
STICHTING

MATHEMATISCH CENTRUM
2e BOERHAAVESTRAAT 49

AMSTERDAM

REKENAFDELI NG

MR 72

On the construction of ALGOL-procedures

for generating,

analysing and

translating

sentences in natural languages

by

C. H. A. Koster

February, 1965

;!:ij~l,,lOTHEEK MAT:-JEMATISCH CfNTR\JM
ANIS1 t;;RQAM

Fl.1,80

Printed at the Mathematical Centre at Amsterdam,49,2nd Boerhaavestraat.
The Netherlands.

The Mathematical Centre, founded the 11th of February 1946, is a non -
profit institution aiming at the promotion of pure mathematics and its
applications, and is sponsored by the Netherlands Government through
the Netherlands Organization for Pure Scientific Research (Z,W.O.) and
the Central National Council for Applied Scientific Research in the Ne
therlands (T.N.O.), by the Municipality of Amsterdam and by several in
dustries.

In the first part of thls :report it is shown that generating and analysing

can be done elegantly with the aid of ALGOL 60. In the second part a

method is described for translation between languages of which we can con

struct sufficiently similar grammarsp by means of a one way simultaneous

gram!!,!~• In this course a form of PSG will be introducedp essentially

equivalent to a CF PSG, but better suited for natural languages. We will

demonstrate this method with two ALGOL programs, a small translator

English --> Dutch and a somewhat larger translator English --> German.

0. Introduction 1

1.0 Generative grammar 2

1.1 Program I 4

1.2 Output I 5

2.0 Analytic grammar 6

2.1 Example 9

2.2 Output I[11

3.0 Translating 12

3.1 Program IT and input I 15

3.2 Output II 20

4.0 Affixes 24

4.1 Affix PSG 27

4.2 Affix PSG's and CS psavs 29

4.3 Ambiguity 31

5.0 Translator English German 33

5.1 Program III 39

5.2 Some test results 51

5.3 Input rr and output IV 52

6. References 55

0. Introduction

A context free _Ehrase ~ructure grammar (PSG) consists of a set ofter

minal symbols or words Vt, a set Vn of nonterminal symbols or gram

matical categories, a special nonterminal symbol S called the initial sym

bol and a set F. of rewriting rules of the form~

cp--> 1P

or <I>--> X;>.

where cp is a nonterminal symbol, ip, x and ;>. either terminal or nontermi

nal symbols .. "XA" is the concatenation (juxtaposition, Verkettung) of x
and X. The sign 11 -->" can be read as "is defined as11

, "consists of" or

"becomes". There can be more than one rule with the same left part.

There is at least one rule with as left part the initial symbol. We will

write terminal symbols with CAPITAL LETTERS and nonterminal symbols

with small letters.

A more manageable equivalent form for a gontext free (CF) PSG is the

~ackus ~ormal form (BNF). All rules with the same left part are gathered

together, taking as right part the right parts of the original rules, separa

ted by 11
/

11 which should be read as "or". We will call those alternatives.

The number of grammatical categories is drastically reduced by allowing

more involved right parts as alternatives., concatenations of one or more

terminal or nonterminal symbols. From now on a PSG is understood to be

in BNF.

We will introduce the symbol "==>" by the following

definition: If a grammar contains a rule a --> e, then for any. possibly

empty, strings cp and ip of nonterminal or terminal symbols cpaip ==> cp Sip •

Furthermore for any <I>, x and ip: if cp ==> x and x ==> ip then cp ==> ip •

11
<I> ==> 1P " can be read: 11 ip is derivable from <I>

11
• Any string consisting of

terminal symbols only will be called a sentence. The larguage L(G) of a

certain grammar G(Vt, Vn, S, F) is the set, possibly infinite, of all sen-

2

tences that are derivable from the initial symbol S with the aid of G.

The sentences belonging to L will be called gram!!latical.

The process of constructing a grammatical sentence from S by applying

rewriting rules is called generating a sentence.

By analyzipg a sentence is understood finding out whether the sentence is

grammatical and# if so9 giving a derivation (analysis) of it.

It can be shown that it is always possible to check whether a given sen

tence is grammatical with respect to a certain CF PSG.

1. generative g_ram!!l~

Let us consider the following simple grammar, with "sent" as an initial

symbol~

sent --> noun verb noun

verb --> LOVES

noun --> JOHN / MARY

We will use it as a generative grammar. We start with 11 sent". We can

do. only one thing: "noun verb nqun". The first noun gives us the choice

between JOHN and MARY. Choosing MARY we have: "MARY verb noun".

As a verb we can only take LOVES resulting in: 11 MARY L_OVES noun".

Again we experience l1embarras du choix between JOHN and MARY. Both

"MARY LOVES MARY" and "MARY LOVES JOHN" are grammatical sen

tences• though for semantic reasons we might prefer the latter.

Performing this hand simulation has already given us some ideas about the

realization of a generative grammar and presented us with the difficulty of

choosing between various alternatives. "a sent must consist of noun fol

lowed by verb followed by noun". A programmer will interpret this as~

"sent consecutively calls noun, verb and noun". Or in ALGOL~

procedure sent; begin noun; verb; noun end,;

procedure verb; WRITE({LOVE$:t);

procedure noun; !f. criterion ~ WRITE({JOHN:H

~ WRITE(<fMARY::I,);

3

For typographical reasons the symbols 11
{

11 and 11
:}

11 stand for 11 <> 11 and 119"

respectively. 11
" and line feed occurring within string quotes denote the

corresponding typographical symbols.)

WRITE(u) is the procedure .that writes the string u. If Pjohn is a real

number between O and 1, RANDOM a real procedure delivering a random

number between O and 1, then criterion could }ook like this:

. · · · boolean .procedure criterion; criterion:= RANDOM < Pjohn;

We code a slightly larger grammar into program I from which the gram

mar with probabilities can easily be reconstructed. Perhaps the procedure

nounphrase needs elucidating. It is a transcription of:

nounphrase --> (.25) adjective nounphrase /

(1. 0) nounpart

This makes the probability of having exactly n adjectives in front of a

substantive P(n) = • 75 x 4 ~ -n, which seems a reasonable approximation,

the character of the actual distribution being unclear. At the same time

this furnishes an example of a recursively used rule, making the length

of a sentence potentially infinite.

The program was run on the ELECTROLOGICA Xl of the E-RC, Utrecht.

using the compiler written by E. W. Dijkstra and J. A. Zonneveld.

It makes use of the following undeclared procedures:

PUTEXTl(u) causes the string u to be punched.

PUNLCR punches a new line carriage return.

SETRANDOM(x), 0 'S x < 1, is a preparation for RANDOM, which

delivers a real random number, 0 ~ RANDOM < 1.

XEEN(2047) delivers the contents of the rightmost eleven switches

on the .console of the Xl.

With +181 in the switches the program gave output I.

4

NZ:

end

£!?El!E-ent jungle generator 1.1 Program I;
real rr;
real procedure R; R:= rr:r= RANDOM;
procedure P(u); string u; J?UTEXTl(u);

\ .

procedure sentence; l
begin subject; predicate end;
ttrocedure subject; .
r R < . 8 then subst else subname;
procedure subst; -
begin article; noun phrase ~
procedure noun phrase;
g:_ R < • 25 ~ "f:.tgin adje; noun phrase ~ ~ nounpart;
procedure nounp ;
!!_R < .25 ~ begip. noun; relsentence ~~noun;

. procedure predicate;
!f. R < • 2 then be!£n modifier; modpredicate ~ .~ modpredicate;
procedure iiiodpre icate;
begin verb; object end;
trocedure relsentencei

egin P({, that\,); predicate end;
wocedure object;
r R < • 8 then subst else obj name;
procedure acl]e; -
if R < . 2 then begin adverb; adjective ~ ~ adjective;
procedure subname•
!!,_ R < • 25 ~ P({ he*) ~ if rr < • 5 then P({ Jinq.)
~ !!_rr < • 75 ~ P({ Maift:) ~ P(<fsii'e=:t);
procedure objname;
!!_ R < • 25 ~ P(.{ hinq.) ~ if rr < • 5 then P{{ Jinq.)
~ !f.rr < .75 ~ P({ MaryJ.T~ P({ ~);
procedure modifier•
!LR < . 33 then P({ alway~) ~ !f. rr < • 67 ~ P({ ofteni,)
~ P({ never;j:); ·
ttocedure article;
:_, R < .45 then P({ 3;:t) ~ P({ the*);
ttocedure noun;
1 R < . 26 then P({ boy;\:) else if rr < • 48 then P({ tree*)
eise !f. rr < . 7 4 then P({ girEf felse P({ bear:fl;
llrocedure adjective; •
LR < • 25 then P({ littl~) else if rr < • 5 then P({ meeltj,)
~ if rr < .75 ~ P{{ biifrers'e P({ bacff}T
ttrocedure adverb;
:._ R < • 5 then P({ very;\.) ~ P({ rather;\,); fl OQedure verb;
:_R < .25 ~ P({ see~)~ !f.rr < .5 ~ P({ like~)
else if rr < . 75 then P({ dreams about\,) else P({ eat~);·
~. --- .,.._.._ _.....

SET RANDOM (XEEN (204 7) / 2048);
PUNLCR; sentence; PUNLCR;
!f.. XEEN(-0) > 0 ~ goto NZ

1.2 Qutput I

the bear, that sees the bear likes a bad bear

the bear likes him

the boy likes the bear

the girl dreams about a bear

a girl never sees the girl

Jim sees Mary

Mary sees a bear

5

a boy, that sees the very big tree always likes a boy, that always eats a
tree

Jim likes the boy

the girl, that sees a bear sees a boy, that sees the tree

the tree always sees a very meek bear, that dreams about the girl, that
sees the tree, that eats Mary

a tree sees the bear, that eats the girl

he never sees a girl

the bear sees the girl

the boy likes him

a boy sees a tree

a girl likes the boy

a boy, that always likes him likes Jim

she dreams about the boy, that sees Jim

she likes the boy

a bear never dreams about the girl, that sees him

the bad tree dreams about Jim

the bear, that likes Mary sees the girl, that likes the big girl, that eats
the girl

6

2. O ~nalytic gra:Ill!!1~

The first method we can think of for analysing sentences is the application

of the rules in the reverse direction. The inverse of the rule " a --> a Y "

will then be:

If the i 'th word of a sentence is a B,and the i + 11th a y , then put

the i 1th word equal to a and erase the i + 1 'th.

This turns out to be a very cumbersome method. The following method

appears to be simpler and more elegant:

Try to generate , a sentence that matches the given sentence word

by word. (analysis by synthesis, tentative generation).

Our first thoughts go out to 'the following as a realization of the analyser

for the JohnLovesMary grammar:

boolean procedure sentence; sentence:= noun/\ verb /\ noun;

boolean proqedure noun; noun:= JOHN V MARY;

boolean procedure verb; verb:= LOVES;

LOVES assumes the value true if and only if the next word of the sentence
' - .

equals "love".

This approach works for this very simple grammar, but soon we get into

problems, as for instance with:

nounphrase - > adjective nounphrase / nounpart

with transcription:

boolean procedure nounphrase;

nounphrase:= (adjective /\ nounphrase) V nounpart;

Nounphrase will call itself until eternity. Another problem concerns what

is meant by "the following word of the sentence". A better approach: we

declare a global boolean b and integer . p and write:

procedure sentence;

begin PUTEXTl({sentence;j,); p:= 1;

noun; !!,_b ~ verb; !!,_b ~ noun

procedure verb;

begin PUTEXTl({verb:t}; match({loves:t) end;

procedure noun;

begin PUTEXTl({nout4); match({jomq,,);

!f. lb ~ match({mary.H

end;

The procedure match(u) does the following: p points to the next word of

7

. the sentence. If this word is equal to the string u then b is made ~

and p incremented by 1, else b is set to ~- Finally u is punched out,

followed by 11 match" or "fail" according to whether b is true or false. - -
Now nounphrase is realizable as follows:

procedure nounphrase;

begin PUTEXTl({nounphrase:l,); adjective;

if b then nounphrase else nounpart - - -
A non-recursive version is possible too, e. g.:

procedure nounphrase;

begin PUTEXTl({nounphrase:l,);

LABEL: adjective; !f. b ~ goto LABEL; nounpart

end;

We can be presented with the following problem:

sentence --> subject predicate

subject --> HE quality / HE

quality --> adverb READY TO GO

predicate --> adverb STOPS

adverb -->ALWAYS/ NEVER

8

Our mechanism would be able to analyze

HE ALWAYS READY TO GO NEVER STOPS

but not

HE ALWAYS STOPS

for in the second sentence, when it has failed to find a quality, it will find

"stops11 as a predicate instead of "always stops". To cope wih this "com

mon constituent problem" every procedure that returns with b = ~ will
have to restore p to its value at the moment of call. Therefore we make

use of the concept of locality, thus:

procedure quality;

begin integer n; n:= p; PUTEXTl({quality.:j,.);

adverb; !!_ b ~ match({ready to go*);

if lb then p:= n - -
end• ::::,;::;;:,J

For a rule like

subject --> HE quality / HE

We will use the shorter notation

subject --> HE (quality)

quality put between brackets to indicate that it is optional. It can be

programmed:

procedure subject;

begin integer n; n:= p; PUTEXTl({subjectj.);

match({he*); !!_ lb ~ goto F;

quality; b:= true; goto E;

F: p:= n; E:

end;
In the same way we write

modverb --> (modifier) verb

for modverb --> modifier verb/ verb

The following grammar II, which makes use of the shorter notation. has

been programmed in ALGOL as an analyser.

sentence --> subject predicate

subject --> subst / subname

subst --> article nounphrase

nounphrase --> adje nounphrase / nounpart

nounpart --> noun (relsentence)

predicate --> modverb object

modverb --> (adverb) verb

relsentence --> ,WHO predicate / ,THAT predicate

object--> subst / objname

adje --> (modifier) adjective

subname --> BADENPOWELL / JOHNWA YNE /

DA VIDLIVINGSTONE / HE

objname --> BADENPOWELL / JOHNWAYNE /

DA VIDLIVINGSTONE / HIM
adverb --> ALWAYS / OFTEN / NEVER

article --> A / THE

noun--> RHINOCEROS/ GORILLA/ CANNIBAL / MISSIONARY

adjective --> FAT / SLEEPY / NOISY / ABOMINABLE

modifier --> NONETOO / RATHER

verb --> SEES /SMELLS/ KILLS/ EATS

As the program is largely incorporated in the translator progra~ English

--> Dutch it is not reproduced here. The program was run on the Xl of

the ERC in UTRECHT. Analyzing "JOHN WAYNE SMELLS THE SLEEPY

MISSIONARY" it produced output II.

10

One can see clearly, not only what the structure is, but what it is not.

If the sentence does not contain a relative sentence we prefer to see no

trace of the attempt to find one.· We will realize this by means of an

output stack with pointer w.

Every procedure should start with Q(name) instead of PUTEXTl(name),

where Q does not punch directly, but stores the name under control of

the pointer w.

At the end of the procedure, w resumes its value at the moment of call

if b turns out to be false, thus erasing all traces of irrelevant attempts.

Furthermore we declare a global integer· as, that counts the "number of

spaces11
• This number is incremented by each call of Q and decremented

at the end of each procedure by the

procedure UQ; as:= as - 1;

With this apparatus the analysis of JOHN LOVES MARY looks like this:

sentence
noun

JOHN
verb

LOVES
noun

MARY

The complete text of quality is now

procedure quality;

begin in,teger n, m; n:= p; m:= w; Q({qualitYi,);

adverb; !f. b ~ match({ready to goi,);

!!. lb ~ begin p:= n; w!= m ~ UQ

For the detailed realization of the string handling procedures, see the

translator program (3.1).

Analyzing according to a PSG proves to be quite feasible in ALGOL:

the lack e>f string handling facilities is partly made up for by the ele

gance of its procedure concept.

2. 2 gutput II

johnwayne smells the sleepy missionary.

sentence
subject
subst
article
a fail
the fail
subname
badenpowell
johnwayne
predicate
modverb
adverb
always
often
never
verb
sees
smells
object
subst
article
a fail

fail
fail
fail

fail
match

fail
match

, t.he . m~tch
nounphrase
adje

fail
fail

modifier
nonetoo
rather
adjective
fat
sleepy
nounphrase
adje

fail
match

fail
fail

modifier
nonetoo
rather
adjective
fat
sleepy
noisy
abominable
nounpart

fail
fail

fail

noun

fail

fail
fail

fail
match

rhinoceros
gorilla
cannibal
missionary
rel sentence
,that fail

correcte zin. ,,

11

12

3. O !ranslating

The simplest way of translation is word-by-word translation. The gram

mar contains a list of words in the first language with one or more e

quivalents in the second. For the English word form "go" we should have

to list as Dutch equivalents:

go --:--> ga, ga~t, gaan; -go (japans damspel).

We can discriminate between those alternatives taking into account the

grammatical clues_ we· can find in the sentence. Mechanizing such a pro-
. . .

cess gives a more ambitious translator, for which we need an analysis

of the sentence that is· to be translated.

In translating, the English word order would be preserved. But consider:

JOHN NEVER STOPS

and its · Dutch translation

JOHN STOPT NOOIT

The order in Dutch is clearly different from that in English. The English

grammar has _.

verb ...,.-> · (modtlier) verbf orm

where the butch grammar bas

verb --> ver'bform (modifier)

We can solve this order-problem by analyzing in the normal English order,
.-

but changing the order during ~utput. We need a notation and a mechanism

for that.

Everybody know~ what I mean Lthis J by I• In a linear notation we will

denote it < this I by >. · A PSG of the first language, thus annotated with

inversion brackets. and containing for every word in the first language its

equivalent in the second language will be called a ~ultaneous granl.!!1!!£.

from the first language into the second.

13

Now the question is raised: can any permutation of n elements be reached

with (possibly nested) inversion brackets? The answer is no, as is shown

by the counter-example (n = 4): 3 1 4 2. Exhaustively trying all com

binations of brackets, one will find that it can not be permuted ,to

1 2 3 4.

We could try to define the operation of those brackets in such a way that

not properly nested use becomes meaningful, thus:

-reading a string from left to right, the first inversion opening bracket cor

responds to the first inversion middle bracket after that, and the first in...:

version end bracket after that middle bracket. In reading the string, cor,

responding brackets are removed, performing the inversions one after the

other. (An alternative definition could be given with "left" and "right" in

terchanged.)

Now we can permute:

<< 3 I 1 > 4 l 2 > to 1 < 3 4 \ 2 > to 1 2 3 4.

Again the question is raised: can any permutation of n elements be reached

with inversion brackets as defined? The reader may tax his ingenuity by

either disproving it or finding an algorithm which does positiop. the brackets.

The author has spent a whole night trying in vain to find a solution for

6 1 4 2 7 5 3 to 1 2 3 4 5 6 7 .

For the time being we will allow only properly nested inversions.

In a program, the inversion opening bracket will be represented by a call

of the procedure invopen, a middle bracket by invmiddle and an end brae-

14

ket by invend. Using these the transcription of

verb --> < (modifier) I verbform >
will be

prpcedure verb;

bemn iAteger m, n; n:= p; m:= w; Q({ver'b:t,.);

end;

invopen; modifier; invmiddle; verbform; invend;

!i 7b ~ begin p:= n; w:= m end; UQ

When there is· no modifier the output is the structure "< I verbform >11
,

which is equivalent to 11 verbform11
• Invopen, invmiddle and invend put

into the output stack a note for the output program, that will effect the

inversion. Their use may be nest) d, as is shown by one of the trans

lated sentences.·

The translation proceeds as follows: for each English word form in a cer

tain grammatical class, the equivalent Dutch word form is listed. The

procedure match gives besides the English word its. appropriate Dutch

translation. Thus, the Dutch sentence is generated parallel to the ana

lysis of the English sentence.

Input I consists of those two vocabularies, followed by the list of names

of grammatical classes, followed by some sentences. The program, pro

gram II, is a good demonstration of the techniques we have expounded

thus far, and a good introduction to a moderately complex translator:

The small English -~ German translator (5.0).

15'

begin comment jungle translator, K. Koster, 11()864 Program II;
i.niege:r"r, n, 11, 12, 13, 14, p, w, as, i, j, k; boolean b, op;
integer array A[O : 30], W[O : 300], T[0 : 1000], o[o : 500];

integer procedure R;
begin 1: r:= R:= RE7BIT;

ff r = 26 V r = 122 V r = 124 V r = 127
- V (r = 16 Ai = 0) V r = 0 ~ goto 1

~R;

boolean 12rocedure o; o:= XEEN(2) = 2;

trocedure P(i); integer i;
egin ~itch PS:= pl, p2, p4, p7, p8, pe, pe, pe, psp, p3, p5, p6, p9,

::\,); pe:
end• __,

pnl, pe, pe, p0, pt, pv, pw, pz, pe, pe, pe,
pe, ps, pu, px, py, pe, pe, ptb, pmin, pl, pn,
po, pr, pe, pe, pe, pj, pk, pm, pp, pq, pcom,
pe, pe, pa, pb, pd, pg, ph, ppnt, pe, pe, pplus,
pc, pee, pf, pi, pe, pe, pe;

procedure P(u); (t)ing u;
begin !f. XEEN 8 = 8 ~ PUTEXTl(u) ~ PRINTTEXT(u);

goto pe
end;
goto if i = 0 then~e else PS[i : 2 + l];
pl: P~!); p2: P(!); p3: P(!!; p4: P(ia); p5: P. ({5:\,);
p6: P(6); p7: P(7); p8: P(); p9: P();
p0: P(); pa: P(); pb: P(); pc: P(c); pd: P({ctj,);
pee: P({e*); pf: P({:tl,); pg: P({gi,); ph: P({hi-);
pi: P({tj,); pj: P({tt,)j pk: P({iq); pl: P({tf); pm: P({m:t);
pn: P({n:i,); po: P({o:t,); pp: P({m,); pq: P({q:l.); .
pr: P({r::1-); ps: P({si,); pt: P({ti,); pu: P({:iri,); pv: P({v,\,);
pw: P{{~); px: P(W); py: P({n); pz: P({z:j,);
psp: P({ }); ptb: P({ *); pmiri: P({-:\,); pcom: P({;\,);
pplus: P({+*); ppnt: P({.::\,); pnl: P({

procedure OUTPUT;
begin integer c, d, e;

for c:= 0 step[1 until w - 1 do
begin d:= 0 c]; !!,. d < 0 then

end

begin if d < -30767 ~ c:= d + 32767 else
lT d < -256 then print(d) else
begin !i, d'"'<"='.127 then -

end
begin

end

end

f egin PUNLCR; d:= d + 128 end•
...2E. e:= 1 step 1 ~ -d 22. P(ftr'

else
e:= d : 128; P{d - 128 x e);
d:= e L 128; P(e - 128 X d), P(d)

16

procedure PONS(i, j); integer i~ j;
begin integer a; O[w]:= -j; w:= w + 1;

!1, i 2:. O then f2!: a:= W[i] step 1 until W[i + 1] - 1 ~
begin O[w J:= T[a]j w:= w + 1 ~

end;

· procedure INPUT;
begj.n W[0]:= 0;
LI: lees; !!., r f 107 ~ goto LI
end;

procedure lees;
begin i:= O;
leesl: if R = 16 V r = 107 then got! codeer;

A[i]:= r; i:= i + 1; gofo lees ;
codeer: for j:= 0, j + 3 While j < i do

l>egin T[k]:= A[jrttf j+ 1 <i then A[j + 1] X 128 else 16256)
• if j + 2 <1 then A[j +2] x 16384 else 20"Sll'r68;
k:;-''k + 1 - -

end;
n:= n + 1; W[n]:= k; !f.g then PONS(n - 1, 128~

boolean procedure g; g:= XEEN(l) = 1;

procedur~ match(ih integer t;
begin 1t p < n ll1!fil equal(p, i) ~

lip > n then b:= false else

end• --?

~,
1f op then b:= false else Ejf n lees; op:~ "i<J7; equal(p, i) end;
i then
~gjp.-p:= p + 1; PONS(i, 128 + as); PONS(i + 13, 10) ~

else if g then PONS(i, 126 + as) --- --
6ro?edure equal(~, p); integer i, p;
~ integer J, k, 1, m, i;

end• ~

j:= W[i]; k:= W[i + 1] - 1;
1:= W[p]; m:= W[p + 1] - 1;
if k - j f m - 1 ~ bewn b:= false; goto endeq end;
fur t:= k - j step -1 unt 1 0 do
begin !L T[j + t] f T[l + t]tllen

b~gj!1 b:= false; goto endeq end
end•
fo= 'trµe; endeq:

procedure Q(i, u); integer i; string u;
begin !£ o ~ PONSb4 + i, 128 + as)

~ 1£g t.hen begin SPACE(l); PRINTTEXT(u) end;
as:= as·+ 1

end;

procedure UQ; as:= as - 1;

procedure invopen; PONS(-1, 258);

procedure invmiddle; PONS(-1, 257);

procedure invend;
begin intener i, j; i:= w - 1;
AA: if o1l = -257 then O[i]:= w - 32767

- else begin i:= i - 1; goto AA ~
j:= i - 1;

BA: if O[j] = -258 then O[j];= i - 32767
- else begin j:= j - 1; goto BA ~
O[w]:== j -32767; w:= w + 1

end• ::::::;:;

procedure sentence;
begin Q(O, {sei,);

subject; if b then predicate; UQ
end•
~

- -
procedure sub,ect;
begin Q(l, -tsj:t); subst;

if lb then subname; UQ
end• - -
~
$rocedure subst;

egin integer m, n; m:= w; n:= p; Q(2, {su::1-);
article;

end• ~

if b then noun phrase;
![7b then begin p:= n; w:= m end; UQ

procedure noun phrase;
begin integer m, n; m:= w; n:= p; Q(3. {ntl,);
ADLST: adje; !£b ~ goto ADLST; -

end•
~

nounpart;
!f. lb ~ begin p:= n; w:= m end; UQ

trocedure nounpart;
egin integer n, m; m:= w; n:= p; Q(4, {nJtj.);

noun;

end•
~

!f. b ~ begin relsentence; b:= ~ ~
~ begin p:= n; w:= m end; UQ

procedure predicate;
begin integer m, n; m:= w;_ n:= p; Q(5, {ptj.);

modverb; if b then object;

end• =,
[. lb then beginp:== n; w:= m end; UQ

trocedure modverb;
egin integer: m, n; m:= w; n:= p; Q(6, {mv;\,);

invopen; adverb; invmiddle; verb; invend;
!£ lb ~ begin p:= n; w:= m end; UQ

17

18

procedure rel sentence; ·
begin ipte er m, n; m:= w; n:= p; Q(7, {rsi,);

niatch O); if lb then match(24);
ifbthen- -

end• :::,:,::;;:,.,

oegin-adverb; invopen; verb;
if b then
begln-invmiddle; object; invend ~

end; !!_ lb ~ begln p:= n; w:= m end; UQ

Srocedure object;
egin Q(8, {obi,); subst;

end• :::,:,::;;:,.,
!£ 1b ~ objname; UQ

procedure adje;
begin int1i'r m, n; m:= w; n:= p; Q(9, {atl,);

mo ier; adjective; · · ·

end• :::,:,::;;:,.,

!£ 1b ~ pegin p:= n; w:= m end; UQ

trocedure subname;
egin inte er m; m:= w; Q(lO, {sn:j,.);

end• :::,:,::;;:,.,

match 1); if lb then match(2)f if lb then match(3);
if lb then match(4),;. - - -
!r lb then w:= m; UQ

procedure objname;
begin inte er m; m:= w; Q(ll, {oni,);

match 1); if lb then match(2); if lb then match(3);
if lb then matcJ:it25l; - - -
Ir lb fuen w:= m; UQ - -end• :::,:,::;;:,.,,

procedure adverb;
begj.n inte er m; m:= w; Q(12, {av::1,-);

end· ~

match 5); if lb then match(6)f if lb then match(7); --- ~ - ------if lb then w:= m; uQ · · - -
~rocedure article;

egin integer m; m:= w; Q(l3, {ar;j.);
match(8); if lb then match(9)f

end•
~

if 7b then w:= m_;UQ - -
1;rocedure noun;

egin . inte er m; m:= w; Q(l4, {no:});

end• :::,:,::;;:,.,

match 10); if lb then match(ll); if lb then match(12);
if lb then match{l3); - -
IT lb tiieii w:= m; UQ - -

Srocedure adjective;
egin inte~r m; m:= w; Q(l5, {actj.);

end• :::,:,::;;:,.,

matc(14); if lb then match(15); if lb then match(16);
if lb then matchfa7); - .
rr lb then W:= m; UQ - -

procedure modifier;
begin inte er m; m:= w; Q(l6, {mtj.);

match 22); if lb then match(23);

end• =.,
if lb then w:= m';"tjQ - -

.Srocedure verb;
egin lnte er m; m:= w; Q(l7, {vb:t,); ·

end• =.,

match 18); if lb then match(19); if 7b then match(20);
· if lb then matchmT; . - -
[: lb then w:= m; UQ

19

INGRAM: n:= k:= w:= O; INPUT; 13:= n; INPUT; 14:= n;
INPUT; 11:= n; 12:= k; b:= true•
!f. g ~ begin NLCR; !2!:_ i:= (3, 14, 11, 12 22, print(i); NLCR end;

BASIS: PUNLCR; if lb then w:= w + 50; comment voor testdoeleinden;

end

OUTPUT; PUNLCR; - ---
if XEEN(4) = 4 then stop; p:= n:= 11; k:= 12; w:= as:= O;
PUNLCR; op:= b:= false; sentence; b:= b /\ op; PONS(-1, -107);
PUNLCR; PUNLCR; if b then PUTEXTl({correcte zin.:t)

-elsetr"UTEXTl{{geen welgevormde zin.});
PUNLCR; goto BASIS -

1 INPUT I'

,that badenpowell johnwayne davidlivingstone he always often never a the
rhinoceros gorilla cannibal missionary fat sleepy noisy
abominable sees smells kills eats nonetoo rather ,who him.

,die badenpowell johnwayne davidlivingstone hij altijd vaak nooit een de
neushoorn gorilla kannibaal missionaris vette slaperige lawaaierige
verschrikkelijke ziet ruikt doodt verorbert nietalte nogal ,die hem.

sentence subject subst nounphrase nounpart predicate modverb relsentence
object adje subname objname adverb article noun adjective modifier
verb empty.

the gorilla ,that often kills badenpowell never eats a missionary.

johnwayne smells the fat rhinoceros itthat always eats a gorilla ,
that sees the noisy cannibal.

the nonetoo fat cannibal sees a rather fat missionary.

davidlivingstone never sees a sleepy gorilla ,that kills the
rather abominable noisy missionary.

20

3. 2 _Qatput Ill

correcte zin.

sentence
subject

subst
article
the de

nounphrase
nounpart
noun
gorilla gorilla

rel sentence
,that ,die
adverb
often vaak

object
objname
badenpowell badenpowell

verb
kills , doodt

predicate
modverb

verb
eats verorbert

adverb
never nooit

object
subst
article

a een
nounphrase
nounpart

noun
missionary missionaris,

correcte zin.

sentence
subject
subname

johnwayne
predicate

modverb
verb
smells

object
subst
article
the

nounphrase
adje
adjective

johnwayne

ruikt

de

fat vette
nounpart

noun
rhinoceros neushoorn

rel sentence
.that ,die
adverb

always altijd
object
subst
article
a een

nounphrase
nounpart
noun
gorilla gorilla

rel sentence

verb
eats

,that ,die
object
subst
article
the de

nounphrase
adje
adjective

noisy lawaaierige
nounpart
noun
cannibal kannibaal

verb
sees ziet

verorbert.

21

22

correcte zin.

sentence
subject

subst
article
the

nounphrase
adje
modifier

nonetoo
adjective
fat

nounpart
noun

cannibal
predicate

modverb
verb

de

vette

sees ziet
object

subst
article
a een

nounphrase
adje
modifier

nietalte

kannibaal

rather nogal
adjective
fat vette

nounpart
noun
missionary missionaris.

correcte zin.

sentence
subject
subname
da vidli vingstone davidli vingstone

predicate
modverb
verb

sees ziet
adverb

never nooit
object

subst
article

a een
nounphrase

adje
adjective

sleepy
nounpart

noun
gorilla

rel sentence
,that
object

subst
article
the

nounphrase
adje
modifier

slaperige

gorilla

,die

de

rather nogal
adjective

abominable verschrikkelijke
adje
adjective
noisy lawaaierige

nounpart
noun
missionary missionaris

verb
kills doodt.

23

24

4. 0 Affixes

Consider the following grammar to generate

1) THE GORILLA EATS FRESH PEANUTS

sentence --> subject verb object

subject --> article substantive

object --> adjective substantive

substantive --> GORILLA / PEANUTS

article - > THE

verb --> EATS

adjective --> FRESH

This grammar also covers the sentences

2) THE PEANUTS EATS FRESH PEANUTS

3) THE GORILLA EATS FRESH GORILLA

4) THE PEANUTS EATS FRESH GORILLA

Even if the sentence 3) evokes a rather improbable image, we do not feel

any grammatical objection against it; but we do feel one against the sen

tences 2) and 4). We feel that the verb should follow the subject in num

ber. We can solve the problem by discriminating between singular and

plural subjects.

sentence --> subjectsingular verbsingular object /

subjectplural verbplural object

subjectsingular --> article substsingular

subjectplural --> article substplural

object --> adjective substsingular / adjective substplural

verbsingular --> EATS

verbplural --> EAT

substsingular --> GORILLA

substplural --> PEANUTS

article --> THE

adjective --> FRESH

25

This grammar yields the following sentences:

1) THE GORILLA EATS FRESH PEANUTS

2) THE GORILLA EATS FRESH GORILLA

3) THE PEANUTS EAT FRESH GORILLA

4) THE PEANUTS EAT FRESH PEANUTS

In this way a grammar for a natural language becomes frightfully large

and unwieldy, as we have to differentiate each grammatical category ac

cording to person, number, gender, time, case, whether it is active or

passive, a question or an order and probably a lot of less obvious sub

divisions.

One way to keep the grammar small is to have only simple sentences

in the grammar and to construct more involved sentences out of them

by the application of transformations. But in the case of analysis instead

of generation this seems to be putting the cart before the horse: an ana

lysis of the sentence is needed anyway, and the most practical way of

defining a transformation is probably a simultaneous grammar from the

natural language into itself.

The method we will use to keep our grammar concise and clear is the use

of affixes. nverb with the affixes a and b" will be written "verb + a + b".

Affixes may be seen as formals in ALGOL procedures (left of "-->" the

heading and specifications, right of 11-->11 the procedure body) or as

endings to the names of the grammatical categories, that can be copied

and transferred.

A rule "verb + n + p --> auxiliaryverb + n + p infinitive11 transforms

"verb + singular + third11 into "auxiliaryverb + singular + third infi

nitive". The grammar should contain a rule with a left part of the form:

26

verb + singular + first -->

+second-->

third-->

+ plural + first --> ·

+second-->

+ third -->
(The deletion of repeated elements is just an economy in writing down the

grammar).

Now we can give the grammar a neater, though completely equivalent form.

sentence --> basicsentence + number

number - > singular / plural

basicsentence + n --> subject+ n verb+ n object

subject+ n --> article substantive + n

object - > adjective substantive+ number

verb + singular --> EATS

+ plural --> EAT

article --> THE

substantive+ singular --> GORILLA

+ plural --> PEANUTS

adjective - > FRESH

As each rule can have only a finite number of affixes, and each affix is a

member of a finite set, we can write out an affix PSG into an equivalent

CF PSG (by subdividing categories according to the different affixes they

bear, for instance adding them as endings to the head word). In fact this

is mechanical work that can be done by a computer.

This is an obvious proof for the following:

theorem for every affix PSG there is a strictly equivalent CF PSG.

27

This means that an affix PSG is not a stronger tool than a normal PSG,

but the reduction in size of a grammar by making use of some affixes can

be tremendous.

If we allow affixes .to be grammatical categories then the proof of the the

orem is still valid, for the number of grammatical classes is finite too.

A practical instance of this:

progressive + n + p + v --> tobe + n + p v + partpraes

will transform

progressive + n + p + see

into

tobe + n + p see + partpraes

The affix mechanism can be realized in ALGOL by making use of para

meters. Grammat:b al categories are represented by procedures and it is

quite correct to use a formal procedure.

4.1 Affix PSG's - --
We will give a more rigorous mathematical description of an affix phrase

structure grammar G(V, S, F, P, M).

The vocabulary V consists of 5 mutually disjoint vocabularies

Vn of nonterminal symbols

Vt of terminal symbols

Vaf of formal affixes

Van of nonterminal affixes

Vat of terminal affixes

S is the special initial symbol, F, P and M three lists of rules.

28

We wil~ describe the possible structure of F, P and M rules by a PSG,

using as a meta-meta-language the notational conventions of the ALGOL

report. (We will not use the symbols <, I and > for inversion brackets).

We presuppose categories like <member of Vtp,, etc.

<F-rule>:-:= <member of Vn> --> <rightparf:>

<rightparf:>:::= <alternative> / <rightpart> I <alternative>

<alternative>::= <constituent> <alternative> I <~onstituent>

<constituent>::= <member of Vn> I <member of Vt>

<P-rule>::= <member of Van> --> <P-list>

<P-list>::= <actual affbc> / <P-list> I <actual affix:>

<actual affbc>: := <member of Vat> I <constituent>

<M-rule>::= <member of Vn> <left affix list> -~> <M-rightpart>

<left affix list>::= <left affix:> + <left affix list> I <left affix:>

<left affi:,c,.::= <member of Va:f> I <member of Vat>

<M-rightpart>::= <M-alternative> / <M-rightpart> I <M-alternative>

<M-alternative>::= <M-constituent> <M-alternative> I <M-constituent>

<M-constituent>::= <M-headword> · <right affix list> I
<M-headword> I <member of Vt>

<M-headword>::= <member of Vn> I <member of Va:f>

<right affix list>::= <right affix:> + <right affix list> I <right affix:>

<right affi:,c,.::= <any member of V>

If some member of Vaf occurs as a right affix in a rule, it must occur

once and only once in the left affix list of the head word as well. The

reverse is not necessarily true.

P-rewriting rules have precedence over other rewriting rules, so that a

member of Van is immediately rewritten.

!1~riting rules are applied as follow~

a rule "<member of Vn> + <leftaffbc:1 +

is applicable to

+ <leftaffucn -->"

"<M-headword> + <rightaffi:x>l + · ••• + <rightaffi:,cm"

if and only if

<member of Vn> equals <M-headword>

m = n

and for all i, 1 ~ i ~ n,

either <leftaffi:ci. is a member of V af

or both <leftaffi:ci. and <rightaffix:::l are members of Vat

and <right affix:::l equals <leftaffi:ci..

29

If the rule is applicable rewriting of the M-constituent takes place, into

which is substituted - at every occurence · in the right part of the rule

of some formal affix corresponding to the j 'th left affix of the rule -

the j'th right affix of the M-constituent. (cf. actual-formal correspon

dence in ALGOL).

This definition of affix PSG is best suited to generation purposes. In

(5. 0) we will introduce M-rules with formal affixes in the right part that

are not matched by a left affix.

4. 2 Affix PSG1s and Context Sensitive PSG's-

It must be kept in mind that every M-rule in our grammar in effect repre

sents a number of context free rules (F-rules). As long as we have a limi

ted number of affixes we could write out the affix grammar as a CF PSG,

even though an affix grammar has some properties we would intuitively at

tribute to a Context Sensitive grammar or to a discontinuous grammar. It

can handle constructions like "both ••• and .•• 11 (matched pairs) and 11word

by-word11 (repetitions).

30

But if we allow indices to be taken from an 'infinite set~ as for instance

the natural ,numbers,, we. should get an infinite number of rules. In order

to do this we should have at least one P-rule with an infinitely long P-list.

We can keep the number of rules finite by allowing calculation, in the form

of affix express:to.:,;is, bufthis can give us something stronger than a CF PSG.

Take for example the non context free (context sensitive with erasing) lan

guage consisting of sentences of the form

A[n] B[n] A[n] (n a's followed by exactly n b'sl> followed by exact

ly n a's, n = 1, ·2, ••• ,n, ••).

A context sensitive grammar for thB language is

initial symbol S

S -->AB r A

B r A --> B A / q B B A A

BqB->qBB

A q B -->AA Br

BrB-->BBr

Like busy bees the constituents q and r travel across the half-formed sen

tence, adding A's and B A's till the process breaks off. As a model of

the way that our brain recognizes or generates sentences of this kind it

is clearly preposterous •.

Now consider the following affix grammar involving calculations. (Affix ex

pressions, put between square brackets, are considered members of Van).

M: sentence --'-> basicsentence + positiveinteger

P: positiveinteger --> 1, 2, 3, • • • , k, ••

M: basicsentence + n --> rowofas + n rowofbs + n rowofas + n

rowofas + 1 --> A

+ n --> A rowofas + [n - 1]

rowofbs + 1 -'-> B

+ n - > B rowofbs + [n - 1]

31

A study of this most general kind of affix grammars seems worth wh1leo

That affix grammars are a perfectly natural tool for treating natural lan

guages will become obvious. MEERTENS has done some (unpubli~hed)

work on the use of affix grammars in musical composition. His results

seem to indicate the necessity of allowing affix expressions in those parts

of the grammar connected with rhythm and melody.

4o 3 ~biguity

This method of analysis is sensitive to various kinds of grammatical ambi

guity. One kind of ambiguity, the common constituent problem, is solved

by making use of the pointer p (2. 0). A more serious kind of ambiguity,

due to a misordering of the alternatives, is the following:

subst --> noun / noun relsentence

This rule will never detect a relsentence. It should be reordered to:

subst '---> noun relE!entence / noun

putting the more complicated alternative first. Or, using a more pract al

notation:

subst --> noun (relsentence)

This shows that some care must be taken in programming a PSG as an a

nalyser. Take for instance 2.4.1 of the ALGOL REPORT: -

identifier --> letter / identifier letter / identifier digit

The rule, if programmed. this way, will incorrectly analyse "ql11
, for it is

ended as soon· as the q has been found. If we reorder it we will find that

the program never stops, due to the left recursivity of the rule. We have

to rewrite it in a_ right-recursive form:

identifier --> letter (identifiertail)

identifiertail --> letter (identifiertail) / digit (identifiertail)

The form in the report was meant for definition, not analysis purposes.

32

Even if we c~mstruct our grammar with a wary eye on ordering and right

recursivity there may be ambiguities with which this simple approach can

not cope.

object --> subst (nextobject}

nextobject --> AND object

sentence --> b.asicsentence (nextsentence)

nextsentence --> AND sentence

basicsentence --> subject SAW object / subject WERE IN BLOOM

subject --> I / subst

subst -.-> THE GARDENS / THE ROSES

Analysing the sentence

I SAW THE GARDENS AND THE ROSES WERE IN BLOOM

we will not find two sentences separated by AND but a sentence

I SAW THE GARDENS AND THE ROSES

followed by some ungrammatical nonsense. Even though the grammar is

quite capable of generating the given sentence, it can not analyse it. This

sentence displays another ambiguity: to the English speaking reader it can

be equivalent to

I SAW THAT THE GARDENS AND THE ROSES WERE IN BLOOM

An ideal analyzer would in this case give more than one1 all possible ana

lyses. The method of analysis by synthesis as proposed here will give at

most one analysis - in the case of multiple possibilities the one that comes

first according to the implicit ordering of the grammar.

In the definition of affix PSG a right part consists of a number of alterna

tives, each consisting of a concatenation. We can wonder exactly where gram

matical ambiguity originates. It is clear that in concatenations no ambiguity

can arise: either all the constituents are present in that order or analysis

fails. But, by choosing between a number of alternatives it is possible to

33

decide prematurely upon some alternative. This problem is partly solved

by trying the more involved alternatives before the simpler. But that is

exactly the reason why our last example went wrong.

The ideal analyzer should exhaustively try all alternatives, even after one

has been found that would suffice. This can be done by duplicating the stack

of the ALGOL executive program, or preserving it in some less drastic

way. For reasons of speed and simplicity the programs in thi.s report will

not attempt this, even if the present system is not fool proof. Still, many

problems can be overcome by investing some thought upon the ordering of

the grammar. So for the moment we will not be concerned with grammatical

ambiguity, not to mention non grammatically decidable semantical ambiguity.

5. 0 Translator English --> Germ.!E

We will now describe a translator program in ALGOL that translates sen

tences from English into German. The translator is equipped with a rather

rudimentary verb mechanism, but a rather elegant noun mechanism. It is

a small translator and the author is busy expanding it to a more practical

size. Still, it gives within a small scope an idea of the practicality of af

fixes and inversions.

The reason for choosing those two languages: German has lots of endings,

English has few, and there are some interesting word order problems too.

The two languages are just similar enough to make translation possible

and just dissimilar enough to make translation interesting.

During analysis~ values have to be substituted for the different affixes in the

rules. The most direct way would be to try all combinations. The program

for the following rule would be:

34

class --> part+ affixl + affix2

affixl --> al / a2 / •. • • .. / an

affix2 --> bl / b2 / •••• / bm

procedure class

begin integer affixl, affix2;

end;

!2!:, affixl:= al, a2, •• , an ~

!2!:, affix2-:= bl, b2, •• , bm ~

begf.n part (affixl, affix2); !f_b then goto E ~ E:

For efficiency reasons we will use an other approach. If in the right part

of a rule some forma~ affix occurs, which does not correspond to any left

affix of the rule., we assume this affix to be filled in implicitly.

What this means will become clear in the commentary interspersed with

the part of the grammar that is to follow.

sentence -> basicsentence (nextsentence)

nextsentence --> connective sentence

basicsentence - -> · subject + n + p < predicate + n + p /

circumstance < subject + n + p predicate + n + p

The inversion bracket has to effectuate the discrimination in the German

word order between "der Mann sieht mich im Garten" and 11 im Garten

sieht der Mann mich11
• A third word order will be found in the relsentence:

"den der Mann im Garten sieht" or "der mich im Garten siehtlf.

Subject implicitly gives a value to n and p (number and person), so that

predicate is entered with n and p already known.

subject + n + p --> < nounphrase + n + p + g + 1 I (TOO) >
N ounphrase should fill in number, person and gender, but the case is pre

scribed to be one.

object --> < nounphrase + n + p + g + 4 I (TOO) > (nextobject)

n, p and g are to be filled in implicitly.

nextobject --> connector object

nounphrase + n + 3 + g + c --> nounpart + n + g + c

(relsentence + n + 3 + g) (circumstance)

+ n + p + g + c --> perspron + n + p + g + c

(relsentence + n + p + g) (circumstance)

Nounpart should give a value to n and g, whereas p is known to be 3.

Personal pronoun has to fill in all three.

nounpart + n + g + c -->

35

THE < noun + n + g + c + endingl I endingofder + n + g + c > /
A < noun + n + g + c + ending2 I endingofein + n + g + c > / --
~Oun + n + g + c + ending3

Noun should give a value to n and g. Endingl, 2 and 3 will generate the

correct endings of the german adjectives, and are passed on as formal

procedures.

noun + n + g + c + e -->
(modifier) adjective< noun+ n + g + c + e I e + n + g + c > /
subst + n + g + c

Now subst has to give values to n and g. Simplified, subst looks like this:

procedure subst(n, g, c}; integer n, g, c;

begin n:= singul.{1-r; g:= masculine;

match(man, mann); !f. b ~ goto E; g:= feminine;

match(woman, frau); !f. b ~ goto E; g:= neutral;

match(child, kind}; !f. b ~ goto E;

n:= plural;- g:= masculine;

match(men, maenner); !f. b ~- goto E; g:= feminine;

match(woman, frauen); !f. b ~ goto E; g:= neutral;

match(children, kinder}; !f. 7b ~ goto END;

E: ending of german substantive (n, g, c); END:

end;

36

The procedure match is equipped with two parameters; if a word equal to

the fi:r.:st parameter happens to be under the input pointer, the second para

meter is put into the output stack, p is incremented and b becomes true;

otherwise b becomes false. -
The translation of the subject "a rather small city too" will be:

"< ein < ziemlich gross < Stadt I e > I e > I auch >", or without brackets:

"auch eine ziemlich grosse Stadt".

The problem that has given rise to this not so obvious mechanism is the

fact that the endings can only be produced when the substantive has been

located. This recursive definition seems quite powerful. With a very small

addition it could cope also with "a small and beautiful city".

In a practical case, using a grammar that contains thousands of substan

tives, the procedure subst should not really try to match h turn all sub

stantives listed. Rather some preprocessing program should construct for

every word in the input sentence a list of possible grammatical categories,

together with the translation and the value of the affixes. The procedure

subst only searches the list under the pointer for some translation marked.

as a substantive, and takes over the values of the affixes. This prevents

much double work, especially in the case of multiple analyses. Thus trans

lation time will go up about logarithmically with the number of words in the

grammar instead of linearly. In programming the preprocessor,, one can

benefit from the tremendous effort put into the construction of vocabularies

and stem vocabularies in the second half of the fifties.

The verb mechanism is rather sketchy, viz.:

predicate+ n + p --> I copula+ n + p > (quality) (circumstance) /

I verb + n + p > (object) (circumstance)

Verb, which I shall not write out, has only the present tense, including a

differentiation between German strong and weak verbs. In a later stage

37

other tenses will be added, together with the progressive form and the

auxiliary verbs, making use of inversions in the same way as in the sub

stantive.

Relsentence is rather complete:

relsentence + n + p + g -->
(,) relpron + n + g + 1 relpredicate + n + p /

(.) relpron + n + g + 4 relphrase /

(,) preposition+ c relpron + n + g + c relphrase/

(,) preposition + c rel pron + n + g + 2

no~n + n' + g' + c + e ndingl rel phrase /

(,) relpron + n + g + 2 noun+ n' + g' + 1 + ending!

relpredicate + n' + 3 /

(,) relpron + n + g + 2 noun+ n' + g' + 4 + ending!

relphrase

Instances of all these are, respectively:

, who sees me

, whom I see

, to whom I go

, to whose house I go

, whose dog smells me

, whose dog I smell

The difference between predicate and relpredicate is one of word order in

German. Just compare the rule for predicate with

relpredicate + n + p -->
< (adverb) verb+ n + p I (object) (circumstance) > /
< (adverb) copula + n + p I (quality) (circumstance) >

The mysterious "circumstance" is either an indication of when or where

the action of the sentence takes place, or a preposition construction like

"to me".

38

If any matter is not immediately clear to the reader then some perusal

of the program will solve all doubts. The first part of the program is a

set of string handling routines, including a reading procedure, written in

machine code. It has a variable ·number of parameters, but at least four,

two arrays and two integers that serve as pointers are always required.

The input is on FLEXOWRITER tape. The heptads. are packed three in a

word. Separator is either a period or a comma. The last word of the

packed string is given a negative sign. The integer assigned to the name

of the string that is read in, is the location of its first packed word.

The other. array serves as a list of all known words in order to enable '

the procedure leesl to assign the same integer to identical strings.

Readn can_ have at most 27 string names as parameters, a limitation

imposed by the running system used. It seems not worthwile to describe

the program in any more detail, as the linguist will not be interested

and the ALGOList can find out for himself. It should be kept in mind

this is a rather preliminary version of the grammar that will be published

in a larger and more polished version later. The presented grammar is

too small to have more than demonstrational value for the techniques used.

39

begin £2!!}!!,lent vertaler ENGELS ---> DUITS, K. Koster, R826 ;
integer halt, vertaal, output, commentaar, nl, 11, 12, 13, 14, x, w, asl, k;
boolean b, ql, q2, op, o, g;
integer array W[O : 600], T[0 : 1500], I[O : 50], O[0 : 500], GK[0 : 40];

boolean procedure af; af:= op /\ x 2:. nl;

procedure PP(i); integer i; PU7BIT(i);

procedure OUTPUT;
l;legin integer c, d, e;

for c:= 0 step[1 until w - 1 do
begin d:= O c];71ci < 0 ~

begin ird < -30767 ~ c:= d + 32767 else
if d < -256 then print(d) else
begin. !f. d""<"=127 ~ -

end
begin

end
end; w:=O

end

fegin P(26); d:= d + 128 end•
...2!'.. e:= 1 step 1 ~ -d ~ P(i6)

else
e:= d .:.,.128; P(d - 128 X e); if e = 0 then g<m) E;
d:= e .:.,.128; P(e - 128 x d); [:d f O then P ; E:

procedure PRINT(i, j); value i 11 j; integer i, j;
begin integer c, d, e;-
SC: !!_ j > 127 then begin PP(26); j:= j - 128; goto SC end;

f2!. j:= j rep -1 until 1 22, PP(16);
PC: c:= T[i]; := abs(cr_;--

end;

e:= d : 128; PP(d - 128 X e); if e = 0 then got(PE;
d:= e [128, PP(e - 128 x d); I[d f O £iieii PP d); :pE:
!!. c > 0 ~ begin i:= i + 1; goto PC end

procedure TYPE(i, j); ~ i. j; integer i, j;
begin integer c, d, e;
SC: if j > 127 ~ beg1.n P(26); j:= j - 128; goto SC end;

fur j:= j dtep -1 until 1 ~ P(16);
PC: c:= T[i]; := abs(cr:r-

end;

e:== d : 128; P(d - 128 X e); if e = 0 then gem) PE;
d:= e [128; P(e -128 X d); [:d f O then P ; PE:
,!L c > 0 ~ begin i:= i + 1; goto PC ~

Brocedure PONS(i, j); ~ i, j; integer i, j;
~ integer a; O[w]:= -j; w:= w + 1;

if i > 0 then

e'hd•
~

begin -
N: a:= T[i]; O[w]:= abs(a); w:= w + 1; if a> 0 then

begin i:= i + 1; goto N ~ - -
end

40

trocedure P(i); integer i;
egin ~itch PS:= pl, p2, p4, p7, p8, pe, pe, pe, psp, p3, p5, p6, p9,

~.~.~.~.~p~~-~.~.~.~.
pe, ps, pu, px, py, pe, pe, ptb;

switch PSS:= pmin, pl, pn, po, pr, pe, pe, pe, pj, pk, pm,
-- pp, pq, pcom, pe, pe, pa, pb, pd, pg, ph, ppnt,

pe, pe, pplus, pc, pee, pf, pi, pe, pe, pe;
procedure P(u); string u; fepJ-n PRINTTEXT(u); got] pe end•
~ if i = 0 then pe else i 1 > 63 then PSS[i : 2 - 31 elseTs[i: 2 + 1];
pl: P!!); p2: P(t ; p3:P(s);'""pi: P(t!}; p5: P(fflf; -
p6: P(6); p7: P(7); p8: P(),; p9: P(); .
p0: P(),; pa: P(); pb: P(),; pc: P(c); pd: P({ctj,,); .
pee: P({e::j.); pf: P({ti,); pg: P({gt); ph: P({lq,);
pi: P({tj.); pj: P('ft,l,)j pk: P(~); pl: P(~); pm: P{'fnt½,);
pn: P({rq.); po: P({o::j.); pp: P({p;\,); pq: P('f~};
pr: P({d); ps: P({~); pt: P({tj,); pu: P({itj.); pv: P<{vi,);
pw: P(M); px: P(W); py: P({y::j.); pz: P({z;j.);
psp: P({ *); ptb: P({ ::j.); pmin: P({-:f,); pcom: P({,i-);
J?Plus: P({+::j.); ppnt: P({.:f,); pnl: P({
::}) ; :pe:

prQcedure match(i, j); ~ i; integer i, j;
begin _if af then begin b:= false; goto ematch ~

il x = nl then leesl;

end;

b:= I[x] = i; if b then
!?,_egin x:= x+ l;PONS(j, 1);

if o then PRINT(i, 128 + asl)
end; emalch: -

boolean procedure equal(i, p); ~ i, p; integer i, p;
begin M: if T[iJ f T[p] then begin equal:= false; goto E end;

if TU1 > 0 then -

end;

oegin i:= T+ 1; p:= p + 1; goto M end;
equal:= true; E:

trocedure leesl;
egin integer i, q; op:= leesn(I, T, nl, k, q);

for i := 12 - 1 sttp -1 until 11 do
begin li_ equal q, W[i1J then got'o EL end;
NLCR; NLCR,; PRINTTEXT{f UNKNOWN - :f,);

LTP: TYPE(q, 1); if 7 op then
begin op:= ieesn(I, T,°"nl, k, q); goto LTP end;
ql:= true; x:= nl; go\J EE;

EL: I[x]:= W[i]; TYPE(q, ; EE:
end;

procedure Q(i}; integer i;
begin !f. o ·~ PRINT(GK[i]. 128 + asl);

asl:= asl + 1
end•
~

procedure UQ;
begin asl:= asl - 1; !f. w > 14 ~ 14:= w end;

procedure invopen; PONS(-1, 258);

procedure invmiddle; PONS(-1, 257);

procedure invend;
bes!,n integer t, i, j; i:= w - 1;
AA: t:= O[iJ; if t = -257 then O[i]:= w - 32767
~ begini:= i - 1; goto AA end;
j:= i - 1;

BA: t:= O[j]; [. t = -258 then O[j]:= i - 32767
else begin j:= j - 1; gofo BA end;
otw]:= j -32767; w:= w + 1

boolean procedure leesn;
begin leesn:= false; KODE({
dn+l28ds0
dpzr0ze3 dpzf0zel dpzk0ze2 dpzw24ze2 dpzn20zk0
dida0ze0
2b19xl 2b9x0b 2s0x0b 6s0w0 2b19xl 2b5x0b 0s0x0b 6slw0
2b19xl 2bllx0b 2s0x0b 6s2w0 2b19xl 2b7x0b 0s0x0b 6s3w0
2b19xl 0b13a 2s2w0 ulb18xlz y2t0zr0a 6b4w0 2b0x0b 6s0x0b
6t0f00 2b4w0 0b2a 2t19e0a
da0zf0di
2ylxpz n0lal6az 0lal6a y2t0f0a 6tlk01 2s0a n6tln02 ylp7-ss
n6t0n02 ylp7ss n6t0n02 ylp7ss n6t0k01 lp13ss y5pss 2b3w0
6s0x0b 0bla 6b3w0 2sla 4s2w0 n2t5f0a 4s0w0 2s2w0
2blw0 6s0x0b 0bla 6blw0 2t8x0e
da0zk0di
2ylxpz y2t0k0a u0la26az y2t0k0a u0la62az y2t0k0a ula12lap y2t0k0a
u01a91az y2ala y2t18k0a u0la107az n2t9x0z 2b4w0 0b2a ulb18xlz
n7y29c0 2a0az 6a5w0 2t9x0z 6t0k01 nlp7ss n0xla 2tl0x0z
da0zr0di
2s0w0 2bl9xl 2b9x0b 6s0x0b 2b19xl 2bllx0b 2s2w0 6s0x0b
2s5w0 2b18xl 6s32764x0b 2s0a 6s32767x0b dq+13 dsoi,);

comment leesn becomes true iff the last separator is a period . ---end;

x:= nl:= k:= 0;
leesn(W, T, nl, k, halt, vertaa1, output, commentaar);
TYPE(commentaar, 130); ·
leesn(W, T t. nl, k, asl); q2 := equal (asl, output);

, leesn(W, T, nl, k, asl); g:= equal(asl, halt); nl:= 0;
. .

41

42

begin 22!!1!!1~ grammar proper; integer
denn, und0 oder, auch, d, ein, en, er, e, es, immer, oft.
nie, nicht, hier, dort, ueberall, wo, wenn, von, nach,
fuer, schoen, · klein, schnell, gluecklich, ie, em, zeig,
sen, ich, wir, du, sie, mir, uns, dir, ihm, ihr, ihnen, mich,
dich, ihn, n, mann, hund, maenner, hunde, frau, frauen,
stadt, staedte, kind, kinder, haus, haeuser, geh, seh,
frag, geb, gib, ess, isz, st, t, fast nicht, sieh, sehr,
ziemlich, kenn, bin, bist, ist, sind, seid, ha, hab, mit,
garten, wohn, aber, as,
for, and, or, comma, too, the, a, an, always, often, never,
nearly, fast, hardly, not, here, there, everywhere, where,
when, to, from, after, who, in, beautiful, small, happy, see.
that, whose, whom, i, we, you, he, they, she, it, me, us,
him, her, them, man, dog, men, dogs, woman, women, city,
cities, child, house, children, houses, go, goes, garden,
sees, aska asks, know, knows, show, shows, give, gives, eat,
eats, very, rather, are, am, is, in, have, has, live, lives,
into, with, but;

procedure sentence;
begin asl:= O; Q(O);.

basicsentence; !!_ af then goto E;
nextsentence; E:

end• :::,::::;

trocedure nextsentence;
~ connective; !!,_ b then sentence ~

procedure connective;
begin integer z; z:= w; Q(l);

connectil; if lb then connecti2;
if lb then w:= z,;'E: UQ - -

procedure connectil;
begin integer y, z; y:= x; z:= w;

match(comma, comma);
match(for, denn); if b then goto E;
match(but. aber); ![b then goto E;
x:= y; w:= z; E:

end• :::,::::;

procedure connector;
begin inte er y. z; y:= x; z:= w;

match comma, comma),;

end• :::,::::;

if 7b then connective2;
!f: lb then begin x:= y; w:=

Q(26);

z end; UQ

trocedure connecti2;
•egin match(and, und); !!,.b ~ goto E;

match(or, oder); E:
end·
~

· 6rocedure basicsentence;
egin integer y, z, n. p; y:= x; z:= w;

subject(n, p); !!,. 7 b ~ goto A; invopen;
T: predicate(n, p); !!,. lb ~ goto F; goto E;
A: circumstance; if lb then ~ot6 F;

invopen; subjectf n, p); !!,. ~ goto T;
F: x:= y; w:= z; E:
end;

procedure subject(n, p); integer n, p; ,,
begin integer y, z, g; y:= x; z:= w; Q(3);

invopen; nounphrase(n, p, g, 1); !!, lb ~ goto F;
invmiddle; match(too, auch); invend;
b:= true; goto E;

F: x:= y; w:= z; E: UQ
end;

6rocedure object;
egin . integer y, z, n, p, g; y:= x; z:= w; Q(4);

invopen; nounphrase(n, p, g, 4); !!,. 7b ~ goto F;
invmiddle; match(too, auch); invend;
nextobject; b:= true; goto E;

F: x:= y; w:= z; E: UQ
end;

trocedure nextobject;
es!n integer y, z; y:= x; z:= w;

connector; if b then object;

end•
~

if lb then oogin ~ y; w:= z - - end

procedure nounphrase(n, p, g, c); integer n, p, g, c;
begin integer y, z; y:= x; z:= w; Q(5);

perspron(n, p, g, c); if lb ~ Fioto A;
T: relsentence(n, p, g); illb then circumstance;

b:= true; goto E; - -
A: nounpart(n, g, c); !!,. 7b then goto F; p:= 3; goto T;
F: x:= y; w:= z; E: UQ
~

procedure predicate(n, p); integer n, p;
begin integer y. z; y:= x; z:= w; Q(7);

· invmiddle; copula(n, p); !f. lb ~ goto A;

A:

F:
end 0

~

invend; quality; circumstance; b:= true; goto E;
ve:b(n, pJ; !!,. lb ~ goto F; invend;
obJect; circumstance; b:= true; goto E;
x:= y; w:= z; E: UQ

43

44

6rocedure quality;
egin integer n, p 11 g, y, z; y:= x; z:= w; Q(2);

nounphrase(n, p, g, 1); if b ~-goto E;
adverb; modifier; stemoTadjective;

end•
~

!!_ lb ~ begin x:= y; w:= z end; E:

6rocedure copula(n, p); integer n, p;
egin inte r y, z; y:= x; z:= w; Q(6);

match if n = 2 V p = 2 then are else if p = 1 .then am else is,
if n = lthen(if p = 1 then bin else ifp = 2 then bist eiseist)
- else7"!!_p = 2 then seid else sind)); !!_b then goto E;
x:= y; w:= z; E: UQ •·

procedure nounpart(n, g, c); integer n, g, c;
begin integer y, z; y:= x; z:= w; Q(8);

match(the, d); !!_ lb ~ goto A;
invopen; noun(n, g, c, endingl); if lb then g<;>to F;

A:

B:
F:
end• :::,:,;,

invmiddle; endingofder(n, g, c); frivend; gi6t E;
match(a, ein); [.lb~ match(an, ein); !!_ ~ goto B;
invopen; noun(n, g, c, ending2); if lb then gojo F;
invmiddle; endingofein(n, g, c); invend; goto· ;
noun(n, g, c, ending3); [. b ~ goto E;
x:= y; w:= z; E: UQ

6rocedure noun(n, g, c, _uitgang); integer n, g, c; procedure uitgang;
~ integer y, z; y:= x; z:= w; Q(9);

modifier; stemofadjective; !!_ lb then goto A;
invopen; noun(n, g, c, uitgang); ir96' ~ goto F;
invmiddle; uitgang(n, g, c); inverul; goto E;

A: subs~(n, g, c); !!_ b ~ goto E;
F: x:= y; w:= z; E: UQ
end• ___,

6rocedure modifier;
egin inte er z; z:= w; Q(22);

end;

mate very, sehr); if b then g~o E;
match(rather, ziemlich); !!_ b t. en goto E;
w:= z; E: UQ

6rocedure relphrase;
· egin integer y, z, n, p; y:= x; z:= w; Q(lO);

subject(n, p); if lb then Ceto F;
relpredicate(n:J>); tl,. b t n goto E;

F: x:= y; w:= z; E: UQ
end;

brocedure relpredicate(n., p); integer n, p;
~ integer y.,_ z; y:= x; z:= w; Q(ll); ·

' invopen; adverb; copula(n, p); !!.. 1b tllen goto A;
invmiddle; quality; prepclause;

B: invend; circumstance; b:= true; goto E;
A: verb(n, p); if 1b then goto F;

invmiddle; ooject; goto B;
F: x:= y; w:= z; E: UQ
end;

procedure relsentence(n, p~ g); integer n, p, g;
. begin integer y, z, c, nl_ gl; y:= x; z:= w; Q(12);

match(comma, comma);

A:
D:
B:

G:
C:

T:

F:
end;_

relpron(n, g, 1); !!,. 1b then goto A;
relpredicate(n, p);, g.,>lo G;
relpron(n, g, 4);. if then goto B;
relphrase; (gcfo G; -
preposition c ; if 1b then goto C;
relpron(n, g, c>T!!., lb ~ goto T; goto D;
if b then goto E; f oto F;.
relpron(n, g, 2); L 1b then goto F;
noun(nlv gl, 1, endinglr;-
!f.. b then relpredicate(nl, 3); !f.b ~ goto E;
noun(ii'r,' gl, 4, endingl); !!.. 1b ~ goto F;
relphrase; got) G;
relpron(n, g, 2 ; if 1b then ~otli F;
noun(nl, gl, c, ending!); !!_ ~ goto D;
x:= y; w:= z; E: UQ

procedure endingl(n, g, c); integer n, g, c;
PONS{if (c = 4 /\ g = 1) V c = 3 V c = 2 V n = 2 then en else e, 0); --- - ~

45

procedure ending2(n, g, c); integer n, g, c;
PONS(if g = 1 then (if c = 1 then er else if c = 2 then es else en)

-~!Le= 2Vc = 3 then en else!f_g = 2 ~e ~es,. 0);

procedure ending3(n, g, c); integer n, g, c;
begin ~~ C:= qe, qer, qen, qe, qer, qen, qem, qen,

qe, qer, qer, qel! qes., qen, qem, qes;
goto C[!f.n = 1 ~ 4 x 'g + c else c];,
qe: PONS(e, 0); rtto E; qer: PONS(er, O); ffro E;
qen: PONS(en, 0 ; goto E; qem: PONS(em, ; goto E;
qes: PONS(es, 0); E:

procedure adverb;
begin adverb!; !!., 1b ~ adverb2 end;

46

procedure adverbl;
begin match(always, immer); !£ b ~ goto E;

match(often, oft); !£b ~ goto E;
match(never, nie); E:

procedure adverb2;
begin match(nearly, fast); !£ b ~ goto E;

match(hardly, fast nicht); E:

~ocedure adverb3;
gin match(here, bier); !£ b ~ goto E;

match(there, dort); if b then goto E;
match(everywhere, ueberalUJ E:

.end;

procedure temporalclause;
begin integer y, z; y:= x; z:= w; Q(23);

adverbl; if b then goto A;
clausel; lib tlieii goto E; goto) F;

A: clausel; match(comma, comma; b:= true; goto E;
F: x:= y; w:= z; E: UQ
end;

procedure clausel;
begin integer y, z; y:= x; z:= w;

match(when, wenn); !£ lb ~ goto E;
relphrase; !£ lb ~ begin x:= y; w:= z end; E:

. Jirocedure spatialclause;
• egin integer y, z; y:= x; z:= w; Q(24);

adverb3; if b ~ goto A;

A:
clause3; iTb then goto E; goto) F;
clause3; match(comma, comma; b:= true; goto E;
x:= y; w:= z; E: UQ

procedure clause3;
begin integer y, z; y:= x; z:= w;

match(where, wo); !£ lb ~ goto E;
relphrase; !£ lb then begin x:= y; w:= z end; E:

procedure prepclause;
begin integer y, z, n, p, g, c; y:= x; z:= w; Q(25);

preposition(c); if b then nounphrase(n, p, g, c);
£. 7b ~ beginx:=y;w:= z end; UQ

procedure circumstance;
· begin integer y., Zy z!: w; y:= x; Q(14h

prepclause~· !f. b then gotp E;
temporalclause;; !l '6 ~ goto E;
spatial clause-.;

end•
~

!!, lb tllen begin x:= y; w:= z end; E: UQ

Srocedu,re. preposition(c); i~teger c;
~ inte er z; z~= w; Q(15}; c:= 3;

match in,. in);. _if b then goto E;
match(wi~h~ mttY1 if1rthen go~o E;
match(to,. nach); .!!)> tiien""goto E;
match(from, vonl; if b then got1 E;
match(after:, nach);1!_ b then ~ E; c:= 4;
match(into, inh !!, b ~ goto E; .
match(for, fuer);
if lb then w:-= z; E: UQ - -

Brocedure stemofadjective;
~ inte er z; z:= w; Q(16);

A:

match eautiful, schoen); if b then \?to E;
match(small, klein); if b tlien gofo ;
match(fast., schnell); 11 b tiien goto E;
match(happy, glueckliclih - ·
!!, 7b then w::;,, z; E.:. UQ

endingofder(n4 g, c);
if n = 1 then
p~n if c = 2· rn. PONS(!!_g = 2 then en else sen, 0) end

· · - else · c = 2 V c = 3 then'PONS{en, 0); goto E; ~- -w:= z; E:. uQ · ·

47

48

procedure endingofder(n, g, c); integer n, g, c;
begin ~..!.£h S:= die, der, den, die, der, des, dem, den,

die:
des:
dem:
end· =.,

diell der, der, die, das, des, dem, das;
goto S[!f.n = 2 ~ c ~ 4 x g + c];
PONS(ie, 0); goto E; der: PONS(er, 0); goto E;
PONS(es, 0); goto E; das: PONS(as, 0); loto E;
PONS(em, 0); goto E; den: PONS(en, O); :

llocedure endingofein(n, g, c); integer n, g, c;
.:_ l((g = 1 /\ c = 1) V (g f l /\ (c = l V c = 4)))

then endingofder(n, g, c) ~!i_g = 2 ~ PONS(e, 0);

brocedure perspron(n, p, g, c); integer n, p, g, c;
~ integer z; sw!.!£!!. CASE:= Cl, C2, C3 9 C4;

z:= w; Q(l8); n:= 1; p:= 1; g:= 1;

Cl:

C2:

C3:

C4:

goto CASE [c];

match(i, ich); if b ~ goto E; n:= 2;
match(we, wir,; if b ~ goto E; n:= 1; p:= 2;
match(you, du); lib then goto E;. p:= 3;
match(he, er); ifb then goto E; n:= 2;
match(they, sie;; !f.b then goto E; g:= 2; n:= 1;
match(she, sie); !i_ b ~ goto E; g:= 3;
match(it, es); goto F;

b:= false; goto F;

match(me 9 m.ir); !f. b ~ goto E; n:= 2;
match(us, uns); if b then goto E; n:= 1; p:= 2;
match(you., dir);1!,.b ~ goto E; p:= 3;
match(him, ihm); if b ~. goto E; g:= 2;
match(her, ihr); i:fb ~ goto E; g:= 3;
match(it, ihm); !f'b ~ goto E; n:= 2; g:= 1;
match(themp ihnen); goto F;

match(mep mich); !Lb ~ goto E; n:= 2;
match(us, uns); !f.. b ~ goto E; n:= 1; p:= 2;
match(you9 dich); if b ~. goto E; p:= 3;
match(him, ihn); !.['b ~ goto E; g:= 2;
match(her, sie); !f. b then goto E; g:= 3;
match(it, es); if b ~ goto E; n:= 2; g:= 1;
match(them, sieh

if lb then w:= z; E: UQ - -

49

gdure su. bst(nl, g, c); integer nl, g, c;
n integer y, z, t; y:= x; z:= w; Q(19);

g:= 1; nl:= 1;
match(man, mann); if b then goto A;
match(dog, hund); ifo then goto A;
match(garden, garten); ![b ~ goto A;
nl:= 2;
match(men, maenner); if b then goto A;
match(dogs, hunde); !!,. b~ goto A;
g:= 2; nl:= 1;
match(woman, frau); !!., b ~ goto E;
match(city, stadt); !!., b ~ goto E;
nl:= 2;
match(women, frauen); if b ~ goto E;
match(cities, staedte); g:'b ~ goto E;
g:= 3; nl:= 1;
match(child, kind); if b then goto A;
match(house, haus);-!!,_ b then goto A;
nl:= 2;
match(children, kinder); if b then gott A;
match(houses, haeuser); ![1b then S.2!2. F;

A: if nl = 1 then
Degin if c = 2 then t:= es else

[: c = 3 then t:= e else goto E
end else if c = 3 then t:= n else goto E;
PONS(t, O); goto-E; - -

F: x:= y; w:= z; E: UQ
end;

gdure verb(n, p); integer n, p;
n integer y, z;

integer procedure dkeuze(a, b); integer a, b;
dkeuze:= if n = 1 then (if p = 1 then a else b)

E:

F:
end• :::=.,

- else (tip = 2 then b else a);
integer procedure ekeuzet'a, b); iiiteger a.'6';
ekeuze:= if n = 1 A p = 3 then b else a;
y:= x; z:=-w; Q(20); - -
match(ekeuze(go, goes), geh); if b ~ ~)to E; . '
match(ekeuze(see, sees), dkeuze<seh, s1e ; !f.b ~ goto E;
match(ekeuze(ask, asks), frag); if b then Sf/% E;
match(ekeuze(give,gives),dkeuze(geb,gloJ); _ ~ goto) E;
match(ekeuze(have, has), if n = 2 V p = 1 then hab else ha;
!f.b then goto E; match(ekeuze(live, lives), woliii); if b'"ffien goto E J
match(ekeuze(eat, eats), dkeuze(ess, isz)); !!,_b tfien goto E;
match(ekeuze(know, knows), kenn); !!,.b ~ ggJo E; goto F;
!!. p = 2 t~n PONS(if n = 1 ~ st · else t; else
PONS(!!., n = i ~ (!fp = 1 ~ e else t) else en,o'J;goto R;
x:= y; w:= z; R: UQ ·

50

ja
nee

einde:
end
end -

inte er U, q; :,r or i1 := 0 step 1 until 26 do , ,
~egin b:= leesn(W, T, n~k, q); G K[il]:;., q end;

· 11:= nl; b:= leesn(W, T, nl, k,
denn, und, oder, auch,, d, ein, en, er, e, es, immer,
oft, nie, nf.cht, hier; dort, ueberall, wo, wenn, von,
nach, fuer, schoen, ·klein, schnell, gluecklich);
b:= leesn(W, T, nl, k,
ie, em, zeig, sen, ich, wir, du, sie, mir, uns,
dir, ihm, ihr, ihnen, mich, dich, ihn, n, mann,
hund, maenner, hunde, frau, frauen, stadt, staedte);
b:= leesn(W; T, nl, k,
kind, kinder, haus, haeuser, geh, seh, frag, geb-.
gib, ess, isz, st, t, fast nicht, sieh, sehr,
ziemlich, kenn, bin~ bist, ist, sind, seid, as);
b:= leesn(W, T, nl, k,
hab, ha, garten, wohn, mit, aber,
have, has,_ garden, live, lives, into, with. but);
b:= leesn(W, T, nl, k,
for. and, or, comma, too, the, a, an, always, often, never,
nearly, fast, hardly, not, here, there, everywhere,
where, when, to, from, after, who, beautiful);
b:= leesn(W, T, nl, k, .
small, happy, see, that,· whose, whom, i, we, you, he,
they, she, it, me, us, him, her, them, man,
dog, men. dogs, woman, women, city, cities);
b:= leesn(W, T, nl, k,
child, house, children, houses, go, goes, sees, ask, asks,
know, knows. show, shows, give, gives, eat, eats; ·
very, rather, arel) am, is, in);

12:= nl; 13:= k; o:= q~; nl:= O; if lg then stop;· " -· -~
S: if g then stop; NLCR;

![o ~ begjn RUN OUT; PUNLCR end;
x:= w:= 14:= 0; !£ q2 V lo then
pewn leesn(I, T, nl, k, q); !!_equal(q, halt)~ got

1
0 einde;

nl := x:= 0; op:= false
end; -
ql:= talse; sentence_; !f. b ~ PRINTTEXT({

::j.) ~ ~ PRINTTEXT({ . *); w:= 14end;
OUTPUT; o:= (lql A lb A lo) V q2;· k:= 13;
if 7b A lop then . ·
heron A: op:~sn(I, T, nl, k, q)t!f. lop ~ goto A end;
go_ o S; · · ·

end; STOPCODE; RUNOUT

51

5. 2 Some test results -------
The program as reproduced was run on the Xl of the Mathematical Centre,

Amsterdam. The translated program occupied about 6500 of the 10 000

memory places available, the arrays another 2700; all told. the available

room for the program stack will not have been over 500 places. Some

1000 places in the arrays could still be ga.,ined by lowering the array bounds,

accomodating some 80 structures of the form

match(al, a2); !!,_ lb then ~ E;

By some slight alterations still more space could be made available for

enlarging the grammar, but it is clear that the 12K memory cannot ac

commodate a grammar over 50 percent larger.

With the present grammar, a mean translating time of about 4. 3 seconds

per word is reached. Of this time, more than 2 seconds is spent in the

procedure leesl, searching the vocabulary for the word just read in order

to determine an integer to represent the word. As this is done in ALGOL

(and by no means in the most practical way - the words are not alphabetized),

it is painfully slow. This is readily understandable, since the addition of

two integers requires 3 msec. in Xl ALGOL, and another 3 msec. is re

quired to store the result. On a computer that is a hundred times faster,

speed will not be the limiting factor.

The input consists of some sentences that display various difficulties: "and"

used as a connective and as connector; the mildly ridiculous effect of

translating idiom literally; the various word orders in German; and, fi-:

nally, a grammatical sentence that is analysed incorrectly.

When this sentence fails to be translated, the program tries again. this

time punching the name of every category as it is tried. It fails again, of

course, and skips to the next sentence, instead of which it finds an indi

cation to stop.

52

5. 3 Input IT and output IV

stop, translate, output,

k koster-testsentences.

no output of structure, no stopping between sentences.

sentence, connective, quality, subject, object, nounphrase, copula,
predicate, nounpart, noun, relphrase, relpredicate, relsentence,
adverb, circumstance, preposition, adjective, relpron, persproil,
subst, verb, unused, modifier, temporal clause, spatial clause,
preposition clause, conriector.

denn, und, oder, auch, d, ein, en, er, e, es, immer,
oft, ilie, nicht, hier, dort, ueberall, wo, wenn, von,
nach, fuer, schoen, klein, schnell, gluecklich.
ie, em, zeig, sen, ich, wir, du, sie, mir, uns,
dir, ihm, ihr, ihnen, mich, dich, ihn, n, mann,
hund, maenner, hundei, frau, .frauen, stadt~ staedte.
kind, kinder, haus, haeuser, geh, seh, frag, geb,
gib, ess, isz, st, t, fast nicht, sieh, sehr,
ziemlich, kenn, bin, bist, ist, sind, seid, as.
hab, ha, garten, wohn, mit, aber,
have, has, garden, live, lives, into, with, but.
for, and, or, comma, too, the, a, an, always, often, never,
nearly, fast, hardly, not, here, there, everywhere,
where, when, to, from, after, who, beautiful.
small, happy, see, that, whose, whom, i, we, you, he,
they, she, it, me, us, him, her, them, man,
dog, men, dogs, woman, women, city, cities.
child, house, children, houses, go, goes, sees, ask, asks,
know, knows, show, shows, give, gives, eat, eats,
very, rather, are, am, is, in.

translate.
a, man, sees, a, small, house, and, in, the, house, he, sees,

a, woman, and, a, child.

translate.
the, man, goes, to, the, house, for, he, sees, a, dog, too,

and, he, knows, dogs, that, eat, children.

translate.
the, dog, is, for, the, man, who, is, very, happy? when, the, woman,

gives, the, dog, comma, for, the, man, has, a, small, child, too.

translate.
i, know, a, happy, man, when, i, see11 him.

translateo
tne, mant that, sees, a, dog, sees, the, dog, from, the, house.

53

translate.
the, woman, in, whose, house, i, live, has, a, small, beautiful, garden, too.

translate.
a, small, garden, is, a, garden, that, isl rather, small.

translate.
i, live, here, and, she,. lives, there, but, he, lives, everywhere,

where, she, lives.

translate.
i, go, into, the, house, when, i, see, him,. comma, for, i, know, him.

translate.
when, i_, seeo,_ him, with, a, dog0 i, go, into, the, house.

translate.
io.. see, you, and, you, see, me.

stop.

ja

ja

ja

ja

ja

ja

ja

ja

ja

ja

nee

k koster-testsentences

a man sees a small house and in the house he sees a woman and a
child

ein mann sieht ein kleines haus und in dem hause sieht er eine
frau und ein kind

the man goes to the house for he sees a dog too and he knows
dogs that eat children

der mann geht nach dem hause denn er sieht auch e~nen hund und
er kennt hunde die kinder essen

the dog is for the man who is very happy when the woman gives
the dog comma for the man has a small child too

der hund ist fuer den mann der sehr gluecklich ist wenn die frau
den hund gibt comma denn der mann hat auch ein kleines kind

i know a happy man when i see him
ich kenne einen gluecklichen mann wenn ich ihn sehe
the man that sees a dog sees the dog from the house
der mann der einen hund sieht sieht den hund von dem hause
the woman in whose house i live has a small beautiful garden too
die frau in deren hause ich wohne hat auch einen kleinen schoenen garten
a small• garden is a garden that is rather small
ein kleiner garten ist ein garten der ziemlich klein ist
i live here and she lives there but he lives everywhere where she lives
ich wohne bier und sie wohnt dort aber er wohnt ueberall wo sie wohnt
i go into the house when i see him comma for i know him
ich gehe in das ·haus wenn ich ihn sehe comma denn ich kenne ihn
when i see him with a dog i go into the house
wenn ich ihn mit einem hunde sehe gehe ich in das haus
i see you and you see
ich sehe dich und dich

54
sentence

subject
nounphrase
perspron

i
rel sentence
relpron
relpron
preposition
relpron

circumstance
preposition clause

preposition
temporal clause
spatial clause

predicate
copula
verb
see

object
nounphrase
perspron
you

rel sentence
relpron
relpron
preposition
relpron

circumstance
preposition clause
preposition

temporal clause
spatial clause

connector
connective

and
object
nouriphrase
perspron

you
rel sentence
relpron
relpron
preposition
relpron

circumstance
preposition clause

preposition
temporal clause
spatial clause

connector
connective

circumstance
preposition clause

'" preposition
temporal clause
spatial clause

connective

55

6. References

The predictive analysis technique seems to have originated with RHODES

in 1958; in 1959 it was in the proceedings of every self-respecting sym

posium on mechanical linguistics. This author was introduced to it in

august '64 by

Howard H. METCALFE , A parameterized compiler based on

mechanical linguistics, march 64. Planning Research Corporation,

Los Angeles, Calif. Washington D. C.

At the moment, both the predictive analysis technique and the matching

techniquep which we rejected at the beginning of (2. 0) as being not simple

enough, have been perfected to such an extent that one can say that the

problem of analysing a sentence of a CF language is completely solved.

To give an interesting example: GREIBACH presents an analyser that is

ideal in the sense that it gives all possible analyses of the sentence, by

creating a number of simultaneous analysis automata (stacks). The pro

gram makes use of a special normal form for the CF rules that makes

it very fast at the cost of memory space.

The idea of affixes as used here, originated with MEERTENS in '62, while

he and the author were working on the generation of sentences with the

aid of machinecode. As a result of this work a fair sized affix grammar

of English was presented in a mimeographed form to some ljnguists and

mathematicians of the late prof. BETH's colloquium on Machines and Lan

guage. From a COMIT manual the author knows that some form of affixes

is known there, but he does not know to what use it is put.

Some primitive form of simultaneous grammar can be found in many arti

cles on, for instance, syntax based ALGOL compilerst published in ACM

in the course of '63 and 164.

This small publication hopes to demonstrate that a linguist with a working

knowledge of ALGOL has no need for a large team of collaborators and ex

tensive financial backing to perform experiments that show the linguistic is

sues involved much more clearly than mere discussion of results achieved

elsewhere.

