
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Proving termination of logic programs with delay declarations

E. Marchiori and F. Teusink

Computer Science/Department of Interactive Systems

CS-R9641 1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301666043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9641
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Proving Termination of Logic Programs

with Delay Declarations

Elena Marchiori��� and Frank Teusink�

�CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

�University of Leiden

P�O� Box �	�
�
��� RA Leiden� The Netherlands

e�mail� felena�franktg�cwi�nl

Abstract

In this paper we propose a method for proving termination of logic programs with delay
declarations� The method is based on the notion of recurrent logic program� which is used
to prove programs terminating with respect to an arbitrary selection rule� Most importantly�
we use the notion of bound query �as proposed by M� Bezem� in the de�nition of cover � a
new notion which forms the kernel of our approach� We introduce the class of delay recurrent
programs and prove that programs in this class terminate for all local delay selection rules�
provided that the delay conditions imply boundedness� The corresponding method can be also
used to transform a logic program into a terminating logic program with delay declarations�

AMS Subject Classi�cation ������� ��N	
� ��Q	�� ��Q�� ��Q��
CR Subject Classi�cation ������� D�	��� D����� F���	�
Keywords and Phrases� Logic programs� delay declaration� termination�

� Introduction

Delay declarations are used for the dynamic control of the selection of atoms in a derivation� The
idea is that� besides the usual logic clauses� the program contains declarations of the form

delay predicate until condition

Then� a selection rule is used which only selects an atom from a query� if that atom is not delayed�
i�e� the condition in the delay declaration for that atom is satis�ed� Delay declarations are
employed in many programming systems based on logic programming� like NU�Prolog �TJ��	 and
G
odel �HL��	� They are important for a number of reasons for instance� they can be used to ensure
termination of the program� or to support coroutining� As a consequence� e�cient algorithms can
be produced from a simple logical speci�cation augmented with suitable delay declarations� This
approach re�ects the idea of considering a program as consisting of two parts logic and control�

In this paper� we study termination of logic programs with delay declarations� To illustrate how
delay declarations may a�ect the termination behaviour of a program� consider the well�known
append�� program

app��x jxs 	� ys � �x jzs 	� � app�xs � ys � zs��
app��	� ys � ys��

�

and the query app�xs � ��� �	� zs�� xs � ��� �� �	� This query does not terminate when the leftmost
selection rule is used� However� suppose we add the following delay declaration for append��

delay app�xs � ys � zs� until list�xs�

With this delay declaration� the leftmost atom in the query is delayed� Therefore� if we use a delay
selection rule� only the second atom can be selected� resulting in the resolvent app���� �� �	� ��� �	� zs��
Here the atom in the query is not delayed� Moreover� this query is terminating�

The termination behaviour of a logic program with delay declarations is rather subtle� There
are various aspects� sometimes unexpected� that one has to take into account� A thorough dis�
cussion of these aspects is given by Naish in �Nai��	� For instance� one would expect the delay
declaration

delay app�xs � ys � zs� until nonvar�xs� � nonvar �zs�

to ensure the termination of append��� However� as illustrated by Naish� the query app��ajT 	� � 	�T �
satis�es the delay declaration� but has an in�nite derivation� The fact that termination behaviour
of logic programs in the context of dynamic selection rules is very subtle� is re�ected also in the vari�
ous methods that have been introduced� which are either based on heuristics �e�g� �LK��� MNL��	��
or are rather specialized �e�g� �AL��	��

In this paper we try to tackle the problem from a di�erent perspective� That is� we do not
consider general coroutining� with all its problems� but consider the class of delay selection rules
which are �local�� Local selection rules are introduced in �Vie��	� and correspond to selecting
always in a query one of the most recently introduced atoms in the derivation from the initial
query� Local selection rules behave well w�r�t� semantic information� in the following sense� If
an atom of a query in a derivation is selected� then the derivation is committed to resolve that
atom� and only after that atom has been completely resolved� an other atom of the query can be
selected� It is this semantic property of local selection rules� which allows us to de�ne a simple�
yet powerful� method for proving termination of logic programs with delay declarations�

Our method is based on the notion of bounded query� introduced by Bezem in �Bez��� Cav��	
to study termination of logic programs� We use this notion to de�ne the central concept of our
method� namely the covers of a body atom of a clause �query�� Then� using a combination of
syntactical �covers� and semantical �model� information� we de�ne the notion of delay recurrent
program� This notion is a generalization to SLD�resolution with delay selection rules� of the one of
recurrent program� introduced by Bezem to study termination of logic programs w�r�t� an arbitrary
selection rule� We prove that a delay recurrent program terminates for every local selection rule
which selects only bounded atoms� Thus� this notion provides a method for proving termination
of a logic program with delay declarations� when the delay declarations imply boundedness� i�e� if
an atom satis�es its delay declaration� then that atom is bounded� Alternatively� this method can
be used to �nd suitable delay declarations that ensure termination of goals for a given program�
by choosing delay declarations which imply boundedness�

We believe that the contribution of this paper is important for at least two reasons it provides
a simple tool to reason about termination of logic programs with delay declarations� which can
be also used to transform a logic program in a terminating logic program with delay declarations�
moreover� it provides a new insight on the role of the selection rules when reasoning about the
run�time behaviour of logic programs with delay declarations� In particular� it shows that the
class of local selection rules is not only good because it supports e�cient searching techniques�
but also because it supports simple tools for proving termination�

The paper is organized as follows� After some preliminaries in Section �� we present our method
and the termination results in Section �� Then� in Section � we give an example of proving the
program quicksort�� terminating in reverse order� In Section �� we discuss some aspects of our
method�

A short version of this paper appeared in �MT��	�

�

� Preliminaries

We shall use the following notation and terminology�
A logic program� called for brevity program and denoted by P � is a �nite set of �universally

quanti�ed� clauses H � Q � where Q is a query� i�e� a sequence of atoms� and H is an atom� In
the following� the letters A�B indicate atoms and c a clause� For a query Q � de�ne a Q�ground
instance of a clause c to be any instance of c which grounds all the atoms of Q � Finally� c�a�s� is
used as shorthand for computed answer substitution�

A sequence of atoms will also be denoted by �A� As we are not interested in the order of atoms�
we will sometimes treat sequences of atoms as multisets� Moreover� we will sometimes implicitly
translate a sequence of atoms into a set of atoms� in order to be able to refer to elements� subsets�
unions� etc� In those cases� multiplicity of atoms will be ignored� i�e� p� p will be translated into
fpg� We only do this where multiplicity of atoms is not an issue�

We shall use multisets and the multiset ordering �see �Der��	�� Recall that a multiset is a
unordered collection in which the number of occurrences of each element is signi�cant� We shall
consider here the multiset ordering on multisets of natural numbers� Formally� a multiset of natural
numbers is a function from the natural numbers to itself� giving the multiplicity of each natural
number� Then� given the standard order � on natural numbers� the ordering �mul on multisets
is de�ned as the transitive closure of the replacement of a natural number with any �nite number
�possibly zero� of natural numbers that are smaller under �� Since � is well�founded� the induced
ordering �mul is also well�founded� For simplicity we shall omit in the sequel the subscript mult
from �mul �

A delay declaration is denoted as follows for a predicate p of arity n a delay declaration has
the form

delay p�x�� � � � � xn� until Cond�x�� � � � � xn�

where x�� � � � � xn denote the arguments of p� and Cond�x�� � � � � xn� is a formula in some assertion
language� We shall not �x the syntax of that assertion language� as it is not relevant for the sequel
of the paper� The meaning of such a delay declaration is that in a query an atom p�t�� � � � � tn� can
only be selected if the condition Cond�t�� � � � � tn� is satis�ed� We shall assume that if an atom is
selectable then all its instances are selectable too� This condition is satis�ed by almost all the logic
programming systems which use delay declarations� Its importance in the study of termination is
crucial� and all the approaches we are aware of� for the study of properties of logic programs with
delay declarations� use this assumption�

The delay declarations in a program de�ne a class of selection rules� called delay selection
rules � A delay selection rule selects an atom from a query� among those atoms which satisfy their
delay declarations� If the query is non�empty and no such atom exists� no atom is selected and
the query is deadlocked � When using delay declarations� we are only interested in SLD�derivations
that are constructed using a delay selection rule� We call these derivations delay SLD�derivations�

� Delay�Recurrent Programs

The aim of this paper is to de�ne a class of programs that behave nicely with respect to termination�
First� we introduce the notion of delay recurrent program� Then� we prove that� for a suitable delay
declaration and a broad class of delay selection rules� every query in a delay recurrent program
has only �nite derivations� To this end� we use the notions of level mapping and of bounded query�
introduced in �Bez��� Cav��	�

De�nition ��� �level mapping� Let P be a program� A level mapping for P is a function
j j BP � IN from the Herbrand base for P to the set of natural numbers� �

Thus� j j is only de�ned for ground atoms� However� one can associate to a non�ground atom� the
image of its set of ground instances with respect to j j

jjAjj
def
� fjA�j j A� is a ground instance of Ag

�

Using this� we de�ne the notion of bounded atoms and queries�

De�nition ��� �bounded query� An atom A is bounded �with respect to j j�� if jjAjj is �nite�
A query Q is bounded if all the atoms in it are bounded� �

With a bounded query Q � A�� � � � �An is associated the multiset j�Q 	j as follows

j�Q 	j
def
� ��max jjA�jj� � � � �max jjAn jj		

where max jjAjj denotes the maximum of jjAjj� In the sequel� we shall often refer to j�Q 	j as the
level mapping of Q �

The idea of using a level mapping to prove termination is that one proves that� in a derivation�
selected atoms are always bounded and that the level mappings of the queries decrease� We can use
delay declarations to ensure that only bounded atoms are selected� i�e� that the delay declarations
imply boundedness�

De�nition ��� �safe delay declaration� A delay declaration is safe with respect to j j if for
every atom A� if A satis�es its delay declaration then A is bounded with respect to j j� �

So� by using safe delay declarations� we ensure that selected atoms are bounded� Now� we pro�
vide a method that ensures that the level mapping also decreases� For this� we use the information
that selected atoms are bounded� together with the additional information provided by a model
of the program� In order for an atom to be bounded� certain other atoms that originate from the
same body� must have been �partially� resolved� We call these sets of atoms covers � To de�ne the
covers of a body atom� we need the notion of direct covers� Intuitively� a direct cover of an atom
A in a query is a subset �B of that query� such that for some instantiation � of the variables in �B �
A� is bounded�

De�nition ��	 �direct cover� Let j j be a level mapping� Let Q be a query� let B be an atom
in Q and let �C be a subset of Q such that B �� �C � We say that �C is a direct cover for B with
respect to Q �and j j�� if there exists a substitution � such that B� is bounded with respect to j j
and Dom��� � Var� �C ��

Let H be an atom� We say that �C is a direct cover for B with respect to H � Q �and j j�� if
there exists a substitution � such that B� is bounded with respect to j j and Dom��� � Var�H � �C ��

Finally� a direct cover �C of B is minimal if no proper subset of �C is a direct cover for B � �

One should note that a body atom B can have zero� one� or more �minimal� direct covers� For
instance when� for B to become bounded� it is necessary to instantiate a variable of B which
does not occur anywhere else in the clause� B will have no direct covers� On the other hand� if
B is bounded whenever H is bounded� then there exists only one minimal direct cover� namely
the empty set� It is worthwhile to notice that the direct covers of an atom depend on the level
mapping one chooses� For instance� consider the clause p�x � � p�y�� and the two level mappings
j j� and j j� such that if s is a list then jp�s�j� is equal to its length� otherwise it is equal to �� and
jp�s�j� equal to � for every s � Then p�y� has no direct cover w�r�t� j j�� while it has � as direct
cover w�r�t� j j�� Finally� we would like to emphasize that direct covers can be �cyclic � in the sense
that two atoms can have each other in their direct covers� Take for instance the query p�x �� q�x �
and a level mapping j j in which boundedness of p�x � and q�x � depend on x � Then� p�x � will have
direct cover fq�x �g and q�x � will have direct cover fp�x �g�

In the de�nition of cover� we take a kind of �closure of the direct cover relation�

De�nition ��
 �cover� Let Q be a query and let j j be a level mapping� Let B be an atom in Q
and let �C be a subset of Q � Then� �C is a cover of B �with respect to Q and j j�� if hB � �C i is an
element of the least set C �C � P�Q 	P�Q�� such that

�� hB � �i � C whenever B has the emptyset as minimal direct cover� and

�

�� hB � �C i � C whenever B �� �C � and �C is of the form

fC�� � � � �Ckg
 �D�
 � � �
 �Dk

such that fC�� � � � �Ckg is a minimal direct cover of B in Q � and for i � ����k 	� hCi � �Dii � C�

The notion of cover of an atom in a clause is de�ned analogously� �

One can easily prove that the cover relation is

� �acyclic � in the sense that if B is in a cover of A then A is not in any cover of B �

� �monotone � in the sense that if �C is a cover of A then for all � a subset of �C � is a cover of
A�� and

� �well�founded � in the sense that if there exists an atom A in Q such that A has a cover then
there exists an atom B in Q such that B has an empty cover�

Using the notion of covers� we can de�ne the class of delay recurrent programs�

De�nition ��� �delay recurrent program� Let j j be a level mapping and I an interpretation
for a program P �

� A clause c H � Q is delay�recurrent with respect to j j and I if I is a model for c and for
every atom A in Q � for every cover �B for A� and for every �H � �B��ground instance H � � Q �

of c such that H � is bounded and I j� �B �� we have that

j�H �	j � j�A�	j

� A program P is delay�recurrent w�r�t� j j and I if every clause is delay�recurrent with respect
to j j and I � �

Knowing that a selected atom is bounded is useful� because it implies that one of the covers of
that atom has been partially resolved� However� it is not enough� We need to be sure that a cover
of the selected atom has been resolved completely� In order to be able to ensure this� we have to
use a local selection rule� Local selection rules were extensively studied by Vieille in �Vie��	�

De�nition ��� �local selection rule� Let Q be a query in a derivation �� containing atoms A
and B � Then A is introduced more recently than B � if the derivation step introducing A comes
before the derivation step introducing B � in �� A is introduced most recently � if no atom B is
introduced more recently than A�

A local selection rule is a selection rule that only selects most recently introduced atoms� �

Note that� if in a query Q none of the most recently introduced atoms satis�es its delay declaration�
then a local delay selection rule should deadlock on Q �

Using local selection rules� we have the following result�

Theorem �� Let P be a logic program with delay declarations� Let j j be a level mapping and let
I be an interpretation� Suppose that�

�� P is delay�recurrent w�r�t� j j and I � and

	� the delay declarations are safe w�r�t� j j�

Then for every query Q� every delay SLD�derivation for Q which uses a local selection rule is

nite�

�

The proof of this theorem is rather long� and is therefore given in the Appendix� Note that we
do not assume Q to be delay recurrent� We don t need to� because with the local selection rule�
the atoms in Q will be resolved one at a time� without coroutining�

We conclude this section by showing that the notion of delay�recurrent program is a general�
ization of the notion of recurrent programs � This notion is due to Bezem �Bez��	� A program P
is recurrent if for some level mapping j j� every ground instance H � A�� � � � �An of a clause of P
satis�es the test

jH j � jAi j

for every i � ���n	� Then we have the following result�

Lemma ��� If a program P is recurrent with respect to j j then P is delay recurrent with respect
to j j and I � for any model I of P�

Proof� In De�nition ��� choose I to be BP � Consider the test j�H �	j � j�A�	j� We have that H � is
bounded and Q � is �an instance of� a resolvent for H �� Thus by Lemma ��� of �Bez��	 it follows
that j�H �	j � j�Q �	j� hence j�H �	j � j�A�	j holds�

� An example� Quicksort

In this section� we illustrate the application of our method by means of an example� To help the
reader to focus more on the method than on the example� we have chosen the well�known program
quicksort��� de�ned by the following set of clauses

qs��x jxs 	� ys� �
part�xs � x � ls � bs�� qs�ls � sls�� qs�bs � sbs�� app�sls � �x jsbs 	� ys��

qs��	� �	��

part��x jxs 	� y � �x jls 	� bs� � x � y � part�xs � y � ls � bs��
part��x jxs 	� y � ls � �x jbs 	� � x � y � part�xs � y � ls � bs��
part��	� y � �	� �	��

augmented with the clauses for append�� given in the Introduction� Usually� the intended use of
the predicate qs is that of giving it a list as �rst argument� in order to get a sorted permutation
of that list as output in the second argument� This usage of quicksort�� was proven to be safe
�with respect to termination� e�g� in �AL��	� where a proper delay declaration is chosen� Here
we will show that� one can also use safely the program in its reverse� i�e� give qs a sorted list
in its second argument� and it will produce all permutations of that list in its �rst argument�
Observe that when the Prolog selection rule is used� this alternative usage of the program yields
non�termination� This is the main reason why the approach of Apt and Luitjes cannot deal with
this case�

We now give a level mapping for the predicates in the program� and a model� It would go too
far to give a detailed account of the way we arrived at this speci�c level mapping� For those who
are interested in techniques for �nding level mappings� we refer e�g� to �DSF��	� Let t�� � � � � t� be
ground terms� Then

jqs�t�� t��j � tsize�t�� ! ��
jpart�t�� t�� t�� t�� � tsize�t�� ! tsize�t���
japp�t�� t�� t��j � tsize�t���
jt� � t�j � ��
jt� � t�j � ��

where

tsize�t� �

�
the length of t if t is a list
� otherwise

�

atom
minimal direct

cover
cover

part�xs � x � ls � bs� fqs�ls � sls�� qs�bs � sbs�g

�
qs�ls � sls�� qs�bs � sbs��
app�sls � �x jsbs 	� ys�g

�

qs�ls � sls� fapp�sls � �x jsbs 	� ys�g fapp�sls � �x jsbs 	� ys�g
qs�bs � sbs� fapp�sls � �x jsbs 	� ys�g fapp�sls � �x jsbs 	� ys�g
app�sls � �x jsbs 	� ys� � �

Figure � Computing covers for qs

Moreover� consider the following interpretation I

I � fqs�t�� t�� j tsize�t�� � tsize�t��g

fpart�t�� t�� t�� t�� j tsize�t�� � tsize�t�� ! tsize�t��g

fapp�t�� t�� t�� j tsize�t�� � tsize�t�� ! tsize�t��g

It is easy to check that I is a model of quicksort���
We have to prove that the clauses of quicksort�� are delay recurrent with respect to this level

mapping and this model� For app and part � this is easy to check� because they are recurrent with
respect to the given level mapping� Hence the result follows from Lemma ����

So� to prove the program delay recurrent� we have to check the two clauses for qs � The second
clause is trivial� because it is a fact� To check the �rst clause� we actually have to do some work�
First� we compute the minimal direct covers and covers for the atoms in the body� These are given
in Figure �� As we see� in this case every atom has a single minimal direct cover and a single
cover�

Having found the covers� we can prove that the clause is delay recurrent� First of all� consider
app�sls � �x jsbs 	� ys�� A qs�xs � ys��ground instance of the clause binds xs and ys to ground terms�
say t� and t�� It follows directly from the level mappings of qs and app that

j�qs��x jt�	� t��	j � tsize�t�� ! � � tsize�t�� � j�app�sls � �x jsbs 	� t��	j

Secondly� qs�ls � sls� has �B � fapp�sls � �x jsbs 	� ys�g as cover� A � �B � qs�xs � ys���ground instance of
the clause binds xs � ys � x � sls � sbs to ground terms� say t�� � � � � t�� respectively� Suppose that

I j� app�t�� �t�jt�	� t���

Then tsize�t�� � tsize�t��� But then� we have that

j�qs��t�jt�	� t��	j � tsize�t�� ! � � tsize�t�� ! � � j�qs�ls � t��	j

The proof for qs�bs � sbs� is similar�
Finally� part�xs � x � ls � bs� has cover �B � fqs�ls � sls�� qs�bs � sbs�� app�sls � �x jsbs 	� ys�g�
A � �B � qs�xs � ys���ground instance of the clause binds xs � ys � x � sls � sbs � ls � bs to ground terms�

say t�� � � � � t�� respectively� Suppose that

I j� qs�t�� t��� qs�t�� t��� app�t�� �t�jt�	� t���

Then tsize�t�� � tsize�t�� ! tsize�t��� But then we have that

j�qs��t�jt�	� t��	j � tsize�t�� ! � � tsize�t�� ! tsize�t�� � j�part�t�� t�� t�� t��	j

So� we have proven that quicksort�� is delay recurrent with respect to j j and I � As a result�
we have that all queries will terminate� provided that a local delay selection rule is used and the
delay declarations are safe� Thus� we now have to translate the boundedness information given

�

by the level mapping into delay declarations� i�e� �nd delay declarations for qs � part and app such
that if an atom is not delayed� it is bounded� For this� the following delay declarations su�ce

delay qs�xs � ys� until list�ys�

delay part�xs � y � ls � bs� until list�ls� list�bs�

delay app�xs � ys � zs� until list�ys�

� Discussion

In this section we discuss some aspects of our approach� and possible extensions� More precisely�
we investigate the role of local selection rules in proving termination� the class of delay declara�
tions that can be expressed using our method� and when the delay declarations do not a�ect the
declarative semantics of the program�

��� Why Local Selection Rules�

In the soundness result on our method �Theorem ����� we restrict ourselves to local selection rules�
The reason for this is that we want to use the semantic information provided by the model I � In
the proof of Theorem ���� we use this semantic information as follows� First we observe that�
when an atom A becomes selectable� some cover �B of A in the input clause that introduced A has
been partially instantiated� By using the fact that a local selection rule is used� we can conclude
that this cover �B has been resolved completely� As a result� we have that I j� � �B�� where � is
the composition of substitutions between the node where �a generalization of� A was introduced
and the node where A is selected� Finally� we use this fact to prove that the level mapping of A is
strictly smaller that the level mapping of the selected atom in the resolution step that introduced
�a generalization of� A�

Consider the following program

delay p�xs � ys� until list�xs�
p��x jxs 	� �x jys 	� � p�xs � ys��
p��x jxs 	� �x � x jxs 	� � fail �
p��	� �	��

delay q�xs � ys� until list�xs�
q��x jxs 	� �x jzs 	� � p�xs � ys�� q�ys � zs��
q��	� �	��

The predicate p simply copies the list in the �rst argument to the second argument� However� it
has a weird additional clause �clause �� that always fails� The predicate q also copies the list in
the �rst argument to the second argument� However� it uses p in its body� to copy xs to ys � We
can prove this program delay�recurrent� using

jt j �

�
the length of t � if t is a �ground� list
� � otherwise

jp�s � t�j � js j
jq�s � t�j � js j! �
jfail j � �

and I � fp�s � t� j js j � jt jg
 fq�s � t� j js j � jt jg�
However� this program does not terminate for all safe selection rules� To see this� consider the

following delay SLD�tree for the query q���� �	� vs��

�

� � �

fail � q���� �	� zs�

p���	� ys�� q�ys � zs�

fx ���� xs ���	� ys���� �	g

q���� �	� vs�

fx��� xs���	� vs���jzs 	g
���		

���� �		

���� �		

We see that the third query contains �a variant of� the �rst query� Thus� there exist in�nite delay
SLD�derivations for this goal obtained using a safe selection rule�

The reason for the fact that delay recurrent programs are not terminating for all delay safe
selection rules is that the test for decrease of level mapping from head atom H � to body atom
Ai� is conditional� In the case of delay recurrent programs this condition is that for some cover
B for Ai � we have that I j� B�� Translated to SLD�trees� this implies that the multisets assigned
to the nodes of that tree are only guaranteed to decrease� if for every selected atom in the tree�
we know that some cover of that atom is true in I � In our example� fp�xs � ys�g is the only cover
for q�ys � zs� in the body of the �rst clause for q � In the SLD�tree� however� we select q���� �	� zs�
without �rst proving its cover� which in this case would mean �rst selecting fail � By using a local
selection rule� we ensure that� before selecting an atom Ai � we �rst resolve a cover of that atom�

Thus� we need to restrict ourselves to the local selection rule in order to conclude that I j� � �B��
which allows us to use the semantic information contained in I � This implies that our method
cannot be used directly e�g� with G
odel� In fact� the G
odel selection rule selects the leftmost
atoms of a query� among those which satisfy their delay declaration� even if this atom is not most
recently introduced�

There is one strong argument against the use of local selection rules they do not allow any
form of coroutining� In order to prove termination with respect to selection rules that allow
coroutining� we have to get rid of the restriction to local selection rules� An approach which seems
quite promising� is restricting oneself to programs that do not use speculative bindings � a notion
introduced by Naish in �Nai��	� This is something which deserves further investigation� However�
we do have the impression that any method for proving termination with full coroutining will be
either very complex� or very restrictive in its applications�

��� On Completeness of Delay Declarations

We have seen how delay declarations can be used to ensure termination of a logic program� One
could choose strong delay declarations� like for instance delay p��x � until false � which certainly
imply termination� However� the resulting program would not be very interesting� since it yields
no c�a�s� s� To ensure that the delay declaration is not too strong� one has to guarantee that the
declarative semantics of the program is preserved� This is speci�ed in the following de�nition�

De�nition
�� �complete delay declaration� Let P be a program and let I be the least
Herbrand model for P � Let D be a set of delay declarations for P � We say that D is complete
w�r�t� P if every atom in I has a successful delay SLD�derivation in P
 D�

A su�cient condition for completeness of a delay declaration w�r�t� P is that every ground
atom which is in I is deadlock free� An atom is deadlock free if all its �nite derivations do not
end in a non�empty query which contains only atoms that do not satisfy their delay declarations�
Then� the following result holds�

�

Lemma
�� Let P be a program and let I be the least Herbrand model for P� Let D be a set of
delay declarations for P� Suppose that every atom A of I is deadlock�free� Then D is complete
with respect to P�

Recently� the topic of deadlock�freedom of programs with delay declarations has been studied in
�AL��� CD��� EG��� MT��	� The methods there introduced can be applied to prove that every
atom of I is deadlock�free�

��� On Expressiveness of Delay Declarations

In G
odel� one can use the predicate nonvar in delay declarations� For instance� the following delay
declaration is used for the predicate app de�ned by the program given in the Introduction

delay app�xs � ys � zs� until nonvar�xs� � nonvar �zs�

When this delay declaration is used� an atom app�s � t � u� is not selected until either s or u is a
non�variable term�

We cannot deal with these kinds of delay declarations� The reason is that in our de�nition of
delay recurrent programs� the notion of level mapping we use is the one used in the de�nition of
recurrent programs� In this de�nition� the level mapping jAj for ground atoms A is de�ned by a
�total� function from BP to IN� whereas the level mapping j�B 	j for non�ground atoms B is de�ned
as the maximum of the level mappings of all its ground instances� Thus jj jj is a partial function�
because the set of level mappings of ground instances can be unbounded� As a consequence� when
taking the level mapping of an atom p�l� to be the length of list l � the atom p��x jxs 	� contains a
non�variable term� but j�p��x jxs 	�	j is unde�ned because xs can be instantiated with an arbitrary
large ground list� Thus� an atom app��x jxs 	� ys � zs� is not bounded� while it satis�es the condition
of the delay declaration� Terms which behave well with respect to a level mapping have been
studied for instance in �BCF��	� where they are called rigid�

As the append�� example given in the Introduction shows� the termination behaviour of �delay
until nonvar� is poorly understood� As far as we can see now� a method handling the nonvar
delay predicate would also be signi�cantly more complex �or� alternatively� weaker�� than our
method� All in all� the problems with the nonvar delay predicate were enough for us to decide
not to deal with it at this point� As a �nal remark we would like to note that� if one browses
through the G
odel manual� it seems that our method is severely handicapped by not being able
to handle nonvar � because most delay declarations in example programs use nonvar � One should
note however� that these programs are not guaranteed to terminate for all goals �not even when
the leftmost undelayed selection rule is used�� To be fair� the G
odel manual only states that the
delay declarations can be used to assist termination� On the other hand� our method guarantees
termination� be it that the delay declarations will be more restrictive�

��� On programs with negation

It seems that our method can be easily extended to deal with logic programs with negation� We
sketch brie�y how this could be done� One can extend the procedure for resolving negated atoms
to the case of delay selection rules� simply considering a form of �abnormal� termination� which
arises when a tree for �A is �nite but contains at least one leaf consisting of delayed literals� In
such a case �A has no resolvent� it ends in deadlock� Then the de�nition of level mapping can
be extended to negated atoms� simply by de�ning j�Aj � jAj� Finally� in De�nition ��� of delay�
recurrent program� the model I should be replaced by some model containing suitable semantic
information�

� Related Work

Let us now relate our approach to other work on termination with respect to dynamic selection
rules�

��

The paper which helped us to understand the problems in reasoning about the termination of
logic programs with delay declarations� is �Nai��	� In this paper� L� Naish investigates how termi�
nation of a conjunction of queries can be established� under the hypothesis that the execution of
each query does terminate� However� he does not propose ready to use methods for proving pro�
grams terminating� In his paper� Naish argues that the use of modes is crucial to reasoning about
termination� To support this claim� he gives a number of useful observations on the termination
behaviour of a program with delay declarations� which emphasize how subtle is this behaviour�
and how di�cult it is to prove termination� when dealing with general coroutining� Towards the
end of the paper� Naish suggests that the existence of �speculative bindings are an important
complicating factor when reasoning about termination� It might be the case that in absence of
these speculative bindings� we can generalize our method to non�local delay selection rules�

Another recent contribution to the subject of termination with respect to delay declarations�
is �LK��	� In this paper� S� L
uttringhaus�Kappel discusses a non�deterministic scheme for �nding
delay declarations that ensure termination� First� he presents an algebra of �when declarations�
This algebra is more expressive than the class of delay declarations we can handle� basically because
we cannot handle nonvar predicates� The scheme itself is very general� it is meant as a basis for
practical implementations� using heuristics and partial evaluation to replace non�deterministic
choices� The results of an existing implementation look quite promising� On the other hand� as
the scheme is very general� it does not give much insight in the problem of termination itself�
Another problem is that one has to prove that a program is �safe �not the notion used in this
paper�� which is quite di�cult� the more because there are no methods for doing this�

A very recent paper by K�R� Apt and I� Luitjes �AL��	� stimulated us to work on our approach�
In this paper� they discuss veri�cation of logic programs with respect to dynamic selection rules� In
one section they discuss the problem of termination� The approach they take is more general than
ours� in the sense that they do not restrict to local selection rules� As a consequence� they need
to impose strong restrictions on the class of programs they consider� One restriction in this work
is that the termination results are stated in terms of termination with respect to LD�resolution�
Thus� it can only discuss termination with respect to dynamic selection rule of programs which
are known to terminate with respect to leftmost selection rule�

It is clear that most of the programs we can prove terminating with our method� can also be
proven to be terminating by a static reordering of bodies of program clauses� We think however
that the use of covers has a number of advantages� First of all� with covers we have a systematic
approach for �nding static orderings that ensure termination� which is more e�cient than simply
checking all permutations of body atoms� Secondly� our method does not impose an order on body
atoms� If one �xes the order of body atoms in order to ensure termination� one looses the freedom
to let a compiler or optimizer �x some order� Instead� the covers computed in our method form a
concise representation of all orderings of body atoms that ensure termination� This information
can be fed to a compiler or optimizer� as a constraint on the orderings of bodies it may choose�
Finally� there exist programs that can be proven terminating with our approach� which are not
�easily� proven terminating with a static approach�

	 Conclusion

In this paper we introduced a simple method for proving termination of logic programs with delay
declarations� The method is based on the new notion of cover� which is used to describe the
inter�relation among the atoms of a clause that can be caused by the dynamic scheduling� Covers
are used to de�ne the class of delay recurrent programs� We proved that all derivations of a
delay�recurrent program are �nite� when the selection rule is local delay� i�e� it selects at each
resolution step one atom which satis�es its delay declaration� among those atoms most recently
introduced� We discussed advantages and limitations of this last condition on the selection rule�
We intend to continue investigating other conditions under which we can relax the restriction
to local selection rules� although we think that such methods are necessarily either much more
complex or applicable to much smaller classes of programs�

��

Acknowledgements

We would like to thank Krszysztof Apt for helpful discussions on the subject of the delay declara�
tions� Also we would like to thank the referees of the ILPS �� conference for their useful comments�
The research of the �rst author was partially supported by the ESPRIT Basic Research Action
���� �Compulog ��� The second author was partially supported by SION� a department of the
NWO� the National Foundation for Scienti�c Research�

References

�AL��	 K� R� Apt and I� Luitjes� Veri�cation of logic programs with delay declarations� In Pro�
ceedings of the Fourth International Conference on Algebraic Methodology and Software
Technology� �AMAST���� Lecture Notes in Computer Science� Berlin� ����� Springer�
Verlag� Invited Lecture� In preparation�

�BCF��	 A� Bossi� N� Cocco� and M� Fabris� Norms on terms and their use in proving universal
termination of logic programs� Theoretical Computer Science� ������"���� �����

�Bez��	 M� Bezem� Characterizing termination of logic programs with level mappings� In E� L�
Lusk and R� A� Overbeek� editors� Proceedings of the North American Conference on
Logic Programming� pages ��"��� The MIT Press� �����

�Bez��	 M� Bezem� Strong termination of logic programs� Journal of Logic Programming� � #
�������"��� �����

�Cav��	 L� Cavedon� Continuity� consistency� and completeness properties for logic programs� In
G� Levi and M� Martelli� editors� Proceedings of the International Conference on Logic
Programming� pages ���"���� The MIT Press� �����

�CD��	 P� Chambre and P� Deransart� Towards a proof method of non�suspension of Concurrent
Constraint Logic Programs� In F� de Boer and M� Gabbrielli� editors� Proceedings of the
W	 Post�Conference Workshop� Int� Conf� on Logic Programming� Amsterdam� �����
Free Univerity�

�Der��	 N� Dershowitz� Termination of rewriting� Journal of Symbolic Computation� ���"����
�����

�DSF��	 S� Decorte� D� De Schreye� and M� Fabris� Automatic inference of norms a missing link
in automatic termination analysis� In Proceedings of the International Logic Program�
ming Symposium� pages ���"���� �����

�EG��	 S� Etalle and M� Gabbrielli� Layered Modes� In F� de Boer and M� Gabbrielli� editors�
Proc� of the JICSLP post�conference workshop on Veri
cation and Analysis of Logic
Programs� University of Pisa� �����

�HL��	 P�M� Hill and J�W� Lloyd� The G�odel Programming Language� The MIT press edition�
�����

�LK��	 Stefan L
uttringhaus�Kappel� Laziness in Logic Programming� PhD thesis�
Mathematisch�Naturwissenschaftlichen Fakult
at der Rheinischen Friedrich�Wilhelms
Universit
at Bonn� Bonn� �����

�MNL��	 K� Marriott� L� Naish� and J�L� Lassez� Most speci�c logic programs� Annals of mathe�
matics and arti
cial intelligence� ����� �����

�MT��	 E� Marchiori and F� Teusink� Proving termination of logic programs with delay decla�
rations� In J� Lloyd� editor� Proceedings of the ��� International Symposium on Logic
Programming� pages ���"���� The MIT Press� �����

��

�MT��	 E� Marchiori and F� Teusink� On deadlock freedom of logic programs with dynamic
schedulin� In F� de Boer and M� Gabbrielli� editors� Proc� of the JICSLP post�conference
workshop on Veri
cation and Analysis of Logic Programs� University of Pisa� �����

�Nai��	 L� Naish� Coroutining and the construction of terminating logic programs� Technical
Report ����� Department of Computer Science� University of Melbourne� �����

�TJ��	 J� Thom and J�Zobel� NU�prolog reference manual� Technical Report ������ University
of Melbourne� �����

�Vie��	 L� Vieille� Recursive query processing the power of logic� Theoretical Computer Science�
������"��� �����

��

A Proof of Theorem �
�

In this appendix� we give a proof of Theorem ���� This proof consists of a number of preliminary
results� which yields Theorem ��� in the form of Corollary A����

Bezem proved that for a recurrent program� all bounded queries will terminate for all selection
rules� In essence� the termination proof for recurrent programs proves that� in every derivation for a
bounded goal� the level mapping of a goal is greater than the level mapping of its resolvent� As the
order on multisets is well�founded� it follows that the derivation has to be �nite� The termination
proof for delay�recurrent programs is similar to the one for recurrent programs� except that we
use the additional information provided by a model of the program� Moreover� we use the fact
that the selected atom is always bounded�

Recall that we are working under following two assumptions

� the delay declarations are safe and

� the selection rules are local�

First� we state a useful persistence property of being delay�recurrent�

Lemma A�� A head�instance of a delay�recurrent clause is delay�recurrent�

Note that the above result does not hold when a generic instance is considered� For instance�
it could happen that an unbounded atom occurring in the body of the clause becomes bounded
by instantiating some variables occurring only in that atom�

Next� we �x some terminology in order to be able to speak about the queries and atoms in a de�
lay SLD�derivation� Suppose we have a delay SLD�derivation containing a query Q � A�N�� � � � �Nk

and its resolvent Q � � B�� � � � �Bl �N�� � � � �Nk�� We say that� for i � ����k 	� the atom Ni in Q is
the parent of the atom Ni� in Q � �or vice versa� Ni� is a child of Ni�� Analogously� we call Q the
parent of Q � �and Q � the child of Q�� Moreover� A is the direct generator of the atoms B�� � � � �Bl

in Q �� The predecessor �resp� descendent� relation �on atoms� is the transitive closure of the par�
ent �resp� child� relation� We call with the same name the analogous relations de�ned on queries
instead of atoms� Finally� an atom A �in a node Q� is the generator of an atom A� �in a node Q ���
if

� A is the direct generator of A�� or

� A � A� and Q � Q � is the �rst node of the derivation� or

� A is the direct generator of an atom A�� in the resolvent of Q � and A�� is a predecessor of A��

Given an atom A� we use gen�A� to denote the generator of A�
Before we even begin with the termination proof� let us �rst state some properties of local

selection rules which will prove to be essential in the termination proof�

Lemma A�� Let � be a derivation using a local selection rule� Let Q and Q � be queries in � such
that Q is a predecessor of Q �� and let A and A� be their respective selected atoms� Let Qg and Q �

g

be the queries that contain gen�A� and gen�A��� respectively� If Q �

g is a predecessor of Q� then Q �

g

is a predecessor of Qg �

Proof� Because the local selection rule is used� the selected atoms are always those that �have
been introduced in the derivation most recently�� That is equivalent to saying that their generators
are closest� �

Thus� atoms are selected according to a LIFO �last in� �rst out� scheme�

De�nition A�� Let � be a derivation using a local selection rule� with queries Q��Q�� � � �� in�
put clauses H� � �A��H� � �A�� � � � and mgu s ��� ��� � � �� A segment �ij of � consists of queries

Qi � � � � �Qj � input clauses Hi � �Ai �Hj�� � �Aj�� and mgu s �i � � � � � �j��� We de�ne �ij � �i � � � �j���

We call a segment �ij complete if

��

�� i � j �

�� for all queries Qk with k � j � for all atoms A� in Qk � gen�A�� is not contained in a query in
Qi � � � � �Qj��� and

�� for all queries Qk with i � k � j � the generator of the selected atom in Qk is contained in a
query in Qi � � � � �Qj � �

Lemma A�	 Let � be a derivation using a local selection rule� Let �ij be a complete segment of

�� Let A be the selected atom in Qi � Then �ij jVar�A� is a c�a�s� for A�

Proof� We prove the claim by induction on the length l � �j � i� ! � of �ij � Note� that the length

of a complete segment is at least �� For l � �� we have that �ij � �i � Consider the input clause

Hi � �Ai � Because �ij is a complete segment� �Aj�� must be the empty query� But then� from

i � j � � it follows that �Ai is the empty query� Because A�i � H �i � we have that A has the
empty query as resolvent� using Hi � �Ai as input clause� and �i as mgu� It follows that �i is a
c�a�s� for A� Now� assume that the claim holds for all segments of length less than l �

We have to prove the claim for segments of length l � Consider the input clause Hi � �Ai for
Qi � Let �Ai � A�� � � � �Am � Because � uses a local selection rule� �i��

j can be divided into m
complete segments� one for every Ak � for k � ����m	� Without loss of generality� let us assume
that� for k � ����m	� the complete segment for Ak is the k �th complete segment in �i��

j � Let� for
k � ����m	� �k be the composition of the mgu s of the k �th complete segment� By induction hy�
pothesis� �k jVar�Ak � is a c�a�s� for Ak � But then� ���� � � � � �m�jVar�A������Am � is a c�a�s� for the query

A�� � � � �Am � Because we have that A�i � Hi�i � it follows that �ij jVar�A� � ��i�� � � � �m�jVar�A� is
a computed answer substitution for A� �

In the sequel� we assume that �ij � 	 if i � j �

Lemma A�
 Let � be a derivation using a local selection rule� with queries Q��Q�� � � �� input
clauses H� � �A��H� � �A�� � � � and mgu�s ��� ��� � � �� Let �ij be a segment of � such that the gen�

erator of the selected atom in Qj is the selected atom in Qi � Let � � �i��
j jVar� �Ai �i �

� Then� � is a

c�a�s� for a subquery of �Ai�i �

Proof� We prove the claim by induction on the length l � �j � i� ! � of �ij � For l � �� we have

that �i��
j � 	� and therefore the claim holds� if we take the subquery to be the empty query� Now�

consider l � � and assume that the claim holds for all segments smaller than l �
First of all� a pre�x of �ij can be handled directly using induction� Suppose that for some Q in

Qi��� � � � �Qj��� the generator of the selected atom in Q is Qi � Then� let k be the greatest number
in �i ! ���j � �	 such that the generator of the selected atom in Qk is Qi � Otherwise� let k � i �
Now� let �� � ��i�� � � � �k��� Var��Ai�i��� By induction hypothesis� �� is a c�a�s� of a subquery of
�Ai�i �

We now deal with the remainder of �ij � i�e� �kj � As the generator of the selected atom of Qk is

in Qi � we know that the selected atom in Qk is of the form A��� where A is an element of �Ai�i �
Moreover� the generator of the selected atom in Qj is also in Qi � But then� from Lemma A��� it
follows that �kj is a complete segment and therefore� by Lemma A��� �kj jVar�A��� is a c�a�s� for A���

Let ��� � �kj jVar�A���

Composing �� and ��� we have that �������jVar� �Ai �i �
� ����� is a c�a�s� for a subquery of �Ai�i �

�

Having stated some results on local selection rules� we are now able to prove termination of delay
recurrent programs�

Theorem A�� Let P be a program that is delay�recurrent w�r�t� j j and I � Let
 be a delay
SLD�tree for P �w�r�t� j j� having an atom as root� Then
 is
nite�

��

The termination proof for delay recurrent programs will proceed as follows� First� we label
every query Q in the SLD�tree with a multiset j�Q 	jd � Then� we show that for every query Q in
the tree� and every resolvent R of Q � j�R	jd is smaller than j�Q 	jd in the multiset ordering�

So� let us de�ne the procedure to label the nodes of an SLD�tree�

De�nition A�� �j�Q 	jd� Let j j be a level mapping for P � Let
 be a delay SLD�tree for P having
a bounded atom as root� Let A be an atom in some query in
 � Then�

jjAjjd �

�
jjAjj � if A � gen�A�
jjgen�A�jj � � � otherwise

Let Q � A�� � � � �An be a node in
 � Then�

j�Q 	jd � ��max jjA�jjd � � � � �max jjAn jjd 		

�

The idea behind the label j�Q 	jd is that it is� in some sense� a �safe estimation of j�Q 	j� We have to
use such an estimation because the atoms in an SLD tree are not necessarily bounded� Therefore
jjQ jj is not de�ned for all queries in the SLD tree� To solve this problem� we de�ne jjAjjd in terms
of jjB jj� where B is the generator of A� In the case of delay SLD trees� jjB jj is de�ned� because
in an delay SLD tree the selected atom of a query is guaranteed to be bounded� In the following
lemma� we prove that j�A	jd is �safe � in the sense that� for all selected atoms in the queries of an
delay SLD tree� jjAjjd � jjAjj�

Lemma A� Let P be a program that is delay�recurrent w�r�t� j j and I � Let
 be a delay SLD�tree
for P �w�r�t� j j� having an atom as root� Let Q be a query of
 and let A be its selected atom�
Then� jjAjjd � jjAjj�

Proof� If the generator of A is A itself� then the claim follows immediately from De�nition A���
Otherwise� let � be the branch of
 that contains Q � and let Q be the j �th query in � �i�e�

Q � Qj �� Let B be the generator of A� and let Qi be the node that contains B � Now� consider
the segment �ij of �� and let � � �ij jVar� �Ai �i �

�

By Lemma A��� we have that � is a c�a�s� for a subquery� say �B � of �Ai�i � This implies that
I j� �� �B��� Let A� be the atom of �Ai�i such that A is its descendant� Since A is bounded� a
subquery� say �C � of �B is a cover for A�� Let � � �jVar� �C �� Then we have that I j� �C��� for every

� which grounds �C��
By the hypothesis that P is delay recurrent and by Lemma A�� it follows that H �i � �Ai�i is

delay�recurrent� Then
j�H �i��	j � j�A���	j� ���

But then� because B is bounded and H �i � B�i � it follows that

j�B 	j � j�B�i 	j � j�H �i 	j � j�H �i��	j � j�A���	j

for every �� From A�� bounded it follows that j�B 	j � j�A��	j� Finally� the claim follows from the
fact that A � A�� for some and j�B 	j � j�A	jd � �

Having proven that j�Q 	jd is a good approximation for j�Q 	j� we now prove that the label of a
query is greater than the label of its resolvent� To this end� we use the following result by Bezem�

Proposition A�� Let Q be a bounded query and let � be a substitution� Then�

�� Q� is bounded�

	� j�Q 	j � j�Q�	j

��

Lemma A��� Let P be a program that is delay�recurrent w�r�t� j j and I � Let
 be a delay
SLD�tree for P �w�r�t� j j� having an atom as root� Let Q be a query of
 and let R be a direct
descendant of Q� Then j�R	jd is smaller than j�Q 	jd in the multiset ordering�

Proof� Suppose for simplicity that the leftmost atom of Q is selected� Then� Q � A� �B and
R � � �C � �B��� with H � �C input clause and � � mgu�H �A��

For every B in �B we have that j�B�	jd � j�B 	jd � Moreover� for every C in �C �� we have from
De�nition A�� that j�C 	jd � j�H �	j � �� Thus� to prove the claim� it is su�cient to show that
j�A	jd � j�H �	j � �� We have that

j�A	jd � j�A	j from Lemma A��
� j�A�	j from Proposition A��
� j�H �	j from � � mgu�H �A�
� j�H �	j � �

�

Proof� �of Theorem A���
From Lemma A��� �recall that we work with safe selection rules� and the fact that the multiset
order of De�nition A�� is well�founded� �

Then we obtain Theorem ��� in the form of the following corollary�

Corollary A��� Let P be a program that is delay�recurrent w�r�t� j j and I � Let
 be a delay
SLD�tree for P �w�r�t� j j�� Then
 is
nite�

Proof� Let Q � A�� � � � �An be the root of
 � We prove the result by induction on n� If n � �
then the result follows by Theorem A��� Suppose now n � �� If every atom of Q is not bounded
then the result follows immediate� Otherwise let Ai be the selected atom� Then from Theorem
A�� we have that the delay SLD�tree for Ai is �nite� Let ��� � � � � �m be its computed answers�
Then from the assumption that the selection rule is local� it follows that
 can be split into m ! �
delay SLD�trees�
� for Ai and the others
k for �Q � fAig��k � for k � ���m	� Then the result
follows by the application of the induction hypothesis to the
k s� �

��

