
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Design of abstract domains using first-order logic

E. Marchiori

Computer Science/Department of Interactive Systems

CS-R9633 1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301666023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9633
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Design of Abstract Domains Using First�Order Logic

Elena Marchiori

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

and

University of Leiden

P�O� Box �	�
�
��� RA Leiden� The Netherlands

e�mail� elena�cwi�nl

Abstract

In this paper we propose a simple framework based on �rst�order logic� for the de�
sign and decomposition of abstract domains for static analysis� An assertion language is
chosen that speci�es the properties of interest� and abstract domains are de�ned to be
suitably chosen sets of assertions� Composition and decomposition of abstract domains is
facilitated by their logical speci�cation in �rst�order logic� In particular� the operations of
reduced product and disjunctive completion are formalized in this framework� Moreover�
the notion of �conjunctive� factorization of sets of assertions is introduced� that allows
one to decompose domains in �disjoint	 parts� We illustrate the use of this framework by
studying typical abstract domains for ground�dependency and aliasing analysis in logic
programming�

AMS Subject Classi�cation �������
�Q��
�N��� �B�
CR Subject Classi�cation ������� D����� F����� D���

Keywords � Phrases� Abstract domains� static analysis� �rst�order logic

� Introduction

In the theory of abstract interpretation ���� abstract domains are �computer� representations
of properties� The semantics of an abstract domain is given by a function called concretiza	
tion� that maps elements of the abstract domain into elements of a
concrete domain�� Two
fundamental aspects of the study of abstract domains are the investigation of representations
supporting e�cient implementations� and the comparative study of the properties represented
by abstract domains� This paper is concerned with the latter aspect�

In the standard approach the design phase is not clearly distinguished from the represen	
tation one� In general� once the concrete domain is chosen� a representation of an abstract
domain is directly dened by means of a suitable lattice structure equipped with a concretiza	
tion function� Then the image of the abstract domain under its concretization function is used
to study its properties� as well as for comparing the domain with other ones �w�r�t� the same
concrete domain�� There are two equivalent techniques for the study and comparison of the
properties represented by abstract domains �cf� ����� Galois connections� where an abstract
domain is a complete lattice together with a Galois connection �or insertion� that relates the
abstract domain with the
concrete� one� and closure operators� where an abstract domain is

�

identied with the image of a suitable closure operator on the
concrete� domain� For instance�
Galois connections are used in ��� to dene the notion of domain abstraction for embedding
one domain into another one� and in ��� to dene the notion of domain quotient for extract	
ing from a domain the part that describes a given property� Closure operators have been
used in two recent works ��� ��� to dene the notions of domain �pseudo�	complementation
and disjunctive basis� for studying the
inverse� of the operators of reduced product and of
disjunctive completion� In particular� in ��� a notion of domain decomposition is introduced�
and pseudo	complementation is used for decomposing abstract domains�

The aim of this paper is to introduce a framework for the design and study of abstract
domains� We adopt the setting of rst	order logic� because it is a familiar formalism for
specifying as well as for reasoning about properties� The idea is to dene abstract domains
in logical form� and then to use
isomorphic� copies in some other lattice structures as rep	
resentations for the implementation� In order to dene a specic instance of the framework�
one has to make two choices� �� the set� say V � of syntactic objects �generally a subset of the
variables of the considered program� to be analyzed� �� the rst	order assertion language� say
L� for specifying the properties of V one wants to study� Thus V is �identied with� a set of
the variables of L� An abstract domain is dened to be a suitably chosen set of assertions�
whose free variables are contained in V � In this way� only the information on the objects of
interest �i�e�� of V � is taken into account�

Composition of abstract domains can be performed at the logical level in the following
way� the reduced product of two domains consists of all the conjunctions of their assertions�
and the disjunctive completion of a domain consists of all the disjunctions of its assertions�
Moreover� in order to decompose abstract domains� we introduce the notion of �conjunctive�
factorization of sets of assertions� where domains are factorized in
disjoint� parts� It is worth
noting that this desirable property is not guaranteed in the decompositions obtained using
the method of ����

Computer representations of abstract domains are dened in the expected way� i�e�� they
have to respect �i�e�� be isomorphic to� their specication in the assertion language�

This framework can be embedded in the standard one based on abstract interpretation
�under the assumption that the assertion language is enough expressive�� the concrete domain
consists of suitably chosen sets of valuations� and the concretization function of a domain maps
an assertion into the set of valuations that satisfy it�

The benets of using a logical framework as the one we propose can be summarized as
follows� The two phases of design and computer representation of abstract domains are neatly
separated� where the design phase is performed at the logical level� Moreover� the choice of
the assertion language allows one to focus only on the abstract domains that describe the
properties of interest� that are those expressible in that language� This is not the case for
the standard methods above mentioned� where all possible abstract domains �on the concrete
domain� are taken into account�

We illustrate this approach by considering typical abstract domains for ground	
dependency and aliasing analysis in logic programming� The fragment L of a rst	order
assertion language introduced in ���� �actually� a slight extension of this� is used� Logical
descriptions of various abstract domains are given� Def ���� and Pos ���� ��� for ground	
dependency analysis� Sharing ���� and ASub ���� for aliasing analysis� Maximal factorizations
for these domains are obtained by inspecting the structure of the assertions in the abstract
domains� and they are used for analyzing and comparing the abstract domains� Moreover�
we study the disjunctive completion of these domains�

�

The paper is organized as follows� The next section introduces a methodology for the
design and decomposition of abstract domains using rst	order logic� Section � presents an
assertion language for the design of typical abstract domains for logic programming� Section
� contains a comparative study of various abstract domains for logic programming� Section
� discusses some related work� Finally� in Section � we conclude with a discussion on other
applications and on future work� A preliminary version of this paper appeared in �����

� Abstract Domains in Assertion Form

We show in this section how rst	order logic can be used for the design of abstract domains
for abstract interpretation� The approach is based on the seminal work of the Cousots ����
First� a rst	order assertion language L is chosen� in order to describe the properties of
interest� Next� abstract domains �on L� are dened as suitably chosen sets of assertions of
L� Finally� �e�cient� computer representations of abstract domains are dened as usual�
i�e�� as isomorphic copies of their logical specication in L� In order to decompose abstract
domains� the notion of �conjunctive� factorization on L is introduced� where abstract domains
are decomposed in pairwise
disjoint� parts�

Here and in the sequel L denotes a generic assertion language� We assume that the
semantics of the predicates in L is xed according to their intended meaning� by a given
structure denoted by M� Assertions are indicated by �� �� As already mentioned� abstract
domains represent properties of some syntactic objects� usually a subset of the variables of
the considered program� Thus� the denition of abstract domain we give is parametric with
respect to a set V of syntactic objects� We adopt the following convenient assumptions�

�� V is �identied with� a set of distinct variables of L�

�� in the denition of abstract domain� only the set of assertions of L whose free variables
are contained in V is considered� denoted by A�L�V ��

�� assertions with the same meaning are identied�

The rst two assumptions ensure that only the information on the objects of interest �i�e��
of V � is taken into account� The last assumption amounts to consider equivalence classes of
assertions of A�L�V �� where ��� denotes all the assertions that are logically equivalent to ��
For simplicity� in the sequel the squares in ��� are often omitted�

De�nition ��� �Abstract Domain on L� An abstract domain �on L�� denoted by A
�possibly subscripted�� is a set of assertions of A�L�V � containing false� and closed under
conjunction and variance�� �

One can characterize an abstract domain �on L� by means of Galois connections according
to the standard approach in the following way� In order to dene the concrete domain for
the Galois connections� we introduce an equivalence relation� based on the observation that
valuations mapping the variables of V into the same object can be identied� since the
free variables of the assertions in a domain are contained in V � Let �V be the relation on
valuations s�t� � �V �� if ��x � � ���x � for every x � V � Clearly�V is an equivalence relation�

�Recall that a variant of an assertion � is any assertion �� obtained by applying to � a function � that
renames the variables of �

�

Consider the set Val�V of those equivalence classes w�r�t� �V that are closed under variance
w�r�t� V �� Then the concrete domain ConcV is the family of subsets of Val�V � Consider now
a domain D on L� Its concretization function � maps an assertion � into the set of ConcV
consisting of the equivalence classes of valuations that satisfy �� It is easy to check that �
induces a Galois connection �actually a Galois insertion� ��� �� of D into ConcV

�� We shall
see at the end of this section that also the converse holds� under a suitable assumption on the
assertion language�

Example ��� A simple abstract domain for the study of the sign of program variables as	
suming integer values is given in ���� For a considered set V of program variables� this domain
can be specied in our formalism as follows� L contains the constants and function symbols
of the program� and the unary predicates �� �� M maps terms into integers according to
their intended interpretation� and specify the semantics of �� � in the expected way� Then
the abstract domain for the study of the sign of the variables in V can be described by the
set SignV of assertions that are conjunctions of atoms of the form x � �� or x � �� with x in
V � �

We conclude with an observation on the lattice structure of our concrete domain�

Proposition ��� The set ConcV is an algebraic complete lattice with intersection and union

as meet and join� respectively�

It is worth noticing that in the standard framework ���� the concrete domain is a complete
lattice� but it is not in general algebraic� The property of algebraicity of ConcV simplies the
study of abstract domains� as we shall see in the sequel� In the sequel� for simplicity� we shall
write valuations instead of equivalence classes of valuations� Moreover� we shall often avoid
to mention the element false when specifying the set of assertions of an abstract domain�

In order to improve the precision of the static analysis of logic programs� various operators
on abstract domains have been introduced� Two fundamental operators are the reduced	
product and the disjunctive completion ������ In the following two subsections we discuss the
correspondent of these operators on L�

��� Reduced Product

The reduced product of two domains is obtained from the cardinal product of the domains
by identifying pairs of elements whose conjunction represent the same information� We can
characterize this notion in the logical framework on L as follows�

De�nition ��	 The reduced product of two domains A�� A� �A� �A�� is the set f��� ���� j
�� � A�� �� � A�g�

�The notion of variant w�r�t� V of a set d of valuations is de�ned in the expected way� let � be a substitution
that renames the variables of V with other variables of V � Then a variance of d is obtained by applying � to
the domain of every valuation

�Recall that ��� �� is a Galois connection if� a� �� � are monotonic functions �i�e�� S � S
� implies ��S��

��S ��� and �� �� implies ���� � ������� b� S � ����S�� for every S in ConcV � and c� �������� � for every
� in D� If in the condition c� we have � instead of � then ��� �� is a Galois insertion

�

The notion of reduced product can be used to dene the concept of �conjunctive� domain
decomposition� For instance� in ��� a denition of decomposition of a domain D is given�
as a set of domains whose reduced product yields D � Here we consider a stronger notion of
decomposition �in L� where the factors have to be pairwise
disjoint�� A comparison with the
work in ��� is postponed to the Section ��

Here and in the sequel� the notation A� � A� is used� meaning that A� and A� contain
the same equivalence classes�

De�nition ��
 �Conjunctive Factorization on L� The set fA�� � � � �Ang of abstract do	
mains is a �conjunctive� factorization of A if the following conditions hold�
�a� If n 	 � then Ai �� ftrue� falseg� for i � ���n��
�b� Ai �Aj � ftrue� falseg for every i �� j �
�c� A� � � � � �An � A�

We call A reduced if it has only one factorization� Moreover� a factorization of A is
maximal if Ai is �	reduced� for i � ���n�� �

It follows from the denition that an abstract domain has always a factorization �e�g�� fAg��
Moreover� if A is �	reduced then fAg is its only factorization� and it is maximal�

Example ��� It is easy to check that fSign���Sign��g is a maximal factorization of SignV �
where Sign�� is the set of assertions that are conjunctions of atoms of the form x � �� with
x in V � and where Sign�� is dened analogously�

�

��� Disjunctive Completion

The disjunctive completion of a domain is obtained from the powerset of the domain by
identifying sets whose disjunction represent the same information� We can characterize this
notion in the logical framework on L as follows�

De�nition ��� The disjunctive completion of A �	A� is the set f��� 	 � � � 	 �n � j n �
�� ��� � � � � �n � Ag�

The operator of disjunctive completion has been thoroughly investigated in ����� where
the inverse of this operator� called least disjunctive basis� is introduced� We can introduce a
similar notion in our framework as follows�

De�nition �� A domain A 	�reduced �in L� if for every A� s�t� 	A� � 	A we have that
A
 A��

It is easy to check that the domain SignV introduced in Example ��� is 		reduced�
Call an abstract domain A 	�closed if 	A � A� Every 		closed abstract domain is the

disjunctive completion of a 		reduced abstract domain�

Proposition ��� Suppose that A is 	�closed� Then there exists a 	�reduced domain A� s�t�

	A� � A�

A similar result is proven in ���� �Theorem ���� under the hypothesis that the concrete
domain is �dual	�algebraic� Here this hypothesis is implied by Proposition ����

Moreover� the following result follows directly�

�

Proposition ���� A is 	�closed if and only if it is closed under disjunction�

A similar result is given in ���� �Theorem ���� under the assumption that the concrete
domain is a completely meet	distributive lattice� Here Proposition ��� allows us to drop this
assumption�

In the following section we formalize the notion of domain representation in the logical
framework�

��� Domain Representation

The benet of using this rst	order framework is that the denition� decomposition and
comparison of abstract domains can be performed in a uniform and familiar setting� However�
�computer� representations of abstract domains for their e�cient manipulation ������ often
need di�erent lattice structures �see� e�g�� ��� for ground	dependency analysis�� Therefore the
notion of representation of an abstract domain is dened as follows� First� we need some
preliminary terminology� The following notion of embedding of an abstract domain into L is
used� Here and in the the sequel D denotes an abstract domain �on any complete lattice� and
�D denotes its concretization function �cf� �����

De�nition ���� �Embedding� An embedding of D in L is an injective mapping
D � D � L
s�t� for every D in D� � is in �D�D� if and only if
�D� is true under �� �

Thus an embedding of a domain into L consists of the �equivalence classes of the� assertions
�D characterizing the sets �D�D� of valuations� with D in D� The following result is an easy
consequence of the denition of concretization function ������

Proposition ���� The image
D�D� of an embedding is an abstract domain on L�

Proof�
D is an isomorphism of D into
D�D�� �

We can now formalize the concept of representation domain�

De�nition ���� �Representation Domain� D is a representation of A �or equivalently A
and D are isomorphic� denoted by A � D� if there exists an embedding
D s�t� A �
D�D��

�

The denition of representation domain claries the role of domains in assertion form� as
those used in the design phase� in contrast to the representation domains used in the �e�cient�
implementation� We conclude with an example�

Example ���	 Suppose V � fxg� Then a representation of SignV is the familiar lattice
pictured below

� �

�

�

�

� �

����
�� ��

�

��� Relation with the Standard Approach

We conclude this section with a discussion on the relationship of our framework with the
standard approach based on closure operators �or equivalently on Galois connections�� We
have already shown that our notion of abstract domain �Denition ���� is consistent with the
original denition �cf� ����� We shall give here the same result in terms of closure operators�
Moreover� we shall see that a full equivalence of our framework with the standard one holds
only under the assumptions that the assertion language is enough expressive�

Recall that Val�V denotes the set �of equivalence classes� of valuations that are closed
under variance w�r�t V � and Val�V denotes �Val�V � Let us start by giving few preliminaries
on closure operators �the reader interested to this subject is referred to e�g� ������ Let X

be a set� An upper closure operator on X is a function c � �X � �X that is extensive
�S
 c�S ��� monotonic �S
 S � implies c�S �
 c�S ��� and idempotent �c�c�S �� � c�S ���
An important characterization of closure operators that we shall use is given in terms of
intersection structures �

T
structures�� An intersection structure �on X� is a non	empty

family of subsets of X which is closed under intersection� Moreover� it is called topped if it
contains X � For every closure operator c on X � the family Sc of those sets S s�t� c�S � � S

is a topped
T

structure� Vice versa� for every topped
T

structure S �on X �� the formula
cS�S � �

T
S ��S�S ��S S

� denes a closure operator on X � Moreover� the closure operator
induced by the topped

T
structure Sc is c itself� and� similarly� the

T
structure induced by

the closure operator cS is S�
The importance of this result relies on the fact that� if we identify an assertion with the

set of valuations under which it is true� then an abstract domain on L is a topped algebraic�

intersection structure on Val�V � hence it induces a closure operator on Val�V dened as
above�

In the standard approach� also the vice versa holds� i�e�� the lattice of abstract domains
is isomorphic to the lattice of upper closure operators� This result does not hold with our
notion of abstract domain� because �the topped intersection structure induced by� a closure
operator is an abstract domain on L only if it can be described by means of a set of assertions
of L� However� if one assumes that the assertion language allows to describe all the subsets
of Val�V � then the lattice of abstract domains �according to Denition ���� is isomorphic to
the lattice of upper closure operators on Val�V �

Formally� call L complete w�r�t� V if for every subset S of Val�V there there exists an
assertion � on L s�t� � is true under all the valuations of S and under no other one� Then we
have the following result�

Proposition ���
 Suppose that L is complete w�r�t� V � Then the set of abstract domains

on L is isomorphic to the set of �upper� closure operators on Val�V �

� Abstract Domains for Logic Programming

In this section� we show how a slight extension of the rst	order assertion language L intro	
duced in ���� can be used for the design and decomposition of typical abstract domains for
the static analysis of logic programs�

�A
T

structure S is algebraic if it is closed under the union of directed subfamilies� S is a direct subfamily
if� for every �nite subset T of S� there exists a S in S s�t� T � S for every T � T

�

Term properties� like groundness and sharing� have been identied as crucial when analyz	
ing the run	time behaviour of logic programs� For instance� ground	dependency analysis can
be used for compile optimization� by using matching instead of unication when it is known
that at a given program point a variable is bound to a ground term every time the execution
reaches that point� Information on the sharing among variables in a logic program is useful
for important optimizations� like and	parallelism� The assertion language here considered
allows to express properties of terms� like groundness� freeness� linearity� sharing� covering
and independency� Informally� a term is ground if it does not contain variables� it is free if it
is a variable� and it is linear if every variable occurs in it at most once� Moreover� a set of
terms share if they have at least one common variable� while they are independent if they do
not share� Finally� a term is covered by a set of terms if the set of its variables is contained
in the union of the sets of variables of the terms in that set� For instance� the term f �x � y� is
covered by the set fg�x �� g�y�g�

In order to dene L� a countable set Var of �logical� variables is used� denoted by v � x � y � z �
possibly subscripted� Here and in the sequel� S represents a nite set of logical variables� and
jS j its cardinality� Moreover� the notation S � S � indicates that S is a proper subset of S ��

De�nition ��� �The Assertion Language� Let L� be the smallest set F of formulas con	
taining atoms of the form var �x �� ground �x �� linear �x �� share�S �� and s�t� if �� and �� are in
F then ��� and �� � �� are also in F � The assertion language L consists of all the formulas
of the form �x�� � � � � xn���� with � � L�� and n � �� �

The formula � 	 � is used as a shorthand for ���� � ���� � � � denotes �� 	 �� and
� � � stands for �� � �� � �� � ��� Moreover� the propositional constants true and false

are assumed to be in L� where true is identied with the conjunction over the empty set of
assertions �� and false with 	�� In the sequel� the notation share�x � y� is used as shorthand
of share�fx � yg�� with x � y distinct�

Observe that only a weak form of universal quantication is allowed� where � does
not occur in the scope of any �� For instance� �z �var �z � � �share�fz � xg�� is in L� but
��z �var�z � � �share�fz � xg�� is not in L�

The meaning of assertions in L is specied by means of the following structure M� Let
OVar be the set of �object� variables� here identied for simplicity with Var � and let Fun be
a set of functors with rank �constants are identied with functors of rank ��� In the following�
occ�x � �� denotes the number of occurrences of the variable x in the term � � and OVar��� the
set of �object� variables occurring in � �

De�nition ��� The structure M contains the universe U consisting of the �object� terms

built on OVar and Fun� Moreover� for each predicate symbol p of L� M contains a predicate
in U � also denoted by p� with the following semantics�

M j� var ��� if � � OVar

M j� ground ��� if OVar��� � �
M j� linear ��� if occ�x � �� � � for every x in OVar���
M j� share�f��� � � � � �ng� if

Tn
i��OVar��i � �� �

�

Example ��� The assertion �share�fx � y � zg� 	 share�fx � yg� is valid in M� In fact� for
every valuation �� if OVar�x�� �OVar�y�� �� � then M j� share�fx � yg��� otherwise M j�
�share�fx � y � zg��� �

�

Note that even if share is not rst	order �its argument is a set�� it can be expressed in
rst	order logic by means of a family of rst	order predicates sharen of rank n� with n � ��
The set of valid �in M� assertions of L has been characterized by means of a complete and
decidable theory T � by means of a simple axiomatization �see ������

The completeness and decidability of T provides an automatic tool for proving properties
of some elements of an abstract domain� in the following way� In order to prove that an
element � of a domain satises a property P � specied in L by means of the assertion �� it is
su�cient to check the validity of the implication �� ��

In order to use L for the static analysis of logic programs� it is necessary to assume that U
contains the constants and function symbols of the considered class of programs� Moreover�
we adopt the notation of the previous section� V denotes the set of �logical� variables rep	
resenting the considered �program� variables� and A�L�V � the set of assertions of L whose
free variables are contained in V � Therefore substitutions are identied with �equivalence
classes of� valuations� For instance� the substitution fx��t�� � � � � xn�tng is identied with the
set of valuations mapping x�� � � � � xn into the object terms ��� � � � � �n obtained by replacing
the variables of the ti �s with the corresponding object variables�

An abstract domain �on L� is specied according to Denition ���� Observe that we obtain
a more specic notion of abstract domain than the original one �cf� ����� because of the choice
of the assertion language� and because of the condition of closure under variance� For instance�
fground �x �� true � falseg would represent an abstract domain in the original denition� but it
is not a legal one in our denition �unless V � fxg�� The condition of closure under variance
w�r�t� V has been implicitly assumed in the literature on abstract interpretation of logic
programs� but it has not been taken into account when reasoning about these domains using
the standard techniques based on Galois insertions or closure operator �cf� �����

We conclude this section with a simple example�

Example ��	 Consider the abstract domain Con introduced by Mellish ���� and used in
early mode and groundness analyzers ����� Con consists of the bottom element �� and of the
sets S � fx�� � � � � xng of variables of V � with concretization function mapping � into � and
�Con�S � � f� j OVar�x�� � � for all x � Sg�

Let ACon be the set of assertions that are conjunctions of atoms of the form ground �x ��
with x in V � It is easy to show that ACon satises Denition ���� and that Con is a rep	
resentation of ACon � by considering the embedding
Con that maps � into false and a set
fx�� � � � � xng into the assertion ground�x�� � � � � � ground �xn�� �

� Abstract Domains for Ground�Dependency and Aliasing

This section contains a comparative analysis of various abstract domains for the static analysis
of logic programs� namely Def � Pos� Sharing and ASub� Each of these domains is shown to
be the representation of an abstract domain on L� These logical characterizations in L
of the domains are used for deriving their maximal conjunctive factorizations� for studying
and comparing the original domains� as well as for dening new ones� Moreover� composite
domains that use Sharing and ASub� called equations systems� are investigated� We deal with
the disjunctive completion of these domains in the last subsection�

�

��� Def in Logical Form

The abstract domain Def was introduced by Marriott and S�ndergaard for ground	
dependency analysis in ����� based on previous work by Dart ������ on groundness analysis
in deductive databases� We show that Def can be factorized into two reduced domains�
describing groundness and covering� respectively�

First� we recall the denition of Def � Def is the largest class of positive boolean functions
whose models are closed under intersection� augmented with the bottom element false � Recall
that a boolean function F is positive if F �true� � � � � true� � true� Here boolean functions are
represented by �equivalence classes of� propositional formulas� as e�g� in ����� In order to
dene the concretization function �Def � substitutions are viewed as truth assignments as
follows� For a substitution �� the truth assignment grounds� maps a propositional variable
x to true i� x� is ground� and to false otherwise� Moreover� the notion of instance �� of a
substitution � is used� meaning that �� is obtained by composing � with some substitution�
The concretization function �Def maps an element F of Def into the set �Def �F � of those
substitutions � s�t� for every instance �� of �� F under the truth assignment grounds�� is
true� Intuitively� �Def �F � extracts the
monotonic� �in the sense that its truth is preserved
under instantiation� information described by the propositional formula F �

Consider the following abstract domain ADef on L�

De�nition 	�� ADef is the set of assertions that are conjunctions of formulas of the form
�z �var �z � � share�z � x � � share�z � y�� 	 � � � 	 share�z � yn ��� with n � �� where x � y�� � � � � yn
are in V � and z is a fresh variable� �

We show that Def is a representation of ADef � and provide a maximal factorization of
ADef �

First� Def is characterized in logical form by means of the following transformation� We
use the representation of an element F in Def as a conjunction of formulas� called denite
clauses� of the form y� � � � � � yn � x with n � � �see ���� ����

De�nition 	�� The transformation
Def � Def � L maps F into �F � dened as follows�

� �F � �z �var �z � � share�z � x � � share�z � y�� 	 � � � 	 share�z � yn �� if F � y� � � � � � yn � x �

� �F � �F� � � � � � �Fk if F � F� � � � � � Fk � k � �� and all the Fi �s are denite clauses�

�

Observe that� for n � � we obtain the assertion �z �var �z � � share�z � x � � false�� that is
equivalent to ground �x ��

Example 	�� The element x � �y � w� is mapped by
Def into the assertion ground �x � �
�z �var �z � � share�z �w� � share�z � y�� � �z �var �z � � share�z � y� � share�z �w��� �

Next� the transformation of Denition ��� is shown to be correct�

Lemma 	�	
Def is an embedding of Def into L�

��

Proof� Let F be an element of Def � Let � be a substitution� We show that � is in �Def �F �
if and only if �F� is true�

Suppose that � is in �Def �F �� Then F under grounds� is true� For every conjunct
y� � � � � � yn � x of F � we have to prove prove that the corresponding conjunct � in �F is
true under �� If x� is ground then �� is readily true� Otherwise� suppose by contradiction
that x� contains a variable v which does not occur in any term yi�� for i � ���n�� Consider
the substitution � with domain the set of variables occurring in all the yi��s� and mapping all
variables into ground terms� Since v is not in the domain of �� we have that �� � �� grounds
all the yi �s but does not ground x � hence F is false under grounds��� So � would not be in
�Def �F ��

Vice versa� suppose that �F is true under �� In order to prove that � is in �Def �F �� we
have to show that F under grounds�� is true� for every instance �� of �� Let � � �z �var �z ��
share�z � x � � share�z � y�� 	 � � � 	 share�z � yn �� be a conjunct of �F � From � true under � we
have that� OVar�x��
 �ni��OVar�yi��� moreover� for every instance �� of � we have that
OVar�x���
 �ni��OVar�yi�

��� So if x�� is not ground then at least one of the yi�
� is not

ground� Hence y� � � � � � yn � x is true under grounds��� �

Finally� using the above Lemma we can prove that Def is a representation of ADef �

Theorem 	�
 Def � ADef �

Proof� By Lemma ��� F in Def can be characterized by the assertion �F in ADef �
Vice versa� consider a � in ADef � Consider F dened as the conjunction of denite

clauses� s�t� y� � � � � � yn � x occurs in F i� the conjunct �z �var �z � � share�z � x � �
share�z � y�� 	 � � � 	 share�z � yn �� occurs in �� It is easy to check that F is in Def � and that

Def �F � is equivalent to �� �

In order to analyze Def and to compare it with other abstract domains� a maximal
factorization of ADef is given� To this end� we use the following domains� For every jV j �
n � �� consider the domain ADef n consisting of the conjunctions of formulas of the form
�z �var �z � � share�z � x � � share�z � y�� 	 � � � 	 share�z � yn ��� with y�� � � � � yn distinct variables
of V � The following result holds�

Lemma 	�� fADefn j n � ��� jV j�g is a maximal factorization of ADef�

Proof�

First� we prove that every ADef n is reduced� For n � � the result is immediate� For n 	 ��
observe that assertions of the form �z �var �z �� share�z � x � � share�z � y��	 � � �	 share�z � yn ��
s�t� x is not in fy�� � � � � yng cannot be decomposed in �� ���� with ��� �� in L not equivalent
to true� because of the presence of the � operator� Then� there is only one conjunctive
factorization of ADef n �

Next� we have to check that conditions �a���b� and �c� of the denition of factorization
are satised�
�a� Notice that for every n � �� the element �z �var�z � � share�z � x � � share�z � y�� 	 � � � 	
share�z � yn �� is true under the valuation that maps all the variables of V into ground terms�
but is false under the valuation that maps all the variables of V into distinct variables�
�b� Consider n�m � �� and suppose that n 	 m� We have to show that ADefm � ADef n �
ftrue� falseg� By contradiction� assume that � is in the intersection but is neither true nor

��

false� Then� from � in ADef n � it is a non	empty conjunction of assertions� each of them of the
form � � �z �var �z � � share�z � x � � share�z � y�� 	 � � � 	 share�z � yn �� with x �� fy�� � � � � yng�
But � is also in ADefm � Moreover� every A

Def i
is reduced� So � is equivalent to �z �var �z ��

share�z � x � � share�z � y��	 � � � 	 share�z � ym ��� It is easy to build a valuation � under which
� is both true and false� �� if y is in fym��� � � � � yng then OVar�y�� � OVar�x�� �� �� ��
OVar�yi�� � � for every i � ���m��
�c� Follows easily by the denition of ADef �

�

Let ADef� � �n����jV j	ADef n � A representation of ADef� is provided by the set Def � of
positive boolean functions that can be represented as conjunctions of clauses y�� � � ��yn � x �
with n � �� plus the bottom element false� with concretization function the one of Def � Then
by Lemma ��� it follows that Def is �isomorphic to� the reduced	product of the domain Con
and Def ��

It has been recently shown in ��� that Def characterizes the ground	dependency informa	
tion on V described by the domain Sharing� We shall see that this result is easily derived
from the logical descriptions of these domains�

��� Pos in Logical Form

In order to study ground	dependency analysis� the abstract domain Pos was introduced by
Marriott and S�ndergaard ���� ���� consisting of the positive boolean functions� plus the
bottom element false� with concretization function equal to �Def �

Consider the following abstract domain APos � In the sequel Q�z � y�� � � � � yn� denotes the
assertion share�z � y�� 	 � � � 	 share�z � yn ��

De�nition 	�� APos is the set of assertions that are conjunctions of formulas of the
form �z �var �z � � share�z � x�� � Q�z � y�� � � � � yn�� 	 � � � 	 �z �var �z � � share�z � xm � �
Q�z � y�� � � � � yn��� with m � �� and n � �� where x�� � � � � xm � y�� � � � � yn are in V � and z is
a fresh variable� �

We show that Pos is a representation of APos � and provide a maximal factorization �on
L� of APos �

First� Pos is characterized in logical form by means of the following transformation� We use
the representation of an element F of Pos as a conjunction of clauses� of the form y��� � ��yn �
x� 	 � � � 	 xm � m � �� n � � �cf� �����

De�nition 	� The transformation
Pos � Pos � L maps F into �F � dened as follows�

� �F � �z �var �z � � share�z � x�� � Q�z � y�� � � � � yn�� 	 � � � 	 �z �var �z � � share�z � xm � �
Q�z � y�� � � � � yn�� if F � y� � � � � � yn � x� 	 � � � 	 xm �

� �F � �F� � � � � � �Fk if F � F� � � � � � Fk � k � �� and all the Fi �s are clauses� �

It is easy to check that the above transformation restricted to the elements of Def coincides
with
Def �

Example 	�� The element x 	 y is mapped by
Pos into the assertion �z �var �z � �
share�z � x � � false�	�z �var�z �� share�z � y� � false�� equivalent to ground �x �	 ground �y��
�

��

Next� the transformation of Denition ��� is shown to be correct�

Lemma 	���
Pos is an embedding of Pos into L�

Proof� Let F be an element of Pos � and � a substitution� We prove that � is in �Pos �F � if
and only if �F� is true�

Suppose that � is in �Pos�F �� For every conjunct y�� � � ��yn � x�	 � � �	xm be a conjunct
of F we prove that the corresponding conjunct � in �F is true under �� If xi� is ground for
at least one i � ���m�� then �� is true� Otherwise� we proceed per contradiction� Suppose
that every xi� contains a variable vi which does not occur in �j����n	OVar�yj��� Consider
the substitution � with domain �j����n	OVar�yj��� mapping every variable in the domain into
a ground term� Observe that v�� � � � � vm are not in the domain of �� Consider �� � ��� it
grounds all the yj �s but does not ground any of the xi �s� Hence F is false under grounds���
Contradiction�

Vice versa� suppose that �F is true under �� In order to prove that � is in �Pos �F ��
we have to show that F under grounds�� is true� for every instance �� of �� Consider a
conjunct � � �z �var �z �� share�z � x�� � Q�z � y�� � � � � yn��	 � � �	�z �var�z �� share�z � xm � �
Q�z � y�� � � � � yn�� of �F � it is true under �� therefore OVar�xj��
 �ni��OVar�yi�� for at least
one j � ���m�� For every instance �� of � we have that OVar�xj�

��
 �ni��OVar�yi�
��� Then

y� � � � � � yn � x� 	 � � � 	 xm is true under grounds��� because if xj�
� is not ground then at

least one of the yi�
� is not ground�

�

Finally� using Lemma ����� we can prove that Pos is a representation of APos �

Theorem 	��� Pos � APos�

Proof� From Lemma ���� it follows that F in Pos can be characterized by the assertion �F
in APos �

Vice versa� consider a � in APos � Let F be the conjunction of denite clauses� s�t� y��� � ��
yn � x�	 � � �	xm occurs in F i� the conjunct �z �var �z ���share�z � x��	 � � �	share�z � xm �� �
share�z � y�� 	 � � � 	 share�z � yn �� occurs in �� It is easy to check that F is in Pos� and that

Pos�F � is equivalent to �� �

In order to give a maximal factorization of APos � we use the decomposition of ADef � and
the following domains� For every jV j � n � � and jV j � m � �� consider the domain
APosm�n consisting of the conjunctions of formulas of the form �z �var �z � � share�z � x�� �
Q�z � y�� � � � � yn�� 	 � � � 	 �z �var �z � � share�z � xm � � Q�z � y�� � � � � yn�� with x�� � � � � xm and
y�� � � � � yn distinct variables of V � The following result holds�

Lemma 	��� fADefn �APosm�n j n � ��� jV j��m � ��� jV j�g is a maximal factorization of
APos�

Proof� The proof is similar to the one of Lemma ���� So� we only show that the domains
APosm�n �s are
disjoint�� The proof is by contradiction�
Let �m��n�� �� �m��n�� Assume that � is in the intersection but is neither true nor false� �
is in APosm��n� � so it contains a conjunct � � �z �var�z � � share�z � x�� � Q�z � y�� � � � � yn��� 	
� � � 	 �z �var �z � � share�z � xm�

� � Q�z � y�� � � � � yn��� where fx�� � � � � xm�
g � fy�� � � � � yn�g � ��

��

But � is also in APosm��n� � Suppose m� 	 m� �the proof for the other case is analogous��
Then every conjunct �i of � contains one variable occurring free on the left	hand side of ��
say wi � that does not belong to fx�� � � � � xm�

g� Consider a valuation � s�t�� �� OVar�wi�� � �
for every wi � �� all the other variables are mapped into distinct variables� Then �� is false�
However� from condition �� every �i is true under �� Contradiction� The proof for the other
case�namely when m� � m� and n� 	 n� �or n� 	 n�� is similar to the proof of �b� of Lemma
���� where one replaces x by x�� � � � � xm�

�
�

Let APos� � �n����jV j	�m����jV j	APosm�n � A representation of APos� is provided by the
set Pos� of positive boolean functions that can be represented as conjunctions of clauses
y� � � � � � yn � x� 	 � � � 	 xm � with n � ��m � �� plus the bottom element false� with
concretization function the one of Pos� Then by Lemma ���� it follows that Pos is �isomorphic
to� the reduced	product of the domains Con� Def � and Pos�� It has been shown in ��� that
Def is properly contained in Pos� Lemma ���� characterizes logically the other part of Pos�

��� Sharing in Logical Form

In order to study information on the possible sharing among abstract variables� an abstract
domain extensively used in abstract interpretation is the domain Sharing by Jacobs and

Langen ����� Sharing is the set of sets � � ��
V

s�t� if � �� � then � � �� Its concretization
function �Sharing maps an element � of Sharing into the set �Sharing ��� of those substitutions
� whose approximation set A��� is an element of �� The approximation set A��� consists of
all the sets occ��� x � � fv j v in the domain of � s�t� x occurs in v�g� for all the variables x
occurring in the range of ��

Consider the following abstract domain ASharing �

De�nition 	��� ASharing is the set of assertions of L that are conjunctions of formulas of
the form �z �var �z �� share�z � x��� � � �� share�z � xm � � share�z � y��	 � � �	 share�z � yn �� with
m � �� n � �� where x�� � � � � xm � y�� � � � � yk are in V � and z is a fresh variable� �

We show that Sharing is a representation of ASharing � and provide a maximal factorization
�on L� of ASharing �

First� Sharing is characterized in logical form by means of the following transformation�
In the sequel� for the sake of simplicity� we write share�x �S � instead of share�fxg � S ��

De�nition 	��	 The transformation
Sharing maps � into the assertion

�
 �
�

S�V

�z �var �z � � share�z �S � � share�z �S�� 	 � � � 	 share�z �Sk ���

with fS�� � � � �Skg � fS � j S � � � s�t� S
 S �g�
�

Let �S denote the conjunct of �
 corresponding to the subset S of V �
Observe that if S is not contained in any set of �� then �S is the assertion �z �var �z � �

share�z �S � � false�� which says that the variables of S can only be bound to terms sharing
no variables� If S is a singleton� say S � fxg� then �S describes information on ground	
dependency for x � Indeed� it is not di�cult to see that in this case �S can be rewritten

��

into an assertion of ADef � The other assertions �S � for S not singleton and k 	 �� describe
information about sharing of sets containing at least three variables�

Example 	��
 Consider � � f�� fxg� fx � yg� fy � zgg� and V � fx � y � zg� Then �
 is �equiv	
alent to� �share�x � z ���share �fx � y � zg���v�var �v��share�v � y� � share�v � z �	share�v � x ���
�v�var�v� � share�v � z � � share�v � y��� �

Next� the correctness of this transformation is shown�

Lemma 	���
Sharing is an embedding of Sharing into L�

Proof� Let � an element of Sharing� and let � a substitution� We show that � is in ���� if
and only if �
 is true under ��

Suppose that � is in ����� By denition of ����� for every S
 V � if the terms of S�
share at least one variable v then S
 occ��� v�� and occ��� v� is in �� Hence �S is true under
��

Vice versa� suppose that �
 is true under �� In order to prove that � is in ����� we
have to show that for every v in the range of �� occ��� v� is in �� By hypothesis �occ���v� �
�z �var �z � � share�z � occ��� v�� � share�z �S��	 � � � 	 share�z �Sk �� is true under �� Moreover
k � �� since v occurs in every term of occ��� v��� Observe that occ��� v� is the biggest set S

of variables in V s�t� v occurs in x�� for every x � S � Then occ��� v� � Si for some i � ��� k ��
�

Finally� Lemma ���� is used to prove that Sharing is a representation of ASharing �

Theorem 	��� Sharing � ASharing�

Proof� Consider � in Sharing � By Lemma ����� it is characterized by the assertion �
 of the
form �S�V�z �var �z � � share�z �S � � share�z �S�� 	 � � � 	 share�z �Sk ��� It is not di�cult to
prove that �
 is equivalent to the conjunction of the formulas �z �var �z �� share�z � x��� � � ��
share�z � xm � � share�z � y��	 � � �	 share�z � yk ��� for all �y�� � � � � yk � occurring in S�� � � �� Sk �
The proof consists of a manipulation of the assertion by means of standard rst	order logic
equivalences� together with the equivalence of share�z �S � and �x�S share�z � x �� Thus �
 is
in ASharing �

Vice versa� it is easy to prove that a � in ASharing is equivalent to the assertion
Sharing ���
for a suitable �� � is manipulated� by means of standard rst	order logic equivalences� to	
gether with the equivalence of share�z �S � and �x�Sshare�z � x �� in order to obtain an assertion
of the form �S�V�z �var �z ��share�z �S � � share�z �S��	 � � �	share�z �Sk ��� This assertion is

Sharing ���� for � consisting of the sets Si that occur in the right hand side of the implications�

�

In order to give a maximal factorization of ASharing � we use the following domains� For
every jV j � n � � and jV j � m � �� consider the domain ASharingm�n consisting of
the conjunctions of formulas of the form �z �var �z � � share�z � x�� � � � � � share�z � xm � �
share�z � y�� 	 � � � 	 share�z � yn ��� with x�� � � � � xm and y�� � � � � yn distinct variables of V � The
following result holds�

Lemma 	�� fASharingm�n j n � ��� jV j��m � ��� jV j�g is a maximal factorization of

ASharing�

��

Proof� The proof is similar to the one for the decomposition of Pos� �

Consider the abstract domain Sharing� introduced in ���� containing as elements the
empty set� and the sets �� of the form ��T � with � in Sharing and T � ffxg j x � V g�f�g�
One can prove that Sharing� is a representation of

V
m���n�� ASharingm�n � Moreover� Def

is a representation of
V
n�� ASharing��n � Therefore� by Lemma ���� it follows that Sharing is

�isomorphic to� the reduced product of Sharing��Def � and Con�

��� ASub in Logical Form

The pair	sharing domain ASub was introduced by S�ndergaard ���� for sharing and linearity
analysis� Its elements are pairs �G �R� where the rst component is a subset of V � and the
second one is a symmetric binary relation on V � s�t� �G�V ��R � �� Moreover� the element
�� representing the empty set of substitutions� is in ASub� Its concretization function �ASub
maps an element �G �R� of ASub into the set of substitutions � s�t� for all �x � y� in V � �i� x
in G implies x� ground� �ii� x � y distinct and OVar�x�� �OVar�y�� �� � implies �x � y� in R�
�iii� �x � x � �� R implies x� linear�

Consider the following abstract domain AASub�

De�nition 	��� AASub is the set of assertions that are conjunctions of literals of the form
ground �x �� �share�x � y�� and linear �x �� with x � y in V � �

We show that ASub is a representation of AASub � and provide a maximal factorization of
AASub �

First� ASub is characterized in logical form by means of the following transformation�

De�nition 	��� The transformation
ASub maps � into false � and �G �R� into the assertion
��G�R� � �� � �� � ��� where�

�� �� is the conjunction of the atoms ground �x �� for all x in G �

�� �� is the conjunction of the literals �share�x � y�� for all �x � y� not in R with x � y distinct�

�� �� is the conjunction of the atoms linear �x �� for all �x � x � not in R� �

Assertions ��� �� and �� characterize ASub in logical form� by means of its information
on groundness� independence� and linearity� respectively�

Example 	��� Consider the element �G �R� of ASub� with G � fxg and R �
f�y � z �� �z � z �� �z �w�g and suppose that V � fx � y � z �wg� Then ��G�R� is �equivalent to�
ground �x � � linear �y� � linear �w� � �share�y �w�� �

Next� this transformation is shown to be correct�

Lemma 	���
ASub is an embedding of ASub into L�

Proof� Let �G �R� be a pair	sharing� Let � be a substitution� We show that � is in
�ASub�G �R� if and only if ��G�R� is true under ��

Suppose that � is in �ASub�G �R�� We have to show that each conjunct � of ��G�R� is true
under �� We distinguish three cases according to those of Denition ����� If � � ground �x �

��

then by �� x is in G � hence by �i� ground�x � is true under �� If � � �share�x � y� then by ��
x �� y and �x � y���y � x � not in R� hence by �ii� OVar�x�� � OVar�y�� � �� If � � linear �x �
then by �� �x � x � is not in R� hence by �iii� x� is linear�

Vice versa� suppose that ��G�R� is true under �� We show that � satises �i���iii�� From
�� it follows that �i� holds� Assume now that x �� y and OVar�x�� � OVar�y�� �� �� Then
from �� it follows that �x � y� is in R� Finally� �iii� follows from �� �

Lemma ���� is used to prove that ASub is a representation of AASub �

Theorem 	��� ASub � AASub�

Proof� We have already shown in Lemma ���� that �G �R� in ASub can be characterized by
the assertion ��G�R� in AASub �

Vice versa� consider a � in AASub� The pair �G �R� is dened as follows� x is in G if there
is a conjunct of � of the form ground �x �� �x � y� is in R if �share�x � y� does not occur in ��
and �x � x � is in R if linear �x � occurs in �� It is easy to check that �G �R� is in ASub� �

In order to give a maximal factorization of AASub � the domain ALinear is used� consisting
of the conjunctions of atoms the form linear �x �� with x in V �

Lemma 	��	 fASharingm�� �ALinear j m � ��� ��g is a maximal factorization of AASub�

Proof� It is su�cient to show that ALinear satises �a�� since the rest of the proof is similar
to the one of Lemma ����� Consider the element linear �x � of ALinear � Then the valuation
that maps x into a ground term satises the assertion� while the one mapping x into the term
f �y � y� does not satisfy the assertion� Observe that the last result is based on the assumption
that Fun contains one functor of rank greater or equal than �� �

��� Abstract Equations Systems

A recent proposal� called abstract equation systems �cf� ��� ����� considers composite domains
dened using Sharing or ASub� In this proposal� elementary properties are specied by
means of a lattice An of annotations� For instance� the authors consider the annotations
lattice consisting of the three elements f � l � a� where f means free� l stands for linear� and
a stands for any term� Moreover� a sharing component � is used� which is either Sharing

or ASub� It is easy to characterize abstract equation systems in L� In abstract equations
systems� the distinction between abstract variables and variables is used� This corresponds
to the distinction between logical and object variables used in our logical framework� Each
annotation of An� augmented with the bottom element �� corresponds to a reduced abstract
domain on L� For example� l corresponds to the abstract domain ALinear introduced in the
previous section� f to AFree � consisting of the conjunctions of atoms of the form var�x �� and
a to ftrue� falseg�

��� Disjunctive Completions

The logical characterizations on L of the domains for ground	dependency and aliasing show
that there is no
disjunctive� information incorporated into these domains� except for APos �
This is formalized in the following result�

��

Proposition 	��
 The abstract domains ADef � ASharing and AAsub are 	�reduced� Moreover�
	ADef � APos�

Proof� The rst result follows from the fact that the disjunctive normal form of any assertion
in one of the three considered abstract domains is equal to its conjunctive normal form�

The inclusion 	ADef
 	APos follows from Lemma ����� The converse inclusion follows by
observing that an assertion of APos is a conjunction of assertions in 	ADef � and by computing
the disjunctive normal form� �

A similar result on Pos has already been given in ����� using the approach based on closure
operators� In ���� it is shown that the disjunctive completion of Pos is strictly better than
Pos� This result is considered somewhat surprising� indeed� one would expect that an element
fF�� � � � �Fkg of the disjunctive completion can be represented by the propositional formula
F� 	 � � � 	 Fk � This confusion is caused by the fact that the interpretation of a formula given
by the concretization function is not equal to the interpretation in propositional logic� while
we are used to interpret the logical connectives according to their standard semantics �in rst	
order logic�� This confusion does not arise when one uses the logical framework introduced in
this paper for the design and the reasoning phase� indeed� it is easy to show that APos is not
closed under disjunction� hence �by Proposition ����� it is not equivalent to its disjunctive
completion�

� Related Work

The standard techniques used for the comparative study of the properties represented by
abstract domains are based on two equivalent approaches� Galois connections and closure
operators�

In the original approach ������ comparison of abstract domains is performed by means of
the notion of abstraction� where an abstract domain is more abstract than another one if
there is a Galois insertion from the rst into the latter� This notion is weakened in ���� where
the comparison is dened w�r�t� a given property� by means of the notion of quotient of one
abstract domain w�r�t� another one� describing the part of the former abstract domain that
is useful for computing the information described by the latter one� A similar analysis is
possible by means of our framework� where the domain and the property are rst specied
in the logic� and next factorized� Then the reduced product of the common factors of the
domains corresponds to the quotient of the domain w�r�t� the property�

The approach based on closure operators has been employed in two recent works ��� ����
that investigate the
inverse� of the two important operators on abstract domains� namely the
reduced product and the disjunctive completion� respectively� In ���� this approach is used
for investigating domain complementation in abstract interpretation� a kind of inverse of the
reduced product� The authors formalize the concept of decomposition of an abstract domain�
as a set of abstract domains whose reduced product yields the initial abstract domain and
use the notion of pseudo	complement for decomposing abstract domains� The distinguishing
feature of our approach from this work is the use of an assertion language for describing
the properties of interest� and the explicit role of the set of considered program variables
�or more in general of syntactic objects�� As a consequence� domains are decomposed by
inspecting the form of their assertions� The relative denition of conjunctive factorization is
rather intuitive� since it resembles the notion of factorization of integers into pairwise prime

��

factors� it is always applicable� and the resulting factors are
disjoint�� This is not the case for
the method based on the notion of psuedo	complement� the notion of domain decomposition
is introduced� that amounts to condition �c� of Denition ���� and the pseudo	complement
D � C of a domain D w�r�t� another domain C is used to provide the �binary� decomposition
�D � C �C � of D � where the factors are not necessarily
disjoints��

In ����� the approach based on closure operators is used for investigating the inverse of
the operation of disjunctive completion� They introduce the notion of disjunctive basis for
an abstract domain as the most abstract domain inducing the same disjunctive completion�
and study the disjunctive basis of typical abstract domains used in abstract interpretation of
functional and logic programming� In this paper we have introduced a similar notion� called
		reduced domain �on L�� The main di�erence is that here L determines the granularity of
the 		reduced domains� while in ���� all the closure operators on the concrete domain are
considered� Moreover� the fact that L is a rst	order assertion language guarantees that the
disjunctive completion of a domain is equal to the disjunctive completion of a 		reduced
domain�

The abstract domains analyzed in Section � have been extensively studied in previous
work� In ��� it is proven that the part of Sharing describing groundness dependencies is
contained in Pos� In ��� this result is strengthen by showing that this part coincides with Def�
and that Sharing� is the pseudo	complement of Def in Sharing� In this paper these results
are directly derived from the logical characterization of Sharing � Moreover� we have obtained
the nest �in L� decomposition of Sharing � Finally� the factors of this decomposition have
been used for other purposes� e�g� for comparing the expressiveness of the abstract domains�

The classes of Boolean functions used to represent Def and Pos have been analyzed in
��� ��� The di�erence from these works is that they focus on the representation� while we
focus on the design and reasoning� by considering a syntactic characterization of �Def �Def �
in rst	order logic�

� Conclusion

In this paper a simple framework based on rst	order logic has been proposed for the design
of abstract domains for static analysis� The correspondent of the operations of reduced prod	
uct and disjoint completion of abstract domains have been dened in the logical framework�
Moreover� the notion of conjunctive factorization has been introduced� for decomposing ab	
stract domains in
disjoint� parts� The usefulness of this framework has been illustrated by
analyzing typical abstract domains used in abstract interpretation of logic programs�

The framework can also be used for dening operators on abstract domains� For instance�
an important operator in abstract interpretation of logic programs is the
projection� away
from the variables that are not in V � The projection operation corresponds to existential
quantication ������� As one would expect� all the domains considered in Section � are closed
under existential quantication� The existential closure �x ��� w�r�t� a variable x of a domain
� in AD �where D stands for one of the domains considered in Section �� is the domain
obtained from � by deleting all the conjuncts containing at least one free occurrence of x � For
example� if � � ground�w� � �v�var�v� � share�v � y� � share�v � z � 	 share�v � x �� then �x ���
is �equivalent to� ground �w��

Finally� abstract domains in logical form can be used for proving the correctness and
optimality of a representation� For instance� in ��� a function called Reduce is used which

��

yields the minimal representative of an element of the reduced product of ASub and Sharing �
given an arbitrary representative� Reduce � ASub � Sharing � ASub � Sharing maps an
element h�G �R���i into h�G ��R�����i where �� � fS � � j S � G � ��Pairs�S �
 Rg�
R� � R � ��S�
�S � S �� G � � fx � V j x �� S for every S � ��g� and Pairs�S � � f�x � y� �
S � S j x � y distinctg�

The logical representation of these domains can be used to prove that this denition
is correct and optimal� �i�e� it provides the minimal representation�� In fact� correctness
amounts to prove that the following is an equivalence �in M��

ASub�G �R� �
Sharing ��� �
ASub�G
��R�� �
Sharing�����

Optimality amounts to prove the following two conditions�

�� for every x in V �

ASub�G
��R�� � ground�x � i�
Sharing ���� � ground �x ��

�� for every distinct variables x � y of V �

ASub�G
��R�� � �share�x � y� i�
Sharing ���� � �share�x � y��

The proof of the above statements is not di�cult� using the denitions of
Sharing and
ASub �
We conclude by mentioning some interesting topics for future work� The specic frame	

work for logic programming could be applied for proving the correctness of abstract unication
algorithms� This could be done by describing the unication by means of a suitable predicate
transformer on L� in the style of ����� and by dening a transformation which reduces the
considered abstract unication algorithm to an instance of the predicate transformer� How	
ever� this is not an easy task� for it is already di�cult to design a specic correct abstract
unication algorithm �see e�g� �����

Another interesting topic that seems worth of investigation� is the study of the relation	
ship between abstract interpretations and proof methods� This topic has been tackled in the
functional programming setting� where a domain	theoretic approach is used in ���� for prov	
ing that strictness analysis by abstract interpretation and non	standard type inference are
equivalent� For logic programming� our framework could be used for dening a program logic
for the comparison of data	driveness analysis using type inference �cf� e�g� ���� and abstract
interpretation �cf� ������

Acknowledgements

This work was partially supported by the Netherlands Computer Science Research Founda	
tion� with nancial support from the Netherlands Organisation for Scientic Research
NWO��
I would like to thank Livio Colussi� Tino Cortesi� Gilberto Fil�e� Maurizio Gabbrielli� Massimo
Marchiori� and Catuscia Palamidessi for stimulating discussions on the subject of this paper�
and Jan Rutten for his encouragement�

References

��� K�R� Apt and E� Marchiori� Reasoning about Prolog programs� from Modes through
types to assertions� In Formal Aspects of Computing� vol� �A� pag� ���	���� �����

��

��� T� Armstrong� K� Marriott� P� Schachte and H� S�ndergaard� Boolean Functions for De	
pendency Analysis� Algebraic Properties and E�cient Representation� In B� Le Charlier
ed�� Static Analysis� Proceedings of the First International Symposium� Springer	Verlag�
LNCS ���� pp� ���	���� �����

��� P� Cousot and R� Cousot� Systematic design of program analysis frameworks� In Con�

ference Record of the �th ACM Symposium on Principles of Programming Languages

�POPL 	
��� pages �������� ACM Press� �����

��� M� Codish� D� Dams� G� Fil�e and M� Bruynooghe� Freeness analysis for logic programs 	
and correctness�� Proceedings of the �th International Conference on Logic Programming
�ICLP 	���� ed� D�S� Warren� The MIT Press� pag� �������� �����

��� M� Codish� A� Mulkers� M� Bruynooghe� M� Garc� a de la Banda� and M� Hermenegildo�
Improving abstract interpretations by combining domains� ACM Transactions on Pro�

gramming Languages and Systems� ������������ �����

��� A� Cortesi� G� Fil�e� R� Giacobazzi� C� Palamidessi� and F� Ranzato� Complementation
in abstract interpretation� In A� Mycroft� editor� Proceedings of the �nd International

Static Analysis Symposium �SAS 	���� LNCS Vol� ���� pages �������� Springer	Verlag�
�����

��� A� Cortesi� G� Fil�e� and W� Winsborough� Prop revised� propositional formula as abstract
domain for groundness analysis� In G� Kahn� editor� Proceedings of the �th Annual IEEE

Symposium on Logic in Computer Science �LICS 	���� pages �������� �����

��� A� Cortesi� G� Fil�e� and W� Winsborough� Comparison of abstract interpretations� In
W� Kuich� editor� Proceedings of the ��th International Colloquium on Automata� Lan�

guages and Programming �ICALP 	���� LNCS Vol� ���� pages �������� Springer	Verlag�
�����

��� A� Cortesi� G� Fil�e� and W� Winsborough� The quotient of an abstract interpretation�
Technical Report ��!��� Dipartimento di Matematica Pura ed Applicata� Universit"a di
Padova� �����

���� P� Dart� On derived dependencies and connected databases� Journal of Logic Program�

ming� �������������� �����

���� S� Debray� On the Complexity of Data#ow Analysis of Logic Programs� Proceedings of

the ��th International Coll� on Automata� Languages and Programming �ICALP 	����
Springer Verlag� pag� ���	���� LNCS ���� �����

���� B�A� Davey and H�A� Priestley� Introduction to Lattices and Order� Cambridge Univer	
sity Press� �����

���� G� Fil�e and F� Ranzato� Improving Abstract Interpretation by Systematic Lifting to the
Powerset� In M� Bruynooghe� editor� Proceedings of the ���� International Symposium

on Logic Programming �ILPS	���� The MIT Press� pages ���	���� �����

���� R� Giacobazzi and F� Ranzato� Compositional Optimization of Disjunctive Abstract
Interpretations� In H�R� Nielson� editor� Proceedings of the ���� European Symposium

on Programming �ESOP	���� Springer	Verlag� LNCS ����� pages ���	���� �����

��

���� D� Jacobs and A� Langen� Accurate and e�cient approximation of variable aliasing in
logic programs� In E�L� Lusk and R�A� Overbeek� editors� Proceedings of the ���� North

American Conference on Logic Programming �NACLP 	���� pages �������� The MIT
Press� �����

���� D� Jacobs and A� Langen� Static analysis of logic programs for independent AND	
parallelism� Journal of Logic Programming� ���������������� �����

���� T�P� Jensen� Strictness Analysis in Logical Form� Proceedings of the Conference on

Functional Programming Languages and Computer Architectures� Springer Verlag� pag�
���	���� LNCS ���� �����

���� N�D� Jones and H� S�ndergaard� A Semantics	Based Framework for the Abstract Inter	
pretation of Prolog� Abstract Interpretation of Declarative Languages� eds� S� Abramsky
and C� Hankin� Ellis Horwood� Chichester� U�K�� pag� ���	���� �����

���� E� Marchiori� A Logic for Variable Aliasing in Logic Programs� Proceedings of the �th

International Conference on Algebraic and Logic Programming �ALP 	���� eds� G� Levi
and M� Rodriguez	Artalejo� Springer Verlag� pag� ���	���� LNCS ���� �����

���� E� Marchiori� Prime Factorizations of Abstract Domains Using First	Order Logic� Pro�

ceedings of the �th International Conference on Algebraic and Logic Programming �ALP

	���� Springer Verlag� to appear� �����

���� K� Marriott and H� S�ndergaard� Notes for a tutorial on abstract interpretation of logic
programs� North American Conference on Logic Programming� �����

���� K� Marriott and H� S�ndergaard� Precise and e�cient groundness analysis for logic
programs� ACM Letters on Programming Languages and Systems� ��������������� �����

���� K� Marriott� H� S�ndergaard and N�D� Jones� Denotational abstract interpretation of
logic programs� ACM Transactions on Programming Languages and Systems� ACM	
TOPLAS� �������������� �����

���� C� Mellish� Some Global Optimizations for a Prolog Compiler� The Journal of Logic

Programming� ����������� �����

���� A� Mulkers� W� Simoens� G� Janssens and M� Bruynooghe� On the Practicality of Ab	
stract Equation Systems� Proceedings of the International Conference on Logic Program�

ming �ICLP 	���� ed� L� Sterling� MIT Press� pag� �������� �����

���� H� S�ndergaard� An Application of Abstract Interpretation of Logic Programs� Occur
Check Reduction� Proceedings of the European Symposium on Programming �ESOP 	����
eds� B� Robinet and R� Wilhelm� Springer Verlag� pag� ���	���� LNCS ���� �����

��

