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Abstract

In this paper we propose a simple framework based on �rst�order logic� for the de�
sign and decomposition of abstract domains for static analysis� An assertion language is
chosen that speci�es the properties of interest� and abstract domains are de�ned to be
suitably chosen sets of assertions� Composition and decomposition of abstract domains is
facilitated by their logical speci�cation in �rst�order logic� In particular� the operations of
reduced product and disjunctive completion are formalized in this framework� Moreover�
the notion of �conjunctive� factorization of sets of assertions is introduced� that allows
one to decompose domains in �disjoint	 parts� We illustrate the use of this framework by
studying typical abstract domains for ground�dependency and aliasing analysis in logic
programming�
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� Introduction

In the theory of abstract interpretation ���� abstract domains are �computer� representations
of properties� The semantics of an abstract domain is given by a function called concretiza	
tion� that maps elements of the abstract domain into elements of a 
concrete domain�� Two
fundamental aspects of the study of abstract domains are the investigation of representations
supporting e�cient implementations� and the comparative study of the properties represented
by abstract domains� This paper is concerned with the latter aspect�

In the standard approach the design phase is not clearly distinguished from the represen	
tation one� In general� once the concrete domain is chosen� a representation of an abstract
domain is directly de
ned by means of a suitable lattice structure equipped with a concretiza	
tion function� Then the image of the abstract domain under its concretization function is used
to study its properties� as well as for comparing the domain with other ones �w�r�t� the same
concrete domain�� There are two equivalent techniques for the study and comparison of the
properties represented by abstract domains �cf� ����� Galois connections� where an abstract
domain is a complete lattice together with a Galois connection �or insertion� that relates the
abstract domain with the 
concrete� one� and closure operators� where an abstract domain is
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identi
ed with the image of a suitable closure operator on the 
concrete� domain� For instance�
Galois connections are used in ��� to de
ne the notion of domain abstraction for embedding
one domain into another one� and in ��� to de
ne the notion of domain quotient for extract	
ing from a domain the part that describes a given property� Closure operators have been
used in two recent works ��� ��� to de
ne the notions of domain �pseudo�	complementation
and disjunctive basis� for studying the 
inverse� of the operators of reduced product and of
disjunctive completion� In particular� in ��� a notion of domain decomposition is introduced�
and pseudo	complementation is used for decomposing abstract domains�

The aim of this paper is to introduce a framework for the design and study of abstract
domains� We adopt the setting of 
rst	order logic� because it is a familiar formalism for
specifying as well as for reasoning about properties� The idea is to de
ne abstract domains
in logical form� and then to use 
isomorphic� copies in some other lattice structures as rep	
resentations for the implementation� In order to de
ne a speci
c instance of the framework�
one has to make two choices� �� the set� say V � of syntactic objects �generally a subset of the
variables of the considered program� to be analyzed� �� the 
rst	order assertion language� say
L� for specifying the properties of V one wants to study� Thus V is �identi
ed with� a set of
the variables of L� An abstract domain is de
ned to be a suitably chosen set of assertions�
whose free variables are contained in V � In this way� only the information on the objects of
interest �i�e�� of V � is taken into account�

Composition of abstract domains can be performed at the logical level in the following
way� the reduced product of two domains consists of all the conjunctions of their assertions�
and the disjunctive completion of a domain consists of all the disjunctions of its assertions�
Moreover� in order to decompose abstract domains� we introduce the notion of �conjunctive�
factorization of sets of assertions� where domains are factorized in 
disjoint� parts� It is worth
noting that this desirable property is not guaranteed in the decompositions obtained using
the method of ����

Computer representations of abstract domains are de
ned in the expected way� i�e�� they
have to respect �i�e�� be isomorphic to� their speci
cation in the assertion language�

This framework can be embedded in the standard one based on abstract interpretation
�under the assumption that the assertion language is enough expressive�� the concrete domain
consists of suitably chosen sets of valuations� and the concretization function of a domain maps
an assertion into the set of valuations that satisfy it�

The bene
ts of using a logical framework as the one we propose can be summarized as
follows� The two phases of design and computer representation of abstract domains are neatly
separated� where the design phase is performed at the logical level� Moreover� the choice of
the assertion language allows one to focus only on the abstract domains that describe the
properties of interest� that are those expressible in that language� This is not the case for
the standard methods above mentioned� where all possible abstract domains �on the concrete
domain� are taken into account�

We illustrate this approach by considering typical abstract domains for ground	
dependency and aliasing analysis in logic programming� The fragment L of a 
rst	order
assertion language introduced in ���� �actually� a slight extension of this� is used� Logical
descriptions of various abstract domains are given� Def ���� and Pos ���� ��� for ground	
dependency analysis� Sharing ���� and ASub ���� for aliasing analysis� Maximal factorizations
for these domains are obtained by inspecting the structure of the assertions in the abstract
domains� and they are used for analyzing and comparing the abstract domains� Moreover�
we study the disjunctive completion of these domains�
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The paper is organized as follows� The next section introduces a methodology for the
design and decomposition of abstract domains using 
rst	order logic� Section � presents an
assertion language for the design of typical abstract domains for logic programming� Section
� contains a comparative study of various abstract domains for logic programming� Section
� discusses some related work� Finally� in Section � we conclude with a discussion on other
applications and on future work� A preliminary version of this paper appeared in �����

� Abstract Domains in Assertion Form

We show in this section how 
rst	order logic can be used for the design of abstract domains
for abstract interpretation� The approach is based on the seminal work of the Cousots ����
First� a 
rst	order assertion language L is chosen� in order to describe the properties of
interest� Next� abstract domains �on L� are de
ned as suitably chosen sets of assertions of
L� Finally� �e�cient� computer representations of abstract domains are de
ned as usual�
i�e�� as isomorphic copies of their logical speci
cation in L� In order to decompose abstract
domains� the notion of �conjunctive� factorization on L is introduced� where abstract domains
are decomposed in pairwise 
disjoint� parts�

Here and in the sequel L denotes a generic assertion language� We assume that the
semantics of the predicates in L is 
xed according to their intended meaning� by a given
structure denoted by M� Assertions are indicated by �� �� As already mentioned� abstract
domains represent properties of some syntactic objects� usually a subset of the variables of
the considered program� Thus� the de
nition of abstract domain we give is parametric with
respect to a set V of syntactic objects� We adopt the following convenient assumptions�

�� V is �identi
ed with� a set of distinct variables of L�

�� in the de
nition of abstract domain� only the set of assertions of L whose free variables
are contained in V is considered� denoted by A�L�V ��

�� assertions with the same meaning are identi
ed�

The 
rst two assumptions ensure that only the information on the objects of interest �i�e��
of V � is taken into account� The last assumption amounts to consider equivalence classes of
assertions of A�L�V �� where ��� denotes all the assertions that are logically equivalent to ��
For simplicity� in the sequel the squares in ��� are often omitted�

De�nition ��� �Abstract Domain on L� An abstract domain �on L�� denoted by A
�possibly subscripted�� is a set of assertions of A�L�V � containing false� and closed under
conjunction and variance�� �

One can characterize an abstract domain �on L� by means of Galois connections according
to the standard approach in the following way� In order to de
ne the concrete domain for
the Galois connections� we introduce an equivalence relation� based on the observation that
valuations mapping the variables of V into the same object can be identi
ed� since the
free variables of the assertions in a domain are contained in V � Let �V be the relation on
valuations s�t� � �V �� if ��x � � ���x � for every x � V � Clearly�V is an equivalence relation�

�Recall that a variant of an assertion � is any assertion �� obtained by applying to � a function � that
renames the variables of �
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Consider the set Val�V of those equivalence classes w�r�t� �V that are closed under variance
w�r�t� V �� Then the concrete domain ConcV is the family of subsets of Val�V � Consider now
a domain D on L� Its concretization function � maps an assertion � into the set of ConcV
consisting of the equivalence classes of valuations that satisfy �� It is easy to check that �
induces a Galois connection �actually a Galois insertion� ��� �� of D into ConcV

�� We shall
see at the end of this section that also the converse holds� under a suitable assumption on the
assertion language�

Example ��� A simple abstract domain for the study of the sign of program variables as	
suming integer values is given in ���� For a considered set V of program variables� this domain
can be speci
ed in our formalism as follows� L contains the constants and function symbols
of the program� and the unary predicates �� �� M maps terms into integers according to
their intended interpretation� and specify the semantics of �� � in the expected way� Then
the abstract domain for the study of the sign of the variables in V can be described by the
set SignV of assertions that are conjunctions of atoms of the form x � �� or x � �� with x in
V � �

We conclude with an observation on the lattice structure of our concrete domain�

Proposition ��� The set ConcV is an algebraic complete lattice with intersection and union

as meet and join� respectively�

It is worth noticing that in the standard framework ���� the concrete domain is a complete
lattice� but it is not in general algebraic� The property of algebraicity of ConcV simpli
es the
study of abstract domains� as we shall see in the sequel� In the sequel� for simplicity� we shall
write valuations instead of equivalence classes of valuations� Moreover� we shall often avoid
to mention the element false when specifying the set of assertions of an abstract domain�

In order to improve the precision of the static analysis of logic programs� various operators
on abstract domains have been introduced� Two fundamental operators are the reduced	
product and the disjunctive completion ������ In the following two subsections we discuss the
correspondent of these operators on L�

��� Reduced Product

The reduced product of two domains is obtained from the cardinal product of the domains
by identifying pairs of elements whose conjunction represent the same information� We can
characterize this notion in the logical framework on L as follows�

De�nition ��	 The reduced product of two domains A�� A� �A� �A�� is the set f��� ���� j
�� � A�� �� � A�g�

�The notion of variant w�r�t� V of a set d of valuations is de�ned in the expected way� let � be a substitution
that renames the variables of V with other variables of V � Then a variance of d is obtained by applying � to
the domain of every valuation

�Recall that ��� �� is a Galois connection if� a� �� � are monotonic functions �i�e�� S � S
� implies ��S��

��S ��� and �� �� implies ���� � ������� b� S � ����S�� for every S in ConcV � and c� �������� � for every
� in D� If in the condition c� we have � instead of � then ��� �� is a Galois insertion
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The notion of reduced product can be used to de
ne the concept of �conjunctive� domain
decomposition� For instance� in ��� a de
nition of decomposition of a domain D is given�
as a set of domains whose reduced product yields D � Here we consider a stronger notion of
decomposition �in L� where the factors have to be pairwise 
disjoint�� A comparison with the
work in ��� is postponed to the Section ��

Here and in the sequel� the notation A� � A� is used� meaning that A� and A� contain
the same equivalence classes�

De�nition ��
 �Conjunctive Factorization on L� The set fA�� � � � �Ang of abstract do	
mains is a �conjunctive� factorization of A if the following conditions hold�
�a� If n 	 � then Ai �� ftrue� falseg� for i � ���n��
�b� Ai �Aj � ftrue� falseg for every i �� j �
�c� A� � � � � �An � A�

We call A reduced if it has only one factorization� Moreover� a factorization of A is
maximal if Ai is �	reduced� for i � ���n�� �

It follows from the de
nition that an abstract domain has always a factorization �e�g�� fAg��
Moreover� if A is �	reduced then fAg is its only factorization� and it is maximal�

Example ��� It is easy to check that fSign���Sign��g is a maximal factorization of SignV �
where Sign�� is the set of assertions that are conjunctions of atoms of the form x � �� with
x in V � and where Sign�� is de
ned analogously�

�

��� Disjunctive Completion

The disjunctive completion of a domain is obtained from the powerset of the domain by
identifying sets whose disjunction represent the same information� We can characterize this
notion in the logical framework on L as follows�

De�nition ��� The disjunctive completion of A �	A� is the set f��� 	 � � � 	 �n � j n �
�� ��� � � � � �n � Ag�

The operator of disjunctive completion has been thoroughly investigated in ����� where
the inverse of this operator� called least disjunctive basis� is introduced� We can introduce a
similar notion in our framework as follows�

De�nition ��
 A domain A 	�reduced �in L� if for every A� s�t� 	A� � 	A we have that
A 
 A��

It is easy to check that the domain SignV introduced in Example ��� is 		reduced�
Call an abstract domain A 	�closed if 	A � A� Every 		closed abstract domain is the

disjunctive completion of a 		reduced abstract domain�

Proposition ��� Suppose that A is 	�closed� Then there exists a 	�reduced domain A� s�t�

	A� � A�

A similar result is proven in ���� �Theorem ���� under the hypothesis that the concrete
domain is �dual	�algebraic� Here this hypothesis is implied by Proposition ����

Moreover� the following result follows directly�
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Proposition ���� A is 	�closed if and only if it is closed under disjunction�

A similar result is given in ���� �Theorem ���� under the assumption that the concrete
domain is a completely meet	distributive lattice� Here Proposition ��� allows us to drop this
assumption�

In the following section we formalize the notion of domain representation in the logical
framework�

��� Domain Representation

The bene
t of using this 
rst	order framework is that the de
nition� decomposition and
comparison of abstract domains can be performed in a uniform and familiar setting� However�
�computer� representations of abstract domains for their e�cient manipulation ������ often
need di�erent lattice structures �see� e�g�� ��� for ground	dependency analysis�� Therefore the
notion of representation of an abstract domain is de
ned as follows� First� we need some
preliminary terminology� The following notion of embedding of an abstract domain into L is
used� Here and in the the sequel D denotes an abstract domain �on any complete lattice� and
�D denotes its concretization function �cf� �����

De�nition ���� �Embedding� An embedding of D in L is an injective mapping 
D � D � L
s�t� for every D in D� � is in �D�D� if and only if 
�D� is true under �� �

Thus an embedding of a domain into L consists of the �equivalence classes of the� assertions
�D characterizing the sets �D�D� of valuations� with D in D� The following result is an easy
consequence of the de
nition of concretization function ������

Proposition ���� The image 
D�D� of an embedding is an abstract domain on L�

Proof� 
D is an isomorphism of D into 
D�D�� �

We can now formalize the concept of representation domain�

De�nition ���� �Representation Domain� D is a representation of A �or equivalently A
and D are isomorphic� denoted by A � D� if there exists an embedding 
D s�t� A � 
D�D��

�

The de
nition of representation domain clari
es the role of domains in assertion form� as
those used in the design phase� in contrast to the representation domains used in the �e�cient�
implementation� We conclude with an example�

Example ���	 Suppose V � fxg� Then a representation of SignV is the familiar lattice
pictured below
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��� Relation with the Standard Approach

We conclude this section with a discussion on the relationship of our framework with the
standard approach based on closure operators �or equivalently on Galois connections�� We
have already shown that our notion of abstract domain �De
nition ���� is consistent with the
original de
nition �cf� ����� We shall give here the same result in terms of closure operators�
Moreover� we shall see that a full equivalence of our framework with the standard one holds
only under the assumptions that the assertion language is enough expressive�

Recall that Val�V denotes the set �of equivalence classes� of valuations that are closed
under variance w�r�t V � and Val�V denotes �Val�V � Let us start by giving few preliminaries
on closure operators �the reader interested to this subject is referred to e�g� ������ Let X

be a set� An upper closure operator on X is a function c � �X � �X that is extensive
�S 
 c�S ��� monotonic �S 
 S � implies c�S � 
 c�S ��� and idempotent �c�c�S �� � c�S ���
An important characterization of closure operators that we shall use is given in terms of
intersection structures �

T
structures�� An intersection structure �on X� is a non	empty

family of subsets of X which is closed under intersection� Moreover� it is called topped if it
contains X � For every closure operator c on X � the family Sc of those sets S s�t� c�S � � S

is a topped
T

structure� Vice versa� for every topped
T

structure S �on X �� the formula
cS�S � �

T
S ��S�S ��S S

� de
nes a closure operator on X � Moreover� the closure operator
induced by the topped

T
structure Sc is c itself� and� similarly� the

T
structure induced by

the closure operator cS is S�
The importance of this result relies on the fact that� if we identify an assertion with the

set of valuations under which it is true� then an abstract domain on L is a topped algebraic�

intersection structure on Val�V � hence it induces a closure operator on Val�V de
ned as
above�

In the standard approach� also the vice versa holds� i�e�� the lattice of abstract domains
is isomorphic to the lattice of upper closure operators� This result does not hold with our
notion of abstract domain� because �the topped intersection structure induced by� a closure
operator is an abstract domain on L only if it can be described by means of a set of assertions
of L� However� if one assumes that the assertion language allows to describe all the subsets
of Val�V � then the lattice of abstract domains �according to De
nition ���� is isomorphic to
the lattice of upper closure operators on Val�V �

Formally� call L complete w�r�t� V if for every subset S of Val�V there there exists an
assertion � on L s�t� � is true under all the valuations of S and under no other one� Then we
have the following result�

Proposition ���
 Suppose that L is complete w�r�t� V � Then the set of abstract domains

on L is isomorphic to the set of �upper� closure operators on Val�V �

� Abstract Domains for Logic Programming

In this section� we show how a slight extension of the 
rst	order assertion language L intro	
duced in ���� can be used for the design and decomposition of typical abstract domains for
the static analysis of logic programs�

�A
T

structure S is algebraic if it is closed under the union of directed subfamilies� S is a direct subfamily
if� for every �nite subset T of S� there exists a S in S s�t� T � S for every T � T
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Term properties� like groundness and sharing� have been identi
ed as crucial when analyz	
ing the run	time behaviour of logic programs� For instance� ground	dependency analysis can
be used for compile optimization� by using matching instead of uni
cation when it is known
that at a given program point a variable is bound to a ground term every time the execution
reaches that point� Information on the sharing among variables in a logic program is useful
for important optimizations� like and	parallelism� The assertion language here considered
allows to express properties of terms� like groundness� freeness� linearity� sharing� covering
and independency� Informally� a term is ground if it does not contain variables� it is free if it
is a variable� and it is linear if every variable occurs in it at most once� Moreover� a set of
terms share if they have at least one common variable� while they are independent if they do
not share� Finally� a term is covered by a set of terms if the set of its variables is contained
in the union of the sets of variables of the terms in that set� For instance� the term f �x � y� is
covered by the set fg�x �� g�y�g�

In order to de
ne L� a countable set Var of �logical� variables is used� denoted by v � x � y � z �
possibly subscripted� Here and in the sequel� S represents a 
nite set of logical variables� and
jS j its cardinality� Moreover� the notation S � S � indicates that S is a proper subset of S ��

De�nition ��� �The Assertion Language� Let L� be the smallest set F of formulas con	
taining atoms of the form var �x �� ground �x �� linear �x �� share�S �� and s�t� if �� and �� are in
F then ��� and �� � �� are also in F � The assertion language L consists of all the formulas
of the form �x�� � � � � xn���� with � � L�� and n � �� �

The formula � 	 � is used as a shorthand for ���� � ���� � � � denotes �� 	 �� and
� � � stands for �� � �� � �� � ��� Moreover� the propositional constants true and false

are assumed to be in L� where true is identi
ed with the conjunction over the empty set of
assertions �� and false with 	�� In the sequel� the notation share�x � y� is used as shorthand
of share�fx � yg�� with x � y distinct�

Observe that only a weak form of universal quanti
cation is allowed� where � does
not occur in the scope of any �� For instance� �z �var �z � � �share�fz � xg�� is in L� but
��z �var�z � � �share�fz � xg�� is not in L�

The meaning of assertions in L is speci
ed by means of the following structure M� Let
OVar be the set of �object� variables� here identi
ed for simplicity with Var � and let Fun be
a set of functors with rank �constants are identi
ed with functors of rank ��� In the following�
occ�x � �� denotes the number of occurrences of the variable x in the term � � and OVar��� the
set of �object� variables occurring in � �

De�nition ��� The structure M contains the universe U consisting of the �object� terms

built on OVar and Fun� Moreover� for each predicate symbol p of L� M contains a predicate
in U � also denoted by p� with the following semantics�

M j� var ��� if � � OVar

M j� ground ��� if OVar��� � �
M j� linear ��� if occ�x � �� � � for every x in OVar���
M j� share�f��� � � � � �ng� if

Tn
i��OVar��i � �� �

�

Example ��� The assertion �share�fx � y � zg� 	 share�fx � yg� is valid in M� In fact� for
every valuation �� if OVar�x�� �OVar�y�� �� � then M j� share�fx � yg��� otherwise M j�
�share�fx � y � zg��� �

�



Note that even if share is not 
rst	order �its argument is a set�� it can be expressed in

rst	order logic by means of a family of 
rst	order predicates sharen of rank n� with n � ��
The set of valid �in M� assertions of L has been characterized by means of a complete and
decidable theory T � by means of a simple axiomatization �see ������

The completeness and decidability of T provides an automatic tool for proving properties
of some elements of an abstract domain� in the following way� In order to prove that an
element � of a domain satis
es a property P � speci
ed in L by means of the assertion �� it is
su�cient to check the validity of the implication �� ��

In order to use L for the static analysis of logic programs� it is necessary to assume that U
contains the constants and function symbols of the considered class of programs� Moreover�
we adopt the notation of the previous section� V denotes the set of �logical� variables rep	
resenting the considered �program� variables� and A�L�V � the set of assertions of L whose
free variables are contained in V � Therefore substitutions are identi
ed with �equivalence
classes of� valuations� For instance� the substitution fx��t�� � � � � xn�tng is identi
ed with the
set of valuations mapping x�� � � � � xn into the object terms ��� � � � � �n obtained by replacing
the variables of the ti �s with the corresponding object variables�

An abstract domain �on L� is speci
ed according to De
nition ���� Observe that we obtain
a more speci
c notion of abstract domain than the original one �cf� ����� because of the choice
of the assertion language� and because of the condition of closure under variance� For instance�
fground �x �� true � falseg would represent an abstract domain in the original de
nition� but it
is not a legal one in our de
nition �unless V � fxg�� The condition of closure under variance
w�r�t� V has been implicitly assumed in the literature on abstract interpretation of logic
programs� but it has not been taken into account when reasoning about these domains using
the standard techniques based on Galois insertions or closure operator �cf� �����

We conclude this section with a simple example�

Example ��	 Consider the abstract domain Con introduced by Mellish ���� and used in
early mode and groundness analyzers ����� Con consists of the bottom element �� and of the
sets S � fx�� � � � � xng of variables of V � with concretization function mapping � into � and
�Con�S � � f� j OVar�x�� � � for all x � Sg�

Let ACon be the set of assertions that are conjunctions of atoms of the form ground �x ��
with x in V � It is easy to show that ACon satis
es De
nition ���� and that Con is a rep	
resentation of ACon � by considering the embedding 
Con that maps � into false and a set
fx�� � � � � xng into the assertion ground�x�� � � � � � ground �xn�� �

� Abstract Domains for Ground�Dependency and Aliasing

This section contains a comparative analysis of various abstract domains for the static analysis
of logic programs� namely Def � Pos� Sharing and ASub� Each of these domains is shown to
be the representation of an abstract domain on L� These logical characterizations in L
of the domains are used for deriving their maximal conjunctive factorizations� for studying
and comparing the original domains� as well as for de
ning new ones� Moreover� composite
domains that use Sharing and ASub� called equations systems� are investigated� We deal with
the disjunctive completion of these domains in the last subsection�

�



��� Def in Logical Form

The abstract domain Def was introduced by Marriott and S�ndergaard for ground	
dependency analysis in ����� based on previous work by Dart ������ on groundness analysis
in deductive databases� We show that Def can be factorized into two reduced domains�
describing groundness and covering� respectively�

First� we recall the de
nition of Def � Def is the largest class of positive boolean functions
whose models are closed under intersection� augmented with the bottom element false � Recall
that a boolean function F is positive if F �true� � � � � true� � true� Here boolean functions are
represented by �equivalence classes of� propositional formulas� as e�g� in ����� In order to
de
ne the concretization function �Def � substitutions are viewed as truth assignments as
follows� For a substitution �� the truth assignment grounds� maps a propositional variable
x to true i� x� is ground� and to false otherwise� Moreover� the notion of instance �� of a
substitution � is used� meaning that �� is obtained by composing � with some substitution�
The concretization function �Def maps an element F of Def into the set �Def �F � of those
substitutions � s�t� for every instance �� of �� F under the truth assignment grounds�� is
true� Intuitively� �Def �F � extracts the 
monotonic� �in the sense that its truth is preserved
under instantiation� information described by the propositional formula F �

Consider the following abstract domain ADef on L�

De�nition 	�� ADef is the set of assertions that are conjunctions of formulas of the form
�z �var �z � � share�z � x � � share�z � y�� 	 � � � 	 share�z � yn ��� with n � �� where x � y�� � � � � yn
are in V � and z is a fresh variable� �

We show that Def is a representation of ADef � and provide a maximal factorization of
ADef �

First� Def is characterized in logical form by means of the following transformation� We
use the representation of an element F in Def as a conjunction of formulas� called de
nite
clauses� of the form y� � � � � � yn � x with n � � �see ���� ����

De�nition 	�� The transformation 
Def � Def � L maps F into �F � de
ned as follows�

� �F � �z �var �z � � share�z � x � � share�z � y�� 	 � � � 	 share�z � yn �� if F � y� � � � � � yn � x �

� �F � �F� � � � � � �Fk if F � F� � � � � � Fk � k � �� and all the Fi �s are de
nite clauses�

�

Observe that� for n � � we obtain the assertion �z �var �z � � share�z � x � � false�� that is
equivalent to ground �x ��

Example 	�� The element x � �y � w� is mapped by 
Def into the assertion ground �x � �
�z �var �z � � share�z �w� � share�z � y�� � �z �var �z � � share�z � y� � share�z �w��� �

Next� the transformation of De
nition ��� is shown to be correct�

Lemma 	�	 
Def is an embedding of Def into L�

��



Proof� Let F be an element of Def � Let � be a substitution� We show that � is in �Def �F �
if and only if �F� is true�

Suppose that � is in �Def �F �� Then F under grounds� is true� For every conjunct
y� � � � � � yn � x of F � we have to prove prove that the corresponding conjunct � in �F is
true under �� If x� is ground then �� is readily true� Otherwise� suppose by contradiction
that x� contains a variable v which does not occur in any term yi�� for i � ���n�� Consider
the substitution � with domain the set of variables occurring in all the yi��s� and mapping all
variables into ground terms� Since v is not in the domain of �� we have that �� � �� grounds
all the yi �s but does not ground x � hence F is false under grounds��� So � would not be in
�Def �F ��

Vice versa� suppose that �F is true under �� In order to prove that � is in �Def �F �� we
have to show that F under grounds�� is true� for every instance �� of �� Let � � �z �var �z ��
share�z � x � � share�z � y�� 	 � � � 	 share�z � yn �� be a conjunct of �F � From � true under � we
have that� OVar�x�� 
 �ni��OVar�yi��� moreover� for every instance �� of � we have that
OVar�x��� 
 �ni��OVar�yi�

��� So if x�� is not ground then at least one of the yi�
� is not

ground� Hence y� � � � � � yn � x is true under grounds��� �

Finally� using the above Lemma we can prove that Def is a representation of ADef �

Theorem 	�
 Def � ADef �

Proof� By Lemma ��� F in Def can be characterized by the assertion �F in ADef �
Vice versa� consider a � in ADef � Consider F de
ned as the conjunction of de
nite

clauses� s�t� y� � � � � � yn � x occurs in F i� the conjunct �z �var �z � � share�z � x � �
share�z � y�� 	 � � � 	 share�z � yn �� occurs in �� It is easy to check that F is in Def � and that

Def �F � is equivalent to �� �

In order to analyze Def and to compare it with other abstract domains� a maximal
factorization of ADef is given� To this end� we use the following domains� For every jV j �
n � �� consider the domain ADef n consisting of the conjunctions of formulas of the form
�z �var �z � � share�z � x � � share�z � y�� 	 � � � 	 share�z � yn ��� with y�� � � � � yn distinct variables
of V � The following result holds�

Lemma 	�� fADefn j n � ��� jV j�g is a maximal factorization of ADef�

Proof�

First� we prove that every ADef n is reduced� For n � � the result is immediate� For n 	 ��
observe that assertions of the form �z �var �z �� share�z � x � � share�z � y��	 � � �	 share�z � yn ��
s�t� x is not in fy�� � � � � yng cannot be decomposed in �� ���� with ��� �� in L not equivalent
to true� because of the presence of the � operator� Then� there is only one conjunctive
factorization of ADef n �

Next� we have to check that conditions �a���b� and �c� of the de
nition of factorization
are satis
ed�
�a� Notice that for every n � �� the element �z �var�z � � share�z � x � � share�z � y�� 	 � � � 	
share�z � yn �� is true under the valuation that maps all the variables of V into ground terms�
but is false under the valuation that maps all the variables of V into distinct variables�
�b� Consider n�m � �� and suppose that n 	 m� We have to show that ADefm � ADef n �
ftrue� falseg� By contradiction� assume that � is in the intersection but is neither true nor
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false� Then� from � in ADef n � it is a non	empty conjunction of assertions� each of them of the
form � � �z �var �z � � share�z � x � � share�z � y�� 	 � � � 	 share�z � yn �� with x �� fy�� � � � � yng�
But � is also in ADefm � Moreover� every A

Def i
is reduced� So � is equivalent to �z �var �z ��

share�z � x � � share�z � y��	 � � � 	 share�z � ym ��� It is easy to build a valuation � under which
� is both true and false� �� if y is in fym��� � � � � yng then OVar�y�� � OVar�x�� �� �� ��
OVar�yi�� � � for every i � ���m��
�c� Follows easily by the de
nition of ADef �

�

Let ADef� � �n����jV j	ADef n � A representation of ADef� is provided by the set Def � of
positive boolean functions that can be represented as conjunctions of clauses y�� � � ��yn � x �
with n � �� plus the bottom element false� with concretization function the one of Def � Then
by Lemma ��� it follows that Def is �isomorphic to� the reduced	product of the domain Con
and Def ��

It has been recently shown in ��� that Def characterizes the ground	dependency informa	
tion on V described by the domain Sharing� We shall see that this result is easily derived
from the logical descriptions of these domains�

��� Pos in Logical Form

In order to study ground	dependency analysis� the abstract domain Pos was introduced by
Marriott and S�ndergaard ���� ���� consisting of the positive boolean functions� plus the
bottom element false� with concretization function equal to �Def �

Consider the following abstract domain APos � In the sequel Q�z � y�� � � � � yn� denotes the
assertion share�z � y�� 	 � � � 	 share�z � yn ��

De�nition 	�� APos is the set of assertions that are conjunctions of formulas of the
form �z �var �z � � share�z � x�� � Q�z � y�� � � � � yn�� 	 � � � 	 �z �var �z � � share�z � xm � �
Q�z � y�� � � � � yn��� with m � �� and n � �� where x�� � � � � xm � y�� � � � � yn are in V � and z is
a fresh variable� �

We show that Pos is a representation of APos � and provide a maximal factorization �on
L� of APos �

First� Pos is characterized in logical form by means of the following transformation� We use
the representation of an element F of Pos as a conjunction of clauses� of the form y��� � ��yn �
x� 	 � � � 	 xm � m � �� n � � �cf� �����

De�nition 	�
 The transformation 
Pos � Pos � L maps F into �F � de
ned as follows�

� �F � �z �var �z � � share�z � x�� � Q�z � y�� � � � � yn�� 	 � � � 	 �z �var �z � � share�z � xm � �
Q�z � y�� � � � � yn�� if F � y� � � � � � yn � x� 	 � � � 	 xm �

� �F � �F� � � � � � �Fk if F � F� � � � � � Fk � k � �� and all the Fi �s are clauses� �

It is easy to check that the above transformation restricted to the elements of Def coincides
with 
Def �

Example 	�� The element x 	 y is mapped by 
Pos into the assertion �z �var �z � �
share�z � x � � false�	�z �var�z �� share�z � y� � false�� equivalent to ground �x �	 ground �y��
�

��



Next� the transformation of De
nition ��� is shown to be correct�

Lemma 	��� 
Pos is an embedding of Pos into L�

Proof� Let F be an element of Pos � and � a substitution� We prove that � is in �Pos �F � if
and only if �F� is true�

Suppose that � is in �Pos�F �� For every conjunct y�� � � ��yn � x�	 � � �	xm be a conjunct
of F we prove that the corresponding conjunct � in �F is true under �� If xi� is ground for
at least one i � ���m�� then �� is true� Otherwise� we proceed per contradiction� Suppose
that every xi� contains a variable vi which does not occur in �j����n	OVar�yj��� Consider
the substitution � with domain �j����n	OVar�yj��� mapping every variable in the domain into
a ground term� Observe that v�� � � � � vm are not in the domain of �� Consider �� � ��� it
grounds all the yj �s but does not ground any of the xi �s� Hence F is false under grounds���
Contradiction�

Vice versa� suppose that �F is true under �� In order to prove that � is in �Pos �F ��
we have to show that F under grounds�� is true� for every instance �� of �� Consider a
conjunct � � �z �var �z �� share�z � x�� � Q�z � y�� � � � � yn��	 � � �	�z �var�z �� share�z � xm � �
Q�z � y�� � � � � yn�� of �F � it is true under �� therefore OVar�xj�� 
 �ni��OVar�yi�� for at least
one j � ���m�� For every instance �� of � we have that OVar�xj�

�� 
 �ni��OVar�yi�
��� Then

y� � � � � � yn � x� 	 � � � 	 xm is true under grounds��� because if xj�
� is not ground then at

least one of the yi�
� is not ground�

�

Finally� using Lemma ����� we can prove that Pos is a representation of APos �

Theorem 	��� Pos � APos�

Proof� From Lemma ���� it follows that F in Pos can be characterized by the assertion �F
in APos �

Vice versa� consider a � in APos � Let F be the conjunction of de
nite clauses� s�t� y��� � ��
yn � x�	 � � �	xm occurs in F i� the conjunct �z �var �z ���share�z � x��	 � � �	share�z � xm �� �
share�z � y�� 	 � � � 	 share�z � yn �� occurs in �� It is easy to check that F is in Pos� and that

Pos�F � is equivalent to �� �

In order to give a maximal factorization of APos � we use the decomposition of ADef � and
the following domains� For every jV j � n � � and jV j � m � �� consider the domain
APosm�n consisting of the conjunctions of formulas of the form �z �var �z � � share�z � x�� �
Q�z � y�� � � � � yn�� 	 � � � 	 �z �var �z � � share�z � xm � � Q�z � y�� � � � � yn�� with x�� � � � � xm and
y�� � � � � yn distinct variables of V � The following result holds�

Lemma 	��� fADefn �APosm�n j n � ��� jV j��m � ��� jV j�g is a maximal factorization of
APos�

Proof� The proof is similar to the one of Lemma ���� So� we only show that the domains
APosm�n �s are 
disjoint�� The proof is by contradiction�
Let �m��n�� �� �m��n�� Assume that � is in the intersection but is neither true nor false� �
is in APosm��n� � so it contains a conjunct � � �z �var�z � � share�z � x�� � Q�z � y�� � � � � yn��� 	
� � � 	 �z �var �z � � share�z � xm�

� � Q�z � y�� � � � � yn��� where fx�� � � � � xm�
g � fy�� � � � � yn�g � ��

��



But � is also in APosm��n� � Suppose m� 	 m� �the proof for the other case is analogous��
Then every conjunct �i of � contains one variable occurring free on the left	hand side of ��
say wi � that does not belong to fx�� � � � � xm�

g� Consider a valuation � s�t�� �� OVar�wi�� � �
for every wi � �� all the other variables are mapped into distinct variables� Then �� is false�
However� from condition �� every �i is true under �� Contradiction� The proof for the other
case�namely when m� � m� and n� 	 n� �or n� 	 n�� is similar to the proof of �b� of Lemma
���� where one replaces x by x�� � � � � xm�

�
�

Let APos� � �n����jV j	�m����jV j	APosm�n � A representation of APos� is provided by the
set Pos� of positive boolean functions that can be represented as conjunctions of clauses
y� � � � � � yn � x� 	 � � � 	 xm � with n � ��m � �� plus the bottom element false� with
concretization function the one of Pos� Then by Lemma ���� it follows that Pos is �isomorphic
to� the reduced	product of the domains Con� Def � and Pos�� It has been shown in ��� that
Def is properly contained in Pos� Lemma ���� characterizes logically the other part of Pos�

��� Sharing in Logical Form

In order to study information on the possible sharing among abstract variables� an abstract
domain extensively used in abstract interpretation is the domain Sharing by Jacobs and

Langen ����� Sharing is the set of sets � � ��
V

s�t� if � �� � then � � �� Its concretization
function �Sharing maps an element � of Sharing into the set �Sharing ��� of those substitutions
� whose approximation set A��� is an element of �� The approximation set A��� consists of
all the sets occ��� x � � fv j v in the domain of � s�t� x occurs in v�g� for all the variables x
occurring in the range of ��

Consider the following abstract domain ASharing �

De�nition 	��� ASharing is the set of assertions of L that are conjunctions of formulas of
the form �z �var �z �� share�z � x��� � � �� share�z � xm � � share�z � y��	 � � �	 share�z � yn �� with
m � �� n � �� where x�� � � � � xm � y�� � � � � yk are in V � and z is a fresh variable� �

We show that Sharing is a representation of ASharing � and provide a maximal factorization
�on L� of ASharing �

First� Sharing is characterized in logical form by means of the following transformation�
In the sequel� for the sake of simplicity� we write share�x �S � instead of share�fxg � S ��

De�nition 	��	 The transformation 
Sharing maps � into the assertion

�
 �
�

S�V

�z �var �z � � share�z �S � � share�z �S�� 	 � � � 	 share�z �Sk ���

with fS�� � � � �Skg � fS � j S � � � s�t� S 
 S �g�
�

Let �S denote the conjunct of �
 corresponding to the subset S of V �
Observe that if S is not contained in any set of �� then �S is the assertion �z �var �z � �

share�z �S � � false�� which says that the variables of S can only be bound to terms sharing
no variables� If S is a singleton� say S � fxg� then �S describes information on ground	
dependency for x � Indeed� it is not di�cult to see that in this case �S can be rewritten

��



into an assertion of ADef � The other assertions �S � for S not singleton and k 	 �� describe
information about sharing of sets containing at least three variables�

Example 	��
 Consider � � f�� fxg� fx � yg� fy � zgg� and V � fx � y � zg� Then �
 is �equiv	
alent to� �share�x � z ���share �fx � y � zg���v�var �v��share�v � y� � share�v � z �	share�v � x ���
�v�var�v� � share�v � z � � share�v � y��� �

Next� the correctness of this transformation is shown�

Lemma 	��� 
Sharing is an embedding of Sharing into L�

Proof� Let � an element of Sharing� and let � a substitution� We show that � is in ���� if
and only if �
 is true under ��

Suppose that � is in ����� By de
nition of ����� for every S 
 V � if the terms of S�
share at least one variable v then S 
 occ��� v�� and occ��� v� is in �� Hence �S is true under
��

Vice versa� suppose that �
 is true under �� In order to prove that � is in ����� we
have to show that for every v in the range of �� occ��� v� is in �� By hypothesis �occ���v� �
�z �var �z � � share�z � occ��� v�� � share�z �S��	 � � � 	 share�z �Sk �� is true under �� Moreover
k � �� since v occurs in every term of occ��� v��� Observe that occ��� v� is the biggest set S

of variables in V s�t� v occurs in x�� for every x � S � Then occ��� v� � Si for some i � ��� k ��
�

Finally� Lemma ���� is used to prove that Sharing is a representation of ASharing �

Theorem 	��� Sharing � ASharing�

Proof� Consider � in Sharing � By Lemma ����� it is characterized by the assertion �
 of the
form �S�V�z �var �z � � share�z �S � � share�z �S�� 	 � � � 	 share�z �Sk ��� It is not di�cult to
prove that �
 is equivalent to the conjunction of the formulas �z �var �z �� share�z � x��� � � ��
share�z � xm � � share�z � y��	 � � �	 share�z � yk ��� for all �y�� � � � � yk � occurring in S�� � � �� Sk �
The proof consists of a manipulation of the assertion by means of standard 
rst	order logic
equivalences� together with the equivalence of share�z �S � and �x�S share�z � x �� Thus �
 is
in ASharing �

Vice versa� it is easy to prove that a � in ASharing is equivalent to the assertion 
Sharing ���
for a suitable �� � is manipulated� by means of standard 
rst	order logic equivalences� to	
gether with the equivalence of share�z �S � and �x�Sshare�z � x �� in order to obtain an assertion
of the form �S�V�z �var �z ��share�z �S � � share�z �S��	 � � �	share�z �Sk ��� This assertion is

Sharing ���� for � consisting of the sets Si that occur in the right hand side of the implications�

�

In order to give a maximal factorization of ASharing � we use the following domains� For
every jV j � n � � and jV j � m � �� consider the domain ASharingm�n consisting of
the conjunctions of formulas of the form �z �var �z � � share�z � x�� � � � � � share�z � xm � �
share�z � y�� 	 � � � 	 share�z � yn ��� with x�� � � � � xm and y�� � � � � yn distinct variables of V � The
following result holds�

Lemma 	��
 fASharingm�n j n � ��� jV j��m � ��� jV j�g is a maximal factorization of

ASharing�

��



Proof� The proof is similar to the one for the decomposition of Pos� �

Consider the abstract domain Sharing� introduced in ���� containing as elements the
empty set� and the sets �� of the form ��T � with � in Sharing and T � ffxg j x � V g�f�g�
One can prove that Sharing� is a representation of

V
m���n�� ASharingm�n � Moreover� Def

is a representation of
V
n�� ASharing��n � Therefore� by Lemma ���� it follows that Sharing is

�isomorphic to� the reduced product of Sharing��Def � and Con�

��� ASub in Logical Form

The pair	sharing domain ASub was introduced by S�ndergaard ���� for sharing and linearity
analysis� Its elements are pairs �G �R� where the 
rst component is a subset of V � and the
second one is a symmetric binary relation on V � s�t� �G�V ��R � �� Moreover� the element
�� representing the empty set of substitutions� is in ASub� Its concretization function �ASub
maps an element �G �R� of ASub into the set of substitutions � s�t� for all �x � y� in V � �i� x
in G implies x� ground� �ii� x � y distinct and OVar�x�� �OVar�y�� �� � implies �x � y� in R�
�iii� �x � x � �� R implies x� linear�

Consider the following abstract domain AASub�

De�nition 	��� AASub is the set of assertions that are conjunctions of literals of the form
ground �x �� �share�x � y�� and linear �x �� with x � y in V � �

We show that ASub is a representation of AASub � and provide a maximal factorization of
AASub �

First� ASub is characterized in logical form by means of the following transformation�

De�nition 	��� The transformation 
ASub maps � into false � and �G �R� into the assertion
��G�R� � �� � �� � ��� where�

�� �� is the conjunction of the atoms ground �x �� for all x in G �

�� �� is the conjunction of the literals �share�x � y�� for all �x � y� not in R with x � y distinct�

�� �� is the conjunction of the atoms linear �x �� for all �x � x � not in R� �

Assertions ��� �� and �� characterize ASub in logical form� by means of its information
on groundness� independence� and linearity� respectively�

Example 	��� Consider the element �G �R� of ASub� with G � fxg and R �
f�y � z �� �z � z �� �z �w�g and suppose that V � fx � y � z �wg� Then ��G�R� is �equivalent to�
ground �x � � linear �y� � linear �w� � �share�y �w�� �

Next� this transformation is shown to be correct�

Lemma 	��� 
ASub is an embedding of ASub into L�

Proof� Let �G �R� be a pair	sharing� Let � be a substitution� We show that � is in
�ASub�G �R� if and only if ��G�R� is true under ��

Suppose that � is in �ASub�G �R�� We have to show that each conjunct � of ��G�R� is true
under �� We distinguish three cases according to those of De
nition ����� If � � ground �x �
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then by �� x is in G � hence by �i� ground�x � is true under �� If � � �share�x � y� then by ��
x �� y and �x � y���y � x � not in R� hence by �ii� OVar�x�� � OVar�y�� � �� If � � linear �x �
then by �� �x � x � is not in R� hence by �iii� x� is linear�

Vice versa� suppose that ��G�R� is true under �� We show that � satis
es �i���iii�� From
�� it follows that �i� holds� Assume now that x �� y and OVar�x�� � OVar�y�� �� �� Then
from �� it follows that �x � y� is in R� Finally� �iii� follows from �� �

Lemma ���� is used to prove that ASub is a representation of AASub �

Theorem 	��� ASub � AASub�

Proof� We have already shown in Lemma ���� that �G �R� in ASub can be characterized by
the assertion ��G�R� in AASub �

Vice versa� consider a � in AASub� The pair �G �R� is de
ned as follows� x is in G if there
is a conjunct of � of the form ground �x �� �x � y� is in R if �share�x � y� does not occur in ��
and �x � x � is in R if linear �x � occurs in �� It is easy to check that �G �R� is in ASub� �

In order to give a maximal factorization of AASub � the domain ALinear is used� consisting
of the conjunctions of atoms the form linear �x �� with x in V �

Lemma 	��	 fASharingm�� �ALinear j m � ��� ��g is a maximal factorization of AASub�

Proof� It is su�cient to show that ALinear satis
es �a�� since the rest of the proof is similar
to the one of Lemma ����� Consider the element linear �x � of ALinear � Then the valuation
that maps x into a ground term satis
es the assertion� while the one mapping x into the term
f �y � y� does not satisfy the assertion� Observe that the last result is based on the assumption
that Fun contains one functor of rank greater or equal than �� �

��� Abstract Equations Systems

A recent proposal� called abstract equation systems �cf� ��� ����� considers composite domains
de
ned using Sharing or ASub� In this proposal� elementary properties are speci
ed by
means of a lattice An of annotations� For instance� the authors consider the annotations
lattice consisting of the three elements f � l � a� where f means free� l stands for linear� and
a stands for any term� Moreover� a sharing component � is used� which is either Sharing

or ASub� It is easy to characterize abstract equation systems in L� In abstract equations
systems� the distinction between abstract variables and variables is used� This corresponds
to the distinction between logical and object variables used in our logical framework� Each
annotation of An� augmented with the bottom element �� corresponds to a reduced abstract
domain on L� For example� l corresponds to the abstract domain ALinear introduced in the
previous section� f to AFree � consisting of the conjunctions of atoms of the form var�x �� and
a to ftrue� falseg�

��� Disjunctive Completions

The logical characterizations on L of the domains for ground	dependency and aliasing show
that there is no 
disjunctive� information incorporated into these domains� except for APos �
This is formalized in the following result�

��



Proposition 	��
 The abstract domains ADef � ASharing and AAsub are 	�reduced� Moreover�
	ADef � APos�

Proof� The 
rst result follows from the fact that the disjunctive normal form of any assertion
in one of the three considered abstract domains is equal to its conjunctive normal form�

The inclusion 	ADef 
 	APos follows from Lemma ����� The converse inclusion follows by
observing that an assertion of APos is a conjunction of assertions in 	ADef � and by computing
the disjunctive normal form� �

A similar result on Pos has already been given in ����� using the approach based on closure
operators� In ���� it is shown that the disjunctive completion of Pos is strictly better than
Pos� This result is considered somewhat surprising� indeed� one would expect that an element
fF�� � � � �Fkg of the disjunctive completion can be represented by the propositional formula
F� 	 � � � 	 Fk � This confusion is caused by the fact that the interpretation of a formula given
by the concretization function is not equal to the interpretation in propositional logic� while
we are used to interpret the logical connectives according to their standard semantics �in 
rst	
order logic�� This confusion does not arise when one uses the logical framework introduced in
this paper for the design and the reasoning phase� indeed� it is easy to show that APos is not
closed under disjunction� hence �by Proposition ����� it is not equivalent to its disjunctive
completion�

� Related Work

The standard techniques used for the comparative study of the properties represented by
abstract domains are based on two equivalent approaches� Galois connections and closure
operators�

In the original approach ������ comparison of abstract domains is performed by means of
the notion of abstraction� where an abstract domain is more abstract than another one if
there is a Galois insertion from the 
rst into the latter� This notion is weakened in ���� where
the comparison is de
ned w�r�t� a given property� by means of the notion of quotient of one
abstract domain w�r�t� another one� describing the part of the former abstract domain that
is useful for computing the information described by the latter one� A similar analysis is
possible by means of our framework� where the domain and the property are 
rst speci
ed
in the logic� and next factorized� Then the reduced product of the common factors of the
domains corresponds to the quotient of the domain w�r�t� the property�

The approach based on closure operators has been employed in two recent works ��� ����
that investigate the 
inverse� of the two important operators on abstract domains� namely the
reduced product and the disjunctive completion� respectively� In ���� this approach is used
for investigating domain complementation in abstract interpretation� a kind of inverse of the
reduced product� The authors formalize the concept of decomposition of an abstract domain�
as a set of abstract domains whose reduced product yields the initial abstract domain and
use the notion of pseudo	complement for decomposing abstract domains� The distinguishing
feature of our approach from this work is the use of an assertion language for describing
the properties of interest� and the explicit role of the set of considered program variables
�or more in general of syntactic objects�� As a consequence� domains are decomposed by
inspecting the form of their assertions� The relative de
nition of conjunctive factorization is
rather intuitive� since it resembles the notion of factorization of integers into pairwise prime
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factors� it is always applicable� and the resulting factors are 
disjoint�� This is not the case for
the method based on the notion of psuedo	complement� the notion of domain decomposition
is introduced� that amounts to condition �c� of De
nition ���� and the pseudo	complement
D � C of a domain D w�r�t� another domain C is used to provide the �binary� decomposition
�D � C �C � of D � where the factors are not necessarily 
disjoints��

In ����� the approach based on closure operators is used for investigating the inverse of
the operation of disjunctive completion� They introduce the notion of disjunctive basis for
an abstract domain as the most abstract domain inducing the same disjunctive completion�
and study the disjunctive basis of typical abstract domains used in abstract interpretation of
functional and logic programming� In this paper we have introduced a similar notion� called
		reduced domain �on L�� The main di�erence is that here L determines the granularity of
the 		reduced domains� while in ���� all the closure operators on the concrete domain are
considered� Moreover� the fact that L is a 
rst	order assertion language guarantees that the
disjunctive completion of a domain is equal to the disjunctive completion of a 		reduced
domain�

The abstract domains analyzed in Section � have been extensively studied in previous
work� In ��� it is proven that the part of Sharing describing groundness dependencies is
contained in Pos� In ��� this result is strengthen by showing that this part coincides with Def�
and that Sharing� is the pseudo	complement of Def in Sharing� In this paper these results
are directly derived from the logical characterization of Sharing � Moreover� we have obtained
the 
nest �in L� decomposition of Sharing � Finally� the factors of this decomposition have
been used for other purposes� e�g� for comparing the expressiveness of the abstract domains�

The classes of Boolean functions used to represent Def and Pos have been analyzed in
��� ��� The di�erence from these works is that they focus on the representation� while we
focus on the design and reasoning� by considering a syntactic characterization of �Def �Def �
in 
rst	order logic�

� Conclusion

In this paper a simple framework based on 
rst	order logic has been proposed for the design
of abstract domains for static analysis� The correspondent of the operations of reduced prod	
uct and disjoint completion of abstract domains have been de
ned in the logical framework�
Moreover� the notion of conjunctive factorization has been introduced� for decomposing ab	
stract domains in 
disjoint� parts� The usefulness of this framework has been illustrated by
analyzing typical abstract domains used in abstract interpretation of logic programs�

The framework can also be used for de
ning operators on abstract domains� For instance�
an important operator in abstract interpretation of logic programs is the 
projection� away
from the variables that are not in V � The projection operation corresponds to existential
quanti
cation ������� As one would expect� all the domains considered in Section � are closed
under existential quanti
cation� The existential closure �x ��� w�r�t� a variable x of a domain
� in AD �where D stands for one of the domains considered in Section �� is the domain
obtained from � by deleting all the conjuncts containing at least one free occurrence of x � For
example� if � � ground�w� � �v�var�v� � share�v � y� � share�v � z � 	 share�v � x �� then �x ���
is �equivalent to� ground �w��

Finally� abstract domains in logical form can be used for proving the correctness and
optimality of a representation� For instance� in ��� a function called Reduce is used which
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yields the minimal representative of an element of the reduced product of ASub and Sharing �
given an arbitrary representative� Reduce � ASub � Sharing � ASub � Sharing maps an
element h�G �R���i into h�G ��R�����i where �� � fS � � j S � G � ��Pairs�S � 
 Rg�
R� � R � ��S�
�S � S �� G � � fx � V j x �� S for every S � ��g� and Pairs�S � � f�x � y� �
S � S j x � y distinctg�

The logical representation of these domains can be used to prove that this de
nition
is correct and optimal� �i�e� it provides the minimal representation�� In fact� correctness
amounts to prove that the following is an equivalence �in M��


ASub�G �R� � 
Sharing ��� � 
ASub�G
��R�� � 
Sharing�����

Optimality amounts to prove the following two conditions�

�� for every x in V �


ASub�G
��R�� � ground�x � i� 
Sharing ���� � ground �x ��

�� for every distinct variables x � y of V �


ASub�G
��R�� � �share�x � y� i� 
Sharing ���� � �share�x � y��

The proof of the above statements is not di�cult� using the de
nitions of 
Sharing and 
ASub �
We conclude by mentioning some interesting topics for future work� The speci
c frame	

work for logic programming could be applied for proving the correctness of abstract uni
cation
algorithms� This could be done by describing the uni
cation by means of a suitable predicate
transformer on L� in the style of ����� and by de
ning a transformation which reduces the
considered abstract uni
cation algorithm to an instance of the predicate transformer� How	
ever� this is not an easy task� for it is already di�cult to design a speci
c correct abstract
uni
cation algorithm �see e�g� �����

Another interesting topic that seems worth of investigation� is the study of the relation	
ship between abstract interpretations and proof methods� This topic has been tackled in the
functional programming setting� where a domain	theoretic approach is used in ���� for prov	
ing that strictness analysis by abstract interpretation and non	standard type inference are
equivalent� For logic programming� our framework could be used for de
ning a program logic
for the comparison of data	driveness analysis using type inference �cf� e�g� ���� and abstract
interpretation �cf� ������
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