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Abstract

In increasingly many logic programming systems� the Prolog left to right selection rule

has been replaced with dynamic selection rules� that select an atom of a query among those

satisfying suitable conditions� These conditions describe the form of the arguments of every

program predicate� by means of a so�called delay declaration� Dynamic selection rules intro�

duce the possibility of deadlock� an abnormal form of termination that occurs if the query

is non�empty and it contains no �selectable� atoms� In this paper� we introduce a simple

compositional assertional method for proving deadlock freedom� The method is based on

the notion of suspension cover� a static description of the possible dynamic schedulings of the

body atoms of a clause� according to a given delay declaration� In the method� we assume that

monotonic assertions are used for specifying the conditions of the delay declaration� Apart

sections are devoted to two more practical instances of the method� that use types and modes�

respectively�

AMS Subject Classi�cation ������� ��N	
� ��Q	�� ��Q�
� ��Q�
�

CR Subject Classi�cation ������� D�	��� D����� F���	�

Keywords � Phrases� Logic programs� proof method� delay declaration� deadlock freedom�

� Introduction

In increasingly many logic programming systems� the Prolog sequential left to right selection rule
has been replaced with dynamic selection rules� where the choice of an atom in a query depends
on the form of its arguments� In �Nai���� Lee Naish introduced when declarations� which are added
to a logic program to describe the dynamic selection rule that should be used� In the language
G�odel �HL	
� a variant of these� called delay declarations� are used� A delay declaration for
a predicate speci�es conditions about the arguments of that predicate� Thus� a selection rule
may choose an atom in a query only if that atom satis�es the conditions in its delay declaration�
The advantages of using a dynamic selection rule speci�ed by such delay declarations are various�
Amongst others� it can provide a synchronization mechanism by coroutining the execution of
atoms in a computation� or it can be used to avoid in�nite derivations by suspending parts of the
computation which would cause loops ��Nai�
� Nai	���� As a consequence� the run�time behaviour
of logic programs with dynamic scheduling is rather subtle� because atoms in a derivation can be
suspended � Therefore� it is important to provide the programmer with suitable tools for studying
the suspension behaviour�

The techniques most widely used to analyze logic programs with dynamic scheduling are based
on abstract interpretation �e�g� �CFMW	�� MdlBH	
� dlBMS	�� CFMW	���� Apt and Luitjes in
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�AL	�� have studied how proof methods originally designed for logic programs with the Prolog
selection rule� can be adapted to deal also with logic programs with dynamic selection rules�
However� since the veri�cation conditions of these methods re�ect the Prolog left�to�right selection
rule� the obtained results are not very powerful� Recently� Etalle and Gabbrielli in �EG	
� have
generalized the proof method based on modes given in �AL	�� by introducing a more expressive
notion of mode �see e�g� �AM	
�� called layered mode� Another method for proving deadlock�
freedom has been given by Chambre and Deransart in �CD	
�� they use the approach developed
in �DM	�� for proving suspension freeness of queries for a class of concurrent constraint programs�
However� their method is not compositional� Moreover� the veri�cation condition contains a strong
requirement that is not satis�ed by those programs where a predicate can be both a �producer�
and a �consumer��

In this paper� we propose a simple compositional proof method for deadlock freedom� The
kernel of this method is the notion of suspension cover� which relates body�atoms of a clause
with sets of sub�queries� Covers are parametric with respect to the relation between atoms and
subqueries one intends to study� Roughly� a suspension cover describes� by means of a multi�
producer one�consumer relation between body�atoms of a clause� the inter�relations among the
atoms of a clause� which can be caused by the dynamic scheduling� We will use suspension covers
to develop a method for proving deadlock freedom�

The contribution of the paper is twofold� We give a theoretical result� namely that deadlock
freedom is preserved under weakening of the conditions in the delay declaration� This means
amongst others� that in order to prove that a query is deadlock free� we can choose stronger
conditions than those of the original delay declaration� This result is used for developing a simple�
compositional assertional method for proving deadlock freedom� Conditions of a delay declaration
are described by means of monotonic assertions� These assertions are �xed to be the preconditions
of the program predicates� Furthermore� one has to �nd suitable postconditions for the program
predicates� that are combined with the preconditions to describe the suspension covers of a body
atom� A suspension cover of a body atom A is de�ned by means of a bottom�up construction�
whose base is the notion of direct suspension cover� A direct suspension cover is a �minimal�
set of body atoms whose postconditions together with the precondition of the head of the clause�
imply the precondition of A� Since the preconditions are �equivalent to� the conditions of the
delay declaration� then a direct suspension cover of A guarantees that A satis�es the condition in
its delay declaration after the execution of the atoms of that direct suspension cover� We prove
that a program is deadlock free if for every clause� every body atom has at least one suspension
cover� We investigate two more practical instances of the method� based on modes and types�
respectively�

The paper is organized as follows� The next section contains some terminology on logic pro�
grams with dynamic scheduling and our persistence theorem on deadlock freedom� In Section � the
concept of suspension cover is introduced� In Section 
� we present a proof method for deadlock
freedom� and in Section �� we discuss two practical instances of this method� Finally� Section 

deals with related works� and Section � gives some conclusions� The proofs of the results presented
in the paper are contained in the Appendix�

� On Dynamic Scheduling and Deadlock Freedom

In this section we describe dynamic scheduling in logic programming and the related subject of
deadlock� First� we �x the terminology used through the paper� Next� we prove an interesting
result on deadlock freedom of logic programs with dynamic scheduling�

The following notation will be used� Relation symbols are denoted by p� q � r � a sequence of
atoms is denoted by �A or by Q � the letters H �A�B indicate atoms and c a clause� A program
is a �nite set of clauses� H � Q together with a set of delay declarations � We use the following
notation� borrowed from the G�odel language� to denote a delay declaration� for a predicate p with
n arguments� the delay declaration for p has the form

delay p�x�� � � � � xn� until Cond�x�� � � � � xn�
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where x�� � � � � xn are variables representing the arguments of p� and Cond�x�� � � � � xn� is a formula
in some �assertion� language� The meaning of such a delay declaration is� that in a query an atom
p�t�� � � � � tn� can only be selected if the condition Cond�t�� � � � � tn � is satis�ed� An example of delay
declaration for the predicate append�� is

delay append �x�� x�� x�� until Ground�x�� x��

which states that an atom append �s�� s�� s�� in a query should only be selected if s� and s� are
ground terms� For the purpose of our study� we do not need to �x a particular syntax for expressing
Cond�x�� � � � � xn�� So� we suppose that Cond�x�� � � � � xn� is expressed in an �extension� of a �rst�
order language� Moreover� we assume that if an atom satis�es its delay declaration� then all its
instances satisfy that delay declaration too� This condition is satis�ed by the majority of the
logic programming systems that use delay declarations� Its importance in the study of run�time
properties is crucial� and all the approaches we are aware of rely on this assumption�

The delay declarations in a program de�ne a class of selection rules� here called delay selection
rules � For a program P with set D of delay declarations� a delay selection rule selects at every
resolution step an atom A of the query Q � among those atoms of Q which satisfy their delay
declaration in D� We call delay SLD�derivation an SLD�derivation obtained using a delay selection
rule�

Observe that� with ordinary SLD�derivations� one has three types of derivations� in�nite
derivations� and �nite derivations that are either successful or failed � However� with delay SLD�
derivations� there exist also �nite derivations which are neither successful nor failed� but deadlock �
In these derivations the last query is non�empty� and none of its atoms satis�es its delay declara�
tion�

y1/[b|y2]

y/[a|y1]

append(x, [ ], y2)

append([b | x], [ ], y1)

append([a,b | x], [ ], y)

Figure �� A deadlock derivation for append��a� bjx �� � �� y�

For instance� consider the �append� program�

append ��x jxs �� ys � �x jzs ��� append �xs � ys � zs��
append �� �� ys � ys��

augmented with the delay declaration

delay append�x�� x�� x�� until x� � �x jy � �Ground�x �

then append��a� bjx �� � �� y� has a deadlocked derivation� as is shown in Figure ��
The aim of this paper is the study of programs having no deadlock derivations for a large class

of queries� de�ned as follows�

De�nition ��� �Deadlock Freedom� For a program P and a query Q � we say that�

� A delay SLD�derivation for Q is deadlock free if it is not a deadlock derivation�

� Q is deadlock free �with respect to P� if all delay SLD�derivations for Q are deadlock free�
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atom direct cover

A� fA��A�g� fA��A
g
A� fA�g
A� �
A
 �

Figure �� Direct covers of QS

� P is deadlock free if all atomic queries which satisfy their delay declaration are deadlock free�
�

We prove now an expected result� namely that deadlock freedom for a query is preserved under
weakening of the delay declarations�

De�nition ��� Let D and D� be delay declarations for P � Then D� is weaker than D if� for
every predicate p of P � if delay p�x�� � � � � xn� until Cond ��x�� � � � � xn � is the delay declaration
for p in D�� then the delay declaration delay p�x�� � � � � xn� until Cond�x�� � � � � xn� is in D� and
j� �Cond�x�� � � � � xn�� Cond ��x�� � � � � xn��� �

Lemma ��� �Weakening Lemma� Let P be a program and let Q be a query� Let D and D�

be delay declarations for P� Suppose that D� is weaker than D� If Q has a deadlock delay SLD�
derivation in P � D� � fQg� then Q has a deadlock delay SLD�derivation in P � D � fQg�

The proof of this lemma uses a variant of the Switching Lemma� and is contained in the
Appendix� This result is important because it allows one to use a stronger delay declaration for
proving deadlock freedom of a query� It will be used in Section 
� where we shall introduce a
simple method for proving deadlock freedom�

� Suspension Covers of a Program Clause

In this section we introduce the notion of �suspension� cover and investigate its properties� This
notion is used in the next section to de�ne a simple compositional proof method for deadlock
freedom�

In order to study deadlock freedom� we describe statically the dependences among atoms of a
clause� which arise when a delay selection rule is used� Consider a generic clause of the program�
say c � H � Q � We relate each atom A of the body of c with a set of sets of atoms of Q � called
covers� Each cover is supposed to produce suitable information which guarantees that the delay
declaration for A is satis�ed� In other words� the relation between atoms and subqueries of Q
is a multi�producers one�consumer relation� Since the order and the multiplicity of atoms in a
subquery �C of Q is here not relevant� we shall identify �C with the set of its atoms�

The construction of a cover for A is incremental� �rst� one has to �nd a minimal set of atoms
of Q � say �D � which are directly related with A� in the sense that after their execution A will satisfy
its delay declaration� We call this set a direct cover of A� Then� for every atom B of �D � a cover of
B has to be added to the set so far constructed� We consider the situation in which there can be
more than one direct cover� Thus� an atom can have many covers� The covers of an atom A can
be graphically represented by means of an AND�OR tree� in the style of Nilsson �Nil���� The root
of the tree is A� Nodes are labeled by sets of atoms� Nodes labeled by sets containing more than
one element have sets of successor nodes each labeled by one of the elements� These successor
nodes are called AND nodes because in order to compute a cover of A� one cover of each of the
elements of the set of atoms has to be computed� Nodes labeled by a set containing one element�






have sets of successors each labeled by one direct cover of that atom� Then� the covers of A are
the sets of nodes of those paths in the tree having leave nodes equal to �� For instance� consider
the clause�

H � A��A��A��A


Suppose that the direct covers of this clause are as given in Figure �� The covers of an atom� say
A�� can be computed using the AND�OR tree for A� of Figure �� We use here Nilsson notation�
and indicate an AND�node by a circular mark linking their incoming arcs� In Figure � there are
two paths� yielding the collections of nodes consisting of the sets fA��A�g� and fA��A��A
g�

A3

A2

A3

A3

A2,A4

A4

A1

A2,A3

A2

Figure �� AND�OR tree for A�

In order to formalize the notion of direct cover� we use monotonic speci�cations� introduced by
Bossi and Cocco in �BC�	� for proving partial correctness of logic programs� The reader is referred
to e�g� �BC�	� AM	
� for a thorough treatment of monotonic speci�cations for veri�cation of logic
programs� We recall here the main concepts�

A speci�cation for a predicate symbol p is a pair of assertions of a suitable �extension� of a
�rst order language� called pre� and post�condition� which describe the form of the arguments of
atoms with p as predicate symbol� before and after their call� Monotonic speci�cations are then
speci�cations consisting of monotonic assertions� i�e� assertions whose truth is preserved under
substitution� One speci�cation is associated with each predicate symbol of the program� We use
the following notation to write down a speci�cation of an n�ary predicate p�

fPrepg p�xp� � � � � � x
p
n � fPost

pg�

An asserted program is a program augmented with one speci�cation for every of its predicate
symbols� A speci�cation for a predicate p in P can be translated into a speci�cation for atoms
p�t�� � � � � tn�� by linking the argument variables xp� � � � � � x

p
n to the terms t�� � � � � tn as follows� For

an atom A � p�t�� � � � � tn� the precondition Pre�A� and postcondition Post�A� for A are�

Pre�A� � Prepfxp
� �t�� � � � � x

p
n �tng

Post�A� � Postpfxp� �t�� � � � � x
p
n �tng

For a queryQ � A�� � � � �Ak � we de�ne Pre�Q� as Pre�A�� � � � � � Pre�Ak �� Likewise for Post�Q��
We say that Q satis�es its precondition �resp� postcondition�� if j� Pre�Q� �resp� j� Post�Q���

�



Example ��� One can de�ne the following speci�cation for the predicate append�

fGround�x�� x�� � Ground�x��g append �x�� x�� x�� fGround�x�� x�� x��g

Here Ground�x � means that x is a ground term� i�e� without variables� and Ground�x�� � � � � xk �
is an abbreviation for Ground�x�� � � � � �Ground�xk �� The atom append ����� ��� ��� zs� has as pre�
and post�condition Ground����� ��� ��� � Ground�zs� and Ground����� ��� ��� zs�� respectively� Then
it satis�es its precondition� but not its postcondition� �

De�nition ��� �direct suspension cover� Let c� H � Q be an �asserted� clause� A direct
�suspension� cover of A in c is the set of pairs � �C �A�� where �C is the minimal subquery of Q s�t�

j� Pre�H � � Post� �C �� Pre�A�

holds� �

A direct cover of an atom provides a minimal set of body atoms� which is related with that
atom by means of the speci�ed condition� Minimality is required because we want the programmer
to perform as little work as possible when proving a program correct�

We formalize the notion of covers of a clause by means of the following inductive de�nition�

De�nition ��� �clause covers� The set of covers of c is the least set S of pairs consisting of
one set of body atoms and one body atom of c s�t��

� ���A� is in S if � is a direct cover of A in c�

� � �C �A� is in S if

	 A 	
 �C �

	 �C is of the form fC�� � � � �Ckg � �D� � � � � � �Dk s�t�

� fC�� � � � �Ckg is a direct cover of A in c� and

� � �Di �Ci � is in S for all i in ��� k ��

�

We say that �C is a cover for A in c if � �C �A� is in the covers of c�
Note that covers are not obtained by performing a kind of transitive closure of the relation

being a direct cover � because a direct cover of A is not in general also a cover of A�
The following proposition can be immediately grasped by looking at the AND�OR tree de�

scribing the covers of an atom�

Lemma ��
 Let �C be a non�empty cover for B� Let A be an atom in �C� Then� there exists a
cover �D for A such that �D � �C �

We have the following immediate consequence of this property�

Corollary ��� If �C is a non�empty cover for A� then there is at least one atom of �C which has
empty cover�

This result will be used for proving the soundness of our proof method for deadlock freeness�
Observe that to construct the covers of a clause� one can use the least �xpoint construction

yield by De�nition ���� Note that every clause has a �nite number of covers� because a clause
consists of a �nite number of atoms� Thus� De�nition ��� provides a terminating algorithm for
�nding the covers of a clause �assumed that the property of being a direct cover is decidable��






� A Method for Deadlock�Freedom

Delay declarations can be source of incompleteness when they are too restrictive� a computation
can become deadlocked� when the delay declaration causes the delay of all atoms in a query� Using
a weaker delay declaration� such a computation might have succeeded� In this section� we use the
notion of cover to develop a simple compositional method for proving logic programs with delay
declarations deadlock free�

Let us illustrate informally the operational intuition behind the method� If a query Q is
deadlock free� then for every delay SLD�derivation for Q and for every query in such a derivation�
every atom in that query either

� is already selectable� or

� will become selectable in some descendant of that query� unless it does fail�

Thus� in order to prove that a program is deadlock free� one has to specify statically what
should be done in order to make a delayed atom selectable� If an atom in a query is delayed� it
means that its delay declaration has not been satis�ed �yet�� This delay declaration can become
satis�ed by resolving some other atoms� A cover provides a set of such atoms�

Formally� we proceed as follows� First� we relate the preconditions to the delay declarations�
by means of the following notion�

De�nition 
�� �good program� We say that a predicate p is good if its delay declaration is
�equivalent to��

delay p�x�� � � � � xn� until Pre�p�x�� � � � � xn��

A clause is good if every predicate in it is good� A program is good if every predicate in it is good�
�

Next� we use the notion of goodness to de�ne the concept of delay well�asserted program�

De�nition 
�� �delay well�asserted� A clause H � Q is delay well�asserted if

�� it is good� and

�� j� Pre�H � � Post�Q�� Post�H ��

A program is delay well�asserted if every clause of it is� �

Delay well�assertedness of a program guarantees that every time an atom is called� then it
satis�es its precondition� and after its execution �using a delay selection rule� it satis�es its post�
condition� Thus the de�nition of well�assertedness allows one to prove the partial correctness of a
logic program with dynamic scheduling w�r�t� a set of speci�cations where the preconditions are
�xed to be �equivalent to� the delay declarations�

We obtain the following su�cient criterion for deadlock freedom�

Theorem 
�� �Deadlock Freedom Theorem� Let P be a program and let Q be a query such
that

�� P is delay well�asserted� and

	� every atom occurring in Q or in the body of a clause of P has at least one cover�

Then� every delay SLD�derivation of Q is deadlock free �with respect to P��

In order to apply Theorem 
��� we use preconditions which are equivalent to the delay dec�
larations� However� from Lemma ���� it follows that we can use preconditions that imply the
conditions in the delay declarations� Therefore� in order to prove that a query in a program is
deadlock free� we can apply our method to the program with a delay declaration stronger than
the original one�

�



Observe that� from the de�nition of good program� it follows that every time an atom is
selected� it satis�es its precondition� Therefore� from the de�nition of delay well�assertedness� we
have that an atom satis�es its postcondition when its execution is terminated� So a program which
satis�es the hypothesis of the theorem is partially correct� Thus our method allows one to prove
the partial correctness of a logic program with dynamic scheduling w�r�t� a set of speci�cations
where the preconditions are �xed to be �equivalent to� the delay declarations�

��� Discussion

The proof method based on Theorem 
�� is based on the simple notion of cover for describing the
possible schedulings of a program� Moreover� it is compositional� i�e� its veri�cation condition
deals with each program clause separately� As one should expect� these two nice properties a�ect
the power of the method�

From a simple de�nition of cover� we have the drawback that one cannot deal directly with
delay declarations consisting of a disjunction of two or more conditions� For instance� we cannot
prove directly that quicksort is deadlock free w�r�t� the delay declaration D s�t�

delay qs�x�� x�� until Ground�x�� �Ground�x��
delay part�x�� x�� x�� x�� until Ground�x�� x�� �Ground�x�� x�� x��
delay app�x�� x�� x�� until Ground�x�� x�� �Ground�x��
delay � �x�� x�� until Ground�x�� x��
delay 
 �x�� x�� until Ground�x�� x��

However� we can obtain the desired result by applying the method to one of the two quicksort
programs obtained taking as delay declaration for a predicate the one consisting of the �rst and
second disjunct of the original delay declaration� respectively� From the Weakening Lemma� we
have for instance that queries of the form qs�x�� x�� with x� ground are deadlock free w�r�t� D�
An analogous result holds for queries of the form qs�x�� x�� with x� ground� So� by applying this
reasoning also to part and app we obtain that quicksort is deadlock free w�r�t� the delay declaration
D� In order to have a method for dealing with disjunctive delay declarations in full generality� it
seems that a more involved de�nition of cover is needed� which can deal with the case analysis
caused by the disjuncts of the delay declaration�

From the compositionality� we have the drawback that the method is not applicable for proving
that a query is deadlock free� when the corresponding program is not deadlock free�

The following example illustrate this situation�

Example 
�
 Consider the program imp �standing for incomplete message protocol��

p��msg�y�jx �� �
read�y��
p�x ��

p�� ��� �
c��msg�y�jx �� �

write�y��
c�x ��

c�� ��� �
write�a� � �
read�x �� �

augmented with the following delay declaration�

delay p�x � until true
delay c�x � until x � � � � x � �y jz �
delay read�x � until x � a
delay write�x � until true

�



It is easy to show that imp is not deadlock free� by considering for instance the query p�x ��
However� the query p�x �� c�x � is deadlock free with respect to imp �see e�g� the proof given in
�CD	
��� However� we cannot apply our method for proving this result�

We believe that a general method for proving deadlock freedom is necessarily rather involved�
Therefore� in this paper we have chosen for the simplicity and elegance� for the price of a more
restrictive application range of our results� However� it seems that we can extend the applicability
of our method for proving deadlock freedom of queries� by integrating it with transformational
techniques� We are actually investigating a technique� where one has to �nd a suitable specializa�
tion of the program with respect to the considered query that allows one to apply a compositional
proof method� like our one or those developed in �AL	�� EG	
� to the resulting program�

� Practical Instances of the Method

In the previous section� we provided a method for proving programs deadlock free� However� there
is no assumption on the assertion language to be used� In this section� we present two instances
of the method� where the �assertion� language is �xed to be the one based on modes and types�
respectively�

��� Proving Deadlock Freedom Using Modes

In �Mel��� Red�
� DM���� modes are used in veri�cation of Prolog programs� In this section� we
instantiate our method for proving deadlock freedom to the case where the assertions consist of
mode declarations�

First� let us give some terminology�

De�nition ��� �Mode� Consider an n�ary relation symbol p� A mode for p is a function mp from
f�� � � � �ng to the set f���g� If mp�i� � ���� then i is an input position of p and if mp�i� � ����then
i is an output position of p �both with respect to mp��

A mode mp for p is generally denoted as p�mp���� � � � �mp�n��� For an atom A� we write Inp�A�

�resp� Out�A�� to denote the set of input �resp� output� arguments of A� Also� if �C � A�� � � � �An

then Inp� �C � stands for Inp�A��� � � � � Inp�An � and Out� �C � stands for Out�A��� � � � �Out�An ��
A moded program is a logic program with one mode per predicate� �

Then� the de�nition of good program becomes�

De�nition ��� Let P be a moded program� A predicate p in P is good if its delay declaration is
the following�

delay p�x�� � � � � xn� until Ground�Inp�p�x� � � � � � xn���

A clause is good if every predicate in it is� A program is good if every clause in it is� �

The de�nition of deadlock�freedom prod�cons relation becomes�

De�nition ��� Let c�H � Q be a clause� Then the deadlock�freedom prod�cons relation for c�
denoted by DF � is s�t� � �C �A� is in DF i�

Var�Inp�A�� � Var�Inp�H �� � Var�Out�
C ��

�

Finally� the de�nition of delay well�assertedness becomes�

De�nition ��
 �delay well�moded� A clause c � H � Q is delay well�moded if

�� it is good� and

	



�� Var�Out�H �� � Var�Inp�H �� � Var�Out�Q���

�

We conclude this section with an example�

Example ��� Consider the program quicksort �

qs��x jxs �� ys��
part�xs � x � ls � bs�� qs�ls � sls�� qs�bs � sbs�� app�sls � �x jsbs �� ys��

qs�� �� � ���

part��x jxs �� y � �x jls �� bs�� x 
 y � part�xs � y � ls � bs��
part��x jxs �� y � ls � �x jbs ��� x � y � part�xs � y � ls � bs��
part�� �� y � � �� � ���

app��x jxs �� ys � �x jzs ��� app�xs � ys � zs��
app�� �� ys � ys��

In Apt and Luitjes �AL	��� they showed that the query qs�s � y�� with s a ground term� is deadlock
free� when the moding of the program is

qs�����
part���������
app�������
� �����

 �����

and the delay declarations are �implied� by the moding� The same result can be proven using our
method� where we choose suitable� possible stronger� delay declarations equivalent to the moding�
Then� Theorem ��� allows us to conclude that the result holds also for weaker delay declarations�
We examine here another moding for quicksort�

qs�����
part���������
app�������
� �����

 �����

This moding corresponds to a non�standard use of quicksort to �nd the permutations of an ordered
list of natural numbers�

As we can see� all variables that appear in the output positions of the heads of clauses� appear
either in an output position in the body� or in an input position of the head� Let us now add some
delay declarations in order to get a good program�

delay qs�x�� x�� until Ground�x��
delay part�x�� x�� x�� x�� until Ground�x�� x�� x��
delay app�x�� x�� x�� until Ground�x��
delay � �x�� x�� until Ground�x�� x��
delay 
 �x�� x�� until Ground�x�� x��

With these delay declarations� quicksort is delay well�moded� Thus� in order to prove deadlock
freedom� we only need to prove that every body atom has a cover� For most clauses� this is
straightforward� Therefore� we only show the �direct� covers for the �rst clause of qs �

atom �direct� cover
part�x � xs � xl � xb� fqs�xl � yl �� qs�xb � yb�� app�yl � �x jyb �� ys�g
qs�xl � yl� fapp�yl � �x jyb �� ysg
qs�xb � yb� fapp�yl � �x jyb �� ysg
app�yl � �x jyb �� ys� �

��



Note� that in this example� the covers are the same as the direct covers� Moreover� every body
atom has exactly one cover�

Because all body atoms have a cover� it follows by Theorem 
�� that quicksort is deadlock
free� Assume that n� s and t are ground terms� Then� for instance the queries qs�x � s�� and
part�n� y � s � t� are deadlock free�

��� Proving Deadlock Freedom Using Types

In �DM���� types were also used for program veri�cation of Prolog programs� In this subsection�
we instantiate our approach to the case where one wants to reason using types� Such a method is
more general than the method using only modes� yet simpler to implement than a method using
the full power of monotonic assertions�

First� we need de�ne the notion of a type�

De�nition ��
 �Type� A type is a set of terms closed under substitution� �

Note that this is a very general de�nition� we are not interested in the precise structure of types�
or in ways to reason with types� For instance� for practical purposes� it might be advisable to
restrict types to decidable sets� For our purposes� we only need the fact that a type is closed under
substitution�

A typed term is a construct of the form s � S � where s is a term and S is a type� Given a
sequence s � S � s� � S�� � � � � sn � Sn of typed terms� we write s 
 S if for i 
 ���n� we have si 
 Si �
and de�ne Var�s � S� � Var�s�� Furthermore� we abbreviate the sequence s��� � � � � sn� to s�� We
say that s � S is realizable if s� 
 S for some ��

De�nition ��� A type judgement is a statement of the form

s � S � t � T� ���

A type judgement ��� is true� written

j� s � S � t � T

if for all substitutions �� s� 
 S implies t� 
 T� �

Types for predicates are de�ned as follows�

De�nition ��� �Type for p� Consider an n�ary relation symbol p� A type for p is a function tp
from ���n� to the set Types � If tp�i� � T � then T is the type associated with the position i of p� �

In �DM���� a combination of types and modes is used� That is� one uses declarations of the
form

member�� � Num�� � ListOfNum�

to denote that the predicate member to be used with a term of type ListOfNum as input in its
second argument� to generate a term of type Num as output in its �rst argument� We allow only
one type declaration per predicate�

We introduce some terminology and notation� that is used in the sequel� If H � p�u � S�v � T��
then we denote u � S by Inp�H � � IH � and v � T by Out�H � � OH � Also� if �C � A�� � � � �An

then Inp� �C � � I �C stands for Inp�A�� � IA�
� � � � � Inp�An� � IAn and Out� �C � � O �C stands for

Out�A�� � OA�
� � � � �Out�An � � OAn �

Then� the de�nition of good program becomes�

De�nition ��� We say that a predicate p is good if its delay declaration is �equivalent to��

delay p�x � I�y � O� until x in I�

A clause is good if every predicate in it is� And a program is good if every clause in it is� �

��



The de�nition of deadlock freedom prod�cons relation becomes�

De�nition ���� Let c � H � Q be a clause of P � The deadlock freedom prod�cons relation for
c� denoted by DF � is s�t� � �C �A� is in DF i�

j� Inp�H � � IH �Out� �C � � O �C � Inp�A� � IB

�

Finally� the de�nition delay well�asserted program becomes�

De�nition ���� �delay well�typed� A clause H � Q is delay well�typed if

�� it is good� and

�� j� Inp�H � � IH �Out�Q� � OQ � Out�H � � OH �

A program is delay well�typed if every clause of it is� �

Let us see now how these results can be applied to speci�c programs�

Example ���� Consider again the program append� Let us type this program as follows�

app�� � List �� � Top�� � List�

where List is the set of lists� and Top is the set of all terms� This typing corresponds to a use
of the program to append a list to a generic term� Clearly append is delay well�asserted� Let us
choose a delay declaration such that append is good�

delay app�x�� x�� x�� until x� 
 List

It is easy to check that the atom in the body the non�unitary clause of append has an empty type
cover� So� by Theorem 
�� we have that append is deadlock free� Assume that s is a list� Then�
the query app�s � x � y� is deadlock free� �

We conclude this section by showing that the notions de�ned in this section and those in the
previous one� are instances of the corresponding notions de�ned in Section 
�

Theorem ����

�� The notions of Section ��� are instances of the corresponding notions of Section ��	�

	� The notions of Section ��	 are instances of the corresponding notions of Section ��

From this result� it follows that the Deadlock Freedom Theorem holds� when we replace the original
de�nitions either with those of Section ���� or with those of Section ����

� Related Work

In �MT	�� we have used a similar notion of cover in the veri�cation condition of a method for
proving termination of logic programs with dynamic scheduling� However� there the condition in
the de�nition of direct cover is di�erent� re�ecting the di�erent property we want to study� namely
termination�

The notion of cover can be viewed as an alternative approach to the one based on static
reordering of the atoms of a clause� as the one e�g� incorporated in the compiler of Mercury
��SHC	
��� According with this latter approach� one �nds a suitable reordering of the body
atoms of a clause� and then applies static analysis techniques developed for Prolog programs� We
think that our approach is more neat� because it allows one to reason in full generality on the

��



dynamic scheduling� without being committed to a speci�c one� Moreover� the notion of cover is
constructive� and it provides an algorithm for computing all the useful reorderings� This way� we
avoid to choose a speci�c reordering at the level of program veri�cation� As a consequence� we
leave more room to use static reorderings at a subsequent stage for other purposes� like program
optimization�

In �CD	
� a proof method for proving the deadlock freedom of a query in for a class of concurrent
constraint programs is given� The notion of scheduling order is used to describe dependencies
among sets of predicates� a partition of all the program predicates is given� and the resulting
sets are arranged in a chain ordering called scheduling� Then the annotation method described in
�DM	�� is applied to the programs obtained by considering the clauses that de�ne the predicates
occurring in the chain pre�xes� This guarantees that every derivation of the considered query
where the selection of the clauses respects the scheduling order is deadlock free� Thus the result
follows by the independence of the deadlock freedom from the scheduling order� There are two
main di�erences of this method with the one we proposed� The �rst is that their method is not
compositional� since the notion of scheduling order requires to check a condition on the program�
Instead� our method works clause per clause� The second di�erence is that they deal with deadlock
freedom of queries� while we consider �also� deadlock freedom of programs� A consequence of the
�rst di�erence is that they can prove more queries to be deadlock free than by using our method�
a consequence of the second di�erence is that their method cannot be applied directly to prove
that a program is deadlock free�

Our method generalizes the two methods given by K�R� Apt and I� Luitjes in �AL	��� In
essence� the di�erence is that we modify by means of the notion of cover� the original notions of well�
modedness and well�typedness� which were introduced to deal with Prolog programs� Instead� Apt
and Luitjes apply the original �stronger� notions in their methods for proving deadlock freedom�
By using the notion of cover� we can prove deadlock freedom of a larger class of programs� The
reason is that� well�modedness and well�typedness impose a speci�c order on the body atoms of a
clause� Instead� our methods are independent from the order of body atoms�

An extension of the method given in �AL	�� for modes has been recently introduced in �EG	
��
The notion of layered mode is introduced� that is obtained by the original notion by adding some
information on the order in which the arguments in an atom will be instantiated� The resulting
notion of well�modedness allows one to prove deadlock freedom of a larger class of queries� It
seems still less powerful than the method by �DM	��� yet simpler�

In �Rao	��� M�R�K� Krishna Rao de�nes a notion of well�moded programs� which has similarities
with our condition on the existence of covers� The di�erence is that� he de�nes a producer�
consumer relation on the body atoms of a clause� where the products are the variables� He then
states that a clause is well�moded if this relation is acyclic and every variable has at least one
producer� In the following example� we show that covers are more general than this producer
consumer relation� Consider the query p�x �� q�x � y�� q�y � x �� p�y�� where the modes are p��� and
q������ Recall that a body atom A is a producer of a variable x if x occurs in its output positions�
otherwise �i�e�� if x does not occur in its output positions� then A is a consumer of x if it occurs
in the variables of A� For the head of a clause the de�nition of producer and consumer are the
reverse� The de�nition of well�modedness of a clause is based on two conditions� �a� that the
producer�consumer relation is not acyclic� �b� that every variable in the clause has at least one
producer�

The producer�relation for p�x �� q�x � y�� q�y � x �� p�y� is cyclic� it is the set

f�p�x �� q�x � y��� �q�y � x �� q�x � y��� �p�y�� q�y � x ��� �q�x � y�� q�y � x ��g�

On the other hand� one can compute the following �direct� covers for this query�

atom direct cover cover

p�x � � �
q�x � y� fp�x �g� fq�y � x �g fp�xg� fp�y�� q�y � x �g
q�y � x � fp�y�g� fq�x � y�g fp�yg� fp�x �� q�x � y�g
p�y� � �

��



The reason we can handle this query is that� in the de�nition of cover� we implicitly discard all
cyclic paths� Then� the existence of a cover ensures that there exist acyclic paths�

� Conclusion

In this paper we have proposed a simple compositional proof method for proving deadlock�freedom
of logic programs with dynamic scheduling� The central notion used in the method is the notion of
cover� which describes the possible dynamic schedulings of the body atoms of a clause� according
to a given delay declaration�

The present work provides a useful theoretical tool for reasoning formally about logic programs
with dynamic scheduling� In our opinion� the relevance of a simple and compositional method�
is that it can be understand and used by the programmers without much e�ort� We are actually
investigating the use of other static analysis techniques� like those based on program transforma�
tions� in order to extend the applicability of the method to queries with respect to to programs
that are not deadlock free�
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A Appendix

A�� Proof of the Weakening Lemma

Theorem ��� �Weakening Lemma�� Let P be a program and let Q be a �de�nite� query� Let D
and D� be delay declarations for P� Suppose that D� is weaker than D� If Q has a deadlocked delay
SLD�derivation in P � D� � fQg� then Q has a deadlocked delay SLD�derivation in P � D � fQg�

To prove this theorem� we need the following lemma� essentially equivalent to Lemma 	�� in
�Llo����

Lemma A�� �Switching Lemma� Let P be a program and let Q� a goal� Let � � Q��Q��Q� � � �
be a derivation for P � fQ�g� such that�

� Q� � A�B � �L�

� Q� � � �C �B � �L���� and

� Q� � � �C � �D � �L������

Then there exists a derivation �� � Q �

��Q
�

��Q
�

�� � � � for P � fQ �

�g such that

� Q �

� � Q��

� Q �

� � �A� �D � �L�����

� Q �

� � � �C � �D � �L�����
�

�� and

� ���� is a variant of ����
�

��

Proof� The input clauses for the �rst two derivation steps are C � �C and D � �D � We have that
B���� � D�� � D����� Thus we can unify B and D � Let ��� be an mgu of B and D � Also� we
know that� for some substitution �� we have that ���� � �����

Without loss of generality� we can assume that ��� does not act on variables in C � �C � Fur�
thermore� C� � C ���� � A���� � A����� Hence we can unify C and A���� Let �

�

� be a mgu� Thus�
for some ��� � � ����

�� Consequently� ���� � ����
�

��
�� Thus we have shown that A and B can be

selected in reverse order�
We now have to show that ���� and ����

�

� are variants� First� note that A�
�

��
�

� � C ����
�

�� but that
�� is an mgu of A and C � Thus ����

�

� � ���� for some �� But B��� � B����
�

� � D����
�

� � D���� � D��
Thus � uni�es B�� and D � and therefore � � ���

�� for some ���� Consequently� ����
�

� � �����
��� This�

together with the fact that ���� � ����
�

��
�� implies that ���� and ����

�

� are variants�
Finally� because Q �

� is a variant of Q� we can complete �� by having Q �

i � Qi	� for all i � ��
using some renaming 	� �

Proof of Theorem ����
Let � � Q�� � � � �Qn be a deadlocked delay SLD�derivation in P � D� � fQg �i�e� Q � Q��� Using
the Switching Lemma� we construct a delay SLD�derivation for P � D � fQg� We then show that
this derivation is deadlock�

First� we construct a sequence ��� ��� � � � of delay SLD�derivations� We denote the j �th query
in �i as Q i

j � We denote the selected atom in Q i
j as Ai

j � To begin with� we set �� � �� Then� we

construct �i�� from �i as follows�
Let k be the least index such that

� k � ��

� Ai
k is not introduced in the resolution step Q i

k�� � Q i
k �

�




� Ai
k is selectable in D � and

� if Ai
k�� is introduced in the same derivation step as Ai

k � then it is not selectable in D�

If no such k exists� then �i�� � �i � Otherwise� construct �i�� out of �i by switching the selected
atoms in Qk�� and Qk �

By the Switching Lemma we have that� for all i � �i is a delay SLD�derivation of length n� for
P � D� � fQg� Moreover� the queries Q i

n �for all i� are variants of each other� and therefore all
derivations �i are deadlocked in D�� Finally� because � is �nite� we have for some �nite 
 that
�� � �����

Using ��� we construct a deadlocked delay SLD�derivation for P � D � fQg� Let m be the
greatest index such that the pre�x Q�

� � � � � �Q
�

m of �� is a pre�x of a delay SLD�derivation for
P � D � fQg� Such an m exists because the sequence consisting of only Q�

� itself is the pre�x of
a delay SLD�derivation for P � D � fQg� If we have that m � n� then we know that Qm has no
atom selectable in D�� thus it has no selectable atom in D� and therefore it is deadlocked with
respect to D�

Suppose that m � n� We prove by contradiction that Q�

� � � � � �Q
�

m is a deadlocked delay SLD�
derivation for P � D � fQg� Suppose that Q�� � � � �Qm not a deadlocked delay SLD�derivation for
P � D � fQg� As it is the pre�x of a delay SLD�derivation for P � D � fQg� this implies that Qm

contains at least one atom which is selectable with respect to D� Any atom selectable in D� is also
selectable in D�� Because �� is a deadlocked delay SLD�derivation for P � D� � fQg� for every
atom A which is selectable in Q�

m �with respect to D�� there exist a � and j �j � m� such that
A� � A�j � Let k be the least of these j � Then we have that �� 	� ����� because

� k � ��

� the selected atom in Q�

m�� is not selectable in D �otherwise m would not be maximal�� which
implies that k � m � � and therefore� because A�k was introduced in Qm or before� A�k is
not introduced in A�k���

� A�k is selectable in D� and

� either A�k is not introduced in the same derivation step as A�k��� or A
�

k�� is not selectable
in D� because otherwise k would not be minimal�

But this is in contradiction with �� � ����� !From this contradiction� we can conclude that Qm

does not contain atoms which are selectable in D� and therefore Q�

� � � � � �Q
�

m is a deadlocked delay
SLD�derivation for P � D � fQg� �

A�� Proof of the Deadlock Freedom Theorem

The prod�cons relationDF for c is speci�ed by means of the monotonic assertion schemeA� �C �A� �
Pre�H � � Post� �C � � Pre�A�� In order to relate direct covers of an atom with direct covers of
its instances� consider the prod�cons relation DF� for c� speci�ed by means of the monotonic
assertion scheme A� �C �A�� � Pre�H �� � Post� �C �� � Pre�A��� Then we have the following
result�

Proposition A�� �monotonicity� Let �C be a direct cover of A in c w�r�t� DF �For every substi�
tution �� there exists a subset �D of �C � such that �D is a direct cover of A� in c� w�r�t� DF��

Proof� Because �C is a direct cover of A� and from the monotonicity of A� �C �A�� we have that
either �C � or one of its proper subsets is a direct cover of A� in c� w�r�t� DF�� �

Lemma ��
� Let �C be a non�empty cover for B� Let A be an atom in �C � Then� there exists a
cover �D for A such that �D � �C �

��



Proof� We prove the result by induction on the size n of �C � Assume that the result holds for all
�C of size smaller then n�

As �C is non�empty� we know by de�nition of cover that �C is of the form

fC�� � � � �Ckg � �D� � � � � � �Dk

where fC�� � � � �Ckg is a direct cover for B and� for i 
 ����k �� �Di is a cover for Ci � We distinguish
two cases�

� Suppose that A � Ci � for some i 
 ����k ��

Then� �Di is a cover for A� Moreover �Di � �C � because Ci 	
 �Di �

� Suppose that A 
 �Di � for some i 
 ����k ��

We know that �Di is a non�empty cover for Ci � since A 
 �Di � But then� because �Di � �C � we
know by induction hypothesis that there exists a cover �E for A such that �E � �Di � Because
�Di � �C � it follows that �E � �C � �

Theorem 
�� �Deadlock Freedom Theorem�� Let P be a program and let Q be a query such
that

�� P is delay well�asserted� and

	� every atom occurring in Q or in the body of a clause of P has at least one cover�

Then� every delay SLD�derivation of Q is deadlock free �with respect to P��

To prove this result� we proceed as follows� We consider a generic derivation �� and prove that
all the queries of � satisfy the property that every of its atom has at least one cover� From this� it
follows that every query of � contains at least one atom which is not delayed� Hence� � is deadlock
free�

The following lemma on �direct� covers of a delay well�asserted program is used�

Lemma A�� Let P be a program and let Q be a query� Suppose that

�� P is delay well�asserted� and

	� every atom occurring in Q or in the body of a clause of P has at least one cover�

Then� for every SLD�resolvent Q � of Q� every atom in Q � has at least one direct cover�

Proof� Let Q � be a SLD�resolvent of Q � using an input clause H � �B and an mgu �� Let C be
the selected atom in Q � By hypothesis �� there exists a direct cover �C for C in Q � By Lemma A���
there exists a subquery �C � of �C � such that �C � is a direct cover for C � in Q��

Now� we have to prove that every atom A� in Q � has a direct cover� Let A� be of the form A��
where A is an atom in either Q or �B �

� Suppose that A occurs in �B �

By hypothesis �� there exists direct cover �D of A in H � �B � By Lemma A��� there ex�
ists a subquery �D � of �D� such that �D � is a direct cover for A� in H � � �B�� Because
j� Post� �C ��� Pre�C �� and C � � H �� we have that j� Post� �C ��� Pre�H ��� Moreover� we
have that C � 	
 �C �� It follows that j� Post� �C �� � Post� �D ��� Pre�A��� Because �C � �D � is a
subquery of Q �� it follows that A� has a direct cover in Q ��

��



� Suppose that A occurs in Q �

By hypothesis �� there exists a direct cover �D of A in Q � By Lemma A��� there exists a
subquery �D � of �D� such that �D � is a direct cover for A� in Q�� If �D � does not contain C ��
we have that �D � is a subquery of Q �� Thus� A� has a direct cover in Q ��

Suppose that �D � does contain C �� Because C � is not in Q �� �D � is not a direct cover of A� in
Q �� Therefore� we need to replace C � by some atoms that do occur in Q �� Because C � � H �
and H � � �B� is delay well�asserted we know that

j� Pre�C �� � Post� �B��� Post�C ��

But then� we also have that

j� Post� �C �� � Post� �B��� Post�C ��

Finally� it follows that

j� Post� �D � � C �� � Post� �C �� � Post� �B��� Post�A��

where �D ��C � is obtained from �D � by deleting C �� But then� it follows that A� has a direct
groundness cover in Q �� �

Using the above lemma� we obtain the following simple proof�

Proof of Theorem 
��� Let � be an arbitrary �nite delay SLD�derivation for Q in P � By
applying Lemma A��� starting at Q � we can prove that every atom in every query in � has a
suspension cover� Then� by Corollary ���� and by the hypothesis that P is good� it follows that
every non�empty query of � contains at least one selectable atom� Hence� � is not deadlocked� �

A�� Proof of Theorem ����

Theorem �����

�� The notions of Section ��� are instances of the corresponding notions of Section ��	�

	� The notions of Section ��	 are instances of the corresponding notions of Section ��

Proof�
�� Take Ground � consisting of all the ground terms� as the only type� Then the notions of
Sections ��� and ��� coincide�
�� Translate a typed atom p�x � S�y � T� into the speci�cation for p having fx 
 Sg as precon�
dition� and fy 
 Tg as postcondition� Then� a program is good� according with the de�nition in
Section ��� i� the corresponding asserted program obtained using the above transform is good ac�
cording with the de�nition in Section 
� A prod�cons relation is a DF relation� according with the
de�nition in Section ��� i� it is a DF relation� according with the de�nition in Section 
� where the
speci�cations are those obtained using the above transform� Finally� a program is delay well�typed
i� the corresponding asserted program obtained using the above transform is delay well asserted� �

�	


