioob into pain 
of one-by-one blocks. Let H. and thus also U, be d · .· · · 
nalizabLe; let T be a mat,rix of eigenvecto,s or U. "fhel.,, 
obviously, QT is a matrix of eigenvectors of H. ·1·tw 
eigenvectors of U may be c, . . .. sudl1 that T is miit 
upper-triangular, and a.re calculated by , . · the 

ponding triangular linear systems. Thus. we 
obtain , 

J 

TtJ = , l: 
1 
U,. TkJ /(U1r-U11), 

1c-t+• 
• • 
I < J• 

If the denominator (nearly) van· · (i.e., if the ith and 
jth eigenvalues are ( y) equal), then it : ·. , I : be 
rep.laced by a t · · . ( e.g., some norm of H tima tho 

h. . . ) d . 1..... U " mac ine p-reasion , an··, stnce we a·alUfl\e t •• t ' 1 
•• a 

diagonaliza hie., then also the nu1nerator ( . • , .· . . ·.) 
vanishes, so that we obtain eigenvecton which are not 
almost linearly dependent. 
This process is imple1nented in (8) and turns out to be 

. , ., h . - . * • ., .. co . · · 1t1ve Wlt .· inverse iteration as to . · . . . . . · . · . ·· .. · • . n-
ed d • ·ec1r - . ,.1,.,,..,.• . an time requw ·· ·; 1 or some 1na·t~ u~ age.avectors 
obtained were more distant fr,om a lmearly · :· · .•· ,,l 

han he . db . . " set t t eagenvectors · . · t~ y mverse trer·atk>n. 
For a sym1netric n1atrix H, the matrix U . ..· · 'tsc:td by 
the QR iteration is, of d,· •.·. · .. · 1. Hence, the 
inatrix X of eigenvectoi s of H si . .. · ~y equals Q. If S is 
the transf orrnation matrix transfi . · ·, · 1 g the pven M 
into H (i.e., H •1,•·= s-1 MS)., thtm SQ is the matrix of 
eigenvectors of M. Stat t,fng from S, the matrix SQ am 
be built up dw-ing the QR ite.:·ation by mot ... · ... ", ·· .. · S by 
the matrix Q« 1r > in each step. Thus no back · · · . orma
tion is . aft , and inetn()l'Y space it saved 
[15] [8]. 

5 OSBORNE'S EQUILIBRATION 
A - . . lled ·1·bra•-A'» •,.1.., - ' t t 1'-111atnx IS ca .,,eqw I· , ~ Ml.ill respec O na 

eigenproblem., if each row bas the same EudidM.n nonn 
as the · . ponding column- B. E. · · • . • •· . .(16] 
proved that, if M is ·, . ucible. le.., if · ex.i«a no 

· ·. utation rnatrix P such that 

·A11 Ats• 

0 

where O is a null 1natrlx, then · · exists a nomi · · · ar 
diagonal matrix D, such that D-1MD is equilibrated .. 
An equilibrated tnatrix has the .· · . · .· · that, in the dass 

f . h. h . ·1 . b d" · i .,_-=. o 1natnces w JC are Stmt ar-to 1t · y a : · .· . · · · s mtuu: ,-
. ·t 1........... • • n ... ., .... ,• o - I·t ty . • , 0trnatwn, t 1wm m1ntmum cU\,.I ··· ·. •, n. rm. · 

turns out that, for calcuJ1ating eigtmvaluos and eigea
vecto~ it is of · · .. · ble im, • . · . . ·· to ·, with a 
( .· , •· . · hly) equilibrated matrix, for the following two 

1 

' 

, 



• 

• 

2 If orthogonal transfo,r111ations are used (House-
, holder's transfor1nation and/or QR iteration). then 

badly balanced 1natrices should be avoided, because 
the calculations (especially the QR iteration) arc 
much stabler for (roughly) equilibrated matrices. 
On the other hand, Wilkinson .. s transformation and 
inverse iteration (apart from the choice of the inter
changes involved)., and also Hyrn•an .. s for mul.a, 
are ,.scaling invariant" (i.e., invariant under 
diagonal similarity transformations). 

• 

" .,.b . . ,. . Osborne sh . · · .· · · that cqu1,1 . ration, 1.e., trans1ormat1on 
of a matrix into an equilibrated matrix by means of a 
diagonal similarity transf 01·1nation, can be performed by 
1neans of an iterative process; each step consists of a 
diagonal s.imilarity transfor1nation equating the Eucli
dean norrn of a certain ro,w and corresponding column. 
It the rnatrix is irreducible, then the process converges 
and the convergence is usually very fast. ln practice, one 
c , ••.· . · the diagonal elements of the transforming 
1·natrices equal to a power of two, in order to maintain 
exact similarity. 
If the given matrix is symmetric, equilibration is not 
needed,. because symmetric matrices are equilibrated by 
definition. 

6 EBERLEIN·s METHOD 

Among the methods which do not start with a reducing 
similarity . transformation, Eberlein's method [I 7] [18] 
[19] seems to be very promising. This method is a 
generalization of Jacobi's method; by means of succes
sive similarity transformations, the given matrix, M, is 
transformed into a matrix whose Euclidean norm. is 
minin1al. The method may start with Osborne's equi)i .. 
brat ion .. which uses only diago0al transformations to 
minimize the Euclidean norm. In subsequent ~teps of 
Eberlein"s process,. plane transformations (i.e., transfor
mations affecting only two rows and columns of the 
matrix) are performed. 
In each step, the Euclidean norm decreases,. and hence 
also the ,,departure from normality•• (i.e., the squared 
Euclidean norm minus the sum of the squared moduli of 
the eigenvalues),. which vanish·es for normal matrices. 
The process first converges to a normal matrix; sub
sequently,. plane (complex) rotations (i.e., plane unitary 
transformations) are performed. Th,e process conv·erges 
tc., a block diagonal matrix whose blocks are nearly 
always one-by-one or two-by-two, so that the eigen
values and eigenvectors are then obtained im1nediately. 
For symmetric matrices (and essentially also for normal 
matrices), Eberlein 's process reduces to Jacobi•s pr 
in which only plane (complex) rotations are performed. 
Advantages of Eberlein's method are: 

. 1 Convergence of the (rnathematicaI) pt',ocess ca,11 be 
proved. . 

2 · The accuracy of the 1 esults is a· · tab·le ,(c01npa. 
, ble to QR). · 

3 It is more eco,, . • , in s.torage than ··QR with 
inverse iteration, and as economical as QR.. •.·· 
direct calculation of the elgurvectms.. .. 

, 

A disadvantage is that E , .. ·· · . · · · "'.i · 's ~hod Is • 
QR. 
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