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ABSTRACT

Combined use of the X-ray (Radon) transform and the wavelet transform has proved to be useful in applica-

tion areas such as diagnostic medicine and seismology. In the present paper, the wavelet X-ray transform is

introduced. This transform performs one-dimensional wavelet transforms along lines in Rn , which are param-

eterized in the same fashion as for the X-ray transform. It is shown that the transform has the same convenient

inversion properties as the wavelet transform. The reconstruction formula receives further attention in order

to obtain usable discretizations of the transform. Finally, a connection between the wavelet X-ray transform

and the �ltered backprojection formula is discussed.

1991 Mathematics Subject Classi�cation: 42C15, 44A12, 86A15.

Keywords and Phrases: wavelet transform, X-ray transform, Radon transform, windowed Radon transform,

reconstruction, approximate identity, �ltered backprojection formula.
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Foundation (STW), project no. CWI44.3403.

1. Introduction

Both the X-ray transform (or Radon transform) and the wavelet transform have received

considerable attention in the literature and are of great mathematical interest in their own

right. Moreover, these transforms play a signi�cant role in a large range of application areas.

In some of these application areas, such as diagnostic medicine and seismology, the two

transforms are applied in combination.

Combined use of the Radon transform and wavelet transform relevant to diagnostic medicine

can be found in [BW] and [OD]. In order to reduce the amount of data required for proper

reconstruction of the density of the object under consideration, localized inversion methods

of the Radon transform using wavelets are proposed there. The �ltered backprojection for-

mula plays a decisive role in these approaches. This important formula receives attention in

Section 5 of the present paper.

The results mentioned above are also relevant to cross-borehole tomography in seismic

exploration; see for example [DL].

On the other hand, the Radon transform has proved to be useful in reection seismology.

If one models the earth's subsurface as a strati�ed medium, then the Radon transform can

be used to transform seismic data in such a way that arriving wavefronts with distinct propa-

gating velocities are separated. In this context, the Radon transform is referred to as a slant

stack [Rob].
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We shall now shortly describe the aforementioned integral transforms. The X-ray transform

[Nat]

Pf(�; x) =

Z
R

f(x+ t�) dt

integrates a function f on R
n along an a�ne line x + R�, where x 2 R

n is perpendicular to

the direction �. Observe that (�; x), where � is a unit vector and x a vector orthogonal to �,

parameterize all lines in Rn . In particular, the distance of the line x+R� to the origin is given

by kxk. The relevance of the X-ray transform to diagnostic medicine can be understood as

follows: The attenuation of X-ray beams (along lines in R2 or R3) passing through a medium

with density f is modelled by the integral of the density function along these lines. It is the

aim of computerized tomography to reconstruct the density function from these attenuation

data, i.e., from the X-ray transformed function [SSW, Nat].

The X-ray transform belongs to the same family of transformations as the Radon transform

Rf(�; s) =

Z
�?
f(x+ s�) dx;

which integrates f along the a�ne hyperplane �? + s�. As a matter of fact, the Radon

transform is also referred to as the (n� 1)-dimensional X-ray transform [Sol]. Note that for

n = 2, the Radon transform and the (one-dimensional) X-ray transform actually coincide.

In the present paper, the Radon transform appears in Section 5 in relation to the �ltered

backprojection formula.

The wavelet transform

Wgf(b; a) =

Z
R

f(t)
1p
a
g

�
t� b

a

�
dt; b 2 R; a > 0;

which puts a function f to its wavelet coe�cients Wgf(b; a), is often considered as an alter-

native for the windowed Fourier transform in the time-frequency analysis of nonstationary

signals; e.g., see [Mey, RV]. The transform actually computes inner products of f with re-

spect to translated and dilated versions of one and the same function g, which is referred to

as the wavelet. Usually, the function g satis�es an admissibility condition to ensure that the

function f can be reconstructed from its wavelet coe�cients Wgf ; details are given in Section

2.

In [FKV, FKV2], it has been argued that the Radon transform (as a slant stack) and the

wavelet transform (as a time-frequency analysis tool) have complementary useful features to

remove noise from seismic reection data. For this reason, the two transforms are applied in

a cascaded fashion. This work motivates the de�nition of a transformation which combines

the properties of the wavelet and the X-ray transform. Indeed, we consider the wavelet X-ray

transform

Pgf(�; x; b; a) =

Z
R

f(x+ t�)
1p
a
g

�
t� b

a

�
dt:

This transform computes one-dimensional wavelet transforms along lines in R
n which are

parameterized in the same fashion as for the X-ray transform. In Section 3, the wavelet X-ray
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transform will be discussed in detail. It is shown there that the wavelet X-ray transform has

the same convenient reconstruction properties (Theorem 3.3) as the usual wavelet transform

(Theorem 2.2). In Section 4, it is shown that the reconstruction formula of the wavelet X-ray

transform is an integral over elementary orthogonal projections. It is expected that these

projections will play a role in usable discretizations of the wavelet X-ray transform. In this

spirit, it is shown that certain products of these elementary projections give rise to separable

wavelets. Such wavelets were also proposed for seismic data processing in [CC]. An e�ective

use of the wavelet X-ray transform for seismic data processing in a more advanced fashion is

an aim for further research.

The wavelet X-ray transform is closely related to the windowed X-ray transform [KS, Tak],

which is given by

Xgf(y; v) =

Z
R

f(y + tv)g(t) dt;

where x 2 R
n and 0 6= v 2 R

n . If we set

� =
v

kvk ; x = y � hy; �i�; b = hy; �i; a = kvk;

then Xgf(y; v) = Pgf(�; x; b; a). The reconstruction formulas in Section 3 are simpler than

the corresponding ones in [KS, Tak]. Moreover, in the present paper, discrete versions of the

transform are discussed.

2. The continuous wavelet transform

The continuous wavelet transform has been studied thoroughly by several authors. The

transform was introduced in [GMP1, GMP2] and several books on wavelets [Dau, Hol2, Koo]

provide an introduction to the subject. For completeness, we shall state and prove some

important results from the literature concerning the continuous wavelet transform acting on

L2(R), the space of square integrable functions on R. For f; g 2 L2(R), consider the expression

Wgf(b; a) =

Z
R

f(t)
1p
a
g

�
t� b

a

�
dt; (b; a) 2 H ;

where H = f(b; a) 2 R
2 j a > 0g denotes the open upper half plane. We shall refer toWg as the

continuous wavelet transform. The function g plays the role of the wavelet and will normally

satisfy a so-called admissibility condition which will be speci�ed later on. In most signal

analysis applications, the wavelet under consideration should also be (essentially) localized

in a compact interval; see [Mey, RV] for an explanation of these matters. If we introduce the

shorthand notation

ga;b(t) =
1p
a
g

�
t� b

a

�
; ga(t) = ga;0(t); t 2 R; (b; a) 2 H ;

we getWgf(b; a) = hf; ga;biL2(R). Observe that ga;b represents a dilated and translated version
of the function g, which is normalized in such a way that kga;bkL2(R) = kgkL2(R). To �x

notation, we remark that the Fourier transform f 7! bf , given by

bf(!) = 1p
2�

Z
R

f(x)e�i!x dx;
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is a unitary operator on L2(R). The wavelet transform Wgf of f can also be described in

terms of the convolution product. The convolution product of f1; f2 2 L2(R) is given by

(f1 � f2)(x) =
Z
R

f1(x� t)f2(t) dt:

Observe that this formula is de�ned for almost all x 2 R, but that f1 � f2 needs not be in

L2(R). Using the notation eg(t) = g(�t), we get Wgf(b; a) = (f �ega)(b). This fact plays a role
in the proof of the following theorem, which states Plancherel's formula for the continuous

wavelet transform. In the theorem, the wavelet g should satisfy the following admissibility

condition: the expression

cg =

Z 1

0

jbg(a!)j2
a

da (2.1)

must assume a strictly positive value and should be constant for almost all ! 2 R. A function

g 2 L2(R) which satis�es the admissibility condition is called an admissible wavelet. At the

end of this section, a short exposition on the collection of admissible wavelets will be given.

Theorem 2.1 (Plancherel's formula) Let g 2 L2(R) be an admissible wavelet, then for

f 2 L2(R), one getsZ
R

jf(t)j2 dt = 1

cg

Z
H

jWgf(b; a)j2 db
da

a2
:

Proof First, we writeZ
H

jWgf(b; a)j2 db
da

a2
=

Z 1

0

Z
R

j(f � ega(b)j2 db da
a2
:

It is straightforward to verify (c.f. [Koo]) thatZ 1

0

Z
R

j(f � ega(b)j2 db da
a2

=

Z 1

0

Z
R

j bf(!)j2jbga(!)j2 d! da
a2
;

where both sides may be positive in�nite. We remark that bga;b(!) = p
a bg(a!)e�i!b. This

leads toZ
H

jWgf(b; a)j2 db
da

a2
=

Z 1

0

Z
R

j bf(!)j2jbg(a!)j2 d! da
a

=

Z
R

Z 1

0

j bf(!)j2jbg(a!)j2 da
a
d! = cg

Z
R

j bf(!)j2 d! = cgkfk2L2(R):

Here, we have used Fubini's theorem and Plancherel's formula for the Fourier transform. This

proves the theorem. �

We remark that, by polarization, we may derive from Theorem 2.1 Parseval's formula: if

f; k 2 L2(R), then

hf; kiL2(R) =
1

cg

Z
H

Wgf(b; a)Wgk(b; a) db
da

a2
=

1

cg
hWgf;WgkiL2(H) :

We now proceed with a reconstruction formula for the wavelet transform.
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Theorem 2.2 (Reconstruction formula) Let g 2 L2(R) be an admissible wavelet, and let

f 2 L2(R). Then

f =
1

cg

Z
H

Wgf(b; a)ga;b(�) db
da

a2
: (2.2)

The integral converges in the norm of L2(R).

Proof We �rst prove that the right-hand side of (2.2) is in L2(R). In the main body of the

proof, we will replace Wgf by an arbitrary � 2 L2(H ). Let (Km)
1
m=1 be a non-decreasing

sequence of compact and measurable subsets of the open upper half plane H , such thatS1
m=1Km = H . De�ne

Im =
1

cg

Z
Km

�(b; a)ga;b(�) db
da

a2
; m 2 Z

+:

Then for any k 2 L2(R),

hIm; kiL2(R) =
1

cg

Z
R

Z
Km

�(b; a)ga;b(t)k(t) db
da

a2
dt:

Note that the integrand is in L1(R �Km). Indeed,Z
Km

Z
R

j�(b; a)ga;b(t)k(t)j dt db
da

a2
�
Z
Km

j�(b; a)j � kgkL2(R)kkkL2(R) db
da

a2
�

kgkL2(R)kkkL2(R)k�kL2(H)
p
�(Km);

where �(Km) denotes the measure of Km with respect to a�2dbda. Therefore, we may apply

Fubini's theorem and arrive at

hIm; kiL2(R) =
1

cg

Z
Km

�(b; a)

Z
R

k(t)ga;b(t) dt db
da

a2
=

1

cg
h�;WgkiL2(Km):

This implies

jhIm; kiL2(R)j �
1p
cg
k�kL2(H)kkkL2(R);

and we get Im 2 L2(R). Next, we prove the convergence in norm of the right-hand side of

(2.2). It su�ces to prove that the sequence (Im)1m=1 is a Cauchy sequence in L2(R). Let

p < q be positive integers and consider for k 2 L2(R) the expression

hIq � Ip; kiL2(R) =
Z
Kq=Kp

�(b; a)Wgk(b; a) db
da

a2
�

sZ
Kq=Kp

j�(b; a)j2 db da
a2

�
sZ

Kq=Kp

jWgk(b; a)j2 db
da

a2
�
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sZ
Kq=Kp

j�(b; a)j2 db da
a2

� kWgkkL2(H) =
p
cg � kkkL2(R) �

sZ
Kq=Kp

j�(b; a)j2 db da
a2
:

This implies

kIq � IpkL2(R) �
p
cg �

sZ
Kq=Kp

j�(b; a)j2 db da
a2
:

As p; q !1, the integral tends to zero, since the integrand is in L1(H ). To prove the equality

in (2.2), let � =Wgf to obtain

lim
m!1

hIm; kiL2(R) = lim
m!1

1

cg
hWgf;WgkiL2(Km) = hf; kiL2(R):

This proves the theorem. �

De�ne the adjoint operator W �
g : L2(H ) ! L2(R) by duality:

hf;W �
g �iL2(R) = hWgf; �iL2(H) ; f 2 L2(R); � 2 L2(H ):

Then W �
g is a bounded operator with norm kW �

g k = kWgk = p
cg. We may write

W �
g � =

Z
H

�(b; a)ga;b(�) db
da

a2
:

By the proof of the preceding theorem, the integral converges in L2(R). The following theorem

states thatWg is left-invertible, and the orthogonal projection onto its range is given explicitly.

Theorem 2.3 If g 2 L2(R) is an admissible wavelet, then

f =
1

cg
W �
gWgf

for all f 2 L2(R). Moreover, the orthoprojector onto ran Wg � L2(H ) is given by

1

cg
WgW

�
g : L2(H ) ! L2(H ):

Proof The �rst part of the theorem follows immediately from Parseval's formula. The

bounded operator �g = c�1g WgW
�
g obviously satis�es �2

g = �g and ��g = �g. Remains

to prove that ran �g = ran Wg. Clearly, ran �g � ran Wg and the converse inclusion follows

from �gWgf = c�1g WgW
�
gWgf =Wgf . �

A few remarks concerning the admissibility condition (2.1) are in order. Given g 2 L2(R),

the admissibility condition (2.1) comes down to

cg =

Z 1

0

jĝ(a)j2
a

da =

Z 1

0

jĝ(�a)j2
a

da 2 (0;1):
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Indeed, the cases ! < 0 and ! > 0 in (2.1) are reduced to the cases ! = �1 and ! = 1,

respectivily, by change of the variable of integration.

Moreover, if ĝ is continuous at 0 (which is the case when g 2 L1(R)), then the existence

of the integrals above implies that ĝ(0) =
R
R
g(x) dx = 0. The following lemma shows that

for certain classes of functions, admissible wavelets are actually characterized by a vanishing

mean value.

Lemma 2.4 Let g 2 L2(R) be a non-zero real-valued function.

(a) If there exists � > 0 such that

ĝ(!)� ĝ(0) = O(j!j�); ! ! 0;

then: g is admissible if and only if ĝ(0) = 0.

(b) If there exists � > 0 such that g(�) (1 + j � j)� 2 L1(R), then: g is admissible if and only

if
R
R
g(x)dx = 0.

(c) If g is compactly supported, then: g is admissible if and only if
R
R
g(x) dx = 0.

Proof In all three cases, g is real-valued, so ĝ is symmetric. Together with the fact that g is

not identically zero, g is an admissible wavelet if and only ifZ 1

0

jĝ(!)j2
!

d! <1:

In addition, we have assumed that g 2 L2(R), hence ĝ 2 L2(R). It follows that the admissi-

bility condition is equivalent toZ 1

0

jĝ(!)j2
!

d! <1:

In all three cases, the only if part follows from the discussion before the lemma. Observe that

for g 2 L1(R), ĝ(0) =
R
R
g(x)dx. We now focus on the if parts, where we may and do assume

that 0 < � < 1.

(a) If ĝ(0) = 0, then ĝ(!) = O(j!j�) for ! ! 0, soZ 1

0

jĝ(!)j2
!

d! � C �
Z 1

0

!2��1 d! =
C

2�
<1:

(b) If g(�) (1 + j � j)� 2 L1(R), then

jĝ(!)� ĝ(0)j � 1p
2�

Z
R

jg(x)jje�i!x � 1j dx =

j!jp
2�

Z
jxj�1

jg(x)j
����e�i!x � 1

!x

���� dx +
j!j�p
2�

Z
jxj�1

jg(x)j � jxj�
����e�i!x � 1

(!x)�

���� dx
can be estimated from above by C � j!j� for j!j < 1, say. We are now back in situation

(a).
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(c) If g is compactly supported, then g(�) (1 + j � j)� 2 L1(R) and we are in situation (b).

This proves the lemma. �

An obvious example of an admissible wavelet which is not compactly supported is the mexican

hat given by t 7! (1 � t2)e�t
2=2.

3. The continuous wavelet X-ray transform

We shall now consider a transform acting on square integrable functions on R
n . This trans-

form actually performs one-dimensional wavelet transforms (see the preceding section) along

lines in Rn . These lines are parameterized in the same fashion as for the usual X-ray transform

(see [Nat, Sol]), i.e., by means of the vector bundle on the unit sphere

T = f(�; x) j � 2 Sn�1; x 2 �?g:

Here �? denotes the orthoplement of � 2 Sn�1 in Rn . Let g 2 L2(R), f 2 L2(Rn), and de�ne

Pgf(�; x; b; a) =

Z
R

f(x+ t�)ga;b(t) dt; (�; x) 2 T ; (b; a) 2 H :

The transform Pg will be called the continuous wavelet X-ray transform. If we �x � 2 Sn�1,
we shall write

Pg;�f(x; b; a) = Pg(�; x; b; a); x 2 �?; (b; a) 2 H :

We shall also formulate results in terms of this transform, i.e., for the wavelet X-ray transform

with �xed direction � 2 Sn�1. In the next theorem, we derive Parseval's formula for the

wavelet X-ray transform.

Theorem 3.1 (Parseval's formulas) Let g 2 L2(R) be an admissible wavelet, then

Pg : L
2(Rn)! L2(T � H )

is a multiple of an isometry. In fact,

hPgf; PgkiL2(T �H) = cg � jSn�1j � hf; kiL2(Rn):

Moreover, for �xed � 2 Sn�1, the transformation

Pg;� : L
2(Rn)! L2(�? � H )

is also a multiple of an isometry with

hPg;�f; Pg;�kiL2(�?�H) = cg � hf; kiL2(Rn):
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We state and prove a lemma which has Theorem 3.1 as an immediate corollary. Note that

Pg = Wg� can be written as a cascade of two operators, where � : L2(Rn) ! L2(T � R) is

de�ned by

�f(�; x; t) = f(x+ t�); (�; x; t) 2 T � R;

and where Wg : L
2(T � R) ! L2(T � H ) is a lifted version of the one-dimensional wavelet

transform, given by

Wg�(�; x; b; a) =

Z
R

�(�; x; t)ga;b(t) dt; (�; x) 2 T ; (b; a) 2 H :

In the same fashion, for �xed � 2 Sn�1, we get Pg;� =Wg��, where �� : L
2(Rn)! L2(�?�R)

is given by ��f(x; t) = f(x+t�) for x 2 �? and � 2 Sn�1. HereWg : L
2(�?�R) ! L2(�?�H )

is another lifted version of the one-dimensional wavelet transform.

Lemma 3.2 The mapping

� : L2(Rn)! L2(T � R)

is a multiple of an isometry. For �xed � 2 Sn�1, the mapping

�� : L
2(Rn)! L2(�? � R); � 2 Sn�1;

is an isometry, and if g 2 L2(R) is an admissible wavelet, then

Wg : L
2(T � R) ! L2(T � H ); Wg : L

2(�? � R) ! L2(�? � H )

are multiples of an isometry.

Proof First, for any f 2 L2(Rn), we get

k��fk2L2(�?�R) =
Z
�?

Z
R

j��f(x; t)j2 dt dx =

Z
�?

Z
R

jf(x+ t�)j2 dt dx = kfk2
L2(Rn):

With a slight modi�cation of the preceding argument, one obtains

k�fk2
L2(T �R) = jSn�1j � jfk2

L2(Rn):

Next, if �; � 2 L2(T � R), then

hWg�;Wg�iL2(T �H) =
Z
T

Z
H

Wg�(�; x; b; a)Wg�(�; x; b; a) db
da

a2
d(�; x) =

Z
T

hWg�(�; x; �; �);Wg�(�; x; �; �)iL2(H) d(�; x) =
Z
T

cgh�(�; x; �); �(�; x; �)iL2(R) d(�; x) =

cg

Z
T

Z
R

�(�; x; t)�(�; x; t) dt d(�; x) = cgh�; �iL2(T �R):

The fact that Wg : L
2(�? � R) ! L2(�? � H ) is a multiple of an isometry is proved in the

same fashion. �
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Theorem 3.3 (Reconstruction formulas) Let g 2 L2(R) be an admissible wavelet, then

for any f 2 L2(Rn), we get

f =
1

cg � jSn�1j
Z
Sn�1

Z
H

Pgf(�;E��; b; a)ga;b(h�; �i) db
da

a2
d�; (3.1)

where E� = I �h�; �i denotes the orthoprojector onto �? � R
n . Moreover, for � 2 Sn�1 �xed,

f =
1

cg

Z
H

Pg;�f(E��; b; a)ga;b(h�; �i) db
da

a2
: (3.2)

Both integrals converge in L2(Rn).

Proof We �rst prove that the right-hand side of (3.1) is in L2(Rn). In the main body of

the proof, we will replace Pgf by an arbitrary � 2 L2(T � H ). Let (Km)
1
m=1 be a non-

decreasing sequence of compact and measurable subsets of the open upper half plane H , such

that
S1
m=1Km = H . For m 2 Z

+, de�ne

Im =
1

cgjSn�1j
Z
Sn�1

Z
Km

�(�;E��; b; a)ga;b(h�; �i) db
da

a2
d�:

Then, for any k 2 L2(Rn),

hIm; kiL2(Rn) =
1

cgjSn�1j
Z
Rn

Z
Sn�1

Z
Km

�(�;E�y; b; a)ga;b(hy; �i)k(y) db
da

a2
d� dy:

The integrand is in L1(Rn � Sn�1 �Km). Indeed,Z
Km

Z
Sn�1

Z
�?

Z
R

j�(�; x; b; a)ga;b(t)k(x+ t�)j dt dx d� db da
a2

�

Z
Km

Z
Sn�1

Z
�?
j�(�; x; b; a)j � kgkL2(R)

sZ
R

jk(x+ t�)j2 dt dx d� db da
a2
dx �

kgkL2(R)kkkL2(Rn)
Z
Km

Z
Sn�1

sZ
�?
j�(�; x; b; a)j2 dx d� db da

a2
�

kgkL2(R)kkkL2(R)
p
�(Km) � jSn�1j � k�kL2(T �H) :

Therefore, by Fubini's theorem,

hIm; kiL2(Rn) =
1

cgjSn�1j
Z
Km

Z
Sn�1

Z
�?

Z
R

�(�; x; b; a)ga;b(t)k(x+ t�)dt dx d� db
da

a2
=

1

cgjSn�1j
Z
Km

Z
Sn�1

Z
�?

�(�; x; b; a)Pgk(�; x; b; a) dx db
da

a2
=

1

cgjSn�1j
h�; PgkiL2(T �Km):
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This implies

jhIm; kiL2(Rn)j �
1p

cgjSn�1j
k�kL2(T �H)kkkL2(Rn);

and henceforth Im 2 L2(Rn).

Next, we prove the convergence in norm of the right-hand side of (3.1). It su�ces to prove

that the sequence (Im)1m=1 is a Cauchy sequence in L2(Rn). Let p < q be positive integers

and consider for k 2 L2(Rn) the expression

hIq � Ip; kiL2(Rn) =

1

cgjSn�1j
Z
Kq=Kp

Z
Sn�1

Z
�?

Z
R

�(�; x; b; a)Pgk(�; x; b; a) dt dx d� db
da

a2
�

1

cgjSn�1j

sZ
Kq=Kp

Z
Sn�1

Z
�?
j�(�; x; b; a)j2 dx d� db da

a2
�

�
sZ

Kq=Kp

Z
Sn�1

Z
�?
jPgk(�; x; b; a)j2 dx d� db

da

a2
�

1p
cgjSn�1j

�
sZ

Kq=Kp

Z
Sn�1

Z
�?
j�(�; x; b; a)j2 dx d� db da

a2
� kkkL2(Rn):

Therefore,

kIq � IpkL2(Rn) �
1p

cgjSn�1j
�
sZ

Kq=Kp

Z
Sn�1

Z
�?
j�(�; x; b; a)j2 dx d� db da

a2
:

As p; q !1, the integral tends to zero, since the integrand is in L1(T � H ).

To prove the equality in (3.1), let � = Pgf . Then

lim
m!1

hIm; kiL2(Rn) = lim
m!1

1

cgjSn�1j
hPgf; PgkiL2(T �Km) = hf; kiL2(Rn):

A slight modi�cation of the preceding part of the proof yields (3.2). This proves the theorem.

�

We proceed in the same fashion as for the continuous wavelet transform. De�ne the dual

operator P �
g : L2(T � H ) ! L2(Rn) by

hP �
g�; fiL2(Rn) = h�; PgfiL2(T �H) ; � 2 L2(T � H ); f 2 L2(Rn):
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Then P �
g is a bounded operator, with norm kP �

g k = kPgk =
p
cgjSn�1j, and is given by

P �
g� =

Z
Sn�1

Z
H

�(�;E��; b; a)ga;b(h�; �i) db
da

a2
d�; � 2 L2(T � H ):

By the proof of Theorem 3.3, the integral converges in L2(Rn). Analogously, one may de�ne

the dual operator of Pg;�, where � 2 Sn�1 is �xed. Indeed, put

hP �
g;��; fiL2(Rn) = h�; Pg;�fiL2(�?�H) ; � 2 L2(�? � H ); f 2 L2(Rn):

Then P �
g;�

: L2(�? � H ) ! L2(Rn) is given by

P �
g;�� =

Z
H

�(E��; b; a)ga;b(h�; �i) db
da

a2
:

This integral also converges in L2(Rn). The next theorem identi�es the left inverse of Pg and

the orthoprojector onto ran Pg. Analogous results can be stated for Pg;�, but we shall omit

those.

Theorem 3.4 If g 2 L2(R) is an admissible wavelet, then

f =
1

cgjSn�1j
P �
g Pgf

for all f 2 L2(Rn). Moreover, the bounded operator

1

cgjSn�1j
PgP

�
g : L2(T � H ) ! L2(T � H )

de�nes the orthoprojector onto ran Pg.

4. Elementary projections

In this section, we may and do assume that kgkL2(R) = 1. The reconstruction formula (3.1)

can be seen as an expansion of a function along wavelets of distribution type. To make this

more precise, assume for the moment that f 2 C(Rn) \ L2(Rn) is a continuous function in

L2(Rn). Write

f(y) =
1

cgjSn�1j
Z
Sn�1

Z
H

Z
R

f(E�y + t�)ga;b(t) dt ga;b(hy; �i) db
da

a2
d� =

1

cgjSn�1j
Z
Sn�1

Z
H

Z
�?

Z
Rn

f(z)ga;b(hz; �i)�(E�z � x) dz ga;b(hy; �i)�(E�y � x) dx db
da

a2
d�:

We have introduced here the delta distribution which satis�es

k(x) =

Z
�?
k(u)�(x � u) du; x 2 �?; k 2 C(�?):
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If we de�ne the distribution  �;x;a;b = �(E� � �x)ga;b(h�; �i) and interpret it as a wavelet (see

[Hol, Hol2]), i.e., if we write

W f(�; x; b; a) =

Z
Rn

f(z) �;x;a;b(z) dz = Pg(�; x; b; a);

then we arrive at

f(y) =
1

cgjSn�1j
Z
Sn�1

Z
H

Z
�?
W f(�; x; b; a) �;x;a;b(y) dx db

da

a2
d�:

Instead of using wavelets of distribution type, we introduce for � 2 Sn�1, (b; a) 2 H , the

elementary projections

G�;a;bf = Pgf(�;E��; b; a)ga;b(h�; �i); f 2 L2(Rn);

and rewrite the reconstruction formula (3.1) as

f =
1

cgjSn�1j
Z
Sn�1

Z
H

G�;a;bf db
da

a2
d�;

and reconstruction formula (3.2) as

f =
1

cg

Z
H

G�;a;bf db
da

a2
;

for �xed � 2 Sn�1. As we have seen, the integrals converge in L2(Rn). In terms of the

aforementioned distribution  , we could write for a continuous function f in L2(Rn) the

formula

G�;a;bf =

Z
�?
W f(�; x; b; a) �;x;a;b dx;

but we will study the elementary projections without further reference to the wavelet of

distribution type  . Lemma 4.1 shows that the elementary projections indeed are orthogonal

projections on L2(Rn). In the remainder of this section, �rst results on discrete versions of

the wavelet X-ray transform are presented.

Lemma 4.1 Let g 2 L2(R) be an admissible wavelet. Then

G�;a;b : L
2(Rn)! L2(Rn)

is an orthogonal projection onto the subspace

M�;a;b = ff 2 L2(Rn) j f = '(E��)ga;b(h�; �i); for some ' 2 L2(�?)g:
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Proof We �rst prove that G�;a;b is a bounded operator. Indeed,Z
Rn

jG�;a;bf(y)j2 dy =
Z
�?

Z
R

jPgf(�; x; b; a)j2jga;b(t)j2 dt dx =

Z
�?
jPgf(�; x; b; a)j2 dx � kfk2

L2(Rn):

Moreover, the operator is self-adjoint:

hG�;a;bf; kiL2(Rn) =
Z
�?

Z
R

Pgf(�; x; b; a)ga;b(t)k(x+ t�)dt dx =

Z
�?

Z
R

Z
R

f(x+ s�)ga;b(s)ga;b(t)k(x + t�)ds dt dx = hf;G�;a;bkiL2(Rn):

Further, the operator is idempotent: for almost all y 2 R
n ,

G2
�;a;bf(y) =

Z
R

G�;a;bf(E�y + t�)ga;b(t) dt ga;b(hy; �i) =

Z
R

Pgf(�;E�y; b; a)ga;b(t)ga;b(t) dt ga;b(hy; �i) = G�;a;bf(y):

Next, we identify the range of G�;a;b. For each f 2 L2(Rn), we get

G�;a;bf = Pgf(�;E��; b; a)ga;b(h�; �i) 2M�;a;b:

If ' 2 L2(�?), then f = '(E��)ga;b(h�; �i) satis�es G�;a;bf = f . �

We also have the following version of Parseval's formula:

Lemma 4.2 Let g 2 L2(R) be an admissible wavelet. Then for any f 2 L2(Rn) and � 2 Sn�1,

kfk2
L2(Rn) =

1

cg

Z
H

kG�;a;bfk2L2(Rn) db
da

a2
:

Proof By Parseval's formula,Z
Rn

jf(y)j2 dy = 1

cg

Z
H

Z
�?
jPgf(�; x; a; b)j2 dx db

da

a2
:

The lemma now follows from

kG�;a;bfk2L2(Rn) =
Z
�?

Z
R

jPg(�; x; b; a)ga;b(t)j2 dt dx =
Z
�?
jPg(�; x; b; a)j2 dx:

�
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We will now study products of the projections G�;a;b. If f 2 L2(Rn), then for arbitrary

(�; a; b); (';�; �) 2 Sn�1 � H , we get

G�;a;bG';�;�f(y) =

Z
R

G';�;�f(E�y + t�)ga;b(t) dt ga;b(hy; �i) =

Z
R

Z
R

f(E'E�y + tE'� + s')g�;�(s) ga;b(t)g�;�(hy;E�'i+ th�; 'i) ds dt ga;b(hy; �i)

for almost all y 2 R
n . We will specify two important cases.

CASE 1

Consider the case when � = '. In this case,

G�;a;bG�;�;�f(y) =

Z
R

Z
R

f(E�y + s�)g�;�(s) ga;b(t)g�;�(t) ds dt ga;b(hy; �i) =

hg�;� ; ga;biL2(R)Pgf(�;E�y; �; �) ga;b(hy; �i):

CASE 2

In the case when � ? ', the product comes down to

G�;a;bG';�;�f(y) =

Z
R

Z
R

f(E'E�y + t� + s')g�;�(s) ga;b(t) ds dt g�;�(hy; 'i)ga;b(hy; �i):

Observe that in this case, E�E' = E'E� is the orthoprojector onto the (n� 2)-dimensional

subspace f�; 'g?. Moreover, it is immediate that the orthoprojectors G�;a;b and G';�;� com-

mute. The following lemma is an immediate consequence of these facts.

Lemma 4.3 Let �1; : : : ; �n 2 Sn�1 be mutually orthogonal unit vectors, and let (bj ; aj) 2 H

for j = 1; : : : ; n. Write

� = (�1; : : : ; �n); a; b = ((a1; b1); : : : ; (an; bn)):

Next, de�ne

F�;a;b =

nY
j=1

gaj ;bj (h�; �ji); G�;a;b =

nY
j=1

G�j ;aj ;bj :

Then F�;a;b 2 L2(Rn), kF�;a;bkL2(Rn) = 1, and

G�;a;bf = hf; F�;a;biL2(Rn) F�;a;b:

In particular, the operator G�;a;b is an orthogonal projector of rank one.
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We derive Plancherel's formula concerning the coe�cients hf; F�;a;biL2(Rn) of f . By Lemma
4.3, we get

kG�;a;bfkL2(Rn) = jhf; F�;a;biL2(Rn)j:

By repetitive use (n times) of Lemma 4.2, we arrive at

kfkL2(Rn) =
1

cng jSn�1jn
Z
Sn�1

Z
H

� � �
Z
Sn�1

Z
H

jhf; F�;a;biL2(Rn)j2 dbn
dan
a2n

d�n � � � db1
da1

a21
d�1:

It is an aim of future research to study the discrete wavelet X-ray transform. We shall give

a preliminary result in this direction. We omit the straightforward proof.

Proposition 4.4 Let K � H be a countable subset and let g 2 L2(R) be a wavelet, such that

fga;bg(b;a)2K is an orthonormal basis of L2(R). If �1; : : : �n 2 Sn�1 are mutually orthogonal

unit vectors, then fF�;a;bga;b2Kn is an orthonormal basis of L2(Rn). In particular, if f 2
L2(Rn), then

f =
X

a;b2Kn

hf; F�;a;biL2(Rn)F�;a;b;

and

kfk2
L2(Rn) =

X
a;b2Kn

jhf; F�;a;biL2(Rn)j2:

The type of orthonormal wavelet bases in L2(R) we particularly have in mind in Proposition

4.4 are the ones consisting of compactly supported wavelets [Dau, Dau2]. Wavelets in L2(Rn)

which are the product of wavelets in L2(R), such as the ones in Proposition 4.4, are called

separable wavelets; see for example [Dau].

5. Approximation of the identity

As indicated in the introduction, the reconstruction of a (density) function from its Radon

transform is relevant for a range of applications. The backprojection formula, given by Lemma

5.1, enables us to approximately reconstruct an L1 function from its Radon transform. In

fact, we will use the wavelet transform to construct an approximate identity in the same

fashion as in [BW]. Proposition 5.3 gives a connection between such an approximate identity

and the wavelet X-ray transform.

The Radon transform or the (n� 1)-dimensional X-ray transform R : L1(Rn) ! L1(Z) is
given by

Rf(�; s) =

Z
�?
f(x+ s�) dx; (�; s) 2 Z;
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where Z = Sn�1 � R is the unit cylinder. It is easily veri�ed that the Radon transform R is

a bounded operator on L1(Rn). Indeed,

kRfkL1(Z) �
Z
Sn�1

Z
R

Z
�?
jf(x+ s�)j dx ds d� = jSn�1j � kfkL1(Rn):

We mention that R is not a bounded operator on L2(Rn); see [Sol]. In this section, convolution

products arise of functions in several function spaces. If h1; h2 2 L1(Z), then de�ne

(h1 � h2)(�; s) =
Z
R

h1(�; s� t)h2(�; t) dt; (�; s) 2 Z:

For f1; f2 2 L1(Rn), we have the usual convolution product

(f1 � f2)(y) =
Z
Rn

f1(y � z)f2(z) dz; y 2 R
n :

We shall consider the dual operator R# of R. Identify bounded linear functionals on L1

with functions in L1. The backprojection formula is given by the following lemma. For

completeness, we give its proof; see also [Nat].

Lemma 5.1 (Filtered backprojection) The dual operator R# : L1(Z) ! L1(Rn) of R

is given by

R#h =

Z
Sn�1

h(�; h�; �i) d�; h 2 L1(Z):

Moreover, if f 2 L1(Rn) and h 2 L1(Z) \ L1(Z), then h �Rf 2 L1(Z) \ L1(Z) and

R#(h � Rf) = R#h � f:

Proof Observe that, by Fubini's theorem,Z
Z

Rf(�; s)h(�; s) d(�; s) =

Z
Sn�1

Z
R

Z
�?
f(x+ s�)h(�; s) dx ds d� =

Z
Rn

f(y)

Z
Sn�1

h(�; hy; �i) d� dy;

and the �rst part of the lemma is proved. Note that

kh � RfkL1(Z) � jSn�1j � khkL1(Z)kfkL1(Rn)
and

kh � RfkL1(Z) � jSn�1j � khkL1(Z)kfkL1(Rn):
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Finally, for almost all y 2 R
n , we get by Fubini's theorem,

R#(h � Rf)(y) =
Z
Sn�1

(h �Rf)(�; hy; �i) d� =
Z
Sn�1

Z
R

h(�; hy; �i � s)Rf(�; s) ds d� =

Z
Sn�1

Z
R

Z
�?
h(�; hy; �i � s)f(x+ s�) dx ds d� =

Z
Rn

R#h(y � z)f(z) dz = (R#h � f)(y):

This proves the lemma. �

As we are considering functions in L1, we shall adapt the normalization of dilated functions

to this norm. Indeed, in this section, we shall write for g 2 L1(Rk )

ga(�) =
1

ak
g
� �
a

�
;

i.e., such that kgakL1(Rk) = kgkL1(Rk) for a > 0. If h 2 L1(Z), then

ha(�; �) =
1

a
h
�
�;
�
a

�
; � 2 Sn�1

for a > 0. We will need the following classical result (see e.g. [Ru]).

Lemma 5.2 (Approximate identity) If h 2 L1(Rn) is positive with norm khkL1(Rn) = 1,

then

lim
a#0

kha � f � fkL1(Rn) = 0;

where ha(�) = 1
an
h( �

a
) for a > 0 and f 2 L1(Rn).

Proof Fix " > 0. Observe that for almost all y 2 R
n ,

(ha � f)(y)� f(y) =

Z
Rn

ha(z) [f(y � z)� f(y)] dz;

hence

kha � f � fkL1(Rn) �
Z
Rn

ha(z)

Z
Rn

jf(y � z)� f(y)j dy dz:

Let ' be a continuous function with compact support contained in a closed cube [�A;A]n,
such that kf � 'kL1(Rn) < "=3. Then ' is uniformly continuous: there exists 0 < � < A=2

such that kzk < � implies

j'(y � z)� '(y)j < "

3n+1An
:

We arrive at

kf(� � z)� fkL1(Rn) �



5. Approximation of the identity 19

kf(� � z)� '(� � z)kL1(Rn) + k'(� � z)� 'kL1(Rn) + k' � fkL1(Rn) =

2k' � fkL1(Rn) + k'(� � z)� 'kL1(Rn):

Since

k'(� � z)� 'kL1(Rn) =
Z
Rn

j'(y � z)� '(y)j dy =

Z
kyk�A+�

j'(y � z)� '(y)j dy � (3A)n � "

3n+1An
=
"

3
;

we conclude that kf(� � z)� fkL1(Rn) < " if kzk < �. Therefore,

kha � f � fkL1(Rn) �

Z
kzk<�

ha(z)kf(� � z)� fkL1(Rn) dz +
Z
kzk��

ha(z)kf(� � z)� fkL1(Rn) dz �

"+ 2kfkL1(Rn)
Z
kzk��

1

an
h(
z

a
) dz = "+ 2kfkL1(Rn)

Z
kzk��=a

h(z) dz:

Since h 2 L1(Rn), the latter expression can be made smaller than 2" by taking a small

enough. This proves the lemma. �

We are interested in the following situation. Let g 2 L1(R)\L1(R), a > 0, and de�ne h 2
L1(Z) \ L1(Z) by h(�; �) = eg. By Lemma 5.1 and Fubini's theorem, we get for f 2 L1(Rn),

(R#ha � f)(y) = R#(ha �Rf)(y) =
Z
Sn�1

Z
R

Rf(�; s)ga(s� hy; �i) ds d� =

Z
Sn�1

Z
R

Z
�?
f(x+ s�)ga(s� hy; �i) dx ds d� =

Z
Sn�1

Z
R

Z
�?
f(x+ s�)ga;hy;�i(s) dx ds d� =

Z
T

Pgf(�; x; hy; �i; a) d(�; x):

Here Pg maps L
1(Rn) into L1

loc(T �H ), since Pg 2 L1(T �K) for all K � H compact. Indeed,

if f 2 L1(Rn) and K � H compact, thenZ
K

Z
T

jPgf(�; x; b; a)j d(�; x) db
da

a2
�

Z
K

Z
Sn�1

Z
�?

Z
R

jf(x+ t�)j � jga;b(t)j dt dx d� db
da

a2
�
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Z
K

Z
Sn�1

Z
�?

Z
R

jf(x+ t�)j dt1
a
kgkL1(R) dx d� db

da

a2
=

jSn�1j � kfkL1(Rn)kgkL1(R)

Z
K

1

a
db
da

a2
<1:

Observe that the function R#h is radially symmetric:

R#h(y) =

Z
Sn�1

g(hy; �i) d� = jSn�1j � g(kyk); y 2 R
n :

We will assume in addition that g 2 L1(R) \ L1(R) is a positive function and thatZ 1

0

g(t)tn�1 dt = jSn�1j�2:

In this case, R#h is a positive function in L1(Rn) with norm kR#hkL1(Rn) = 1. We may then

apply Lemmas 5.1 and 5.2 to obtain the following result.

Proposition 5.3 If g 2 L1(R) \ L1(R) is a positive function such that
R1
0
g(t)tn�1 dt =

jSn�1j�2, and h 2 L1(Z) \ L1(Z) is given by h(�; �) = eg, then
jSn�1j � ga(k � k) � f = R#(ha � Rf) =

Z
T

Pgf(�; x; h�; �i; a) d(�; x)

converges in L1(Rn) to the function f 2 L1(Rn) as a # 0.

We remark that in the lemma, ga(k � k) = 1
a
g(

k�k
a
). Note that, by assumption, the wavelet g

under consideration is not admissible. In some literature (e.g. [Dau]), such a wavelet is called

a father wavelet (instead of a so-called mother wavelet) or a scaling function. An example of

such a wavelet is given by g(t) = C � e�t2 , t 2 R, with an appropriate normalization constant

C.

References

[BW] C.A. Berenstein, D.F. Walnut, Local inversion Radon transform in even dimensions using
wavelets, 75 years of Radon transform (Vienna, 1992), S, Gindikin, P. Michor (eds.), pp. 45-69,
International Press, (1994).

[CC] J.C. Cohen, T. Chen, Fundamentals of the discrete wavelet transform for seismic data processing,
available at:

ftp://ftp.mines.colorado.edu/pub/papers/math cs dept/pub93/cwp-130P.ps.Z

[Dau] I. Daubechies, Ten lectures on wavelets, SIAM-CBMS Series 61, Philadelphia, PA (1992).

[Dau2] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math.

41 (7): 909-996 (1988).

[DL] K.A. Dines, R.J. Lytle, Computerized geophysical tomography, Proc. IEEE 67(7): 1065-1073
(1979).

[FKV] L. Faqi, M.M.N. Kabir, D.J. Verschuur, Seismic processing using the wavelet and the Radon
transform, J. Seismic Exploration 4: 375-390 (1995).



References 21

[FKV2] L. Faqi, M.M.N. Kabir, D.J. Verschuur, Cascaded application of the linear Radon and wavelet
transform in preprocessing,Annual Meeting Society Exploration Geophysicists, Expanded Abstracts:
1373-1376 (1995).

[GMP1] A. Grossmann, J. Morlet, T. Paul, Transforms associated to square integrable group repre-
sentations I: general results, J. Math. Phys. 26: 2473-2479 (1985).

[GMP2] A. Grossmann, J. Morlet, T. Paul, Transforms associated to square integrable group repre-
sentations II: examples, Ann. Inst. Henri Poincarr�e Physique Theorique 45: 293-309 (1986).

[Hol] M. Holschneider, Inverse Radon transforms through inverse wavelet transforms, Inverse Prob-

lems 7: 853-861 (1991).

[Hol2] M. Holschneider, Wavelets: An analysis tool, Clarendon Press, Oxford (1995).

[KS] G. Kaiser, R.F. Streater, Windowed Radon transforms, analytic signals, and the wave equation,
Wavelets: A tutorial in theory and applications, C.K. Chui (ed.), pp. 399-441, Academic Press
(1992).

[Koo] T.H. Koornwinder, The continuous wavelet transform, Wavelets: An elementary treatment of
theory and applications, T.H. Koornwinder (ed.), pp. 27-48, World Scienti�c (1993).

[Mey] Y. Meyer, R.D. Ryan, Wavelets: Algorithms and applications, SIAM, Philadelphia (1993).

[Nat] F. Natterer, The mathematics of computerized tomography, John Wiley & Sons, Chicester
(1986).

[OD] T. Olson, J. DeStefano, Wavelet localization of the Radon Transform, IEEE Tr. Signal Proc.

42(8): 2055-2067 (1994).

[RV] O. Rioul, M. Vetterli, Wavelets and signal processing, IEEE Signal Processing Magazine, october:
14-38 (1991).

[Rob] E.A. Robinson, Spectral approach to geophysical inversion by Lorentz, Fourier, and Radon
transforms, Proc. IEEE 70(9): 1039-1054 (1984).

[Ru] W. Rudin, Real and complex analysis, McGraw-Hill, New York (1986).

[SSW] K.T. Smith, D.C. Solmon, S.L. Wagner, Practical and mathematical aspects of the problem
of reconstructing objects from radiographs, Bull. A.M.S. 82(6): 1227-1270 (1977).

[Sol] D.C. Solmon, The X-ray transform, J. Math. Anal. Appl. 56: 61-83 (1976).

[Tak] T. Takiguchi, On invertibility of the windowed Radon transform, J. Math. Sci. Univ. Tokyo 2:
621-636 (1995).


