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ABSTRACT

In real applications, it is extremely difficult (if not impossible) to define function(s) that measure the “true
merit” of a design object. For example, even the most prominent aircraft designers would not dare to claim
that a particular set of merit and constraint functions measures the “true merit” of a class of aircraft.

The traditional approach to set up a “machine centric” optimization cannot effectively address this issue
because there is no user interaction with the numerical optimization at design or run time. The semi-
automatic concept, however, can help because the user is allowed to interact with the design problem and
the design progress in-the-loop, such that the design criteria can be improved relatively easily at design time.

This paper briefly describes the semi-automatic design optimization setup which was introduced in full detail
in a previous paper by the author. A simple multidisciplinary aircraft conceptual design optimization problem
is then specified based on Torenbeek (1992). Various modes of in-the-loop user control on the search
progress and the search problem then illustrate the potential benefits of allowing the user to interact with a
numerical agent at various levels of automation.

1991 Mathematics Subject Classification: 65K10, 90C29, 90C31, 93B51.
1991 Computing Reviews Classification System: B.5.2, C.4., D.4.7, F.1.2., J.6.
Keywords and Phrases: Collaborative Manual & Automatic Agents, Conceptual or Preliminary Aircraft 
Design, Multidisciplinary Design Optimization, Human-in-the-Loop, Computational Steering, Semi-Automatic 
or Interactive Optimization.
Note: To be presented at the Interactive Computer Graphics session of the 1998 AIAA Aerospace 
Sciences Meeting, Reno, Nevada. Work carried out under project SEN 1.3 Interactive Visualization 
Environments.

1.  INTRODUCTION

Design is generally accepted to be an iterative process, once a tentative design object is available. Total exclusion
of the human from this iterative loop requires that the design problem be stated in a mathematical expression, i.e.
an explicit specification of the design criteria such as design space, constraints and merit function. Standard text-
books on aircraft conceptual design (e.g. Raymer (1989), Roskam (1985), Torenbeek (1982)) provide merit and
constraint functions which can aid this process. However they fail to explicitly identify this as the “key” problem
in optimization as in real applications, it is extremely difficult (if not impossible) to define function(s) that mea-
sure the “true merit” of a design object. For example, even the most prominent aircraft designers would not dare
to claim that a particular function measures the “true merit” of a class of aircraft. They may have a set of functions
that can aid the design process, but the trade-off between them that leads to the true optimum aircraft is always
debatable and can change with time.

Imperfection in design criteria implies that the results of numerical optimization can also not be perfect requiring
the human designer to improve these criteria by using intuition and experience. In most current setups, the human
designer has to wait until the numerical results are available (perhaps hours or days later) before being allowed to
manually modify the deign object and criteria. Boy et al (1990) present the more advanced Integrated Human
Machine Systems (IHMS) view for design which assigns complementary roles for the human and artificial com-
ponents. They suggest the distribution of the intelligent function among human and artificial agents which can
compete or cooperate at design time.
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Fig. (1) shows the automation spectrum for an IHMS
type design system. Here  the suggestion is made that the
position in the automation spectrum or the value of A
depends on whether the user can interact with the
independent (or design) variables, constraints, merit
function and search strategy inside the optimization loop.
An ideal set up would allow the full range including the
fully manual and fully automatic bounds. Most
implementations operate at the right bound or allow the
optimization to switch back and forth between the two
bounds. Here we are mainly in the gray area in between
which is rarely applied in design optimization.

In a previous paper by Shahroudi (12, 1996), the author
introduced the concept and implementation of a semi-
automatic optimization setup which conforms to the IHMS
and agents based (Hale et al. (1994), Olsen et al. (1994))
view of design, with a strong emphasis on human-in-the-
loop, level of automation and very high interactive speeds
for small scale problems, rather than the ontology whereby
the agents communicate. The concept allows both
cooperation and competition between the human designer
and the numerical optimization agent. Semiautomatic
control is provided by enabling the designer to modify
design variables, simple bounds, constraint functions, the
merit function and numerical control parameters (e.g.
tuning parameters) via steering  of graphical agents.

This paper briefly describes the semi-automatic design
optimization setup. A simple multidisciplinary aircraft
conceptual design optimization problem is then specified
based on Torenbeek (1992). Various modes of in-the-loop
user control on the search progress and the search problem
then illustrate the potential  benefits of allowing the user to
interact with a numerical agent at various automation levels.

The semi-automatic approach to design optimization
represents a departure from the traditional “machine
centric”  view of design optimization which dominates the
majority of aircraft conceptual or preliminary design
packages today (AAA (1994), ACSYNT(1992), ADAS
(1988)), where user interaction is typically limited to the
problem definition phase or visualization of the results with
little or no interaction at design or run time.

2.  THE CONCEPT AND IMPLEMENTATION

2.1   The Semi-Automatic Concept

Only a brief description of the semiautomatic
optimization concept and implementation is given below,
because  a detailed version has already been reported in
Shahroudi (12, 1996).

Regardless of the difficulty of  defining merit functions
and constraints, to qualify for a point in the semiautomatic
spectrum we must have a mathematical expression of the
design problem as shown below:
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fully recognizing that this expression may be imperfect,
requiring improvement at design time.

We also need to specify a numerical search strategy S,
which defines the heuristics and the value of the tuning
parameters used by the numerical solver. A practical way
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to define S is to specify a super strategy which consists of a
selection of algorithms which run in parallel and output
their numerical result.  S then includes the values of the
weight parameters that determine relative weight of each
algorithm as well as their respective tuning parameters.

Interaction with X, g(X), f(X) and S, in that order,
represents an increasing level of automation or increasing
level of implicit control on design variables. For example
suppose we are optimizing the wing weight fraction (merit
f(X)) of an aircraft which is modeled in finite element from
by say a million mesh points (design variables X) subject to
a bound on allowable bending stress at wing root (constraint
g(X)) using a genetic algorithm solver. As the optimizer
proceeds the user can explicitly control the individual mesh
points (low automation) to compete or collaborate with the
numerical results. Controlling the allowable stress
constraints can however affect a larger number of mesh
points (increasing automation). Modifying the calculation
of wing weight fraction(e.g. by adjusting the ultimate load
factor) can affect a much larger number of mesh points (still
higher automation). A higher level of control is still
possible by controlling the S parameters that affect the
diversification/intensification functions of the genetic
search strategy.

Fig. (2) shows the flow of control information for the
semiautomatic setup. The Numerical Solver agent
continuously receives X, g(X), f(X) and S. Its job is to
continuously output a better state for the design object Xauto

.
The user interacts with the solver agent via the Numeric,

Problem  and Optimum agents, whose responsibilities are:
• graphical representation of data to the user;
• receiving steering interaction from user to modify this

data;
• broadcasting any modifications to the solver agent.

The right side of the figure shows Progress Control. If
the user’s hands are off the controls, the Xauto updates are
flushed through to the optimum agent. In this way the user
can monitor the progress by simply looking at the optimum
agent. At any moment, the user may decide to interfere and
provide new values of Xuser by modifying the shape of the
optimum agent. The mixer then mixes Xuser  and Xauto

according to a mixture ratio which is also under human
control. In this way the user can collaborate or compete
with the numerical results depending on whether the
requested change by the user is along or against the
progress of the automatic results.

 The left side of Fig. (4) shows Problem Control. Here
the user can interact by directly modifying the shape of the
problem agent and hence the value of the control
parameters that define the merit and constraint functions, as
the numerical optimization proceeds. In other words, the
user can modify or steer a relatively large part of the design
object by modifying the criteria that results in the current
state of the optimum via the solver. This represents a higher
level of automation than the previous section because a
larger number of design variables are controlled implicitly
(by specifying a few things),  instead of explicitly (by
specifying a lot of things) .

The Inverter agent allows the user to modify the state of
the optimum and observe the result in the design criteria.
This is the parametric equivalent of the work of Gruber
(1991) which attempts to acquire the design rationale
underlying a particular design, except that here the
inversion is achieved by continuous in-the-loop user
interaction. This part is not yet formally implemented, but
the tools required are already available, e.g. the high speed
parametric  inverter reported by Shahroudi (6, 1996). An
example inverse design type exercise is to find out how two
aircraft from different manufacturers compare in terms of
the tradeoffs used between performance, cost and
reliability.

Including the human in the optimization loop, allows us
to draw from the best of the two worlds of manual and
automatic optimization. The benefits are briefly:
• It alleviates some pressure on the precise statement of the

design optimization problem, since these criteria can be
varied and their consequences observed at design time;

• It is particularly suitable for  multidisciplinary or multiple
objective design optimization, where it is interesting to
study the tradeoff between various discipline at run time;

• It aids the reconstruction of the design rationale
underlying  a particular design or for comparison between
various designs;

• User intuition and experience is used at run time. The
location and direction of search can be continuously

#include "ad_model.h"
#include "../opt3/define_optim.h"
#include "../opt3/op_run.h"
void main()
{

extern void evaluate_model(), init_model();
…

/* initialize model  */
init_model();

/* define optimization problem */
    OP_bgn_prob_def();

  OP_add_model("Aircraft", evaluate_model);
  …

/* indeps */
  OP_add_indep(&M, "M", &M_min, &M_max);
  …

/* non-linear constraints */
  OP_add_con(&b, "b", &b_min, &b_max);
  …

/* merit */
   OP_bgn_merit_def();

  OP_merit_minimize("mu_p", &mu_p);
  …

   OP_end_merit_def();
OP_end_prob_def();

/* run semiautomatic optimization */
OP_run();

}
Figure 3: Sample Optimizer Code for Problem

Definition (aircraft design example).
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guided by the user in collaboration or competition with
the numerical results;

• Freedom of the user to influence the search progress at
run time, tends to globalize the optimization, although the
numerical algorithm may be a local one.

2.2 The Implementation

To take advantage of the current implementation the
user starts with a simulation. The optimization problem
is then specified in terms of this simulation by using a
purpose made library of functions (Fig. (3)), which
typically takes a few minutes to complete. Thereafter, a
standard graphic user interface is automatically generated
which includes the Problem, Optimum and Numeric agents
(Fig. (4)). The standard interface is then used in
collaboration with a user defined interface (Fig. (5)) to
provide the various modes of control discussed above.

In the standard interface (Fig. (4)), the Bounds box is part
of the Problem agent which controls the constraint variables
via sliders. The Merit box on the left is also a part of the
Problem agent. For the aircraft design example, three
minimization criteria were specified in the optimizer code.
Here a slider is assigned to the weight of each criterion such
that shifting them sideways affects the trade-off between

them. The Design Variables box is a group of sliders which
form the Optimum agent.

The user defined interface (Fig. (5)) provides the
opportunity to include the Numeric, Problem and Optimum
agents in a more application specific visualization. Here the
optimum agent is the shape of the aircraft. The user defined
interface is also very useful for including constraints (e.g.
minimum wing sweep angle) and all the parameters of
interest which have a side effect but which are missing from
the specification of the optimization problem. For example
the range of the aircraft was not included in the optimizer
code but several constraints and merit function depend on
its value. The example interface allows the user to modify
the range by pulling on the arrow (lower left of figure),
which in turn results in a new optimum shape of aircraft. In
the figure, the green, red and orange sections are mapped to
payload weight, fuel tank volume and engine thrust at take-
off respectively.

Currently the concept is implemented in the
Computational Steering Environment (CSE) (Wijk et al.
(1994)) which allows the numerical algorithms, graphical
interfaces, simulations and user to collaborate in a
distributed fashion around a central data manager.

Figure 4: Standard User Interface Generated Automatically for the Aircraft Design Example.
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2.3 Significance to Preliminary Design

 The ability to modify the search problem and
immediately observe the results in the progress of the
optimum provides a flexible means to handle the always
existent difficulty of defining a good set of constraints and
merit functions for design.  This is of crucial significance to
the Conceptual and Preliminary phases of design for the
following reasons:
• The human designer’s knowledge about the design

problem is relatively low which requires a lot of
flexibility for modifying the design criteria until a point is
reached when these criteria can become relatively fixed;

• The level of design detail is such that current
computational and graphical resources are capable of
computing and displaying the consequences of human
interaction quickly. This allows the design activity to
approach the Natural Design Cycle ideal (Shahroudi
(1994)) which takes advantage of the superior short term
capabilities of the human visualization pipeline;

• Nature of optimization is typically multidisciplinary or
multiple objective in early design phases but the exact
tradeoff between the various disciplines is not necessarily
fixed, requiring flexibility to modify the relative
importance of each discipline which fits in nicely with the
semiautomatic concept.

3.  AIRCRAFT DESIGN EXAMPLE

3.1   The Design Problem

This is a multidisciplinary conceptual design exercise
which is in essence similar to that presented by Johnson
(1988). A brief specification of the design problem is:

Independent or Design Variables: Flight Mach
Number M, Altitude H, Lift Coefficient CL, Take-Off
Weight Wto, Aspect Ratio A, Wing Sweep Angle Λ,
Wing Thickness to Chord Ratio t/c and Wing Taper
Ratio λ.

Simple Bounds: on all the design variables above.
Constraints: Wing Span b, Wing Root Chord, Take-

Off Field Length Sto, Fraction of Fuel Stored in Wings,
Payload Weight Wpay and Take-Off Thrust Tto.

Composite Merit Function: minimize Fuel Weight
Fraction µf, Propulsion Weight Fraction µp and Wing
Weight Fraction µw with respect to Take-Off Weight.

Parameters with Side Effect: long list including
Range R,  Technology Factors, Parasitic Drag Area,
Take-Off Lift Coefficient etc.

For full derivation of the three separate  elements of
the merit function above see Torenbeek (1992). However
a brief description  is given in the next section for clarity.

3.2  The Simulation

The independent variables of the optimization, M, H,
Cl, Wto, A, Λ, t/c and λ together with the side-effect
parameters are the input parameters to the simulation.

The Propulsion Weight Fraction µp is given by:

µ µ τ
δp

engines

to

t D

L

W

W

C

C
= = /

where the engine installed thrust to weight ratio µt is a
side-effect parameter and can vary between 0.3-0.35 for
high bypass ratio turbofans. The corrected thrust lapse

Figure 5: User Defined Interface for the Aircraft
Design Example. Figure 6: Effect of Design Altitude.
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and specific fuel consumption model for high bypass
turbofan engines is due to Mattingly et al. (1992):

τ
δ

θ

= = −

= +

T

T
M

SFC M

SL

1 0

0 5 0 6

.49

( . . )
where the relative atmospheric pressure and temperature,
δ and θ , are calculated by a standard atmosphere model.
The drag coefficient CD  comes from the modified
Korn’s simple sweep theory including compressibility
and parasitic drag  effects.

The Fuel Weight Fraction µf is given by:

µ
ηf

H D

L

R R C

C
= /

where RH is the ratio of fuel heating value to
gravitational acceleration and is roughly equal to 4400
Km. The installed overall efficiency of the engines η can
be easily calculated from the SFC and aircraft speed.

The Wing Weight Fraction µw is calculated by:

µ φ
δ

φ
δW A

L

S

L

A
A

C C
= +

where φA and φS are weight factors related wing root
stress and smeared thickness of wing skin.

3.3 Run Time Interactions

The reader should note that the run time interactions
described in this section are high speed (or real time)
human-in-the-loop interactions, where the term “loop”
refers to the design optimization loop.  Elsewhere in the
literature, the term “human-in-the-loop” is frequently
loosely used to describe interactive systems without a
clear definition of which loop it concern and where the
human is interacting. Here, we have a high speed design
optimization loop which continuously updates a better
state for the optimum. Since user interaction is allowed

inside this loop, then all the consequences of user
interactions are also immediately available for
observation. This has the effect of giving a natural feel to
the design activity and is discussed in detail by
Shahroudi (1994).

With the numerical optimization switched off, the user
can manually search for a better state by steering the
Optimum Agent, (e.g. by manually dragging the Mach
slider in the standard interface (Fig. (4)) or the red arrow
in the user defined interface), and continuously
observing the consequences in the shape of the aircraft,
the constraints and the merit function. In practice
however, this is a frustrating exercise because one or
more constraints can easily become violated. Attempting
to manually fix these violations can result in the
violations of some other constraints and so on.

With the numerical optimization in run mode, Fig.(6)
shows that increasing the design altitude, increases the
size of the wings and the engines. The resulting  larger
wing volume allows an increasing proportion of fuel to
be stored in the wings.

Fig.(7) shows the result of interaction with a simple
bound, namely the lower constraint on the flight Mach
number. Here, increasing the flight Mach number results
in a more sporty look for the optimum aircraft, i.e. the
wings sweep back , bigger engines etc.

In Fig (8) and Fig. (9), the user interacts with
constraints, at a higher automation level in order to learn
the effect of take-off constraints on the optimum aircraft.
Enforcing  a short constraint on runway length, forces
the wings to become larger and reduces the payload
weight. Smaller engines  can carry  less payload and
make the wings slender.

Fig. (10) shows  interaction with the constraint on the
ratio of fuel that can be stored in wings.

Figure 7: Effect of Lower Constraint on Flight  Mach
Number (Simple Bound). Figure 8: Effect of  Maximum Take-off Distance.
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The above figures show the state of the optimum if the
three minimization criteria that form the merit function
are equally significant. But the correct trade-off depends
on many factors such as  fuel and engine prices. Fig. (11)
shows user interaction at a still higher level of
automation to answer questions related to the trade-off
between the wing, fuel and engine weight fractions. Here
the user can vary the trade-off on the fly and
immediately observe the change in the shape of the
aircraft.

Finally, Fig. (12) gives an example of interacting with
the range which is a parameter with side effect. Like
other side-effect parameters, R is not mentioned in the
specification of the optimization problem but its value
affects a number of constraints and the Fuel Weight
Fraction which is an element of the merit function.
Increasing R reduces the payload weight and increases
the aspect ratio of the optimum aircraft . A smaller wing
volume, in turn, reduces the size of the fuel tank inside
the wings, so that a larger proportion of fuel has to be
carried in internal fuel tanks as shown.

The above conclusions are not fixed and depend on
the simulation,  the current position in the search space,
the tradeoff between merit elements, new additional
constraints, and so on. The current implementation
enables easy redefinition of a design problem in terms of
a new or modified simulation, in order to reach more

accurate conclusions or to adapt existing ones to new
situations. Once defined, the user can directly compete
or collaborate with the numerical optimization results or
interact at higher levels of automation with constraints,
tradeoffs and side-effect parameters. Lacking such a
flexible design tool, has forced designers to derive and
work with a large number of  local sub-conclusions,
while keeping the number of changes to the design
problem (e.g. tradeoffs, constraints etc.) to a minimum.
For example, Torenbeek (1992) derives an expression for
the partial optimum lift coefficient for a given altitude
and aspect ratio by differentiation of  an expression for
drag to lift ratio, CD/CL. This ratio is a significant
component of µp and µf  but does not appear in the
expression for µw. Furthermore, CD/CL is not the only
significant element that appears in these expressions and
the tradeoff between µw, µp and µf is not necessarily
fixed.  While these sub-conclusions are instructive and
useful for analytical work, they offer little to the overall
design activity. An integrated human machine design
optimization tool such as the one described in this paper
allows a more declarative style, whereby we can move
towards a more global set of conclusions about the
design object.

Figure 9: Effect of Upper Bound on Take-Off Thrust.

Figure 11: Effect of Modifying the Merit Function.

Figure 12: Effect of Range  on Optimum Aircraft (A
Side-Effect Parameter).Figure 10: Effect of Wing/Fuselage  Fuel Tank Ratio.
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5. CONCLUSIONS

This paper briefly describes a semi-automatic
approach which allows user interaction with the design
optimization loop at various levels of automation. The
current implementation allows user interaction by
steering the Problem, Numeric and Optimum agents in
order to control the search progress  and the search
problem. This approach conforms to the IHMS view of
design and agent based integrated product design
methods, with strong emphasis on human-in-the-loop,
automation level and very high interactive speed for
small scale problems, rather than the ontology by which
agents interact.

Majority of aircraft conceptual or preliminary design
packages today, conform to the “machine centric” view
of design optimization. Standard textbooks in aircraft
design neglect to emphasize the “key” problem inherent
to design optimization in general, because until recently,
design environments, processing speeds and
visualization technology were not sufficiently advanced
to solve it. The “key” problem is to derive a good set of
design criteria (i.e. the specification of a design space,
constraints and merit function) which can measure the
“true merit” of a design concept.

A multiple objective aircraft design example illustrates
the potential of the semi-automatic approach for aircraft
conceptual or preliminary design optimization. The paper
shows how the user can improve the design criteria and
reach complex conclusions about the design by observing,
in real time, the consequences of steering the design
variables, simple bounds, constraints, tradeoffs and
parameters with side effect.
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