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1 Introduction

Edge Sequences, Ribbon Tableaux, and an Action of

A�ne Permutations

Marc A. A. van Leeuwen

CWI

P. O. Box 94079, 1090 GB Amsterdam, The Netherlands

M.van.Leeuwen@cwi.nl

ABSTRACT

An overview is provided of some of the basic facts concerning rim hook lattices and ribbon tableaux, using

a representation of partitions by their edge sequences. An action is de�ned of the a�ne Coxeter group of

type ~Ar�1 on the r-rim hook lattice, and thereby on the sets of standard and semistandard r-ribbon tableaux,

and this action is related to the concept of chains in r-ribbon tableaux.

1991 Mathematics Subject Classi�cation: 05E10.

Keywords and Phrases: ribbon tableau, rim hook lattice, a�ne permutation group.

Note: Work carried out under project MAS1.4 (Analysis of PDE's : -).

x1. Introduction.

Rim hook lattices are de�ned by endowing the set P of all partitions of natural numbers with a partial

ordering `�r' for some r > 0; this partial ordering is generated by the removal of so-called rim hooks of

length r (also called r-ribbons) from Young diagrams. Saturated chains in such a lattice correspond to

combinatorial objects known as ribbon tableaux. In this note we study the basic properties of ribbon

tableaux, using a particular way to represent partitions, namely by their edge sequences; this leads in a

particularly easy way to a structure theorem for rim hook lattices (x2), and thereby to decomposition

theorems for ribbon tableaux (x3). Neither these theorems nor the concept of edge sequences are new,

but it appears that the systematic use of edge sequences to study rim hook lattices and ribbon tableaux

is. From our description we obtain in a natural way an action of the group ~Sr, which is an a�ne Coxeter

group of type ~Ar�1, by automorphisms on the r-rim hook lattice, and thereby on r-ribbon tableaux

(x4). A detailed study of this action leads to the concept of chains in r-ribbon tableaux, which has been

considered previously only for domino tableaux (r = 2); we derive some basic combinatorial properties

of chains and of the operation of moving them.

The purpose of this note is twofold. In the �rst place we wish to provide a self-contained introduction

to the theory of ribbon tableaux, giving simple proofs of all the basic facts. In the second place this note

is a preliminary to a forthcoming paper [vLee2] on domino tableaux: we collect here all de�nitions and

result needed there for domino tableaux that are valid in the more general setting of r-ribbon tableaux.

In displaying Z� Z and objects embedded in it, such as diagrams and tableaux, we use the matrix

convention that the �rst index increases downwards, and the second index to the right. The term inward

will be used throughout to mean \to the left and/or upwards", and similarly outward means \to the right

and/or downwards"; a typical use is to discriminate between inward and outward slides for jeu de taquin.

We shall denote the set of all partitions of natural numbers by P . Depending on the context, a

partition � 2 P will be either considered to be a weakly decreasing sequence (�0; �1; : : :) of natural

numbers, or will be identi�ed with the corresponding Young diagram f (i; j) 2 N�N j j < �i g, whose
elements are referred to as its squares; the latter always applies when set theoretic notation such as

(i; j) 2 � is used. The empty partition (0; 0; : : :) will be denoted by ;, the cardinality
P

i �i of the Young
diagram � by j�j, and its transpose by �t. For �; � 2 P the use of the notation �=� will imply that � � �,
but otherwise it is just a formal symbol; it is related to the skew diagram � n�, but that set alone might

fail to determine � and �.
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2 Edge sequences

x2. Edge sequences.

We associate to � 2 P a doubly in�nite word �(�) over the alphabet f0; 1g, called its edge sequence, that

describes the shape of the (lower) boundary of N �N n � as a sequence of vertical and horizontal line

segments (of length 1) going from bottom-left to top-right, where 1 represents a vertical segment and

each 0 a horizontal segment. For instance, for � = (3; 3; 1) the part of the boundary near the origin looks

like this

and we have �(�) = (: : : 1 1 1 0 1 0j0 1 1 0 0 0 : : :), where the `j' is a reference mark indicating the point

where the boundary crosses the main diagonal. The individual terms of an edge sequence will be referred

to as bits. Formally, �(�) is a map Z! f0; 1g de�ned by

�(�)(d) =

�
1 if d 2 f�i � i� 1 j i 2 N g
0 if d 2 f j � �tj j j 2 N g

(the two conditions are easily seen to be complementary); the `j'-mark separates the indices d < 0 from

the indices d � 0. In the literature one �nds many places where a partition is transformed into a strictly

decreasing (or increasing) sequence with terms equal, up to a constant o�set, to the values �i � i; the
operations performed with those sequences of numbers are usually easy to understand directly in terms of

edge sequences. We shall denote the edge seqence �(;) = (: : : 1 1 1j0 0 0 : : :) of the empty partition by �0,
so that

�0(d) =
n
1 if d 2 Z nN
0 if d 2 N

:

De�ning

FD = f f :Z! f0; 1g j f(d) = �0(d) for all but �nitely many d g;

it is clear that � maps P injectively into FD . Moreover, for any � 2 P , the di�erences between �(�) and �0
are evenly distributed between both sides of the `j'-mark: there are jf i 2 N j (i; i) 2 � gj di�erences on
either side. In fact, if we de�ne for f 2 FD its \displacement" as

d(f) =
X
i2Z

f(i)� �0(i) = jf d � 0 j f(d) = 1 gj � jf d < 0 j f(d) = 0 gj;

then the image �(P) of P in FD is precisely f f 2 FD j d(f) = 0 g. There is an action of Z on FD by

translations, given by tn(f)(i) = f(i � n); informally speaking, tn(f) is the same sequence as f , but
with the reference mark `j' shifted n places to the left. One has d(tn(f)) = d(f) + n, so �(P) is a set

of representatives of the orbits of this action, which means that if a sequence without reference mark is

given, there is a unique way to insert it to obtain a sequence �(�) for some � 2 P . Abusing the notation

somewhat, we shall write ��1(f) = � for any f 2 FD in the orbit of �(�), i.e., in applying ��1 we allow

relocation of the reference mark if necessary.

Remark. Clearly �(�) records information about the Young diagram � \by diagonals" rather than by

rows or columns. Individual edges however do not lie on diagonals of �, but in between two successive

ones. As the diagonal of a square (i; j) is naturally labelled by the integer j� i, the most natural indexing

set for the bits of �(�) would seem to be Z+ 1
2
rather than Z. On the other hand it is convenient to have

the structure of Z available, such as the maps Z ! Z=n. The natural order reversing involution of Z in

this context is x 7! �1� x, which interchanges N and Z nN, rather than x 7! �x.
The basic attributes of the Young diagram � can be read o� from f = �(�), and the main concept

linking the two is the hook. There is a hook h associated to each square (i; j) 2 �, namely the set

h = f (i; j0) 2 � j j0 � j g [ f (i0; j) 2 � j i0 � i g; the number jhj is called its length. The segments of the

boundary of � that cross the ends of column j and of row i respectively correspond to the bits of �(�) at
indices k = j � �tj and l = �i � i� 1; we have k < l (in fact l � k = jhj), �(�)(k) = 0, and �(�)(l) = 1.

Moreover, any such pair (k; l) comes from a unique hook h of �. Therefore we de�ne a hook of f 2 FD

to be a pair (k; l) with k < l, f(k) = 0, and f(l) = 1, and call l � k the length of this hook. We also

de�ne jf j to be the number of hooks of f , so that j�(�)j = j�j.
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2.1 Removal of hooks

2.1. Removal of hooks.

Given a hook (k; l) of f 2 FD , we de�ne another sequence f 0 2 FD by interchanging the bits at indices

k and l: f 0(k) = 1, f 0(l) = 0, and f 0(i) = f(i) for i 62 fk; lg; f 0 is said to be obtained by removing the

hook (k; l) from f . One has d(f 0) = d(f) and jf 0j = jf j�(l�k) (for k < i < l, either (k; i) or (i; l) is a hook
of f , but not of f 0). If f = �(�) and h is the hook of � corresponding to (k; l), then �0 2 P with �(�0) = f 0

can be obtained by removing h from �, and then shifting the subset f (i0; j0) 2 � j i0 > i ^ j0 > j g of the
remainder one square up and to the left. The di�erence set � n �0 is a connected sequence of squares

along the outer rim of �, with the same number of elements and the same end points as h; it is called
the rim hook of � corresponding to h, and �0 is said to be obtained from � by removing this rim hook.

If jhj = 1, then the square of h is called a corner of �, and a cocorner of �0.
For r > 0 we de�ne a partial ordering `�r' on FD , which is generated by relations f 0 �r f whenever

f 0 is obtained from f by removing a hook of length r. Clearly f 0 �r f implies d(f 0) = d(f), and each

translation tn is an isomorphism of the poset (FD ;�r). The corresponding partial ordering on P is also

denoted by `�r', and is generated by �0 �r � whenever �0 is obtained from � by removing a rim hook

of length r; the poset (P ;�r) is called the r-rim hook lattice. The ordering `�1' on P coincides with

the ordering `�' de�ned by inclusion of Young diagrams, so the 1-rim hook lattice is just the Young

lattice (P ;�). Whereas (P ;�) has a unique minimal element ;, any translate td(�0) of �(;) is minimal

in (FD ;�1), and for any f 2 FD one has td(�0) �1 f with d = d(f). Hence (FD ;�1) is a union,

parametrised by Z, of disjoint components isomorphic to (P ;�).
Returning to the case of arbitrary r > 0, de�ne Sr:FD ! FDr by splitting up the bits of a

sequence f 2 FD into r subsequences, according to the congruence class modulo r of their indices. More

formally,

Sr(f) = (c0;r(f); c1;r(f); : : : ; cr�1;r(f)); where ci;r(f)(n) = f(nr + i).

Now if f 0 is obtained from f by removing a hook of length r, then Sr(f
0) di�ers from Sr(f) only in

one component ci;r(f
0), and there the di�erence is the interchange of two adjacent bits, i.e., removal of

a hook of length 1. It follows that Sr is an isomorphism of posets (FD ;�r) ! (FD ;�1)
r. Therefore

each connected component of (FD ;�r) is isomorphic to (P ;�)r, and the same is true for the connected

components of (P ;�r), since � maps that poset isomorphically onto its image in (FD ;�r), which is a

union of connected components. Denoting the set of minimal elements of (P ;�r) by Cr, whose elements

are called r-cores, we have

(P ;�r) �=
a
2Cr

(P ;�)r: (1)

To obtain a parametrisation of Cr, we �rst consider the set of minimal elements in (FD ;�r). Using

the isomorphism Sr, these can be written as S�1r (td0(�0); : : : ; tdr�1
(�0)) for (d0; : : : ; dr�1) 2 Zr. These

parameters satisfy di = d(ci;r(f)) for any f in the connected component of the minimal element, so de�ne

a map dr:FD ! Zr by

dr(f) = (d(c0;r(f)); : : : ; d(cr�1;r(f))):

Since d(f) =
Pr�1

i=0 d(ci;r(f)), one has

dr(�(P)) =

(
(d0; : : : ; dr�1) 2 Z

r
r�1X
i=0

di = 0

)
;

which set parametrises Cr. Having seen how to �nd for any given � 2 P its r-core , let us now describe

its r-quotient, which is the r-tuple (�(0); : : : ; �(r�1)) 2 Pr corresponding to it under the isomorphism

of (1). It su�ces to use ��1 to lift the components of Sr(�(�)) 2 FDr back from FD to P ; here the

convention mentioned above that ��1 will translate its argument if necessary to obtain an element of �(P)
is used. We �nd �(i) = ��1(ci;r(�(�))) for i = 0; : : : ; r � 1.

Several other descriptions of the determination of the r-core and r-quotient of a partition can be

found in the literature, see for instance [JaKer], [FomSt] (for the case  = ; only) and [CaLe]; in each

case the de�nition can be seen to be equivalent to ours. Let us also note an alternative way to de�ne

the map dr � �:P ! Zr. For � 2 P de�ne a Laurent polynomial diag(�) =
P

(i;j)2� x
j�i that counts the

squares of � on each diagonal (the sequence of its coe�cients is called a \fairy sequence" f� in [FomSt]).

Then dr(�(�)) will be the sequence of coe�cients of the image of (1 � x�1) diag(�) in Z[x]=(1 � xr).
This can be seen by grouping the contributions to the coe�cient of xi into sets corresponding to pairs
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2.2 Distribution of core sizes

of successive diagonals (nr + i; nr+ i+1), and noting that the total contribution of such a pair depends

only on the bit �(�)(nr + i), and is equal to the contribution of that bit to d(ci;r(�(�))).

An example may illuminate our constructions. Consider the case r = 3 and � = (8; 6; 6; 6; 5; 4; 1).
We draw the Young diagram of �, determine the edge sequence f = �(�), the three sequences c0;3(f),
c1;3(f), c2;3(f) constituting S3(f), and the values of d applied to them:

�:

�(�): 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 d
c0;3(�(�)): 1 1 0 1 1 0 0 +1

c1;3(�(�)): 1 0 1 0 1 1 0 +1

c2;3(�(�)): 1 0 0 0 1 0 0 �2

From this we see that d3(�(�)) = (1; 1;�2), and it follows that the 3-core  corresponding to � is

��1(: : : 1 1 0 1 1 0j1 1 0 0 : : :) = (2; 2; 1; 1). The components of the 3-quotient (�(0); �(1); �(2)) of � are

computed from the subsequences ci;3(�(�)) in the table: �(0) = ��1(: : : 1 1 0 1 1 0 0 : : :) = (1; 1), �(1) =
��1(: : : 1 0 1 0 1 1 0 : : :) = (2; 2; 1), and �(2) = ��1(: : : 1 0 0 0 1 0 0 : : :) = (3). Graphically we have

: � n : �(0): �(1): �(2):

If one tries to repeatedly remove rim hooks of length 3 from � in any order, then one will indeed �nd

that it is eventually reduced to , which has no further rim hooks of length 3; the rim hooks that

were removed form a tiling of � n . We could have determined d3(�(�)) using diag(�), as follows. We

have diag(�) = x�6 + x�5 + 2x�4 + 3x�3 + 4x�2 + 4x�1 + 5 + 4x + 4x2 + 3x3 + 2x4 + x5 + x6 + x7,
whose image in Z[x]=(1 � x3) is 13 + 12x + 11x2, and multiplication by 1 � x�1 gives 1 + x � 2x2, so
that indeed d3(�(�)) = (1; 1;�2). If one computes (1� x�1) diag(�) in Z[x; x�1] without projecting to

Z[x]=(1� x3), one gets a polynomial whose non-zero coe�cients are all �1 for negative powers of x and

+1 for non-negative powers, and whose relation to �(�) is easy to perceive.

2.2. Distribution of core sizes.

As is clear from the example, the bijection of (1) does not preserve the total number of squares in the

Young diagrams involved. Indeed removal a hook of length r from � at the left hand side corresponds

to removal of only a single corner from one of the partitions �(i) at the right hand side. Therefore we

have j�j = jj+ r
P

i j�
(i)j. We have indicated above how the r-core  can be found, but it is interesting

to note that jj can be expressed directly in terms of the parameters (d0; : : : ; dr�1) = dr(�(�)). We have

seen that �() is formed by splicing together r copies of �0, with copy i translated over di; therefore
jj = j�()j can be computed by counting hooks in this sequence. We get

jj =
X

0�i<j<r

�
di � dj

2

�
; (2)

since the summand counts the hooks (k; l) of �() with k � i and l � j modulo r, or with k � j and l � i
(since �() has no hooks of length divisible by r, all hooks are counted). Using the fact that

P
i di = 0,

the formula simpli�es to

jj =
r

2

 
r�1X
i=0

d2i

!
+

r�1X
i=0

idi: (3)

For r = 2 there is only one parameter, so we may write d0 = �d1 = d, and get jj =
�
2d
2

�
= 2d2 � d.

Since
�
�2d
2

�
=
�
2d+1
2

�
, we see that all triangular numbers occur exactly once as size of a 2-core; indeed

the 2-cores are precisely the \staircase" partitions of the form (k; k � 1; : : : ; 1) for k � 0.
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3 Standard and semistandard ribbon tableaux

x3. Standard and semistandard ribbon tableaux.

3.1. Standard ribbon tableaux.

As is well known, saturated chains in (P ;�) correspond to standard tableaux (see for instance [vLee1]).

The corresponding concept for (P ;�r) is that of r-ribbon tableaux.

3.1.1. De�nition. Let r � 1 and �; � 2 P ; a standard r-ribbon tableau S of shape �=� is a saturated

chain � = �0 <r �
1 <r � � � <r �

k = � in (P ;�r), together with a k-element totally ordered set A. The set
of skew diagrams f�i+1 n �i j 0 � i < k g is denoted by Rib(S), and its elements are called ribbons of S.
The symbol S is also used to denote the unique bijection Rib(S) ! A with S(�i+1 n �i) < S(�j+1 n �j)
whenever i < j, and S(�) is called the entry of � in S, for � 2 Rib(S).

Ribbon tableaux are sometimes called rim hook tableaux, but note that � 2 Rib(S) need not be a

rim hook of �, only of some �i. By itself a ribbon of any standard r-ribbon tableau is called an r-ribbon,
or in case r = 2 alternatively a domino; 2-ribbon tableaux are also called domino tableaux.

Note. Although the same symbol is used, we do not identify S with the bijection Rib(S) ! A, which
determines � n � but not necessarily � and � themselves. The distinction is necessary because we shall

perform constructions that require explicit knowledge of � and �. A price we pay is that our tableaux

cannot be translated in the plane, or involve squares outside N�N.

We shall display a ribbon tableaux by drawing each ribbon with its entry placed in it. Unless the

shape �=� is explicitly given, this leaves some ambiguity (even about the location of the origin), but

in such cases we shall assume that � has the smallest possible value. Here for instance is a standard

3-ribbon tableau of the shape �= in the example given earlier, and with set of entries A = f0; 1; : : : ; 9g.

S:

0

1

2

3

4

5 6

7

8

9

We now introduce some terminology related to individual ribbons. Let � = � n �0 be an r-ribbon,
then �(�0) is obtained from �(�) by removing some hook (k; l) of length l � k = r; we write l = pos(�),
and call it the position of �. We have

pos(�) = max f j � i j (i; j) 2 � g;

the number of the rightmost diagonal meeting �; in particular for r = 1, the position of a square s is

just the number of the diagonal it lies on. We also de�ne the form of � to consist of the bits of �(�) (or
equivalently of �(�0)) at the indices between k and l:

form(�) = (�(�)(k + 1); : : : ; �(�)(l � 1)) 2 f0; 1gr�1:

The bits of form(�) describe for each pair of successive squares of � whether they are horizontally or

vertically adjacent. For r = 2 we call the two possible forms of dominoes simply horizontal (form(�) = (0))

and vertical (form(�) = (1)). Finally, we de�ne the height of �, written `ht(�)', as the sum of the bits of

form(�), in other words the number of vertical adjacencies among the squares in �, or one less than the

number of rows that meet �.

3.1.2. Proposition. Let r > 0, �; � 2 P with � �r �, and A a totally ordered set with j� n �j = rjAj;
let (�(0); : : : ; �(r�1)) and (�(0); : : : ; �(r�1)) be the r-quotients of � and �, and let dr(�(�)) = dr(�(�)) =
(d0; : : : ; dr�1). There is a bijection between the set of standard r-ribbon tableaux S of shape �=� with

entries in A, and the set of r-tuples (S0; : : : ; Sr�1) of ordinary standard tableaux, where Si has shape

�(i)=�(i), and the sets of entries of the Si are mutually disjoint, and unite to A. If s is a square of

�(i) n �(i), then Si(s) = S(�) for a � 2 Rib(S) with pos(�) = r(pos(s) + di) + i.

Proof. The existence of the bijection is immediate from (1): each (S0; : : : ; Sr�1) corresponds to a

saturated chain in (P ;�)r from (�(0); : : : ; �(r�1)) to (�(0); : : : ; �(r�1)). Since ci;r(�(�)) = tdi(�(�
(i)))

by the explicit description of the isomorphism (1), a bit �(�(i))(l) is equal to ci;r(�(�))(l + di), which
in turn equals �(�)(r(l + di) + i); from this the relation between pos(s) and pos(�) follows.
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3.2 Semistandard ribbon tableaux

For the case of an empty r-core (i.e., di = 0 for all i) our bijection coincides with the map �

of [StWhi, Corollary 23]. As an example, consider the tableau S depicted above; we have �=� =

(8; 6; 6; 6; 5; 4; 1)=(2; 2; 1; 1) so that �(0) = (1; 1), �(1) = (2; 2; 1), and �(2) = (3), all �(i) are ; (since �
is a 3-core), and d3(�(�)) = (1; 1;�2). The successive ribbons have positions 3; 4; 1;�2; 0;�4;�1; 7; 2; 4,
so that entries 0 and 4 will end up in S0 with positions 0 and �1, entries 1 ,2, 3, 7, and 9 in S1 with

positions 0 ,�1, �2, 1, and 0, and entries 5, 6, and 8 in S2 with positions 0, 1, and 2; we �nd

S0:
0

4
S1:

1 7

2 9

3

S2: 5 6 8 :

3.2. Semistandard ribbon tableaux.

In analogy of the situation for ordinary tableaux, we de�ne, in addition to standard domino tableaux,

semistandard r-ribbon tableaux, in which multiple occurrences of the same entry are allowed. They will

allow a decomposition similar to proposition 3.1.2, but without the condition of disjointness of the sets or

entries. In combination with the fact that the generating function of all ordinary semistandard tableaux

of given shape and range of entries, weighted by the multiset of their entries, is a Schur function, this

will imply that semistandard r-ribbon tableaux satisfy a similar generating function identity.

In view of the desired decomposition, we shall base our de�nition of semistandard r-ribbon tableaux

on their standardisation, rather than on (weak and strict) monotonicity conditions for rows and columns,

as is usually done for ordinary semistandard tableaux (for r = 2 such a de�nition is still possible however,

see [CaLe], and it is equivalent to the one we shall give). Loosely speaking, the standardisation of a

semistandard tableau is a standard tableau obtained from it by renumbering its entries such that the

relative order of distinct entries is preserved, and equal entries are made increasing from left to right. A

condition is needed to ensure that there is a well de�ned left to right ordering among ribbons with equal

entries: we require such ribbons to have distinct positions, and ordering them by increasing position

should give a valid standard tableaux. For ordinary tableaux this is equivalent to requiring weak increase

of entries along rows, and strict increase down columns.

3.2.1. De�nition. Let a standard r-ribbon tableau S of shape �=� with entries f i 2 N j i < k g be

given, and a sequence ! = (m0;m1; : : :) with all mi 2 N and
P

mi = k. These de�ne a semistandard

r-ribbon tableau T of shape �=�, with for each � 2 Rib(T ) the entry T (�) de�ned as the unique j 2 N
such that

P
i<j mi � S(�) <

P
i�j mi, provided that for all �; �0 2 Rib(T ) with T (�) = T (�0) and

S(�) < S(�0), one has pos(�) < pos(�0). In this case S is called the standardisation of T , and ! its

weight wt(T ), and we de�ne Rib(T ) = Rib(S).

In the literature the weight is also called content or evaluation. Our de�nition is equivalent to the one

in [LLT, x4]. We shall write Tabr(�=�) for the set of semistandard r-ribbon tableaux of shape �=�, and
Tabr(�=�;A) for its subset of tableaux whose entries lie in A � N. Also, for any weight ! = (m0;m1; : : :)
we shall write x! =

Q
i x

mi

i , where fxi j i 2 N g is a set of commuting indeterminates. Here is an example,

giving a semistandard 4-ribbon tableau T of shape (7; 7; 7; 7; 7; 5)=(4) with xwt(T ) = x41x
3
2x

2
5:

S =
0

1
2

3

4

5

6

7 8

; ! = (0; 4; 3; 0; 0; 2); T =
1

1
1

1

2

2

2

5 5

:

3.2.2. Proposition. Let r > 0, and �; � 2 P with � �r �; let (�
(0); : : : ; �(r�1)) and (�(0); : : : ; �(r�1))

be the r-quotients of � and �. There is a natural bijection between the set of semistandard r-ribbon
tableaux T of shape �=�, and the set of r-tuples (T0; : : : ; Tr�1) of ordinary semistandard tableaux, with

Ti of shape �
(i)=�(i), and

Pr�1
i=0 wt(Ti) = wt(T ). If S is the standardisation of T , so that T (�) = f(S(�))

for an appropriate weakly monotonic map f , and S corresponds under the bijection of proposition 3.1.2

to (S0; : : : ; Sr�1), then Ti(s) = f(Si(s)) for each square s 2 �(i)=�(i).

Proof. The �nal sentence completely determines each Ti, so it will su�ce to show that these Ti are
semistandard tableaux, and that the correspondence is invertible. Let s; t 2 �(i)=�(i) be such that
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3.3 Signs and spins

Ti(s) = Ti(t) and Si(s) < Si(t), and de�ne �; �0 2 Rib(S) = Rib(T ) by S(�) = Si(s) and S(�0) = Si(t).
Then T (�) = T (�0), so that pos(�) < pos(�0), while pos(�) � pos(�0) � i modulo r; therefore by

proposition 3.1.2 we have pos(s) < pos(t), and Ti is semistandard. For invertibility we need to order all

the occurrences of the same entry in any of the tableaux Ti, in order to determine the Si; proposition 3.1.2
makes clear that these occurrences Ti(s) should be ordered by increasing value of r(pos(s) + di) + i.

As an example, the semistandard 4-ribbon tableau T displayed above corresponds to

T0: 1 5 T1: 1 1 T2:
1 2

2 5
T3: 2

:

3.2.3. Corollary. Let r > 0, let �; � 2 P with � �r � and respective r-quotients (�(0); : : : ; �(r�1)) and
(�(0); : : : ; �(r�1)), and let A be a �nite initial subset of N. One has

X
T2Tabr(�=�;A)

xwt(T ) =

r�1Y
i=0

s�(i)=�(i) (xA);

where s�=�(xA) denotes the skew Schur function for �=� in the indeterminates fxi j i 2 A g.

Proof. Proposition 3.2.2 reduces the general case to the well known case r = 1 ([Macd, I (5.12)]).

3.3. Signs and spins.

Propositions 3.1.2 and 3.2.2 translate many properties of ribbon tableaux in a trivial way to those of

ordinary tableaux. However, the values form(�) and ht(�) for � 2 Rib(T ) cannot be easily expressed in

terms of the tableaux T0; : : : ; Tr�1 that T decomposes into, and in particular the quantity
P

�2Rib(T ) ht(�)
provides an interesting statistic.

3.3.1. Proposition. The parity of
P

�2Rib(T ) ht(�) is constant on each set Tabr(�=�).

Proof. Fix r, and de�ning V (�) = �(�)�1(1) = f�i � i� 1 j i 2 N g, let f�=�:V (�) ! V (�) be de�ned
by the condition that for each congruence class C modulo r, the restriction of f�=� to V (�) \ C is an

order preserving bijection onto V (�) \ C. It is clear that for any chain � = �0 <r �
1 <r � � � <r �

k = �
in (P ;�r) one has f�=� = f�k=�k�1 �� � ��f�2=�1 �f�1=�0 , and that if �n� is an r-ribbon �, then the number

of inversions of f�=� (i.e., pairs i < j with f�=�(i) > f�=�(j)) is ht(�). Since for composition of bijections

between totally ordered sets, the parity of the number of inversions is additive, the proposition follows.

3.3.2. De�nition. For � �r � and T 2 Tabr(�=�), the spin of T is Spin(T ) = 1
2

P
�2Rib(T ) ht(�), and

the r-sign of �=� is "r(�=�) = (�1)2 Spin(T ), which is independent of T by proposition 3.3.1.

This de�nition generalises the spin statistic on domino tableaux that was introduced in [CaLe, x3].

Spin(T ) lies in N or in N + 1
2
according as "r(�=�) is +1 or �1, and a lower bound for it is half the

number of inversions of the map f�=� in the proof above.
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4 A�ne permutations and chains in ribbon tableaux

x4. A�ne permutations and chains in ribbon tableaux.

4.1. Action of the a�ne Coxeter group of type ~Ar�1.

From this point on we shall assume r � 2, and all congruences mentioned will be modulo r. From the

isomorphism (1) it follows that the poset (P ;�r) has very many automorphisms, in fact continuously

many. We shall consider here a subgroup of automorphisms that is of particular interest.

4.1.1. De�nition. ~Sr is the group of permutations � of Z which preserve, for any system S of repre-

sentatives of Z=r, the sum of its values:
P

S =
P

�(S).

By replacing one representative by another, we see that �(i + r) = �(i) + r for all i 2 Z, so that

� maps congruence classes to congruence classes, and ~Sr is indeed a group; moreover, its action on Z

induces and action on Z=r. Every bijection ��:S ! S0 between two systems of representatives of Z=r withP
S =

P
S0 can be extended to a unique � 2 ~Sr by using �(i+r) = �(i)+r. The group ~Sr is isomorphic

to the a�ne Coxeter group of type ~Ar�1, see [BjBr]. This is the group with generators s0, s1, : : : , sr�1,
subject to the relations s2i = e for all i, sisj = sjsi for j 6� i � 1, and if r 6= 2 also sisjsi = sjsisj for

j � i�1. In a slight deviation from [BjBr], we take for si the element of ~Sr that interchanges i�1 and i,
and �xes all other congruence classes; the Coxeter relations are veri�ed immediately.

4.1.2. Proposition. The group ~Sr acts on (FD ;�r) by automorphisms; the action is by permutation

of the bits: (�(f))(i) = f(��1(i)) for � 2 ~Sr, f 2 FD and i 2 Z. One has d(�(f)) = d(f) for all � 2 ~Sr
and f 2 FD , so the restriction to �(P) induces and action of ~Sr on (P ;�r) by automorphisms.

Proof. We have �(f) 2 FD because j�(i) � ij is bounded for any � 2 ~Sr; to see that the action of �
is an automorphism of (FD ;�r), it su�ces to check that if f 0 is obtained from f by removal of a hook

(i; i + r), then �(f 0) is obtained from �(f) by removal of the hook (�(i); �(i + r)) = (�(i); �(i) + r).
The fact that d is an invariant of the action is shown by veri�cation for each of the generators si.

Let us describe the action of a generator sj on P more explicitly. For any i � j, the interchange of
the bits of �(�) at indices i�1 and i has no e�ect unless these bits di�er, i.e., unless � has either a corner

or a cocorner in diagonal i; if so, the e�ect is to remove the corner, respectively to add the cocorner.

Now sj performs this operation for all diagonals congruent to j at once, so sj(�) is obtained from � by

removing those of its corners c, and adding those of its cocorners c, that have pos(c) � j.

4.1.3. Proposition. If � 2 ~Sr, and � 2 P has r-core  and r-quotient (�(0); : : : ; �(r�1)), then �(�) has

r-core �() and r-quotient (�(�
�1(0)); : : : ; �(�

�1(r�1))), interpreting superscripts to � as elements of Z=r.

Proof. This follows immediately from (the explicit description of) the isomorphism (1).

The action of ~Sr on P can be restricted to Cr; the generators act as follows in terms of the parametri-

sation provided by dr � �: Cr ! Zr. Let  2 Cr have parameters (d0; : : : ; dr�1), then sj() has parameters

(d0; : : : ; dj ; dj�1; : : : ; dr�1) if j 6= 0, while s0() has parameters (dr�1+1; d1; : : : ; dr�2; d0� 1). Therefore

this action of ~Sr on Cr corresponds precisely to the standard action of ~Sr by a�ne transformations of

the root lattice of the Weyl group of type Ar�1. In particular, the action is transitive, and since the

stabiliser of ; 2 Cr is hs1; : : : ; sr�1i �= Sr, it gives a bijection between Cr and ~Sr=Sr. It is shown in [BjBr,

Theorem 6.3] that partial ordering `�' on Cr corresponds to the Bruhat order on ~Sr=Sr (the \unit increase
monotonic function" ' corresponding to  is given by '(j) = jf i 2 Z j i < j � 1 ^ �()(i) = 0 gj).

4.1.4. Proposition. The action of ~Sr on (P ;�r) induces an action on standard r-ribbon tableaux,

such that � 2 ~Sr sends standard r-ribbon tableaux of shape �=� to standard r-ribbon tableaux

of shape �(�)=�(�), with the same set of entries; if the chain in (P ;�r) of a standard r-ribbon
tableau S is �0 <r � � � <r �k in (P ;�r), then �(S) has the chain �(�0) <r � � � <r �(�k). Using

proposition 3.1.2, if S corresponds to (S0; : : : ; Sr�1) by the bijection for �=�, then �(S) corresponds

to (S��1(0); : : : ; S��1(r�1)) (with the subscripts interpreted in Z=r) by the bijection for �(�)=�(�).

Since the ribbon � = �i+1 n�i 2 Rib(S) corresponds to the ribbon �0 = �(�i+1) n�(�i) 2 Rib(�(S)),
it seems that � acts independently on each individual ribbon. However, this is not true, since ribbons

and just skew diagrams, and so � does not uniquely determine �i and �i+1; for other pairs of partitions
�; �0 with � = � n �0 one may have �(�) n �(�0) 6= �0.

To better understand the situation, consider the case that � is a generator sj . From the description

of the action of sj on P it follows that for any square s with pos(s) 6� j, one has x 2 � if and only if
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4.2 Open and closed chains of ribbons

x 2 sj(�), and therefore x 2 � if and only if x 2 �0; we shall call such squares �xed for sj . All but one

of the squares of � are �xed, so �0 can only di�er from � by the replacement of its non-�xed square by

another one. Now pos(�0) = sj(pos(�)), which di�ers from pos(�) if either pos(�) � j � 1 or pos(�) � j,
so if this non-�xed square lies at one of the ends of the ribbon �, it will be replaced by a square at the

other end; otherwise the only possible change is the replacement of a square by another one on the same

diagonal. In the latter case form(�0) is in fact obtained from form(�) by interchanging two adjacent bits,

and the indicated change happens whenever these two bits di�er; in particular �0 is determined by �
alone. In the cases where pos(�0) 6= pos(�), the bits of form(�0) are those of form(�) shifted one place left

or right, with a bit disappearing at the side of the non-�xed square of �, and an unrelated bit appearing

at the other end. This new bit is what makes �0 depend on �i+1=�i in this case, rather than just on �.
The new bit that enters into form(�0) is a bit of �(�i+1), just outside the hook (k; l) whose removal

leads to �(�i) (so l = pos(�) and k = l � r): it is �(�i+1)(l + 1) if pos(�) � j � 1, or �(�i+1)(k � 1) if

pos(�) � j (this bit is una�ected by the hook removal, so one may replace �i+1 by �i in these expressions).
In this situation we de�ne the �xed-end square of � to be the square at the opposite end of � as its non-
�xed square, and the discriminant square of � to be the next square in the same anti-diagonal in the

direction away from �, i.e., one place above and to the right of the �xed-end square if pos(�) � j � 1, or

one place below and to the left of it if pos(�) � j; like the �xed-end square, the discriminant square is

�xed for sj . The value of the new bit of �0 is determined by whether or not the discriminant square x
of � lies in N�N n �i. If x 2 �0 for some �0 2 Rib(S), then this question is equivalent to S(�0) > S(�);
otherwise x 62 �n�, and the question is equivalent to x 2 N�Nn� (here the shape �=� of S is explicitly

used). If in the former case the ribbons � and �0 are adjacent along at least one edge, then this adjacency

already determines whether S(�0) > S(�), so a comparison of entries of S is needed only if � and �0 are

non-adjacent; in that case, the discriminant square of � is also the �xed-end square of �0 and vice versa.

As an example we take the 3-ribbon tableau S shown before, and j = 0. For each � 2 Rib(S) with
�0 6= �, we draw an arrow from either the non-�xed square of � (if pos(�0) = pos(�)) or the �xed-end

square of � (otherwise) to the square in �0 n �. We have similarly drawn arrows in s0(S) for the reverse

transformation.

S:

0

 1
-

2

3
-

4

 

5 ! 6

"

7

8

"
9

s0
 !

0

!1
&

2

3
&

4

!

5
#

6

 

7

8

#

9

Of the ribbons � 2 Rib(S) with pos(�) � 1, the straight ones (with entries 2, 7 and 9) are unchanged,

while for the bent ones (1 and 3) the middle square moves within its diagonal. The ribbons 5, 6 and 8

with pos(�) � 2 move one place to the top right; the ribbons 0 and 4 with pos(�) � 0 move to the bottom

left. The discriminant squares of the ribbons with entries 0, 4, 5, 6, 8 lie in the ribbons with entries

2, 5, 4, 8, 9 respectively; the ribbons whose entries are compared are non-adjacent only for the entries

4 and 5. In s0(S) the ribbons with entries 0, 5, and 6 have a discriminant square that does not lie in any

ribbon; for the ribbon with entry 5, the e�ect of applying s0 cannot be determined from the display of

the tableau alone (without indication of the origin or of the shape �=� of the tableau).

4.2. Open and closed chains of ribbons.

From the discussion above it can be seen that it may be possible to obtain a valid ribbon tableau from S
by replacing only a subset of its ribbons by their corresponding ribbons in sj(S); the minimal non-empty

subsets of Rib(S) with this property are essentially what we shall call the chains in S for sj (not to be

confused with the chain in (P ;�r) of S). In the tableau S above, the chains are the sets of ribbons with

entries f0; 1; 8g, f5; 6; 4; 3g, and the singletons f2g, f7g, f9g for ribbons that do not move. There is in fact

more structure to a chain than just that of a set of ribbons: if for a ribbon �0 2 Rib(S) its corresponding
ribbon �00 2 Rib(sj(S)) has one square in common with �1 2 Rib(S), then �1 can be considered to be

the successor of �0 in its chain in S for sj ; therefore chains will be formally de�ned in a slightly di�erent

way. For r = 2, the partition of Rib(S) into chains has been described elsewhere: chains coincide with

the cycles in a domino tableau in [Garf1, (1.5.18)], and with the connected components in the labyrinth

of a domino tableau in [CaLe, x8]. While our de�nitions are more general, the case r = 2 remains of

particular interest, and has special properties not valid for r > 2.
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4.3 Chains in semistandard r-ribbon tableaux

Denote by Dj(�=�) the set of squares x with pos(x) � j that either lie in � n � or are a cocorner

of � or a corner of �. Let a bipartite graph Gj(S) on Rib(S) [ Dj(�=�) de de�ned as follows: for a

ribbon � = �i+1 n �i 2 Rib(S) with corresponding ribbon �0 = sj(�
i+1) n sj(�

i) 2 Rib(sj(S)), there is

an edge labelled 0 between � and x 2 Dj(�=�) whenever x 2 �, and an edge labelled 1 whenever x 2 �0.
Then the chains in S for sj are de�ned as connected components of Gj(S). The valency in Gj(S) of
any vertex in Rib(S) is 2: it has one edge labelled 0 and one labelled 1. For a vertex x 2 Dj(�=�)
the valency is at most 2 (at most one edge with either label), which value is assumed if and only if

x 2 (� n �) \ (sj(�) n sj(�)). If for x 2 Dj(�=�) there is an edge labelled 1 to �, and an edge labelled 0

to �0, with �0 6= �, then �0 is called the successor of � for sj . The subset of vertices in Dj(�=�) with no edge
labelled 1 will be denoted by d�, which is the disjoint union of d�o = �nsj(�) and d�i = sj(�)n�, and the

subset of vertices in Dj(�=�) with no edge labelled 0 by d+, which is the disjoint union of d+o = sj(�) n�
and d+i = � n sj(�).

A chain will be called open if it has some vertex with valency less than 2, and closed otherwise. Of

the vertices with valency less than 2 in an open chain there is one in d�, called the starting square of

the chain, and one in d+, called the ending square of the chain; when these coincide the chain contains

no ribbons, and is called empty. A closed chain either consists of a ribbon and a square linked by two

edges, in which case the chain is called trivial, or of a single cycle containing at least 2 ribbons.

For any chain C in S for sj , a new tableau S0 can be formed by moving the chain C. It is obtained by

modifying each partition �i of the saturated chain �0 <r � � � <r �
k in (P ;�r) of S as follows: each square

that occurs as a vertex of C and is a corner or cocorner of �i is removed from respectively added to �i.
This means that a ribbon � 2 Rib(S) changes if and only if it occurs in C, in which case it is replaced

by the corresponding ribbon �0 2 Rib(sj(S)), i.e., the square joined in C to � by an edge labelled 0 is

removed from it, and the square joined to it by an edge labelled 1 is added. It is easily veri�ed that S0

is indeed a standard r-ribbon tableau. In the cases where C is an empty or a trivial chain,, the ribbons

of S0 and their entries are the same as for S; however, S0 = S holds only if C is a trivial chain, since for

empty chains the shape �=� is replaced by another shape, although the skew diagram �n� containing the

ribbons does not change. Because distinct chains in S for sj are disjoint, the operations of moving them

commute mutually, and moving all of them gives sj(S). After moving a chain in S for sj , its modi�ed

ribbons again form a chain for sj , and moving that chain gives back S.
We have seen above how chains can be located by �nding for each ribbon the square connected to

it in Gj(S) by an edge labelled 1; one may also work in the opposite direction, and �nd for each square

x 2 Gj(S) n d
� the ribbon connected to it by an edge labelled 1. Excluding the easy case that x is

part of a trivial chain, the choice is either between the ribbons containing the two neighbouring squares

of x in the outward direction, or those in the inward direction: if x 2 d+ only one direction is possible,

and otherwise x 2 � for some � 2 Rib(S), and the direction that contains another square of � is not

considered. The choice between the neighbours of x in the proper direction is given by a rule very similar

to that of jeu de taquin: if there is only one candidate ribbon, it wins, and if there are two candidates,

the one with the smallest entry wins in case of outward neighbours, and the one with the largest entry

in case of inward neighbours. Like the rule for jeu de taquin, this rule just reects the requirement that

the change preserves the tableau condition. Note that here the shape �=� of S is used only to determine

the set of squares x to consider in the �rst place, not in �nding the indicated ribbon for given x.

4.3. Chains in semistandard r-ribbon tableaux.

4.3.1. Proposition. Let T be a semistandard r-ribbon tableau, C a chain in its standardisation S
for sj , and S0 the standard r-ribbon tableau obtained by moving C in S. There is another semistandard

r-ribbon tableau T 0 with standardisation S0 and wt(T 0) = wt(T ), said to be obtained by moving C in T ,
unless C is a closed chain with exactly 2 ribbons �; �, with T (�) = T (�).

Proof. Assume that S0 and wt(T ) do not de�ne a semistandard r-ribbon tableau; this means that

there are �; � 2 Rib(S) with S(�) = S(�) + 1 and T (�) = T (�), so that pos(�) < pos(�), while the

corresponding dominoes �0; �0 2 Rib(S0) have pos(�0) � pos(�0). Because the positions of ribbons change
by at most 1 when moving a chain, and consecutive ribbons cannot have equal positions, we must

have that both � and � occur in C, and pos(�) = pos(�) + 1 = pos(�0) while pos(�0) = pos(�0) � 1.

Therefore � [ � = �0 [ �0, so C is indeed a closed chain, with f�; �g as its set of ribbons.

We de�ne the chains for sj in a semistandard r-ribbon tableau to be those in its standardisa-

tion, but the ones excluded in proposition 4.3.1 will be called forbidden chains. The proposition shows
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4.4 Chains and spin change

that no action of ~Sr on semistandard r-ribbon tableaux can be de�ned that commutes with taking

the standardisation. However, the second part of proposition 4.1.4 provides a way to de�ne an ac-

tion of ~Sr on semistandard r-ribbon tableaux, if one uses the bijections of proposition 3.2.2 instead

of proposition 3.1.2. This action can also be described as follows, using the fact that a semistandard

r-ribbon tableau T is completely determined by specifying its shape �=� and for each entry i the set

posi(T ) = f pos(�) j � 2 Rib(T ) ^ T (�) = i g. For � 2 ~Sr the shape of �(T ) is �(�)=�(�) and one has

posi(�(T )) = f�(p) j p 2 posi(T ) g. The e�ect of the generators sj of ~Sr can be understood in terms

of moving chains: one can obtain sj(T ) from T by moving all its chains for sj except the forbidden

ones. To see this, consider the list of integers pos(�), for all � 2 Rib(T ) in order of increasing entries in

the standardisation of T ; this is just a concatenation of all posi(T ) for increasing i, with the elements

within each posi(T ) arranged in increasing order. Now the analogous list for sj(T ) can be obtained by

applying sj to each of the the numbers in the original list, except that the elements within each posi(T )
may need to be reordered to keep them increasing. Since jsj(i) � ij � 1 for all i, this is only needed

when posi(T ) contains two consecutive numbers that are interchanged by sj , and reordering will return

this pair of numbers to their original state (before sj was applied). Such pairs correspond precisely to

forbidden chains in T for sj , and the specialisation of sj(T ) di�ers from the result of applying sj to

the specialisation of T only in the fact that the ribbons of such chains have remained in their original

positions in T . We summarise our �ndings as follows.

4.3.2. Proposition. There is a weight preserving action of ~Sr on the set of semistandard r-ribbon
tableaux, such that sj(T ) is obtained from T by moving all its chains for sj except the forbidden

ones. For � 2 ~Sr we have, using proposition 3.2.2, that if T corresponds to (T0; : : : ; Tr�1) by the

bijection for �=�, then �(T ) corresponds to (T��1(0); : : : ; T��1(r�1)) (with the subscripts interpreted

in Z=r) by the bijection for �(�)=�(�).

4.4. Chains and spin change.

For an r-ribbon tableau, the sets d� and d+ of starting and ending squares of its open chains for sj
depend only on its shape �=�. When building up the tableau by successive addition of ribbons in order

of increasing entries, the sets d�i and d+i do not change (they depend only on �), while the changes to

d�o and d+o are directly related to the way the set of chains for sj evolves. Initially, when the shape is �=�
(no ribbons), d�o = d+i is the set of corners x of � with pos(x) � j, and d+o = d�i is the analogous set

of cocorners; there is one empty chain for each element of d� = d+. Now assume the shape is �=� and

a ribbon � = �0 n � is added; put �0 = sj(�
0) n sj(�). If pos(�) = pos(�0), then the only possible change

to d�o or d+o is the replacement of a square by the next one on the same diagonal, which happens if that

diagonal meets �; if so � joins the chain starting or ending in that square, and otherwise � becomes a

trivial chain. If pos(�) 6= pos(�0), let x 2 � and y 2 �0 be the non-�xed squares (so jpos(x) � pos(y)j = r),
and distinguish the cases where 0, 1, or 2 of them lie in d�o [ d+o . If neither of them does, then x and y
are added respectively to d�o and d+o , and � starts a new open chain, starting in x and ending in y. If

one of them lies in d�o [ d+o , then � joins the open chain that starts or ends at that square, which square

is replaced by the other one of fx; yg as element of d�o or d+o . If both x and y lie in d�o [ d+o , then x is

removed from d+o and y from d�o , and there are two further possibilities, depending on whether or not

the chains starting in y and ending in x coincide. If they do, then � joins that chain and transforms it to

a closed chain; otherwise � joins the two chains to a single open chain. When a closed chain is formed,

we say that it moves counter-clockwise if pos(x) < pos(y), and clockwise if pos(y) < pos(x).

4.4.1. Proposition. Let T be a (semi)standard r-ribbon tableau, and let T 0 be obtained from T by

moving a chain C in T for sj , then Spin(T ) and Spin(T 0) are related according to the following cases.

1. C is an open chain, with starting square x and ending square y.
a. Either x 2 d�o and y 2 d+i or x 2 d�i and y 2 d+o : Spin(T

0) = Spin(T ).
b. Either x 2 d�o , y 2 d+o and pos(x) > pos(y), or x 2 d�i , y 2 d+i and pos(x) < pos(y):

Spin(T 0) = Spin(T ) + 1
2
.

c. Either x 2 d�o , y 2 d+o and pos(x) < pos(y), or x 2 d�i , y 2 d+i and pos(x) > pos(y):
Spin(T 0) = Spin(T )� 1

2
.

2. C is a closed chain.

a. C moves counter-clockwise: Spin(T 0) = Spin(T ) + 1.

b. C moves clockwise: Spin(T 0) = Spin(T )� 1.
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4.5 Moving open chains only

Proof. This follows by induction on the number of ribbons of T , using the given description of the

evolution of chains. Let �; �0 be as in that description; if either � does not belong to C, or ht(�) = ht(�0),
there is no change in Spin(T ) � Spin(T 0), and the induction is trivial. The cases remain where �
forms a new chain, closes an open chain, or joins two open chains; in the �rst two of these the

proposition follows easily. In �nal case � contributes � 1
2
to Spin(T ) � Spin(T 0), and each of the open

chains being joined can be as in 1a, 1b, or 1c, so there are many more cases to distinguish; however,

because these two chains cannot cross each other, the proposition can be established in all cases.

There is a more intuitive way to understand the proposition. We may draw arrows, as was done

earlier, to indicate the movement of ribbons of C; for each ribbon � of C there is an arrow pointing into

it and one pointing out of it (we include an arrow into the �rst ribbon of an open chain). Then ht(�)
changes only if of these two arrows one points inward and the other points outward; if so, it increases

when the chain turns to the left at �, and it decreases when the chain turns to the right. It then follows

from topological considerations that the accumulated amount of turning along an open chain is at most

half a turn left or right, in accordance with the subcases of 1 in the proposition, and along a closed chain

it is a full turn either left or right, in accordance with case 2. Here is an example of a domino tableau

with various chains.

0
#

2

#
9
"

7

"

&
1
"

-

5
!10!

-

8

"
4
#

6
 
3

"

The chain of dominoes with entries 8, 4, 6, 3 is of type 1a, the one with entry 1 is of type 1b, the one

with entries 5, 10 is of type 1c, and the closed chain with entries 0, 2, 9, 7 is of type 2a. There are \left

turns" at ribbons 4, 1, 0, and 9, and \right turns" at ribbons 6 and 5; at the remaining ribbons no turn

is registered, because there is no change from inward to outward movement.

4.5. Moving open chains only.

4.5.1. De�nition. Let 0 � j < r and let T be a semistandard r-ribbon tableau; sj � T is the semistan-

dard r-ribbon tableau obtained from T by moving all open chains in T for sj .

Clearly, the shape of sj � T is the same as that of sj(T ). This de�nition is stated mainly for future

reference; its importance lies in the observation that moving open chains has certain nice properties,

particularly in the case of domino tableaux, that do not hold in general for closed chains. Proposition 4.3.1

gives a �rst indication in this direction, as does [Garf2, theorem 2.2.9], which states, loosely speaking,

that moving open chains in domino tableaux, as well as moving certain closed ones, commutes with the

process of Schensted insertion de�ned in [Garf1] (see also [vLee1, 4.2]). An obvious question is whether

T 7! sj � T de�nes an action of ~Sr; this turns out to be the case only for r = 2.

4.5.2. Proposition. The operations T 7! sj � T for j = 0; 1 extend to a weight preserving action of ~S2
on the set of semistandard domino tableaux.

Proof. The only relations to check are sj � sj � T = T for j = 0; 1, which are obvious.

As an example that the Coxeter relations of ~Sr do not hold for r > 2, we display here the successive

stages in the computation of s2 � s0 � s2 � s0 � s2 � s0 � S for a standard 3-ribbon tableau S.

S:

0

1

2

3

s0
�!

0

1

2

3

s2
�!

0

1

2

3

s0
�!

0

1

2

3

s2
�!

0

1

2

3

s0
�!

0

1

2

3

s2
�!

0

1

2

3

We note some other properties speci�c to the domino case. Both generators s0; s1 of ~S2 act on Z

without �xed points, so the cases pos(�) = pos(�0) above do not occur; there are no trivial chains, and

closed chains always have an even number of dominoes. Since form(�) consists of a single bit, the form

of a domino before and after its chain is moved are completely unrelated.
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Any � 2 ~S2 has a unique reduced expression, which is a product of generators s0 and s1 in which they
occur alternatingly. If one determines �(S) by successive application of these generators, and tracks some

� 2 Rib(S) through the successive steps, then pos(�) either increases at each step or decreases at each

step; which of the two happens depends on the original parity of pos(�). Loosely speaking, the ribbons

are divided into two cohorts, that march in opposite directions; the interaction between them is limited to

sideways movements (up and down along diagonals). If the reduced expression is su�ciently long, the two

groups of dominoes will eventually pass each other completely, and the domino tableau will be divided

into two parts that are directly related to the tableaux (S0; S1) corresponding to S in the bijection of

proposition 3.1.2; such a domino tableau will be called a segragated tableau in the sequel [vLee2]. There,

a more important operation will in fact be the computation of � �S, in which case the use of the reduced

expression of � is essential. The di�erence with the process just described, is that whenever a domino

is part of a closed chain, it halts for one step. This makes it reverse its direction and join the opposite

cohort, until possibly it becomes part of another closed chain at some later step. Since the shape of � �S
is the same as that of �(S), the domino tableau eventually becomes segragated here as well, but since the

occurrence of closed chains is hard to predict, it is not easy to tell which of the original dominoes will end

up in which part of the segragated tableau. We conclude by displaying such a \collision experiment".
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