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Abstract

In this paper we propose a method for proving termination of logic programs with delay
declarations� The method is based on the notion of recurrent logic program� which is used
to prove programs terminating with respect to an arbitrary selection rule� Most importantly�
we use the notion of bound query �as proposed by M� Bezem� in the de�nition of cover � a
new notion which forms the kernel of our approach� We introduce the class of delay recurrent
programs and prove that programs in this class terminate for all local delay selection rules�
provided that the delay conditions imply boundedness� The corresponding method can be also
used to transform a logic program into a terminating logic program with delay declarations�

AMS Subject Classi�cation ������� ��N	
� ��Q	�� ��Q�� ��Q��
CR Subject Classi�cation ������� D�	��� D����� F���	�
Keywords and Phrases� Logic programs� delay declaration� termination�

� Introduction

Delay declarations are used for the dynamic control of the selection of atoms in a derivation� The
idea is that� besides the usual logic clauses� the program contains declarations of the form

delay predicate until condition

Then� a selection rule is used which only selects an atom from a query� if that atom is not delayed�
i�e� the condition in the delay declaration for that atom is satis�ed� Delay declarations are
employed in many programming systems based on logic programming� like NU�Prolog �TJ��	 and
G
odel �HL��	� They are important for a number of reasons for instance� they can be used to ensure
termination of the program� or to support coroutining� As a consequence� e�cient algorithms can
be produced from a simple logical speci�cation augmented with suitable delay declarations� This
approach re�ects the idea of considering a program as consisting of two parts logic and control�

In this paper� we study termination of logic programs with delay declarations� To illustrate how
delay declarations may a�ect the termination behaviour of a program� consider the well�known
append�� program

app��x jxs 	� ys � �x jzs 	� � app�xs � ys � zs��
app��	� ys � ys��
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and the query app�xs � ��� �	� zs�� xs � ��� �� �	� This query does not terminate when the leftmost
selection rule is used� However� suppose we add the following delay declaration for append��

delay app�xs � ys � zs� until list�xs�

With this delay declaration� the leftmost atom in the query is delayed� Therefore� if we use a delay
selection rule� only the second atom can be selected� resulting in the resolvent app���� �� �	� ��� �	� zs��
Here the atom in the query is not delayed� Moreover� this query is terminating�

The termination behaviour of a logic program with delay declarations is rather subtle� There
are various aspects� sometimes unexpected� that one has to take into account� A thorough dis�
cussion of these aspects is given by Naish in �Nai��	� For instance� one would expect the delay
declaration

delay app�xs � ys � zs� until nonvar�xs� � nonvar �zs�

to ensure the termination of append��� However� as illustrated by Naish� the query app��ajT 	� � 	�T �
satis�es the delay declaration� but has an in�nite derivation� The fact that termination behaviour
of logic programs in the context of dynamic selection rules is very subtle� is re�ected also in the vari�
ous methods that have been introduced� which are either based on heuristics �e�g� �LK��� MNL��	��
or are rather specialized �e�g� �AL��	��

In this paper we try to tackle the problem from a di�erent perspective� That is� we do not
consider general coroutining� with all its problems� but consider the class of delay selection rules
which are �local�� Local selection rules are introduced in �Vie��	� and correspond to selecting
always in a query one of the most recently introduced atoms in the derivation from the initial
query� Local selection rules behave well w�r�t� semantic information� in the following sense� If
an atom of a query in a derivation is selected� then the derivation is committed to resolve that
atom� and only after that atom has been completely resolved� an other atom of the query can be
selected� It is this semantic property of local selection rules� which allows us to de�ne a simple�
yet powerful� method for proving termination of logic programs with delay declarations�

Our method is based on the notion of bounded query� introduced by Bezem in �Bez��� Cav��	
to study termination of logic programs� We use this notion to de�ne the central concept of our
method� namely the covers of a body atom of a clause �query�� Then� using a combination of
syntactical �covers� and semantical �model� information� we de�ne the notion of delay recurrent
program� This notion is a generalization to SLD�resolution with delay selection rules� of the one of
recurrent program� introduced by Bezem to study termination of logic programs w�r�t� an arbitrary
selection rule� We prove that a delay recurrent program terminates for every local selection rule
which selects only bounded atoms� Thus� this notion provides a method for proving termination
of a logic program with delay declarations� when the delay declarations imply boundedness� i�e� if
an atom satis�es its delay declaration� then that atom is bounded� Alternatively� this method can
be used to �nd suitable delay declarations that ensure termination of goals for a given program�
by choosing delay declarations which imply boundedness�

We believe that the contribution of this paper is important for at least two reasons it provides
a simple tool to reason about termination of logic programs with delay declarations� which can
be also used to transform a logic program in a terminating logic program with delay declarations�
moreover� it provides a new insight on the role of the selection rules when reasoning about the
run�time behaviour of logic programs with delay declarations� In particular� it shows that the
class of local selection rules is not only good because it supports e�cient searching techniques�
but also because it supports simple tools for proving termination�

The paper is organized as follows� After some preliminaries in Section �� we present our method
and the termination results in Section �� Then� in Section � we give an example of proving the
program quicksort�� terminating in reverse order� In Section �� we discuss some aspects of our
method�

A short version of this paper appeared in �MT��	�
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� Preliminaries

We shall use the following notation and terminology�
A logic program� called for brevity program and denoted by P � is a �nite set of �universally

quanti�ed� clauses H � Q � where Q is a query� i�e� a sequence of atoms� and H is an atom� In
the following� the letters A�B indicate atoms and c a clause� For a query Q � de�ne a Q�ground
instance of a clause c to be any instance of c which grounds all the atoms of Q � Finally� c�a�s� is
used as shorthand for computed answer substitution�

A sequence of atoms will also be denoted by �A� As we are not interested in the order of atoms�
we will sometimes treat sequences of atoms as multisets� Moreover� we will sometimes implicitly
translate a sequence of atoms into a set of atoms� in order to be able to refer to elements� subsets�
unions� etc� In those cases� multiplicity of atoms will be ignored� i�e� p� p will be translated into
fpg� We only do this where multiplicity of atoms is not an issue�

We shall use multisets and the multiset ordering �see �Der��	�� Recall that a multiset is a
unordered collection in which the number of occurrences of each element is signi�cant� We shall
consider here the multiset ordering on multisets of natural numbers� Formally� a multiset of natural
numbers is a function from the natural numbers to itself� giving the multiplicity of each natural
number� Then� given the standard order � on natural numbers� the ordering �mul on multisets
is de�ned as the transitive closure of the replacement of a natural number with any �nite number
�possibly zero� of natural numbers that are smaller under �� Since � is well�founded� the induced
ordering �mul is also well�founded� For simplicity we shall omit in the sequel the subscript mult
from �mul �

A delay declaration is denoted as follows for a predicate p of arity n a delay declaration has
the form

delay p�x�� � � � � xn� until Cond�x�� � � � � xn�

where x�� � � � � xn denote the arguments of p� and Cond�x�� � � � � xn� is a formula in some assertion
language� We shall not �x the syntax of that assertion language� as it is not relevant for the sequel
of the paper� The meaning of such a delay declaration is that in a query an atom p�t�� � � � � tn� can
only be selected if the condition Cond�t�� � � � � tn� is satis�ed� We shall assume that if an atom is
selectable then all its instances are selectable too� This condition is satis�ed by almost all the logic
programming systems which use delay declarations� Its importance in the study of termination is
crucial� and all the approaches we are aware of� for the study of properties of logic programs with
delay declarations� use this assumption�

The delay declarations in a program de�ne a class of selection rules� called delay selection
rules � A delay selection rule selects an atom from a query� among those atoms which satisfy their
delay declarations� If the query is non�empty and no such atom exists� no atom is selected and
the query is deadlocked � When using delay declarations� we are only interested in SLD�derivations
that are constructed using a delay selection rule� We call these derivations delay SLD�derivations�

� Delay�Recurrent Programs

The aim of this paper is to de�ne a class of programs that behave nicely with respect to termination�
First� we introduce the notion of delay recurrent program� Then� we prove that� for a suitable delay
declaration and a broad class of delay selection rules� every query in a delay recurrent program
has only �nite derivations� To this end� we use the notions of level mapping and of bounded query�
introduced in �Bez��� Cav��	�

De�nition ��� �level mapping� Let P be a program� A level mapping for P is a function
j j  BP � IN from the Herbrand base for P to the set of natural numbers� �

Thus� j j is only de�ned for ground atoms� However� one can associate to a non�ground atom� the
image of its set of ground instances with respect to j j

jjAjj
def
� fjA�j j A� is a ground instance of Ag
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Using this� we de�ne the notion of bounded atoms and queries�

De�nition ��� �bounded query� An atom A is bounded �with respect to j j�� if jjAjj is �nite�
A query Q is bounded if all the atoms in it are bounded� �

With a bounded query Q � A�� � � � �An is associated the multiset j�Q 	j as follows

j�Q 	j
def
� ��max jjA�jj� � � � �max jjAn jj		

where max jjAjj denotes the maximum of jjAjj� In the sequel� we shall often refer to j�Q 	j as the
level mapping of Q �

The idea of using a level mapping to prove termination is that one proves that� in a derivation�
selected atoms are always bounded and that the level mappings of the queries decrease� We can use
delay declarations to ensure that only bounded atoms are selected� i�e� that the delay declarations
imply boundedness�

De�nition ��� �safe delay declaration� A delay declaration is safe with respect to j j if for
every atom A� if A satis�es its delay declaration then A is bounded with respect to j j� �

So� by using safe delay declarations� we ensure that selected atoms are bounded� Now� we pro�
vide a method that ensures that the level mapping also decreases� For this� we use the information
that selected atoms are bounded� together with the additional information provided by a model
of the program� In order for an atom to be bounded� certain other atoms that originate from the
same body� must have been �partially� resolved� We call these sets of atoms covers � To de�ne the
covers of a body atom� we need the notion of direct covers� Intuitively� a direct cover of an atom
A in a query is a subset �B of that query� such that for some instantiation � of the variables in �B �
A� is bounded�

De�nition ��	 �direct cover� Let j j be a level mapping� Let Q be a query� let B be an atom
in Q and let �C be a subset of Q such that B �� �C � We say that �C is a direct cover for B with
respect to Q �and j j�� if there exists a substitution � such that B� is bounded with respect to j j
and Dom��� � Var� �C ��

Let H be an atom� We say that �C is a direct cover for B with respect to H � Q �and j j�� if
there exists a substitution � such that B� is bounded with respect to j j and Dom��� � Var�H � �C ��

Finally� a direct cover �C of B is minimal if no proper subset of �C is a direct cover for B � �

One should note that a body atom B can have zero� one� or more �minimal� direct covers� For
instance when� for B to become bounded� it is necessary to instantiate a variable of B which
does not occur anywhere else in the clause� B will have no direct covers� On the other hand� if
B is bounded whenever H is bounded� then there exists only one minimal direct cover� namely
the empty set� It is worthwhile to notice that the direct covers of an atom depend on the level
mapping one chooses� For instance� consider the clause p�x � � p�y�� and the two level mappings
j j� and j j� such that if s is a list then jp�s�j� is equal to its length� otherwise it is equal to �� and
jp�s�j� equal to � for every s � Then p�y� has no direct cover w�r�t� j j�� while it has � as direct
cover w�r�t� j j�� Finally� we would like to emphasize that direct covers can be �cyclic � in the sense
that two atoms can have each other in their direct covers� Take for instance the query p�x �� q�x �
and a level mapping j j in which boundedness of p�x � and q�x � depend on x � Then� p�x � will have
direct cover fq�x �g and q�x � will have direct cover fp�x �g�

In the de�nition of cover� we take a kind of �closure of the direct cover relation�

De�nition ��
 �cover� Let Q be a query and let j j be a level mapping� Let B be an atom in Q
and let �C be a subset of Q � Then� �C is a cover of B �with respect to Q and j j�� if hB � �C i is an
element of the least set C �C � P�Q 	P�Q�� such that

�� hB � �i � C whenever B has the emptyset as minimal direct cover� and
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�� hB � �C i � C whenever B �� �C � and �C is of the form

fC�� � � � �Ckg 
 �D� 
 � � � 
 �Dk

such that fC�� � � � �Ckg is a minimal direct cover of B in Q � and for i � ����k 	� hCi � �Dii � C�

The notion of cover of an atom in a clause is de�ned analogously� �

One can easily prove that the cover relation is

� �acyclic � in the sense that if B is in a cover of A then A is not in any cover of B �

� �monotone � in the sense that if �C is a cover of A then for all � a subset of �C � is a cover of
A�� and

� �well�founded � in the sense that if there exists an atom A in Q such that A has a cover then
there exists an atom B in Q such that B has an empty cover�

Using the notion of covers� we can de�ne the class of delay recurrent programs�

De�nition ��� �delay recurrent program� Let j j be a level mapping and I an interpretation
for a program P �

� A clause c  H � Q is delay�recurrent with respect to j j and I if I is a model for c and for
every atom A in Q � for every cover �B for A� and for every �H � �B��ground instance H � � Q �

of c such that H � is bounded and I j� �B �� we have that

j�H �	j � j�A�	j

� A program P is delay�recurrent w�r�t� j j and I if every clause is delay�recurrent with respect
to j j and I � �

Knowing that a selected atom is bounded is useful� because it implies that one of the covers of
that atom has been partially resolved� However� it is not enough� We need to be sure that a cover
of the selected atom has been resolved completely� In order to be able to ensure this� we have to
use a local selection rule� Local selection rules were extensively studied by Vieille in �Vie��	�

De�nition ��� �local selection rule� Let Q be a query in a derivation �� containing atoms A
and B � Then A is introduced more recently than B � if the derivation step introducing A comes
before the derivation step introducing B � in �� A is introduced most recently � if no atom B is
introduced more recently than A�

A local selection rule is a selection rule that only selects most recently introduced atoms� �

Note that� if in a query Q none of the most recently introduced atoms satis�es its delay declaration�
then a local delay selection rule should deadlock on Q �

Using local selection rules� we have the following result�

Theorem �� Let P be a logic program with delay declarations� Let j j be a level mapping and let
I be an interpretation� Suppose that�

�� P is delay�recurrent w�r�t� j j and I � and

	� the delay declarations are safe w�r�t� j j�

Then for every query Q� every delay SLD�derivation for Q which uses a local selection rule is

nite�
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The proof of this theorem is rather long� and is therefore given in the Appendix� Note that we
do not assume Q to be delay recurrent� We don t need to� because with the local selection rule�
the atoms in Q will be resolved one at a time� without coroutining�

We conclude this section by showing that the notion of delay�recurrent program is a general�
ization of the notion of recurrent programs � This notion is due to Bezem �Bez��	� A program P
is recurrent if for some level mapping j j� every ground instance H � A�� � � � �An of a clause of P
satis�es the test

jH j � jAi j

for every i � ���n	� Then we have the following result�

Lemma ��� If a program P is recurrent with respect to j j then P is delay recurrent with respect
to j j and I � for any model I of P�

Proof� In De�nition ��� choose I to be BP � Consider the test j�H �	j � j�A�	j� We have that H � is
bounded and Q � is �an instance of� a resolvent for H �� Thus by Lemma ��� of �Bez��	 it follows
that j�H �	j � j�Q �	j� hence j�H �	j � j�A�	j holds�

� An example� Quicksort

In this section� we illustrate the application of our method by means of an example� To help the
reader to focus more on the method than on the example� we have chosen the well�known program
quicksort��� de�ned by the following set of clauses

qs��x jxs 	� ys� �
part�xs � x � ls � bs�� qs�ls � sls�� qs�bs � sbs�� app�sls � �x jsbs 	� ys��

qs��	� �	��

part��x jxs 	� y � �x jls 	� bs� � x � y � part�xs � y � ls � bs��
part��x jxs 	� y � ls � �x jbs 	� � x � y � part�xs � y � ls � bs��
part��	� y � �	� �	��

augmented with the clauses for append�� given in the Introduction� Usually� the intended use of
the predicate qs is that of giving it a list as �rst argument� in order to get a sorted permutation
of that list as output in the second argument� This usage of quicksort�� was proven to be safe
�with respect to termination� e�g� in �AL��	� where a proper delay declaration is chosen� Here
we will show that� one can also use safely the program in its reverse� i�e� give qs a sorted list
in its second argument� and it will produce all permutations of that list in its �rst argument�
Observe that when the Prolog selection rule is used� this alternative usage of the program yields
non�termination� This is the main reason why the approach of Apt and Luitjes cannot deal with
this case�

We now give a level mapping for the predicates in the program� and a model� It would go too
far to give a detailed account of the way we arrived at this speci�c level mapping� For those who
are interested in techniques for �nding level mappings� we refer e�g� to �DSF��	� Let t�� � � � � t� be
ground terms� Then

jqs�t�� t��j � tsize�t�� ! ��
jpart�t�� t�� t�� t�� � tsize�t�� ! tsize�t���
japp�t�� t�� t��j � tsize�t���
jt� � t�j � ��
jt� � t�j � ��

where

tsize�t� �

�
the length of t if t is a list
� otherwise

�



atom
minimal direct

cover
cover

part�xs � x � ls � bs� fqs�ls � sls�� qs�bs � sbs�g

�
qs�ls � sls�� qs�bs � sbs��
app�sls � �x jsbs 	� ys�g

�

qs�ls � sls� fapp�sls � �x jsbs 	� ys�g fapp�sls � �x jsbs 	� ys�g
qs�bs � sbs� fapp�sls � �x jsbs 	� ys�g fapp�sls � �x jsbs 	� ys�g
app�sls � �x jsbs 	� ys� � �

Figure � Computing covers for qs

Moreover� consider the following interpretation I 

I � fqs�t�� t�� j tsize�t�� � tsize�t��g 

fpart�t�� t�� t�� t�� j tsize�t�� � tsize�t�� ! tsize�t��g 

fapp�t�� t�� t�� j tsize�t�� � tsize�t�� ! tsize�t��g

It is easy to check that I is a model of quicksort���
We have to prove that the clauses of quicksort�� are delay recurrent with respect to this level

mapping and this model� For app and part � this is easy to check� because they are recurrent with
respect to the given level mapping� Hence the result follows from Lemma ����

So� to prove the program delay recurrent� we have to check the two clauses for qs � The second
clause is trivial� because it is a fact� To check the �rst clause� we actually have to do some work�
First� we compute the minimal direct covers and covers for the atoms in the body� These are given
in Figure �� As we see� in this case every atom has a single minimal direct cover and a single
cover�

Having found the covers� we can prove that the clause is delay recurrent� First of all� consider
app�sls � �x jsbs 	� ys�� A qs�xs � ys��ground instance of the clause binds xs and ys to ground terms�
say t� and t�� It follows directly from the level mappings of qs and app that

j�qs��x jt�	� t��	j � tsize�t�� ! � � tsize�t�� � j�app�sls � �x jsbs 	� t��	j

Secondly� qs�ls � sls� has �B � fapp�sls � �x jsbs 	� ys�g as cover� A � �B � qs�xs � ys���ground instance of
the clause binds xs � ys � x � sls � sbs to ground terms� say t�� � � � � t�� respectively� Suppose that

I j� app�t�� �t�jt�	� t���

Then tsize�t�� � tsize�t��� But then� we have that

j�qs��t�jt�	� t��	j � tsize�t�� ! � � tsize�t�� ! � � j�qs�ls � t��	j

The proof for qs�bs � sbs� is similar�
Finally� part�xs � x � ls � bs� has cover �B � fqs�ls � sls�� qs�bs � sbs�� app�sls � �x jsbs 	� ys�g�
A � �B � qs�xs � ys���ground instance of the clause binds xs � ys � x � sls � sbs � ls � bs to ground terms�

say t�� � � � � t�� respectively� Suppose that

I j� qs�t�� t��� qs�t�� t��� app�t�� �t�jt�	� t���

Then tsize�t�� � tsize�t�� ! tsize�t��� But then we have that

j�qs��t�jt�	� t��	j � tsize�t�� ! � � tsize�t�� ! tsize�t�� � j�part�t�� t�� t�� t��	j

So� we have proven that quicksort�� is delay recurrent with respect to j j and I � As a result�
we have that all queries will terminate� provided that a local delay selection rule is used and the
delay declarations are safe� Thus� we now have to translate the boundedness information given
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by the level mapping into delay declarations� i�e� �nd delay declarations for qs � part and app such
that if an atom is not delayed� it is bounded� For this� the following delay declarations su�ce

delay qs�xs � ys� until list�ys�

delay part�xs � y � ls � bs� until list�ls�  list�bs�

delay app�xs � ys � zs� until list�ys�

� Discussion

In this section we discuss some aspects of our approach� and possible extensions� More precisely�
we investigate the role of local selection rules in proving termination� the class of delay declara�
tions that can be expressed using our method� and when the delay declarations do not a�ect the
declarative semantics of the program�

��� Why Local Selection Rules�

In the soundness result on our method �Theorem ����� we restrict ourselves to local selection rules�
The reason for this is that we want to use the semantic information provided by the model I � In
the proof of Theorem ���� we use this semantic information as follows� First we observe that�
when an atom A becomes selectable� some cover �B of A in the input clause that introduced A has
been partially instantiated� By using the fact that a local selection rule is used� we can conclude
that this cover �B has been resolved completely� As a result� we have that I j� � �B�� where � is
the composition of substitutions between the node where �a generalization of� A was introduced
and the node where A is selected� Finally� we use this fact to prove that the level mapping of A is
strictly smaller that the level mapping of the selected atom in the resolution step that introduced
�a generalization of� A�

Consider the following program

delay p�xs � ys� until list�xs�
p��x jxs 	� �x jys 	� � p�xs � ys��
p��x jxs 	� �x � x jxs 	� � fail �
p��	� �	��

delay q�xs � ys� until list�xs�
q��x jxs 	� �x jzs 	� � p�xs � ys�� q�ys � zs��
q��	� �	��

The predicate p simply copies the list in the �rst argument to the second argument� However� it
has a weird additional clause �clause �� that always fails� The predicate q also copies the list in
the �rst argument to the second argument� However� it uses p in its body� to copy xs to ys � We
can prove this program delay�recurrent� using

jt j �

�
the length of t � if t is a �ground� list
� � otherwise

jp�s � t�j � js j
jq�s � t�j � js j! �
jfail j � �

and I � fp�s � t� j js j � jt jg 
 fq�s � t� j js j � jt jg�
However� this program does not terminate for all safe selection rules� To see this� consider the

following delay SLD�tree for the query q���� �	� vs��

�



� � �

fail � q���� �	� zs�

p���	� ys�� q�ys � zs�

fx ���� xs ���	� ys���� �	g

q���� �	� vs�

fx��� xs���	� vs���jzs 	g
���		

���� �		

���� �		

We see that the third query contains �a variant of� the �rst query� Thus� there exist in�nite delay
SLD�derivations for this goal obtained using a safe selection rule�

The reason for the fact that delay recurrent programs are not terminating for all delay safe
selection rules is that the test for decrease of level mapping from head atom H � to body atom
Ai� is conditional� In the case of delay recurrent programs this condition is that for some cover
B for Ai � we have that I j� B�� Translated to SLD�trees� this implies that the multisets assigned
to the nodes of that tree are only guaranteed to decrease� if for every selected atom in the tree�
we know that some cover of that atom is true in I � In our example� fp�xs � ys�g is the only cover
for q�ys � zs� in the body of the �rst clause for q � In the SLD�tree� however� we select q���� �	� zs�
without �rst proving its cover� which in this case would mean �rst selecting fail � By using a local
selection rule� we ensure that� before selecting an atom Ai � we �rst resolve a cover of that atom�

Thus� we need to restrict ourselves to the local selection rule in order to conclude that I j� � �B��
which allows us to use the semantic information contained in I � This implies that our method
cannot be used directly e�g� with G
odel� In fact� the G
odel selection rule selects the leftmost
atoms of a query� among those which satisfy their delay declaration� even if this atom is not most
recently introduced�

There is one strong argument against the use of local selection rules they do not allow any
form of coroutining� In order to prove termination with respect to selection rules that allow
coroutining� we have to get rid of the restriction to local selection rules� An approach which seems
quite promising� is restricting oneself to programs that do not use speculative bindings � a notion
introduced by Naish in �Nai��	� This is something which deserves further investigation� However�
we do have the impression that any method for proving termination with full coroutining will be
either very complex� or very restrictive in its applications�

��� On Completeness of Delay Declarations

We have seen how delay declarations can be used to ensure termination of a logic program� One
could choose strong delay declarations� like for instance delay p��x � until false � which certainly
imply termination� However� the resulting program would not be very interesting� since it yields
no c�a�s� s� To ensure that the delay declaration is not too strong� one has to guarantee that the
declarative semantics of the program is preserved� This is speci�ed in the following de�nition�

De�nition 
�� �complete delay declaration� Let P be a program and let I be the least
Herbrand model for P � Let D be a set of delay declarations for P � We say that D is complete
w�r�t� P if every atom in I has a successful delay SLD�derivation in P 
 D�

A su�cient condition for completeness of a delay declaration w�r�t� P is that every ground
atom which is in I is deadlock free� An atom is deadlock free if all its �nite derivations do not
end in a non�empty query which contains only atoms that do not satisfy their delay declarations�
Then� the following result holds�

�



Lemma 
�� Let P be a program and let I be the least Herbrand model for P� Let D be a set of
delay declarations for P� Suppose that every atom A of I is deadlock�free� Then D is complete
with respect to P�

Recently� the topic of deadlock�freedom of programs with delay declarations has been studied in
�AL��� CD��� EG��� MT��	� The methods there introduced can be applied to prove that every
atom of I is deadlock�free�

��� On Expressiveness of Delay Declarations

In G
odel� one can use the predicate nonvar in delay declarations� For instance� the following delay
declaration is used for the predicate app de�ned by the program given in the Introduction

delay app�xs � ys � zs� until nonvar�xs� � nonvar �zs�

When this delay declaration is used� an atom app�s � t � u� is not selected until either s or u is a
non�variable term�

We cannot deal with these kinds of delay declarations� The reason is that in our de�nition of
delay recurrent programs� the notion of level mapping we use is the one used in the de�nition of
recurrent programs� In this de�nition� the level mapping jAj for ground atoms A is de�ned by a
�total� function from BP to IN� whereas the level mapping j�B 	j for non�ground atoms B is de�ned
as the maximum of the level mappings of all its ground instances� Thus jj jj is a partial function�
because the set of level mappings of ground instances can be unbounded� As a consequence� when
taking the level mapping of an atom p�l� to be the length of list l � the atom p��x jxs 	� contains a
non�variable term� but j�p��x jxs 	�	j is unde�ned because xs can be instantiated with an arbitrary
large ground list� Thus� an atom app��x jxs 	� ys � zs� is not bounded� while it satis�es the condition
of the delay declaration� Terms which behave well with respect to a level mapping have been
studied for instance in �BCF��	� where they are called rigid�

As the append�� example given in the Introduction shows� the termination behaviour of �delay
until nonvar� is poorly understood� As far as we can see now� a method handling the nonvar
delay predicate would also be signi�cantly more complex �or� alternatively� weaker�� than our
method� All in all� the problems with the nonvar delay predicate were enough for us to decide
not to deal with it at this point� As a �nal remark we would like to note that� if one browses
through the G
odel manual� it seems that our method is severely handicapped by not being able
to handle nonvar � because most delay declarations in example programs use nonvar � One should
note however� that these programs are not guaranteed to terminate for all goals �not even when
the leftmost undelayed selection rule is used�� To be fair� the G
odel manual only states that the
delay declarations can be used to assist termination� On the other hand� our method guarantees
termination� be it that the delay declarations will be more restrictive�

��� On programs with negation

It seems that our method can be easily extended to deal with logic programs with negation� We
sketch brie�y how this could be done� One can extend the procedure for resolving negated atoms
to the case of delay selection rules� simply considering a form of �abnormal� termination� which
arises when a tree for �A is �nite but contains at least one leaf consisting of delayed literals� In
such a case �A has no resolvent� it ends in deadlock� Then the de�nition of level mapping can
be extended to negated atoms� simply by de�ning j�Aj � jAj� Finally� in De�nition ��� of delay�
recurrent program� the model I should be replaced by some model containing suitable semantic
information�

� Related Work

Let us now relate our approach to other work on termination with respect to dynamic selection
rules�
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The paper which helped us to understand the problems in reasoning about the termination of
logic programs with delay declarations� is �Nai��	� In this paper� L� Naish investigates how termi�
nation of a conjunction of queries can be established� under the hypothesis that the execution of
each query does terminate� However� he does not propose ready to use methods for proving pro�
grams terminating� In his paper� Naish argues that the use of modes is crucial to reasoning about
termination� To support this claim� he gives a number of useful observations on the termination
behaviour of a program with delay declarations� which emphasize how subtle is this behaviour�
and how di�cult it is to prove termination� when dealing with general coroutining� Towards the
end of the paper� Naish suggests that the existence of �speculative bindings are an important
complicating factor when reasoning about termination� It might be the case that in absence of
these speculative bindings� we can generalize our method to non�local delay selection rules�

Another recent contribution to the subject of termination with respect to delay declarations�
is �LK��	� In this paper� S� L
uttringhaus�Kappel discusses a non�deterministic scheme for �nding
delay declarations that ensure termination� First� he presents an algebra of �when declarations�
This algebra is more expressive than the class of delay declarations we can handle� basically because
we cannot handle nonvar predicates� The scheme itself is very general� it is meant as a basis for
practical implementations� using heuristics and partial evaluation to replace non�deterministic
choices� The results of an existing implementation look quite promising� On the other hand� as
the scheme is very general� it does not give much insight in the problem of termination itself�
Another problem is that one has to prove that a program is �safe �not the notion used in this
paper�� which is quite di�cult� the more because there are no methods for doing this�

A very recent paper by K�R� Apt and I� Luitjes �AL��	� stimulated us to work on our approach�
In this paper� they discuss veri�cation of logic programs with respect to dynamic selection rules� In
one section they discuss the problem of termination� The approach they take is more general than
ours� in the sense that they do not restrict to local selection rules� As a consequence� they need
to impose strong restrictions on the class of programs they consider� One restriction in this work
is that the termination results are stated in terms of termination with respect to LD�resolution�
Thus� it can only discuss termination with respect to dynamic selection rule of programs which
are known to terminate with respect to leftmost selection rule�

It is clear that most of the programs we can prove terminating with our method� can also be
proven to be terminating by a static reordering of bodies of program clauses� We think however
that the use of covers has a number of advantages� First of all� with covers we have a systematic
approach for �nding static orderings that ensure termination� which is more e�cient than simply
checking all permutations of body atoms� Secondly� our method does not impose an order on body
atoms� If one �xes the order of body atoms in order to ensure termination� one looses the freedom
to let a compiler or optimizer �x some order� Instead� the covers computed in our method form a
concise representation of all orderings of body atoms that ensure termination� This information
can be fed to a compiler or optimizer� as a constraint on the orderings of bodies it may choose�
Finally� there exist programs that can be proven terminating with our approach� which are not
�easily� proven terminating with a static approach�

	 Conclusion

In this paper we introduced a simple method for proving termination of logic programs with delay
declarations� The method is based on the new notion of cover� which is used to describe the
inter�relation among the atoms of a clause that can be caused by the dynamic scheduling� Covers
are used to de�ne the class of delay recurrent programs� We proved that all derivations of a
delay�recurrent program are �nite� when the selection rule is local delay� i�e� it selects at each
resolution step one atom which satis�es its delay declaration� among those atoms most recently
introduced� We discussed advantages and limitations of this last condition on the selection rule�
We intend to continue investigating other conditions under which we can relax the restriction
to local selection rules� although we think that such methods are necessarily either much more
complex or applicable to much smaller classes of programs�
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A Proof of Theorem �
�

In this appendix� we give a proof of Theorem ���� This proof consists of a number of preliminary
results� which yields Theorem ��� in the form of Corollary A����

Bezem proved that for a recurrent program� all bounded queries will terminate for all selection
rules� In essence� the termination proof for recurrent programs proves that� in every derivation for a
bounded goal� the level mapping of a goal is greater than the level mapping of its resolvent� As the
order on multisets is well�founded� it follows that the derivation has to be �nite� The termination
proof for delay�recurrent programs is similar to the one for recurrent programs� except that we
use the additional information provided by a model of the program� Moreover� we use the fact
that the selected atom is always bounded�

Recall that we are working under following two assumptions

� the delay declarations are safe and

� the selection rules are local�

First� we state a useful persistence property of being delay�recurrent�

Lemma A�� A head�instance of a delay�recurrent clause is delay�recurrent�

Note that the above result does not hold when a generic instance is considered� For instance�
it could happen that an unbounded atom occurring in the body of the clause becomes bounded
by instantiating some variables occurring only in that atom�

Next� we �x some terminology in order to be able to speak about the queries and atoms in a de�
lay SLD�derivation� Suppose we have a delay SLD�derivation containing a query Q � A�N�� � � � �Nk

and its resolvent Q � � B�� � � � �Bl �N�� � � � �Nk�� We say that� for i � ����k 	� the atom Ni in Q is
the parent of the atom Ni� in Q � �or vice versa� Ni� is a child of Ni�� Analogously� we call Q the
parent of Q � �and Q � the child of Q�� Moreover� A is the direct generator of the atoms B�� � � � �Bl

in Q �� The predecessor �resp� descendent� relation �on atoms� is the transitive closure of the par�
ent �resp� child� relation� We call with the same name the analogous relations de�ned on queries
instead of atoms� Finally� an atom A �in a node Q� is the generator of an atom A� �in a node Q ���
if

� A is the direct generator of A�� or

� A � A� and Q � Q � is the �rst node of the derivation� or

� A is the direct generator of an atom A�� in the resolvent of Q � and A�� is a predecessor of A��

Given an atom A� we use gen�A� to denote the generator of A�
Before we even begin with the termination proof� let us �rst state some properties of local

selection rules which will prove to be essential in the termination proof�

Lemma A�� Let � be a derivation using a local selection rule� Let Q and Q � be queries in � such
that Q is a predecessor of Q �� and let A and A� be their respective selected atoms� Let Qg and Q �

g

be the queries that contain gen�A� and gen�A��� respectively� If Q �

g is a predecessor of Q� then Q �

g

is a predecessor of Qg �

Proof� Because the local selection rule is used� the selected atoms are always those that �have
been introduced in the derivation most recently�� That is equivalent to saying that their generators
are closest� �

Thus� atoms are selected according to a LIFO �last in� �rst out� scheme�

De�nition A�� Let � be a derivation using a local selection rule� with queries Q��Q�� � � �� in�
put clauses H� � �A��H� � �A�� � � � and mgu s ��� ��� � � �� A segment �ij of � consists of queries

Qi � � � � �Qj � input clauses Hi � �Ai �Hj�� � �Aj�� and mgu s �i � � � � � �j��� We de�ne �ij � �i � � � �j���

We call a segment �ij complete if

��



�� i � j �

�� for all queries Qk with k � j � for all atoms A� in Qk � gen�A�� is not contained in a query in
Qi � � � � �Qj��� and

�� for all queries Qk with i � k � j � the generator of the selected atom in Qk is contained in a
query in Qi � � � � �Qj � �

Lemma A�	 Let � be a derivation using a local selection rule� Let �ij be a complete segment of

�� Let A be the selected atom in Qi � Then �ij jVar�A� is a c�a�s� for A�

Proof� We prove the claim by induction on the length l � �j � i� ! � of �ij � Note� that the length

of a complete segment is at least �� For l � �� we have that �ij � �i � Consider the input clause

Hi � �Ai � Because �ij is a complete segment� �Aj�� must be the empty query� But then� from

i � j � � it follows that �Ai is the empty query� Because A�i � H �i � we have that A has the
empty query as resolvent� using Hi � �Ai as input clause� and �i as mgu� It follows that �i is a
c�a�s� for A� Now� assume that the claim holds for all segments of length less than l �

We have to prove the claim for segments of length l � Consider the input clause Hi � �Ai for
Qi � Let �Ai � A�� � � � �Am � Because � uses a local selection rule� �i��

j can be divided into m
complete segments� one for every Ak � for k � ����m	� Without loss of generality� let us assume
that� for k � ����m	� the complete segment for Ak is the k �th complete segment in �i��

j � Let� for
k � ����m	� �k be the composition of the mgu s of the k �th complete segment� By induction hy�
pothesis� �k jVar�Ak � is a c�a�s� for Ak � But then� ���� � � � � �m�jVar�A������Am � is a c�a�s� for the query

A�� � � � �Am � Because we have that A�i � Hi�i � it follows that �ij jVar�A� � ��i�� � � � �m�jVar�A� is
a computed answer substitution for A� �

In the sequel� we assume that �ij � 	 if i � j �

Lemma A�
 Let � be a derivation using a local selection rule� with queries Q��Q�� � � �� input
clauses H� � �A��H� � �A�� � � � and mgu�s ��� ��� � � �� Let �ij be a segment of � such that the gen�

erator of the selected atom in Qj is the selected atom in Qi � Let � � �i��
j jVar� �Ai �i �

� Then� � is a

c�a�s� for a subquery of �Ai�i �

Proof� We prove the claim by induction on the length l � �j � i� ! � of �ij � For l � �� we have

that �i��
j � 	� and therefore the claim holds� if we take the subquery to be the empty query� Now�

consider l � � and assume that the claim holds for all segments smaller than l �
First of all� a pre�x of �ij can be handled directly using induction� Suppose that for some Q in

Qi��� � � � �Qj��� the generator of the selected atom in Q is Qi � Then� let k be the greatest number
in �i ! ���j � �	 such that the generator of the selected atom in Qk is Qi � Otherwise� let k � i �
Now� let �� � ��i�� � � � �k��� Var��Ai�i��� By induction hypothesis� �� is a c�a�s� of a subquery of
�Ai�i �

We now deal with the remainder of �ij � i�e� �kj � As the generator of the selected atom of Qk is

in Qi � we know that the selected atom in Qk is of the form A��� where A is an element of �Ai�i �
Moreover� the generator of the selected atom in Qj is also in Qi � But then� from Lemma A��� it
follows that �kj is a complete segment and therefore� by Lemma A��� �kj jVar�A��� is a c�a�s� for A���

Let ��� � �kj jVar�A���

Composing �� and ��� we have that �������jVar� �Ai �i �
� ����� is a c�a�s� for a subquery of �Ai�i �

�

Having stated some results on local selection rules� we are now able to prove termination of delay
recurrent programs�

Theorem A�� Let P be a program that is delay�recurrent w�r�t� j j and I � Let 
 be a delay
SLD�tree for P �w�r�t� j j� having an atom as root� Then 
 is 
nite�

��



The termination proof for delay recurrent programs will proceed as follows� First� we label
every query Q in the SLD�tree with a multiset j�Q 	jd � Then� we show that for every query Q in
the tree� and every resolvent R of Q � j�R	jd is smaller than j�Q 	jd in the multiset ordering�

So� let us de�ne the procedure to label the nodes of an SLD�tree�

De�nition A�� �j�Q 	jd� Let j j be a level mapping for P � Let 
 be a delay SLD�tree for P having
a bounded atom as root� Let A be an atom in some query in 
 � Then�

jjAjjd �

�
jjAjj � if A � gen�A�
jjgen�A�jj � � � otherwise

Let Q � A�� � � � �An be a node in 
 � Then�

j�Q 	jd � ��max jjA�jjd � � � � �max jjAn jjd 		

�

The idea behind the label j�Q 	jd is that it is� in some sense� a �safe estimation of j�Q 	j� We have to
use such an estimation because the atoms in an SLD tree are not necessarily bounded� Therefore
jjQ jj is not de�ned for all queries in the SLD tree� To solve this problem� we de�ne jjAjjd in terms
of jjB jj� where B is the generator of A� In the case of delay SLD trees� jjB jj is de�ned� because
in an delay SLD tree the selected atom of a query is guaranteed to be bounded� In the following
lemma� we prove that j�A	jd is �safe � in the sense that� for all selected atoms in the queries of an
delay SLD tree� jjAjjd � jjAjj�

Lemma A� Let P be a program that is delay�recurrent w�r�t� j j and I � Let 
 be a delay SLD�tree
for P �w�r�t� j j� having an atom as root� Let Q be a query of 
 and let A be its selected atom�
Then� jjAjjd � jjAjj�

Proof� If the generator of A is A itself� then the claim follows immediately from De�nition A���
Otherwise� let � be the branch of 
 that contains Q � and let Q be the j �th query in � �i�e�

Q � Qj �� Let B be the generator of A� and let Qi be the node that contains B � Now� consider
the segment �ij of �� and let � � �ij jVar� �Ai �i �

�

By Lemma A��� we have that � is a c�a�s� for a subquery� say �B � of �Ai�i � This implies that
I j� �� �B��� Let A� be the atom of �Ai�i such that A is its descendant� Since A is bounded� a
subquery� say �C � of �B is a cover for A�� Let � � �jVar� �C �� Then we have that I j� �C��� for every

� which grounds �C��
By the hypothesis that P is delay recurrent and by Lemma A�� it follows that H �i � �Ai�i is

delay�recurrent� Then
j�H �i��	j � j�A���	j� ���

But then� because B is bounded and H �i � B�i � it follows that

j�B 	j � j�B�i 	j � j�H �i 	j � j�H �i��	j � j�A���	j

for every �� From A�� bounded it follows that j�B 	j � j�A��	j� Finally� the claim follows from the
fact that A � A�� for some  and j�B 	j � j�A	jd � �

Having proven that j�Q 	jd is a good approximation for j�Q 	j� we now prove that the label of a
query is greater than the label of its resolvent� To this end� we use the following result by Bezem�

Proposition A�� Let Q be a bounded query and let � be a substitution� Then�

�� Q� is bounded�

	� j�Q 	j � j�Q�	j

��



Lemma A��� Let P be a program that is delay�recurrent w�r�t� j j and I � Let 
 be a delay
SLD�tree for P �w�r�t� j j� having an atom as root� Let Q be a query of 
 and let R be a direct
descendant of Q� Then j�R	jd is smaller than j�Q 	jd in the multiset ordering�

Proof� Suppose for simplicity that the leftmost atom of Q is selected� Then� Q � A� �B and
R � � �C � �B��� with H � �C input clause and � � mgu�H �A��

For every B in �B we have that j�B�	jd � j�B 	jd � Moreover� for every C in �C �� we have from
De�nition A�� that j�C 	jd � j�H �	j � �� Thus� to prove the claim� it is su�cient to show that
j�A	jd � j�H �	j � �� We have that

j�A	jd � j�A	j from Lemma A��
� j�A�	j from Proposition A��
� j�H �	j from � � mgu�H �A�
� j�H �	j � �

�

Proof� �of Theorem A���
From Lemma A��� �recall that we work with safe selection rules� and the fact that the multiset
order of De�nition A�� is well�founded� �

Then we obtain Theorem ��� in the form of the following corollary�

Corollary A��� Let P be a program that is delay�recurrent w�r�t� j j and I � Let 
 be a delay
SLD�tree for P �w�r�t� j j�� Then 
 is 
nite�

Proof� Let Q � A�� � � � �An be the root of 
 � We prove the result by induction on n� If n � �
then the result follows by Theorem A��� Suppose now n � �� If every atom of Q is not bounded
then the result follows immediate� Otherwise let Ai be the selected atom� Then from Theorem
A�� we have that the delay SLD�tree for Ai is �nite� Let ��� � � � � �m be its computed answers�
Then from the assumption that the selection rule is local� it follows that 
 can be split into m ! �
delay SLD�trees� 
� for Ai and the others 
k for �Q � fAig��k � for k � ���m	� Then the result
follows by the application of the induction hypothesis to the 
k  s� �

��


