
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Proving deadlock freedom of logic programs with dynamic scheduling

E. Marchiori and F. Teusink

Computer Science/Department of Interactive Systems

CS-R9642 1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301666051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9642
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Proving Deadlock Freedom of Logic Programs

with Dynamic Scheduling

Elena Marchiori��� and Frank Teusink�

�CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

�University of Leiden

P�O� Box �	�
�
��� RA Leiden� The Netherlands

e�mail� felena�franktg�cwi�nl

Abstract

In increasingly many logic programming systems� the Prolog left to right selection rule

has been replaced with dynamic selection rules� that select an atom of a query among those

satisfying suitable conditions� These conditions describe the form of the arguments of every

program predicate� by means of a so�called delay declaration� Dynamic selection rules intro�

duce the possibility of deadlock� an abnormal form of termination that occurs if the query

is non�empty and it contains no �selectable� atoms� In this paper� we introduce a simple

compositional assertional method for proving deadlock freedom� The method is based on

the notion of suspension cover� a static description of the possible dynamic schedulings of the

body atoms of a clause� according to a given delay declaration� In the method� we assume that

monotonic assertions are used for specifying the conditions of the delay declaration� Apart

sections are devoted to two more practical instances of the method� that use types and modes�

respectively�

AMS Subject Classi�cation ������� ��N	
� ��Q	�� ��Q�
� ��Q�
�

CR Subject Classi�cation ������� D�	��� D����� F���	�

Keywords � Phrases� Logic programs� proof method� delay declaration� deadlock freedom�

� Introduction

In increasingly many logic programming systems� the Prolog sequential left to right selection rule
has been replaced with dynamic selection rules� where the choice of an atom in a query depends
on the form of its arguments� In �Nai���� Lee Naish introduced when declarations� which are added
to a logic program to describe the dynamic selection rule that should be used� In the language
G�odel �HL	
� a variant of these� called delay declarations� are used� A delay declaration for
a predicate speci�es conditions about the arguments of that predicate� Thus� a selection rule
may choose an atom in a query only if that atom satis�es the conditions in its delay declaration�
The advantages of using a dynamic selection rule speci�ed by such delay declarations are various�
Amongst others� it can provide a synchronization mechanism by coroutining the execution of
atoms in a computation� or it can be used to avoid in�nite derivations by suspending parts of the
computation which would cause loops ��Nai�
� Nai	���� As a consequence� the run�time behaviour
of logic programs with dynamic scheduling is rather subtle� because atoms in a derivation can be
suspended � Therefore� it is important to provide the programmer with suitable tools for studying
the suspension behaviour�

The techniques most widely used to analyze logic programs with dynamic scheduling are based
on abstract interpretation �e�g� �CFMW	�� MdlBH	
� dlBMS	�� CFMW	���� Apt and Luitjes in

�

�AL	�� have studied how proof methods originally designed for logic programs with the Prolog
selection rule� can be adapted to deal also with logic programs with dynamic selection rules�
However� since the veri�cation conditions of these methods re�ect the Prolog left�to�right selection
rule� the obtained results are not very powerful� Recently� Etalle and Gabbrielli in �EG	
� have
generalized the proof method based on modes given in �AL	�� by introducing a more expressive
notion of mode �see e�g� �AM	
�� called layered mode� Another method for proving deadlock�
freedom has been given by Chambre and Deransart in �CD	
�� they use the approach developed
in �DM	�� for proving suspension freeness of queries for a class of concurrent constraint programs�
However� their method is not compositional� Moreover� the veri�cation condition contains a strong
requirement that is not satis�ed by those programs where a predicate can be both a �producer�
and a �consumer��

In this paper� we propose a simple compositional proof method for deadlock freedom� The
kernel of this method is the notion of suspension cover� which relates body�atoms of a clause
with sets of sub�queries� Covers are parametric with respect to the relation between atoms and
subqueries one intends to study� Roughly� a suspension cover describes� by means of a multi�
producer one�consumer relation between body�atoms of a clause� the inter�relations among the
atoms of a clause� which can be caused by the dynamic scheduling� We will use suspension covers
to develop a method for proving deadlock freedom�

The contribution of the paper is twofold� We give a theoretical result� namely that deadlock
freedom is preserved under weakening of the conditions in the delay declaration� This means
amongst others� that in order to prove that a query is deadlock free� we can choose stronger
conditions than those of the original delay declaration� This result is used for developing a simple�
compositional assertional method for proving deadlock freedom� Conditions of a delay declaration
are described by means of monotonic assertions� These assertions are �xed to be the preconditions
of the program predicates� Furthermore� one has to �nd suitable postconditions for the program
predicates� that are combined with the preconditions to describe the suspension covers of a body
atom� A suspension cover of a body atom A is de�ned by means of a bottom�up construction�
whose base is the notion of direct suspension cover� A direct suspension cover is a �minimal�
set of body atoms whose postconditions together with the precondition of the head of the clause�
imply the precondition of A� Since the preconditions are �equivalent to� the conditions of the
delay declaration� then a direct suspension cover of A guarantees that A satis�es the condition in
its delay declaration after the execution of the atoms of that direct suspension cover� We prove
that a program is deadlock free if for every clause� every body atom has at least one suspension
cover� We investigate two more practical instances of the method� based on modes and types�
respectively�

The paper is organized as follows� The next section contains some terminology on logic pro�
grams with dynamic scheduling and our persistence theorem on deadlock freedom� In Section � the
concept of suspension cover is introduced� In Section
� we present a proof method for deadlock
freedom� and in Section �� we discuss two practical instances of this method� Finally� Section

deals with related works� and Section � gives some conclusions� The proofs of the results presented
in the paper are contained in the Appendix�

� On Dynamic Scheduling and Deadlock Freedom

In this section we describe dynamic scheduling in logic programming and the related subject of
deadlock� First� we �x the terminology used through the paper� Next� we prove an interesting
result on deadlock freedom of logic programs with dynamic scheduling�

The following notation will be used� Relation symbols are denoted by p� q � r � a sequence of
atoms is denoted by �A or by Q � the letters H �A�B indicate atoms and c a clause� A program
is a �nite set of clauses� H � Q together with a set of delay declarations � We use the following
notation� borrowed from the G�odel language� to denote a delay declaration� for a predicate p with
n arguments� the delay declaration for p has the form

delay p�x�� � � � � xn� until Cond�x�� � � � � xn�

�

where x�� � � � � xn are variables representing the arguments of p� and Cond�x�� � � � � xn� is a formula
in some �assertion� language� The meaning of such a delay declaration is� that in a query an atom
p�t�� � � � � tn� can only be selected if the condition Cond�t�� � � � � tn � is satis�ed� An example of delay
declaration for the predicate append�� is

delay append �x�� x�� x�� until Ground�x�� x��

which states that an atom append �s�� s�� s�� in a query should only be selected if s� and s� are
ground terms� For the purpose of our study� we do not need to �x a particular syntax for expressing
Cond�x�� � � � � xn�� So� we suppose that Cond�x�� � � � � xn� is expressed in an �extension� of a �rst�
order language� Moreover� we assume that if an atom satis�es its delay declaration� then all its
instances satisfy that delay declaration too� This condition is satis�ed by the majority of the
logic programming systems that use delay declarations� Its importance in the study of run�time
properties is crucial� and all the approaches we are aware of rely on this assumption�

The delay declarations in a program de�ne a class of selection rules� here called delay selection
rules � For a program P with set D of delay declarations� a delay selection rule selects at every
resolution step an atom A of the query Q � among those atoms of Q which satisfy their delay
declaration in D� We call delay SLD�derivation an SLD�derivation obtained using a delay selection
rule�

Observe that� with ordinary SLD�derivations� one has three types of derivations� in�nite
derivations� and �nite derivations that are either successful or failed � However� with delay SLD�
derivations� there exist also �nite derivations which are neither successful nor failed� but deadlock �
In these derivations the last query is non�empty� and none of its atoms satis�es its delay declara�
tion�

y1/[b|y2]

y/[a|y1]

append(x, [], y2)

append([b | x], [], y1)

append([a,b | x], [], y)

Figure �� A deadlock derivation for append��a� bjx �� � �� y�

For instance� consider the �append� program�

append ��x jxs �� ys � �x jzs ��� append �xs � ys � zs��
append �� �� ys � ys��

augmented with the delay declaration

delay append�x�� x�� x�� until x� � �x jy � �Ground�x �

then append��a� bjx �� � �� y� has a deadlocked derivation� as is shown in Figure ��
The aim of this paper is the study of programs having no deadlock derivations for a large class

of queries� de�ned as follows�

De�nition ��� �Deadlock Freedom� For a program P and a query Q � we say that�

� A delay SLD�derivation for Q is deadlock free if it is not a deadlock derivation�

� Q is deadlock free �with respect to P� if all delay SLD�derivations for Q are deadlock free�

�

atom direct cover

A� fA��A�g� fA��A
g
A� fA�g
A� �
A
 �

Figure �� Direct covers of QS

� P is deadlock free if all atomic queries which satisfy their delay declaration are deadlock free�
�

We prove now an expected result� namely that deadlock freedom for a query is preserved under
weakening of the delay declarations�

De�nition ��� Let D and D� be delay declarations for P � Then D� is weaker than D if� for
every predicate p of P � if delay p�x�� � � � � xn� until Cond ��x�� � � � � xn � is the delay declaration
for p in D�� then the delay declaration delay p�x�� � � � � xn� until Cond�x�� � � � � xn� is in D� and
j� �Cond�x�� � � � � xn�� Cond ��x�� � � � � xn��� �

Lemma ��� �Weakening Lemma� Let P be a program and let Q be a query� Let D and D�

be delay declarations for P� Suppose that D� is weaker than D� If Q has a deadlock delay SLD�
derivation in P � D� � fQg� then Q has a deadlock delay SLD�derivation in P � D � fQg�

The proof of this lemma uses a variant of the Switching Lemma� and is contained in the
Appendix� This result is important because it allows one to use a stronger delay declaration for
proving deadlock freedom of a query� It will be used in Section
� where we shall introduce a
simple method for proving deadlock freedom�

� Suspension Covers of a Program Clause

In this section we introduce the notion of �suspension� cover and investigate its properties� This
notion is used in the next section to de�ne a simple compositional proof method for deadlock
freedom�

In order to study deadlock freedom� we describe statically the dependences among atoms of a
clause� which arise when a delay selection rule is used� Consider a generic clause of the program�
say c � H � Q � We relate each atom A of the body of c with a set of sets of atoms of Q � called
covers� Each cover is supposed to produce suitable information which guarantees that the delay
declaration for A is satis�ed� In other words� the relation between atoms and subqueries of Q
is a multi�producers one�consumer relation� Since the order and the multiplicity of atoms in a
subquery �C of Q is here not relevant� we shall identify �C with the set of its atoms�

The construction of a cover for A is incremental� �rst� one has to �nd a minimal set of atoms
of Q � say �D � which are directly related with A� in the sense that after their execution A will satisfy
its delay declaration� We call this set a direct cover of A� Then� for every atom B of �D � a cover of
B has to be added to the set so far constructed� We consider the situation in which there can be
more than one direct cover� Thus� an atom can have many covers� The covers of an atom A can
be graphically represented by means of an AND�OR tree� in the style of Nilsson �Nil���� The root
of the tree is A� Nodes are labeled by sets of atoms� Nodes labeled by sets containing more than
one element have sets of successor nodes each labeled by one of the elements� These successor
nodes are called AND nodes because in order to compute a cover of A� one cover of each of the
elements of the set of atoms has to be computed� Nodes labeled by a set containing one element�

have sets of successors each labeled by one direct cover of that atom� Then� the covers of A are
the sets of nodes of those paths in the tree having leave nodes equal to �� For instance� consider
the clause�

H � A��A��A��A

Suppose that the direct covers of this clause are as given in Figure �� The covers of an atom� say
A�� can be computed using the AND�OR tree for A� of Figure �� We use here Nilsson notation�
and indicate an AND�node by a circular mark linking their incoming arcs� In Figure � there are
two paths� yielding the collections of nodes consisting of the sets fA��A�g� and fA��A��A
g�

A3

A2

A3

A3

A2,A4

A4

A1

A2,A3

A2

Figure �� AND�OR tree for A�

In order to formalize the notion of direct cover� we use monotonic speci�cations� introduced by
Bossi and Cocco in �BC�	� for proving partial correctness of logic programs� The reader is referred
to e�g� �BC�	� AM	
� for a thorough treatment of monotonic speci�cations for veri�cation of logic
programs� We recall here the main concepts�

A speci�cation for a predicate symbol p is a pair of assertions of a suitable �extension� of a
�rst order language� called pre� and post�condition� which describe the form of the arguments of
atoms with p as predicate symbol� before and after their call� Monotonic speci�cations are then
speci�cations consisting of monotonic assertions� i�e� assertions whose truth is preserved under
substitution� One speci�cation is associated with each predicate symbol of the program� We use
the following notation to write down a speci�cation of an n�ary predicate p�

fPrepg p�xp� � � � � � x
p
n � fPost

pg�

An asserted program is a program augmented with one speci�cation for every of its predicate
symbols� A speci�cation for a predicate p in P can be translated into a speci�cation for atoms
p�t�� � � � � tn�� by linking the argument variables xp� � � � � � x

p
n to the terms t�� � � � � tn as follows� For

an atom A � p�t�� � � � � tn� the precondition Pre�A� and postcondition Post�A� for A are�

Pre�A� � Prepfxp
� �t�� � � � � x

p
n �tng

Post�A� � Postpfxp� �t�� � � � � x
p
n �tng

For a queryQ � A�� � � � �Ak � we de�ne Pre�Q� as Pre�A�� � � � � � Pre�Ak �� Likewise for Post�Q��
We say that Q satis�es its precondition �resp� postcondition�� if j� Pre�Q� �resp� j� Post�Q���

�

Example ��� One can de�ne the following speci�cation for the predicate append�

fGround�x�� x�� � Ground�x��g append �x�� x�� x�� fGround�x�� x�� x��g

Here Ground�x � means that x is a ground term� i�e� without variables� and Ground�x�� � � � � xk �
is an abbreviation for Ground�x�� � � � � �Ground�xk �� The atom append ����� ��� ��� zs� has as pre�
and post�condition Ground����� ��� ��� � Ground�zs� and Ground����� ��� ��� zs�� respectively� Then
it satis�es its precondition� but not its postcondition� �

De�nition ��� �direct suspension cover� Let c� H � Q be an �asserted� clause� A direct
�suspension� cover of A in c is the set of pairs � �C �A�� where �C is the minimal subquery of Q s�t�

j� Pre�H � � Post� �C �� Pre�A�

holds� �

A direct cover of an atom provides a minimal set of body atoms� which is related with that
atom by means of the speci�ed condition� Minimality is required because we want the programmer
to perform as little work as possible when proving a program correct�

We formalize the notion of covers of a clause by means of the following inductive de�nition�

De�nition ��� �clause covers� The set of covers of c is the least set S of pairs consisting of
one set of body atoms and one body atom of c s�t��

� ���A� is in S if � is a direct cover of A in c�

� � �C �A� is in S if

	 A 	
 �C �

	 �C is of the form fC�� � � � �Ckg � �D� � � � � � �Dk s�t�

� fC�� � � � �Ckg is a direct cover of A in c� and

� � �Di �Ci � is in S for all i in ��� k ��

�

We say that �C is a cover for A in c if � �C �A� is in the covers of c�
Note that covers are not obtained by performing a kind of transitive closure of the relation

being a direct cover � because a direct cover of A is not in general also a cover of A�
The following proposition can be immediately grasped by looking at the AND�OR tree de�

scribing the covers of an atom�

Lemma ��
 Let �C be a non�empty cover for B� Let A be an atom in �C� Then� there exists a
cover �D for A such that �D � �C �

We have the following immediate consequence of this property�

Corollary ��� If �C is a non�empty cover for A� then there is at least one atom of �C which has
empty cover�

This result will be used for proving the soundness of our proof method for deadlock freeness�
Observe that to construct the covers of a clause� one can use the least �xpoint construction

yield by De�nition ���� Note that every clause has a �nite number of covers� because a clause
consists of a �nite number of atoms� Thus� De�nition ��� provides a terminating algorithm for
�nding the covers of a clause �assumed that the property of being a direct cover is decidable��

� A Method for Deadlock�Freedom

Delay declarations can be source of incompleteness when they are too restrictive� a computation
can become deadlocked� when the delay declaration causes the delay of all atoms in a query� Using
a weaker delay declaration� such a computation might have succeeded� In this section� we use the
notion of cover to develop a simple compositional method for proving logic programs with delay
declarations deadlock free�

Let us illustrate informally the operational intuition behind the method� If a query Q is
deadlock free� then for every delay SLD�derivation for Q and for every query in such a derivation�
every atom in that query either

� is already selectable� or

� will become selectable in some descendant of that query� unless it does fail�

Thus� in order to prove that a program is deadlock free� one has to specify statically what
should be done in order to make a delayed atom selectable� If an atom in a query is delayed� it
means that its delay declaration has not been satis�ed �yet�� This delay declaration can become
satis�ed by resolving some other atoms� A cover provides a set of such atoms�

Formally� we proceed as follows� First� we relate the preconditions to the delay declarations�
by means of the following notion�

De�nition
�� �good program� We say that a predicate p is good if its delay declaration is
�equivalent to��

delay p�x�� � � � � xn� until Pre�p�x�� � � � � xn��

A clause is good if every predicate in it is good� A program is good if every predicate in it is good�
�

Next� we use the notion of goodness to de�ne the concept of delay well�asserted program�

De�nition
�� �delay well�asserted� A clause H � Q is delay well�asserted if

�� it is good� and

�� j� Pre�H � � Post�Q�� Post�H ��

A program is delay well�asserted if every clause of it is� �

Delay well�assertedness of a program guarantees that every time an atom is called� then it
satis�es its precondition� and after its execution �using a delay selection rule� it satis�es its post�
condition� Thus the de�nition of well�assertedness allows one to prove the partial correctness of a
logic program with dynamic scheduling w�r�t� a set of speci�cations where the preconditions are
�xed to be �equivalent to� the delay declarations�

We obtain the following su�cient criterion for deadlock freedom�

Theorem
�� �Deadlock Freedom Theorem� Let P be a program and let Q be a query such
that

�� P is delay well�asserted� and

	� every atom occurring in Q or in the body of a clause of P has at least one cover�

Then� every delay SLD�derivation of Q is deadlock free �with respect to P��

In order to apply Theorem
��� we use preconditions which are equivalent to the delay dec�
larations� However� from Lemma ���� it follows that we can use preconditions that imply the
conditions in the delay declarations� Therefore� in order to prove that a query in a program is
deadlock free� we can apply our method to the program with a delay declaration stronger than
the original one�

�

Observe that� from the de�nition of good program� it follows that every time an atom is
selected� it satis�es its precondition� Therefore� from the de�nition of delay well�assertedness� we
have that an atom satis�es its postcondition when its execution is terminated� So a program which
satis�es the hypothesis of the theorem is partially correct� Thus our method allows one to prove
the partial correctness of a logic program with dynamic scheduling w�r�t� a set of speci�cations
where the preconditions are �xed to be �equivalent to� the delay declarations�

��� Discussion

The proof method based on Theorem
�� is based on the simple notion of cover for describing the
possible schedulings of a program� Moreover� it is compositional� i�e� its veri�cation condition
deals with each program clause separately� As one should expect� these two nice properties a�ect
the power of the method�

From a simple de�nition of cover� we have the drawback that one cannot deal directly with
delay declarations consisting of a disjunction of two or more conditions� For instance� we cannot
prove directly that quicksort is deadlock free w�r�t� the delay declaration D s�t�

delay qs�x�� x�� until Ground�x�� �Ground�x��
delay part�x�� x�� x�� x�� until Ground�x�� x�� �Ground�x�� x�� x��
delay app�x�� x�� x�� until Ground�x�� x�� �Ground�x��
delay � �x�� x�� until Ground�x�� x��
delay
 �x�� x�� until Ground�x�� x��

However� we can obtain the desired result by applying the method to one of the two quicksort
programs obtained taking as delay declaration for a predicate the one consisting of the �rst and
second disjunct of the original delay declaration� respectively� From the Weakening Lemma� we
have for instance that queries of the form qs�x�� x�� with x� ground are deadlock free w�r�t� D�
An analogous result holds for queries of the form qs�x�� x�� with x� ground� So� by applying this
reasoning also to part and app we obtain that quicksort is deadlock free w�r�t� the delay declaration
D� In order to have a method for dealing with disjunctive delay declarations in full generality� it
seems that a more involved de�nition of cover is needed� which can deal with the case analysis
caused by the disjuncts of the delay declaration�

From the compositionality� we have the drawback that the method is not applicable for proving
that a query is deadlock free� when the corresponding program is not deadlock free�

The following example illustrate this situation�

Example
�
 Consider the program imp �standing for incomplete message protocol��

p��msg�y�jx �� �
read�y��
p�x ��

p�� ��� �
c��msg�y�jx �� �

write�y��
c�x ��

c�� ��� �
write�a� � �
read�x �� �

augmented with the following delay declaration�

delay p�x � until true
delay c�x � until x � � � � x � �y jz �
delay read�x � until x � a
delay write�x � until true

�

It is easy to show that imp is not deadlock free� by considering for instance the query p�x ��
However� the query p�x �� c�x � is deadlock free with respect to imp �see e�g� the proof given in
�CD	
��� However� we cannot apply our method for proving this result�

We believe that a general method for proving deadlock freedom is necessarily rather involved�
Therefore� in this paper we have chosen for the simplicity and elegance� for the price of a more
restrictive application range of our results� However� it seems that we can extend the applicability
of our method for proving deadlock freedom of queries� by integrating it with transformational
techniques� We are actually investigating a technique� where one has to �nd a suitable specializa�
tion of the program with respect to the considered query that allows one to apply a compositional
proof method� like our one or those developed in �AL	�� EG	
� to the resulting program�

� Practical Instances of the Method

In the previous section� we provided a method for proving programs deadlock free� However� there
is no assumption on the assertion language to be used� In this section� we present two instances
of the method� where the �assertion� language is �xed to be the one based on modes and types�
respectively�

��� Proving Deadlock Freedom Using Modes

In �Mel��� Red�
� DM���� modes are used in veri�cation of Prolog programs� In this section� we
instantiate our method for proving deadlock freedom to the case where the assertions consist of
mode declarations�

First� let us give some terminology�

De�nition ��� �Mode� Consider an n�ary relation symbol p� A mode for p is a function mp from
f�� � � � �ng to the set f���g� If mp�i� � ���� then i is an input position of p and if mp�i� � ����then
i is an output position of p �both with respect to mp��

A mode mp for p is generally denoted as p�mp���� � � � �mp�n��� For an atom A� we write Inp�A�

�resp� Out�A�� to denote the set of input �resp� output� arguments of A� Also� if �C � A�� � � � �An

then Inp� �C � stands for Inp�A��� � � � � Inp�An � and Out� �C � stands for Out�A��� � � � �Out�An ��
A moded program is a logic program with one mode per predicate� �

Then� the de�nition of good program becomes�

De�nition ��� Let P be a moded program� A predicate p in P is good if its delay declaration is
the following�

delay p�x�� � � � � xn� until Ground�Inp�p�x� � � � � � xn���

A clause is good if every predicate in it is� A program is good if every clause in it is� �

The de�nition of deadlock�freedom prod�cons relation becomes�

De�nition ��� Let c�H � Q be a clause� Then the deadlock�freedom prod�cons relation for c�
denoted by DF � is s�t� � �C �A� is in DF i�

Var�Inp�A�� � Var�Inp�H �� � Var�Out�
C ��

�

Finally� the de�nition of delay well�assertedness becomes�

De�nition ��
 �delay well�moded� A clause c � H � Q is delay well�moded if

�� it is good� and

	

�� Var�Out�H �� � Var�Inp�H �� � Var�Out�Q���

�

We conclude this section with an example�

Example ��� Consider the program quicksort �

qs��x jxs �� ys��
part�xs � x � ls � bs�� qs�ls � sls�� qs�bs � sbs�� app�sls � �x jsbs �� ys��

qs�� �� � ���

part��x jxs �� y � �x jls �� bs�� x
 y � part�xs � y � ls � bs��
part��x jxs �� y � ls � �x jbs ��� x � y � part�xs � y � ls � bs��
part�� �� y � � �� � ���

app��x jxs �� ys � �x jzs ��� app�xs � ys � zs��
app�� �� ys � ys��

In Apt and Luitjes �AL	��� they showed that the query qs�s � y�� with s a ground term� is deadlock
free� when the moding of the program is

qs�����
part���������
app�������
� �����

 �����

and the delay declarations are �implied� by the moding� The same result can be proven using our
method� where we choose suitable� possible stronger� delay declarations equivalent to the moding�
Then� Theorem ��� allows us to conclude that the result holds also for weaker delay declarations�
We examine here another moding for quicksort�

qs�����
part���������
app�������
� �����

 �����

This moding corresponds to a non�standard use of quicksort to �nd the permutations of an ordered
list of natural numbers�

As we can see� all variables that appear in the output positions of the heads of clauses� appear
either in an output position in the body� or in an input position of the head� Let us now add some
delay declarations in order to get a good program�

delay qs�x�� x�� until Ground�x��
delay part�x�� x�� x�� x�� until Ground�x�� x�� x��
delay app�x�� x�� x�� until Ground�x��
delay � �x�� x�� until Ground�x�� x��
delay
 �x�� x�� until Ground�x�� x��

With these delay declarations� quicksort is delay well�moded� Thus� in order to prove deadlock
freedom� we only need to prove that every body atom has a cover� For most clauses� this is
straightforward� Therefore� we only show the �direct� covers for the �rst clause of qs �

atom �direct� cover
part�x � xs � xl � xb� fqs�xl � yl �� qs�xb � yb�� app�yl � �x jyb �� ys�g
qs�xl � yl� fapp�yl � �x jyb �� ysg
qs�xb � yb� fapp�yl � �x jyb �� ysg
app�yl � �x jyb �� ys� �

��

Note� that in this example� the covers are the same as the direct covers� Moreover� every body
atom has exactly one cover�

Because all body atoms have a cover� it follows by Theorem
�� that quicksort is deadlock
free� Assume that n� s and t are ground terms� Then� for instance the queries qs�x � s�� and
part�n� y � s � t� are deadlock free�

��� Proving Deadlock Freedom Using Types

In �DM���� types were also used for program veri�cation of Prolog programs� In this subsection�
we instantiate our approach to the case where one wants to reason using types� Such a method is
more general than the method using only modes� yet simpler to implement than a method using
the full power of monotonic assertions�

First� we need de�ne the notion of a type�

De�nition ��
 �Type� A type is a set of terms closed under substitution� �

Note that this is a very general de�nition� we are not interested in the precise structure of types�
or in ways to reason with types� For instance� for practical purposes� it might be advisable to
restrict types to decidable sets� For our purposes� we only need the fact that a type is closed under
substitution�

A typed term is a construct of the form s � S � where s is a term and S is a type� Given a
sequence s � S � s� � S�� � � � � sn � Sn of typed terms� we write s
 S if for i
 ���n� we have si
 Si �
and de�ne Var�s � S� � Var�s�� Furthermore� we abbreviate the sequence s��� � � � � sn� to s�� We
say that s � S is realizable if s�
 S for some ��

De�nition ��� A type judgement is a statement of the form

s � S � t � T� ���

A type judgement ��� is true� written

j� s � S � t � T

if for all substitutions �� s�
 S implies t�
 T� �

Types for predicates are de�ned as follows�

De�nition ��� �Type for p� Consider an n�ary relation symbol p� A type for p is a function tp
from ���n� to the set Types � If tp�i� � T � then T is the type associated with the position i of p� �

In �DM���� a combination of types and modes is used� That is� one uses declarations of the
form

member�� � Num�� � ListOfNum�

to denote that the predicate member to be used with a term of type ListOfNum as input in its
second argument� to generate a term of type Num as output in its �rst argument� We allow only
one type declaration per predicate�

We introduce some terminology and notation� that is used in the sequel� If H � p�u � S�v � T��
then we denote u � S by Inp�H � � IH � and v � T by Out�H � � OH � Also� if �C � A�� � � � �An

then Inp� �C � � I �C stands for Inp�A�� � IA�
� � � � � Inp�An� � IAn and Out� �C � � O �C stands for

Out�A�� � OA�
� � � � �Out�An � � OAn �

Then� the de�nition of good program becomes�

De�nition ��� We say that a predicate p is good if its delay declaration is �equivalent to��

delay p�x � I�y � O� until x in I�

A clause is good if every predicate in it is� And a program is good if every clause in it is� �

��

The de�nition of deadlock freedom prod�cons relation becomes�

De�nition ���� Let c � H � Q be a clause of P � The deadlock freedom prod�cons relation for
c� denoted by DF � is s�t� � �C �A� is in DF i�

j� Inp�H � � IH �Out� �C � � O �C � Inp�A� � IB

�

Finally� the de�nition delay well�asserted program becomes�

De�nition ���� �delay well�typed� A clause H � Q is delay well�typed if

�� it is good� and

�� j� Inp�H � � IH �Out�Q� � OQ � Out�H � � OH �

A program is delay well�typed if every clause of it is� �

Let us see now how these results can be applied to speci�c programs�

Example ���� Consider again the program append� Let us type this program as follows�

app�� � List �� � Top�� � List�

where List is the set of lists� and Top is the set of all terms� This typing corresponds to a use
of the program to append a list to a generic term� Clearly append is delay well�asserted� Let us
choose a delay declaration such that append is good�

delay app�x�� x�� x�� until x�
 List

It is easy to check that the atom in the body the non�unitary clause of append has an empty type
cover� So� by Theorem
�� we have that append is deadlock free� Assume that s is a list� Then�
the query app�s � x � y� is deadlock free� �

We conclude this section by showing that the notions de�ned in this section and those in the
previous one� are instances of the corresponding notions de�ned in Section
�

Theorem ����

�� The notions of Section ��� are instances of the corresponding notions of Section ��	�

	� The notions of Section ��	 are instances of the corresponding notions of Section ��

From this result� it follows that the Deadlock Freedom Theorem holds� when we replace the original
de�nitions either with those of Section ���� or with those of Section ����

� Related Work

In �MT	�� we have used a similar notion of cover in the veri�cation condition of a method for
proving termination of logic programs with dynamic scheduling� However� there the condition in
the de�nition of direct cover is di�erent� re�ecting the di�erent property we want to study� namely
termination�

The notion of cover can be viewed as an alternative approach to the one based on static
reordering of the atoms of a clause� as the one e�g� incorporated in the compiler of Mercury
��SHC	
��� According with this latter approach� one �nds a suitable reordering of the body
atoms of a clause� and then applies static analysis techniques developed for Prolog programs� We
think that our approach is more neat� because it allows one to reason in full generality on the

��

dynamic scheduling� without being committed to a speci�c one� Moreover� the notion of cover is
constructive� and it provides an algorithm for computing all the useful reorderings� This way� we
avoid to choose a speci�c reordering at the level of program veri�cation� As a consequence� we
leave more room to use static reorderings at a subsequent stage for other purposes� like program
optimization�

In �CD	
� a proof method for proving the deadlock freedom of a query in for a class of concurrent
constraint programs is given� The notion of scheduling order is used to describe dependencies
among sets of predicates� a partition of all the program predicates is given� and the resulting
sets are arranged in a chain ordering called scheduling� Then the annotation method described in
�DM	�� is applied to the programs obtained by considering the clauses that de�ne the predicates
occurring in the chain pre�xes� This guarantees that every derivation of the considered query
where the selection of the clauses respects the scheduling order is deadlock free� Thus the result
follows by the independence of the deadlock freedom from the scheduling order� There are two
main di�erences of this method with the one we proposed� The �rst is that their method is not
compositional� since the notion of scheduling order requires to check a condition on the program�
Instead� our method works clause per clause� The second di�erence is that they deal with deadlock
freedom of queries� while we consider �also� deadlock freedom of programs� A consequence of the
�rst di�erence is that they can prove more queries to be deadlock free than by using our method�
a consequence of the second di�erence is that their method cannot be applied directly to prove
that a program is deadlock free�

Our method generalizes the two methods given by K�R� Apt and I� Luitjes in �AL	��� In
essence� the di�erence is that we modify by means of the notion of cover� the original notions of well�
modedness and well�typedness� which were introduced to deal with Prolog programs� Instead� Apt
and Luitjes apply the original �stronger� notions in their methods for proving deadlock freedom�
By using the notion of cover� we can prove deadlock freedom of a larger class of programs� The
reason is that� well�modedness and well�typedness impose a speci�c order on the body atoms of a
clause� Instead� our methods are independent from the order of body atoms�

An extension of the method given in �AL	�� for modes has been recently introduced in �EG	
��
The notion of layered mode is introduced� that is obtained by the original notion by adding some
information on the order in which the arguments in an atom will be instantiated� The resulting
notion of well�modedness allows one to prove deadlock freedom of a larger class of queries� It
seems still less powerful than the method by �DM	��� yet simpler�

In �Rao	��� M�R�K� Krishna Rao de�nes a notion of well�moded programs� which has similarities
with our condition on the existence of covers� The di�erence is that� he de�nes a producer�
consumer relation on the body atoms of a clause� where the products are the variables� He then
states that a clause is well�moded if this relation is acyclic and every variable has at least one
producer� In the following example� we show that covers are more general than this producer
consumer relation� Consider the query p�x �� q�x � y�� q�y � x �� p�y�� where the modes are p��� and
q������ Recall that a body atom A is a producer of a variable x if x occurs in its output positions�
otherwise �i�e�� if x does not occur in its output positions� then A is a consumer of x if it occurs
in the variables of A� For the head of a clause the de�nition of producer and consumer are the
reverse� The de�nition of well�modedness of a clause is based on two conditions� �a� that the
producer�consumer relation is not acyclic� �b� that every variable in the clause has at least one
producer�

The producer�relation for p�x �� q�x � y�� q�y � x �� p�y� is cyclic� it is the set

f�p�x �� q�x � y��� �q�y � x �� q�x � y��� �p�y�� q�y � x ��� �q�x � y�� q�y � x ��g�

On the other hand� one can compute the following �direct� covers for this query�

atom direct cover cover

p�x � � �
q�x � y� fp�x �g� fq�y � x �g fp�xg� fp�y�� q�y � x �g
q�y � x � fp�y�g� fq�x � y�g fp�yg� fp�x �� q�x � y�g
p�y� � �

��

The reason we can handle this query is that� in the de�nition of cover� we implicitly discard all
cyclic paths� Then� the existence of a cover ensures that there exist acyclic paths�

� Conclusion

In this paper we have proposed a simple compositional proof method for proving deadlock�freedom
of logic programs with dynamic scheduling� The central notion used in the method is the notion of
cover� which describes the possible dynamic schedulings of the body atoms of a clause� according
to a given delay declaration�

The present work provides a useful theoretical tool for reasoning formally about logic programs
with dynamic scheduling� In our opinion� the relevance of a simple and compositional method�
is that it can be understand and used by the programmers without much e�ort� We are actually
investigating the use of other static analysis techniques� like those based on program transforma�
tions� in order to extend the applicability of the method to queries with respect to to programs
that are not deadlock free�

Acknowledgements

We would like to thank Krzysztof Apt for our useful discussions on the subject of this paper� This
work was partially supported by the Netherlands Computer Science Research Foundation� with
�nancial support from the Netherlands Organisation for Scienti�c Research �NWO��

References

�AL	�� K� R� Apt and I� Luitjes� Veri�cation of logic programs with delay declarations�
In Proceedings of the Fourth International Conference on Algebraic Methodology and
Software Technology� �AMAST
���� Lecture Notes in Computer Science� Berlin� �		��
Springer�Verlag� �Invited Lecture��

�AM	
� K�R� Apt and E� Marchiori� Reasoning about Prolog programs� from modes through
types to assertions� Formal Aspects of Computing�
A��
���

� �		
�

�BC�	� A� Bossi and N� Cocco� Verifying correctness of logic programs� In Proceedings of
Tapsoft� pages 	
����� �	�	�

�CD	
� P� Chambre and P� Deransart� Towards a proof method of non�suspension of Concur�
rent Constraint Logic Programs� In F� de Boer and M� Gabbrielli� editors� Proceedings
of the W	 Post�Conference Workshop� Int� Conf� on Logic Programming� pages ���
���� Free Univerity� �		
�

�CFMW	�� M� Codish� M� Falaschi� K� Marriott� and W� Winsborough� E�cient analysis of
concurrent constraint logic programs� In A� Lingas� R� Karlsson� and S� Carlsson�
editors� Proceedings of the ICALP� pages
���
�
� Springer�Verlag� �		�� LNCS ����

�dlBMS	�� M� Jose Garcia de la Banda� K� Marriott� and P� Stukey� E�cient analysis of Logic
Programs with Dynamic Scheduling� In Proceedings of the International Symposium
on Logic Programming� The MIT press� �		�� To appear�

�DM��� P� Dembinski and J� Maluszynski� AND�parallelism with intelligent backtracking for
annotated logic programs� In Proceedings of the International Symposium on Logic
Programming� pages �	���� Boston� �	���

�DM	�� P� Deransart and J� Maluszynski� A Grammatical View of Logic Programming� The
MIT Press� �		��

�

�EG	
� S� Etalle and M� Gabbrielli� Layered Modes� In Proc� of the JICSLP post�conference
workshop on Veri�cation and Analysis of Logic Programs � eds� F� de Boer and M�
Gabbrielli� Bonn� Germany� �		
�

�HL	
� P�M� Hill and J�W� Lloyd� The G�odel Programming Language� The MIT press edition�
�		
�

�Llo��� J�W� Lloyd� Foundations of Logic Programming� Springer�Verlag� Berlin� second
edition� �	���

�MdlBH	
� K� Marriott� M� Jose Garcia de la Banda� and M� Hermenegildo� Analyzing Logic
Programs with Dynamic Scheduling� In Proceedings of the 	�st ACM SIGPLAN�
SIGACT Symposium on Principles of Programming languages� pages �
������ New
York� �		
� ACM Press�

�Mel��� C�S� Mellish� The automatic generation of mode declarations for Prolog programs�
Technical Report DAI Research paper �

� Department of Arti�cial Intelligence� Uni�
versity of Edinburgh� �	���

�MT	�� E� Marchiori and F� Teusink� Proving termination of logic programs with delay dec�
larations� In J� Lloyd� editor� Proceedings of the International Symposium on Logic
Programming� pages

��

�� The MIT press� �		��

�Nai��� L� Naish� An introduction to MU�PROLOG� Technical Report �� �� Department of
Computer Science� University of Melbourne� �	���

�Nai�
� Lee Naish� Negation and Control in Prolog� Number ��� in Lecture Notes in Computer
Science� Springer�Verlag� �	�
�

�Nai	�� L� Naish� Coroutining and the construction of terminating logic programs� Technical
Report 	� �� Department of Computer Science� University of Melbourne� �		��

�Nil��� N�J� Nilsson� Principles of Arti�cial Intelligence� Springer�Verlag� �	���

�Rao	�� R�K�K� Rao� Termination Characteristics of Logic Programs� Ph�D� Thesis� University
of Bombay� �		��

�Red�
� U�S� Reddy� On the relationship between logic and functional languages� In D� De�
Groot and G� Lindstrom� editors� Functional and Logic Programming� pages ���
�
Prentice�Hall� �	�
�

�SHC	
� Z� Somogyi� F�J� Henderson� and T�C� Conway� The implementation of Mercury� an
e�cient purely declarative logic programming language� In Proceedings of the Post�
Conference Workshop� Int� Simp� on Logic Programming� �		
�

��

A Appendix

A�� Proof of the Weakening Lemma

Theorem ��� �Weakening Lemma�� Let P be a program and let Q be a �de�nite� query� Let D
and D� be delay declarations for P� Suppose that D� is weaker than D� If Q has a deadlocked delay
SLD�derivation in P � D� � fQg� then Q has a deadlocked delay SLD�derivation in P � D � fQg�

To prove this theorem� we need the following lemma� essentially equivalent to Lemma 	�� in
�Llo����

Lemma A�� �Switching Lemma� Let P be a program and let Q� a goal� Let � � Q��Q��Q� � � �
be a derivation for P � fQ�g� such that�

� Q� � A�B � �L�

� Q� � � �C �B � �L���� and

� Q� � � �C � �D � �L������

Then there exists a derivation �� � Q �

��Q
�

��Q
�

�� � � � for P � fQ �

�g such that

� Q �

� � Q��

� Q �

� � �A� �D � �L�����

� Q �

� � � �C � �D � �L�����
�

�� and

� ���� is a variant of ����
�

��

Proof� The input clauses for the �rst two derivation steps are C � �C and D � �D � We have that
B���� � D�� � D����� Thus we can unify B and D � Let ��� be an mgu of B and D � Also� we
know that� for some substitution �� we have that ���� � �����

Without loss of generality� we can assume that ��� does not act on variables in C � �C � Fur�
thermore� C� � C ���� � A���� � A����� Hence we can unify C and A���� Let �

�

� be a mgu� Thus�
for some ��� � � ����

�� Consequently� ���� � ����
�

��
�� Thus we have shown that A and B can be

selected in reverse order�
We now have to show that ���� and ����

�

� are variants� First� note that A�
�

��
�

� � C ����
�

�� but that
�� is an mgu of A and C � Thus ����

�

� � ���� for some �� But B��� � B����
�

� � D����
�

� � D���� � D��
Thus � uni�es B�� and D � and therefore � � ���

�� for some ���� Consequently� ����
�

� � �����
��� This�

together with the fact that ���� � ����
�

��
�� implies that ���� and ����

�

� are variants�
Finally� because Q �

� is a variant of Q� we can complete �� by having Q �

i � Qi	� for all i � ��
using some renaming 	� �

Proof of Theorem ����
Let � � Q�� � � � �Qn be a deadlocked delay SLD�derivation in P � D� � fQg �i�e� Q � Q��� Using
the Switching Lemma� we construct a delay SLD�derivation for P � D � fQg� We then show that
this derivation is deadlock�

First� we construct a sequence ��� ��� � � � of delay SLD�derivations� We denote the j �th query
in �i as Q i

j � We denote the selected atom in Q i
j as Ai

j � To begin with� we set �� � �� Then� we

construct �i�� from �i as follows�
Let k be the least index such that

� k � ��

� Ai
k is not introduced in the resolution step Q i

k�� � Q i
k �

�

� Ai
k is selectable in D � and

� if Ai
k�� is introduced in the same derivation step as Ai

k � then it is not selectable in D�

If no such k exists� then �i�� � �i � Otherwise� construct �i�� out of �i by switching the selected
atoms in Qk�� and Qk �

By the Switching Lemma we have that� for all i � �i is a delay SLD�derivation of length n� for
P � D� � fQg� Moreover� the queries Q i

n �for all i� are variants of each other� and therefore all
derivations �i are deadlocked in D�� Finally� because � is �nite� we have for some �nite
 that
�� � �����

Using ��� we construct a deadlocked delay SLD�derivation for P � D � fQg� Let m be the
greatest index such that the pre�x Q�

� � � � � �Q
�

m of �� is a pre�x of a delay SLD�derivation for
P � D � fQg� Such an m exists because the sequence consisting of only Q�

� itself is the pre�x of
a delay SLD�derivation for P � D � fQg� If we have that m � n� then we know that Qm has no
atom selectable in D�� thus it has no selectable atom in D� and therefore it is deadlocked with
respect to D�

Suppose that m � n� We prove by contradiction that Q�

� � � � � �Q
�

m is a deadlocked delay SLD�
derivation for P � D � fQg� Suppose that Q�� � � � �Qm not a deadlocked delay SLD�derivation for
P � D � fQg� As it is the pre�x of a delay SLD�derivation for P � D � fQg� this implies that Qm

contains at least one atom which is selectable with respect to D� Any atom selectable in D� is also
selectable in D�� Because �� is a deadlocked delay SLD�derivation for P � D� � fQg� for every
atom A which is selectable in Q�

m �with respect to D�� there exist a � and j �j � m� such that
A� � A�j � Let k be the least of these j � Then we have that �� 	� ����� because

� k � ��

� the selected atom in Q�

m�� is not selectable in D �otherwise m would not be maximal�� which
implies that k � m � � and therefore� because A�k was introduced in Qm or before� A�k is
not introduced in A�k���

� A�k is selectable in D� and

� either A�k is not introduced in the same derivation step as A�k��� or A
�

k�� is not selectable
in D� because otherwise k would not be minimal�

But this is in contradiction with �� � ����� !From this contradiction� we can conclude that Qm

does not contain atoms which are selectable in D� and therefore Q�

� � � � � �Q
�

m is a deadlocked delay
SLD�derivation for P � D � fQg� �

A�� Proof of the Deadlock Freedom Theorem

The prod�cons relationDF for c is speci�ed by means of the monotonic assertion schemeA� �C �A� �
Pre�H � � Post� �C � � Pre�A�� In order to relate direct covers of an atom with direct covers of
its instances� consider the prod�cons relation DF� for c� speci�ed by means of the monotonic
assertion scheme A� �C �A�� � Pre�H �� � Post� �C �� � Pre�A��� Then we have the following
result�

Proposition A�� �monotonicity� Let �C be a direct cover of A in c w�r�t� DF �For every substi�
tution �� there exists a subset �D of �C � such that �D is a direct cover of A� in c� w�r�t� DF��

Proof� Because �C is a direct cover of A� and from the monotonicity of A� �C �A�� we have that
either �C � or one of its proper subsets is a direct cover of A� in c� w�r�t� DF�� �

Lemma ��
� Let �C be a non�empty cover for B� Let A be an atom in �C � Then� there exists a
cover �D for A such that �D � �C �

��

Proof� We prove the result by induction on the size n of �C � Assume that the result holds for all
�C of size smaller then n�

As �C is non�empty� we know by de�nition of cover that �C is of the form

fC�� � � � �Ckg � �D� � � � � � �Dk

where fC�� � � � �Ckg is a direct cover for B and� for i
 ����k �� �Di is a cover for Ci � We distinguish
two cases�

� Suppose that A � Ci � for some i
 ����k ��

Then� �Di is a cover for A� Moreover �Di � �C � because Ci 	
 �Di �

� Suppose that A
 �Di � for some i
 ����k ��

We know that �Di is a non�empty cover for Ci � since A
 �Di � But then� because �Di � �C � we
know by induction hypothesis that there exists a cover �E for A such that �E � �Di � Because
�Di � �C � it follows that �E � �C � �

Theorem
�� �Deadlock Freedom Theorem�� Let P be a program and let Q be a query such
that

�� P is delay well�asserted� and

	� every atom occurring in Q or in the body of a clause of P has at least one cover�

Then� every delay SLD�derivation of Q is deadlock free �with respect to P��

To prove this result� we proceed as follows� We consider a generic derivation �� and prove that
all the queries of � satisfy the property that every of its atom has at least one cover� From this� it
follows that every query of � contains at least one atom which is not delayed� Hence� � is deadlock
free�

The following lemma on �direct� covers of a delay well�asserted program is used�

Lemma A�� Let P be a program and let Q be a query� Suppose that

�� P is delay well�asserted� and

	� every atom occurring in Q or in the body of a clause of P has at least one cover�

Then� for every SLD�resolvent Q � of Q� every atom in Q � has at least one direct cover�

Proof� Let Q � be a SLD�resolvent of Q � using an input clause H � �B and an mgu �� Let C be
the selected atom in Q � By hypothesis �� there exists a direct cover �C for C in Q � By Lemma A���
there exists a subquery �C � of �C � such that �C � is a direct cover for C � in Q��

Now� we have to prove that every atom A� in Q � has a direct cover� Let A� be of the form A��
where A is an atom in either Q or �B �

� Suppose that A occurs in �B �

By hypothesis �� there exists direct cover �D of A in H � �B � By Lemma A��� there ex�
ists a subquery �D � of �D� such that �D � is a direct cover for A� in H � � �B�� Because
j� Post� �C ��� Pre�C �� and C � � H �� we have that j� Post� �C ��� Pre�H ��� Moreover� we
have that C � 	
 �C �� It follows that j� Post� �C �� � Post� �D ��� Pre�A��� Because �C � �D � is a
subquery of Q �� it follows that A� has a direct cover in Q ��

��

� Suppose that A occurs in Q �

By hypothesis �� there exists a direct cover �D of A in Q � By Lemma A��� there exists a
subquery �D � of �D� such that �D � is a direct cover for A� in Q�� If �D � does not contain C ��
we have that �D � is a subquery of Q �� Thus� A� has a direct cover in Q ��

Suppose that �D � does contain C �� Because C � is not in Q �� �D � is not a direct cover of A� in
Q �� Therefore� we need to replace C � by some atoms that do occur in Q �� Because C � � H �
and H � � �B� is delay well�asserted we know that

j� Pre�C �� � Post� �B��� Post�C ��

But then� we also have that

j� Post� �C �� � Post� �B��� Post�C ��

Finally� it follows that

j� Post� �D � � C �� � Post� �C �� � Post� �B��� Post�A��

where �D ��C � is obtained from �D � by deleting C �� But then� it follows that A� has a direct
groundness cover in Q �� �

Using the above lemma� we obtain the following simple proof�

Proof of Theorem
��� Let � be an arbitrary �nite delay SLD�derivation for Q in P � By
applying Lemma A��� starting at Q � we can prove that every atom in every query in � has a
suspension cover� Then� by Corollary ���� and by the hypothesis that P is good� it follows that
every non�empty query of � contains at least one selectable atom� Hence� � is not deadlocked� �

A�� Proof of Theorem ����

Theorem �����

�� The notions of Section ��� are instances of the corresponding notions of Section ��	�

	� The notions of Section ��	 are instances of the corresponding notions of Section ��

Proof�
�� Take Ground � consisting of all the ground terms� as the only type� Then the notions of
Sections ��� and ��� coincide�
�� Translate a typed atom p�x � S�y � T� into the speci�cation for p having fx
 Sg as precon�
dition� and fy
 Tg as postcondition� Then� a program is good� according with the de�nition in
Section ��� i� the corresponding asserted program obtained using the above transform is good ac�
cording with the de�nition in Section
� A prod�cons relation is a DF relation� according with the
de�nition in Section ��� i� it is a DF relation� according with the de�nition in Section
� where the
speci�cations are those obtained using the above transform� Finally� a program is delay well�typed
i� the corresponding asserted program obtained using the above transform is delay well asserted� �

�	

