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Nonlinear Multigrid for Fully-Implicit and High-Order Accurate Simulation
of Multiphase Flow in Porous Media

J. Molenaar

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

High-order accurate and fully implicit �nite di�erence schemes are widely used for multiphase 
ow problems.

In this paper we analyze the use of point Gauss-Seidel relaxation in a nonlinear multigrid method for the

resulting nonlinear systems of equations. Point Gauss-Seidel is unstable for calculating the steady-state of

high-order accurate discretizations of the 2D convection equation. Here we present a local Fourier mode

smoothing analysis for the transient case. It appears that point Gauss-Seidel is a good smoother provided

that the time step is taken small enough. Numerical computations show good multigrid convergence rates for

typical test problems.

1991 Mathematics Subject Classi�cation: 65M06, 65M55, 76S05

Keywords and Phrases: nonlinear multigrid, porous medium 
ow, Gauss-Seidel relaxation

Note: work carried out under project MAS1.3 Porous Media Research

1. Introduction

Many porous media 
ow problems of practical interest (oil recovery, ground water pollution,

etc.) involve several 
owing phases. High-order accurate �nite di�erence schemes are widely

used for the space discretization of the partial di�erential equations describing these problems

(see e.g. [8],[10]). Especially for compressible 
ow problems it is attractive to use an implicit

scheme for the time integration. This means that we have to solve large systems of nonlinear

equations in every time step.

In this paper we consider the use of a nonlinear multigrid method for the iterative solution

of these systems of equations. The advantages of this approach are clear: we do not need to

compute or store the Jacobian matrix, and (hopefully) the convergence rate does not depend

on the mesh size. For the smoothing step of the multigrid algorithm we use point Gauss-

Seidel relaxation. Because the linear convection equation is an example of a very simple

two-phase 
ow problem, the suitability of this smoother is not clear. It is well-known that

point Gauss-Seidel relaxation is unstable for calculating the steady-state solution of high-

order accurate discretizations of the 2D convection equation. For example, in the case of a

central discretization, the discretization matrix has zeros on the main diagonal. However,

we are not interested in steady states. A local Fourier mode smoothing analysis shows that

point Gauss-Seidel is a good smoother for the 2D convection equation provided that the time

step is taken small enough.

An outline of this paper is as follows. In Section 2 we state the standard black-oil model,

which is a three-phase model (water, oil and gas) with exchange of components. The black-oil



2

model can be considered as a generic model for compressible multiphase 
ow. In Section 3

we present a high-order accurate discretization of the black-oil model, which is based on a

limited interpolation for the transmissibilities. The classical nonlinear multigrid method is

brie
y discussed in Section 4. In Section 5 we consider the linear convection model problem.

A local Fourier mode analysis is carried out of point Gauss-Seidel relaxation applied to the

time implicit discretization of this equation. Some computational results are shown in Section

6, that demonstrate the excellent convergence behavior of the nonlinear multigrid method.

More results are reported in [9]. In the �nal section we summarize some conclusions.

2. Equations

In this section we brie
y state the standard black-oil 
ow model (a more elaborate intro-

duction is found in [1],[4]). The basic equations for multiphase 
ow in porous media are

the continuity equations for all components, and the generalized Darcy laws for all phases.

Combining these equations yields the following system of partial di�erential equations that

describe the simultaneous 
ow of water (w), oil (o) and gas (g):

@

@t

�
�
sw

Bw

�
+ qw +r � (kTw(�r pw + �wg)) = 0; (2.1)

@

@t

�
�
so

Bo

�
+ qo +r � (kTo(�r po + �og)) = 0; (2.2)

@

@t

�
�(
sg

Bg
+R

so

Bo
)

�
+ qg+

r � (kTg(�r pg + �gg) +RkTo(�r po + �og)) = 0: (2.3)

In these equations the phase pressures p� and the phase saturations s� are the primary

unknowns. ��(p), B�(p), q� denote the density, formation volume factor (i.e. the com-

pressibility) and injection/production rate of phase �, respectively, g the acceleration due to

gravity, R(p) the solution gas-oil ratio (i.e. the amount of gas dissolved in oil), k the rock

permeability and � the porosity. The transmissibility T� of phase � is given by

T�(s; p) =
kr�(s)

B�(p)��(p)
; (2.4)

where kr� denotes the relative permeability and �� the phase viscosity. We note that the

transmissibilities T� are given functions of all pressures and saturations, whereas R, B�, ��
and � are functions of the pressures only. To close the system we have the additional relations

sw + so + sg = 1; (2.5)

po � pw = pow; (2.6)

pg � po = pog; (2.7)

where the capillary pressures pow and pog are given functions of the saturations. Thus we

have obtained a system of three partial di�erential equations (2.1)-(2.3) and three algebraic

relations (2.5)-(2.7) for the six unknowns s� and p�.
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In addition to these equations we have to specify initial and boundary conditions. Usually

no-
ow conditions are prescribed at the outer boundaries of the domain, and the di�culties

associated with injection or production wells are shifted to the proper modeling of the well

terms q�.

It is standard to use (sw; po; sg) as the set of primary unknowns. However a problem arises

if there is locally no free gas present (sg = 0): the oil is undersaturated with gas. There

are basically two approaches in order to deal with this problem. One can reformulate the

whole problem and use the component mass fractions as the independent variables. Another

possibility is the variable substitution method: if there is no free gas, the solution gas-oil

ratio R is used as the primary variable instead of sg. In this paper we use a variant of the

pseudo-gas approach (see [5]) that is especially suited for the multigrid approach that we

want to apply.

Let us introduce the pseudo-gas variable spg, spg 2 [�spg0;+1], that is identical to the gas

saturation sg if it is positive, and that is a measure of the amount of gas dissolved in oil if it

is negative:

sg = max(0; spg) (2.8)

R(p; spg) = min

�
1;
spg0 + spg

spg0

�
Rm(p); (2.9)

where Rm is the maximum amount of gas the can dissolve in oil at a given pressure p, and

spg0 a positive parameter. By construction the gas accumulation term 
,


(sw; po; spg) = �

�
sg

Bg
+R

so

Bo

�
; (2.10)

is continuous at spg = 0. A simple way to �x spg0 is to require that the derivative of 
 with

respect to spg is also continuous at spg = 0 for a given reference oil saturation so and pressure

p, so

lim
spg#0

d

dspg

(1� so � spg; p; spg) = lim

spg"0

d

dspg

(1� so; p; spg): (2.11)

Using the Equations (2.8)-(2.11) this condition implies

spg0 =
Bg(p)

Bo(p)
soRm(p): (2.12)

3. Discretization

In this section we state the standard �nite di�erence discretization for the black-oil model. For

ease of notation we only consider the one-dimensional discretization on a grid with uniform

mesh width h. The extension of this discretization to nonuniform Cartesian grids in more

space dimensions is straightforward. With the usual control volume approach we obtain the

space discretized equations

@

@t

�
�
sw

Bw

�
i

+ qw;i +
1

h

�
(kTw	w)i+1=2 � (kTw	w)i�1=2

�
= 0; (3.1)
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@

@t

�
�
so

Bo

�
i

+ qo;i +
1

h

�
(kTo	o)i+1=2 � (kTo	o)i�1=2

�
= 0; (3.2)

@

@t

�
�
sg

Bg
+ �

Rso

Bo

�
i

+ qg;i+

1

h

�
(kTg	g + kRTo	o)i+1=2 � (kTg	g + kRTo	o)i�1=2

�
= 0: (3.3)

Here 	� denotes the potential gradient term for phase �,

	� = �r p� + ��g; (3.4)

the subscript i the discretization cell, and the subscript i + 1=2 the edge between the cells i

and i + 1. The rock permeability ki+1=2 at a cell edge is as usual de�ned by the harmonic

mean

ki+1=2 =
2kiki+1
ki + ki+1

; (3.5)

and the potential gradient terms 	� are discretized by

	wi+1=2 =
poi � poi+1 + powi+1 � powi

h
+
�wi+1 + �wi

2
gx; (3.6)

	oi+1=2 =
poi � poi+1

h
+
�oi+1 + �oi

2
gx; (3.7)

	gi+1=2 =
poi � poi+1 + pogi � pogi+1

h
+
�gi+1 + �gi

2
gx; (3.8)

where gx is the x-component of the gravity vector.

It is well known that some kind of upwind weighting for the transmissibilities T�i+1=2
is necessary in order to obtain physically relevant solutions. In conventional simulators a

one-point upstream approximation is used:

T�i+1=2 =

�
T�i if 	�i+1=2 � 0;

T�i+1 otherwise.
(3.9)

The use of one-point upstream weighting leads to a scheme that is formally �rst order con-

sistent in space. Although the discrete solutions obtained are physically relevant, they su�er

from strong numerical di�usion, i.e., sharp fronts are smeared out. The use of simple sec-

ond order accurate weighting schemes, like the central scheme and the two-point upstream

scheme, causes spurious oscillations near sharp fronts in the solution (see [11]). Accurate

solutions without these spurious oscillations are obtained by more complex schemes. These

schemes typically involve some kind of nonlinear interpolation for the saturations, 
uxes or

transmissibilities.

We consider a scheme that is based on a nonlinear interpolation for the transmissibilities

T�i. Assuming that 	�i+1=2 � 0, we de�ne

T�i+1=2 = T�i +
1

2
 (r�i+1=2)(T�i � T�i�1); (3.10)
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where

r�i+1=2 =
T�i+1 � T�i
T�i � T�i�1

; (3.11)

and  (r) the so-called limiter function. If we take the limiter function  identical to 0,

we regain the standard �rst order upwind scheme. Here we consider the so-called limited

�-schemes (see [7]) that are de�ned by

 �(r) =

8>><
>>:

0; r < 0;

2r; 0 < r < 1��
3�� ;

1��
2

+ 1+�
2
r; 1��

3��
< r < 3+�

1+�
;

2; r > 3+�
1+� :

(3.12)

In smooth parts of the solution, where r � 1, the transmissibilities are then approximated by

T�i+1=2 =
1 + �

2

�
T�i + T�i+1

2

�
+

1� �
2

��T�i�1 + 3T�i
2

�
: (3.13)

So for � = +1 this scheme is equivalent to the central scheme in smooth parts of the solution,

and for � = �1 it is equivalent to the two-point upstream scheme. The limited � = �1 scheme

is equivalent to the classical two-point upstream scheme (see [11]) with the constraints

min (T�i; T�i+1) � T�i+1=2 � max (T�i; T�i+1): (3.14)

Moreover, the choice � = 1=3 is of special interest: the discretization of the linear convection

equation on a uniform orthogonal grid is third order accurate. However, this does not imply

that the discretization of the full problem (3.1)-(3.3) is third order accurate.

Analogous to the interpolation of the transmissibilities in Equation (3.10), we use a limited

interpolation for the gas-oil ratio R
i+1=2. If the interpolation of the transmissibilities T�i+1=2

and the gas-oil ratio R
i+1=2 is at least second order accurate in smooth parts of the solution,

this implies that the whole scheme is formally second order consistent in space. So far we

have not discussed the time integration method. Use of the implicit Euler method yields

the standard fully implicit formulation, that is unconditionally stable, but only �rst order

consistent in time. Second order consistency is obtained by using the trapezoidal rule (i.e.,

the Crank-Nicholson scheme), which is only slightly more expensive than the implicit Euler

method.

4. Multigrid Method

In this section we brie
y discuss the cell-centered nonlinear multigrid method that we use.

Suppose that on the �ne grid we have the system of equations

N h(uh) = fh; (4.1)

where N h is a nonlinear operator. The coarse grid corrections that we consider are of the

form

N 2h(~u2h) = N 2h(u2h) +R
h
2h(f

h �N h(uh)); (4.2)

~uh = uh + P 2h
h (~u2h � u2h): (4.3)
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Here R
h
2h and P 2h

h denote the restriction of the residual, and the prolongation of the cor-

rection, respectively. We take R
h
2h to be the adjoint of the interpolation by a piecewise

constant function. In cell-centered multigrid methods this is natural: the residual (the total

excess of accumulation and net 
ow) in a coarse grid cell, is the sum of the residuals in

the corresponding �ne grid cells. The prolongation P 2h
h is a piecewise linear interpolation.

This combination of prolongation and restriction is formally su�ciently accurate to deal with

second order partial di�erential equations.

To obtain the coarse grid operator N 2h, the problem is discretized on the coarse grid,

i.e., a grid with mesh size 2h. However, we do not use the same discretization on all grids.

Only on the �nest grid we use the high-order accurate discretization with the interpolated

transmissibilities as given by Equation (3.10). On the coarser grids we use the standard one-

point upstream discretization (see (3.9)). Because the problem is nonlinear, the properties

of the coarse grid operators are determined by the choice of u2h. We take

u2h = Rh
2hu

h; (4.4)

where Rh
2h is again the adjoint of interpolation by a piecewise constant function.

5. Local Fourier Mode Analysis for Point Gauss-Seidel

The choice of a robust smoother is of prime importance for any good multigrid algorithm. Ne-

glecting compressibility and capillary e�ects, the multiphase 
ow equations that we consider

are of mixed elliptic-hyperbolic type. The convergence analysis of smoothers for elliptic equa-

tions is well developed. However the convergence analysis for �rst order hyperbolic equations

is less complete.

In this section we study the convergence behavior of point Gauss-Seidel relaxation for

the linear convection equation, that is discretized with a �-scheme. The linear convection

equation is obtained for the incompressible two-phase 
ow model, if we take Tw(sw) = sw.

This study is of interest because it is well-known that point Gauss-Seidel relaxation is not

suitable for the calculation of the steady state of two-dimensional problems. In [6] it is shown

that for the case � = 1=3 some high frequency error modes are ampli�ed when it is applied

in a sweep direction di�erent from the upstream direction. In addition, we remark that some

low frequency error modes are ampli�ed when point Gauss-Seidel relaxation is applied in the

upstream direction.

However, we are not really interested in steady state computations, but in time accurate

implicit calculations. We expect that this error ampli�cation does not occur if su�ciently

small time steps are taken. To proof this we consider the backward Euler time integration,

and carry out a local Fourier mode analysis.

For simplicity we �rst consider the one-dimensional case. The model problem that we

consider is

@u

@t
+ v

@u

@x
= 0; (5.1)

where v is the 
ow velocity. The discretization of this equation with a linear �-scheme
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(�1 � � � 1) can be written as

uni = un+1i + (5.2)

�

4

�
(1� �)un+1i�2 + (3�� 5)un+1i�1 + (3� 3�)un+1i + (1 + �)un+1i+1

�
;

where � = v�t=�x denotes the CFL-number.

In one space dimension point Gauss-Seidel relaxation can be performed in two directions:

the downstream direction (indicated by%), the upstream direction (.). Let Ŝ��(!; �) be the

Fourier symbol of the error ampli�cation operator of point Gauss-Seidel in a given direction,

then

Ŝ�� = 1� L̂�

~̂L
�

�

; (5.3)

where L̂� is the Fourier symbol of the linear operator de�ned by the right hand side of

Equation (5.2),

L̂� = 1 +
�

4
((1� �)e�2i! + (3�� 5)e�i! + (3� 3�) + (1 + �)ei!); (5.4)

and ~̂L
�

� the Fourier symbol of the approximation to it (see e.g. [3]). For the downstream

direction we have

jŜ%� j =
1 + �

j4��1 + 3� 3�+ (1� �)e�2i! + (3� � 5)e�i!j ; (5.5)

and the maximum error ampli�cation factor occurs for the low frequency Fourier mode ! = 0:

sup
!2(��;�)

jŜ%� (!; �)j = jŜ%� (0; �)j =
1 + �

j4��1 � 1� �j : (5.6)

For � = 4=(1 +�) the low frequency error mode ! = 0 is blown up by the point Gauss-Seidel

relaxation! However, if we take � � 4=(1 + �), so a small time step, point Gauss-Seidel is

an e�cient iterative solver, and a fortiori a good smoother. Point Gauss-Seidel applied in

the downstream direction is of course a direct solver for the two-point downstream scheme

(� = �1).
For the upstream direction we have

sup
!2(��;�)

jŜ.� (!; �)j = jŜ.� (�; �)j =
6� 4�

j4��1 + 2� 4�j : (5.7)

Blow up of high frequency error modes now occurs if � = 2=(2� � 1). If � < 1=2 the error

ampli�cation factor jŜ.� (�; �)j is always bounded.
This 1D example shows that point Gauss-Seidel is a good smoother if the time step is small

enough, and the blow up of Fourier error modes may occur if the time step is too large. Let

us next consider the two-dimensional case that is of more practical relevance.

The 2D linear convection equation is given by

@u

@t
+ v

�
cos �

@u

@x
+ sin�

@u

@y

�
= 0; 0 � � <

�

2
; (5.8)
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where � denotes the angle between the 
ow velocity and the x-axis. In two space dimensions

point Gauss-Seidel relaxation can be performed in four directions: the downstream direction

the upstream direction and two cross-stream directions, indicated by& and -. As before

Ŝ��(!x; !y; �; �) denotes the Fourier symbol of the error ampli�cation operator of point Gauss-

Seidel in a given direction. We say that point Gauss-Seidel relaxation is bounded if no Fourier

error mode is blown up in the point Gauss-Seidel relaxation for any 
ow angle �.

De�nition 1 Point Gauss-Seidel relaxation in a given sweep direction is called conditionally

bounded if there exists a � such that

sup
�2[0;�

2
)

sup
(!x;!y)2[��;�]2

jŜ�(!x; !y; �; �)j <1; 8� < �: (5.9)

A point Gauss-Seidel sweep is called unconditionally bounded if

sup
�2[0;�

2
)

sup
(!x;!y)2[��;�]2

jŜ�(!x; !y; �; �)j <1; 8� � 0: (5.10)

In the following lemma's we study the boundedness of point Gauss-Seidel relaxation in two

space dimensions for the four possible relaxation directions, and derive values for � depending

on �. Because � is an upper bound for �, it determines an upper bound for the time step �t.

Lemma 1 Point Gauss-Seidel in the downstream direction (%) is unconditionally bounded

for � = �1, and conditionally bounded for � 2 (�1; 1] with

� � 2
p
2

�+ 1
: (5.11)

Proof It is su�cient to consider the cases that

~̂L
%

� (!x; !y; �) = 0: (5.12)

For the downstream direction we have

~̂L
%

� = 1 + �(3� 3�)(cos � + sin�)=4+

� cos �((1� �)e�2i!x + (3�� 5)e�i!x)=4 +

� sin�((1� �)e�2i!y + (3� � 5)e�i!y )=4:

Because

min
!2[0;2�)

<
�
(1� �)e�2i! + (3�� 5)e�i!

�
= �4 + 2�; (5.13)

for �1 � � � 1, it follows that

<
�
~̂L
%

�

�
� 1� 1 + �

4
�
p
2: (5.14)

Condition (5.11) is necessary, because

~̂L
%

� (0; 0;
�

4
;
2
p
2

�+ 1
) = 0; (5.15)
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and

L̂�(0; 0;
�

4
;
2
p
2

�+ 1
) = �

1 + �

4

p
2: (5.16)

For � = �1 we have L̂� = ~̂L
%

� . Hence point Gauss-Seidel in the downstream direction is an

exact solver, and as a matter of course unconditionally bounded.

Lemma 2 Point Gauss-Seidel in the upstream direction (.) is unconditionally bounded for

� 2 [�1; 1=2), and conditionally bounded for � 2 [1=2; 1] with

� =

p
2

2� � 1
: (5.17)

Proof Consider the real part of ~̂L
.

� :

<( ~̂L
.

� ) = <(1 + � cos �(3� 3�+ (1 + �)ei!x)=4 + (5.18)

� sin�(3 � 3�+ (1 + �)ei!y )=4)

� 1 + �(1� 2�)(sin� + cos �)=2 (5.19)

� 1 + �
1� 2�

2

p
2: (5.20)

Condition (5.17) is necessary for (!x; !y) = (�; �), � = �=4 and � = �.

Finally we derive a necessary condition for boundedness in the case of cross-stream relaxation.

We only have to consider one sweep direction, because the two cross-stream directions are

equivalent by the transformation � ! �=2� �.

Lemma 3 Point Gauss-Seidel in the cross-stream direction is unconditionally bounded for

� = �1, and conditionally bounded for �1 < � � 1, with

� =

�
4=(� + 1); �1 < � < 1=2;

4=
p
17�2 � 14�+ 5; 1=2 < � � 1:

(5.21)

Proof For the real part of ~̂L
-

� we have

<( ~̂L
-

� ) = 1 + <
�
� cos �(3 � 3�+ (3� � 5)e�i!x(1� �)e�2i!x)=4+
� sin�(3� 3�+ (1 + �)ei!y )=4

�
� 1 +

�1� �
4

� cos � +
2� 4�

4
� sin�;

so condition (5.21) is su�cient for boundedness. Moreover it is a necessary condition as can

be seen by substituting (!x; !y) = (0; �), � = �, and

� = max(0; atan ((�+ 1)=(4� � 2))):
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For � = �1 we have

���Ŝ-� (!x; !y; �; �)
��� =

���� cos �(2e�2i!x � 8e�i!x)

4��1 + 6 cos � + sin�(2e�2i!y � 8e�i!y + 6)

����
�

���� 10 cos �

4��1 + 6 cos �

���� � 5

3
; (5.22)

which shows the unconditional boundedness.

In practice the 
ow angle � is not a priori known, and therefore we apply point Gauss-Seidel

in all four directions. If we want to avoid blow-up of any Fourier mode in each of the four

possible sweep directions, this poses the following condition on �.

Theorem 1 The maximum value for � that gives boundedness of point Gauss-Seidel relax-

ation for all four sweep directions is given by

� =
2
p
2

�+ 1
: (5.23)

Proof Follows from Lemma 1,2 and 3.

We note that point Gauss-Seidel for the two-point upstream scheme (� = �1) is not only an

exact solver when applied in the downstream direction, but it is also unconditionally bounded

for the other three sweep directions.

So far we have only considered the boundedness of Ŝ�(!x; !y; �; �). Of course we are really

interested in the convergence behavior. Therefore we consider the convergence rate ��(�; �)

for all Fourier modes, and the smoothing factor ��(�; �) for the high frequency Fourier modes,

��(�; �) = sup
(!x;!y)2[��;�]2=[��=2;�=2]2

���Ŝ.� Ŝ%� Ŝ&� Ŝ-�
���1=4 : (5.24)

For � = �1 four direction point Gauss-Seidel is a direct solver, so ��1 = �
�1 = 0. For other

values of � we have to approximate �� and �� numerically. Here we only consider the case

� = 1=3, because it leads to a third order accurate scheme. Other values for � give second

order accurate schemes, and it that case we prefer � = �1. On uniform grids with �x = �y

the maximal step for � = 1=3 schemes is determined by

�t <
3�x

v
p
2
: (5.25)

In Fig. 6.1 � and � are shown for � = 1=3 and � = �=4. This choice for the 
ow angle � yields

the worst smoothing factors. We observe that four direction point Gauss-Seidel relaxation is

a good smoother for the � = 1=3 scheme if � < 2.

6. Numerical Examples

Let us now study the behavior of our multigrid algorithm for two test problems. The �rst test

problem is a one-dimensional black-oil test problem for which a reliable reference solution is

available. It involves compressibility e�ects and the dissolution of gas in oil. The second test

problem models the water 
ooding of the quarter of a �ve spot pattern.
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Table 6.1: Average multigrid convergence rate on di�erent grids for gravity inversion problem.

30 60 120 180

1-point upstream 0.23 0.27 0.28 0.29

2-point upstream 0.37 0.45 0.51 >1.0

3-rd order accurate 0.29 0.30 0.30 0.32

In our numerical experiments we use the second order accurate Crank-Nicholson scheme

for the time integration. The time step is chosen adaptively, such that the changes in the

water saturation and the pseudo-gas saturation are approximately �s:

�tn+1 =
�s

ks�n � s�n�1k1
�tn; � = w;pg: (6.1)

In our calculations we take �s = 0:01. The ratio �tn+1=�tn is bounded between 0:5 and

2:0. The resulting system of nonlinear equations is solved by multigrid iteration. In any time

step the initial residual is reduced by a factor of 10�5 by means of a number of F-cycles. For

relaxation we use symmetric Gauss-Seidel relaxation in 1D, and four direction Gauss-Seidel

relaxation in 2D. The di�erent sweeps are divided over the pre- and post smoothing step. On

the coarsest grid in the calculation the discrete problem is solved exactly.

6.1 Problem 1

The �rst test problem is a one-dimensional gravity inversion problem taken from [2]. The

column is 100 ft in length and is capped with no 
ow boundaries at each end. Initially the

lower part is �lled with free gas, the middle part with pure oil, and the upper part with

pure water. The 
uids start to 
ow because of gravity, and there is dissolution of gas in

the oil phase. In Fig. 6.2 the numerical solution on a grid with 120 points is shown for the

one-point upstream scheme (top), the limited (see (3.12)) � = �1 scheme (middle) and the

� = 1=3 scheme (bottom). The left column shows the solution at roughly 60 days and the

right column the solution at 120 days. We observe that the solution obtained by the limited

two-point upstream scheme is completely di�erent from the other two solutions: it has a

single shock in the gas saturation. Using smaller time steps, i.e., a smaller value for �s, does

not change this result. Because the other two solutions are in good qualitative agreement

with the solution reported in [2], we conclude that this is unphysical. The � = 1=3 scheme

gives a good resolution of the solution. Notice the 'gas bubble' at the water front.

The average convergence rate over all time steps for multigrid F-cycles is shown in Table

6.1. We do not �nd any superior convergence behavior for the two-point upstream scheme: it

diverges on the grid with 180 points. We observe a nearly equal convergence behavior for the

one-point upstream and the � = 1=3 scheme. There is no penalty in the sense of multigrid

convergence behavior for the improved accuracy.

6.2 Problem 2

In this two-dimensional example we model the water 
ooding of the quarter of a �ve spot

pattern. A small compressibility of water and oil is taken into account. The data are taken



12

0

.5

1

2

0 .5 1 3=
p
2

�
�

Figure 6.1: Plot of the smoothing rate � and the error ampli�cation factor � for � = 1=3 and

� = �=4.

Table 6.2: Simulation statistics for quarter of a �ve-spot pattern problem.

20� 20 40 � 40 80� 80

Average convergence rate 0.01 0.02 0.03

Time steps 79 117 200

CPU sec (SGI-Indy) 50 365 4420

from [10]. In Fig. 6.3 a contour plot of the water saturation is shown for the one-point

upstream scheme, and the � = 1=3 scheme. The contour lines are drawn at equidistant levels

of 0.1. As expected, the � = 1=3 scheme gives a superior resolution of the shock. Some

statistical data for the � = 1=3 calculation are shown in Table 6.2. The CPU times needed

for the calculations on di�erent grids are reported for a SGI-Indy works station with a 100

MHz CPU. The convergence of the multigrid algorithm is very fast. This is due to the fact

that the pressure �eld is nearly constant. It is only coupled to the saturation distribution by

small di�erences in the oil and water compressibility. As shown in the previous section, the

point Gauss-Seidel relaxation is a very e�cient solver for the transport part of the equations.

7. Conclusions

We have developed a high-order accurate and fully-implicit discretization of the black-oil

model. This black-oil model is a generic model for compressible multiphase 
ow. For the

solution of the discretized equations we used a multigrid algorithm with a point Gauss-Seidel

smoother. A local Fourier mode analysis has been presented for the high-order accurate

discretization of the linear convection equation. Upper bounds on the time step have been

derived that ensure boundedness of the Gauss-Seidel iteration. Surprisingly there is no upper
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Figure 6.2: Numerical solution of gravity inversion problem for three di�erent discretizations:

one-point upstream, two-point upstream and third order accurate interpolation.
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Figure 6.3: Contour plot of the water saturation in water 
ooding of the quarter of a �ve

spot pattern: one-point upstream (left) and � = 1=3 (right).

bound for the two-point upstream scheme: besides being an exact solver when applied in the

downstream direction, there is no blow up of Fourier modes when it is applied in other direc-

tions. Sample calculations for typical multiphase 
ow problems demonstrate the suitability

of the multigrid approach: the convergence is fast and grid independent. A limited two-point

upstream scheme converges to an unphysical solution, and we do not observe any superior

multigrid convergence behavior for this scheme.
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