
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

P. VERHELST

IW 174/81

SOME THOUGHTS ON A TUPLE ORIENTED PROGRAMMING SYSTEM

~
MC

AUGUSTUS

kruislaan 413 1098 SJ amsterdam

PJunte.d a:t .the. Ma.the.ma:Uc.at C e.n.:tlr.e., 41 3 K.IU..UAlaa.n, Am6.tell.dam.

The. Ma.thima:Uc.at Ce.n.:tlr.e. , 6ounde.d .the. 11-.th 06 Fe.bJl.UaJl.y 1946, ,u., a. non
pll.o 6-U .ln6:tU.utio n cumi.ng at .the. pll.Omo.tlo n o 6 puJr.e. ma.the.ma:UC-6 a.nd w
a.ppU.c.a,t-i.on6. I.t ,u., .6pon6oll.e.d by .the. Ne..the.ll.la.nd.6 Gove.Jr.nme.nt .thll.Ough .the.
Ne..thelli..a.nd6 OJt.ga.n.lza:Uon 60.ll. .the. Adva.nc.e.me.nt 06 PUJr.e. Rue.a.Jr.c.h (Z.W.O.).

r

. , 9'°80 Mathematics suoj ect classification: 68805·, 68B20

'
ACM-Computing Reviews-category: 4.13·, 4.22, 4.34

Some Thoughts on a Tuple Oriented Programming System

by

Paul Verhelst

ABSTRACT

A description is given of a medium level language processor based on
a single data type: tuples. This system is intended to be used as the
lowest level of an interactive programming system. It is shown how
abstract data types and syntax extensions may be handled in this system.

KEY WORDS & PHRASES: Programming languages, Interpreters, Programming
systems, Data types, LISP

0. INTRODUCTION

A problem with current interactive computer systems is that the user
is confronted with many different languages, each having its own types of
objects and its own control structures. Examples are programming
language, command language, edit language, etc. The non-programming
languages are mainly used for operations on special types of objects;
command languages allow manipulation of files, editors allow modification
of text-files. The multitude of languages is not the biggest problem; in
general, knowledge of a few primitive commands is enough to be able to
use the system. The main problem is that operations available in one
such specialised language are not available in the other languages (and
especially not in the programming language). The wish to make such
operations programmable has led to developments in two directions:

(1) Some of these operations have been made available to programs in the
form of procedure calls (mainly for files).

(2) Specialised languages have been extended with programming language
features such as control structures and operations for arithmetic
and string handling (examples are the UNIX* shell command
language[1] and the TECO editor).

This leads to the paradoxical situation that, although a general purpose
programming language has been used to implement a specialised language,
the operations of that language are not accessible from the programming
language itself. This forces users who need these operations to program
in languages that have cryptic and ill-defined semantics. See [2] for an
extensive discussion of this subject.

This rE~port proposes to solve this problem by defining a basic
framework that supports the definition and manipulation of arbitrary
types of objects (including programs). This framework is based on a sin
gle primitive data type: tuples. In the same way as is done in LISP we
define a translation from programs to tuples and a "tuple processor",
which executes these translated programs. This tuple form of programs
allows manipulation of programs, and, by mapping the processor state on
tuples, program debugging. By defining all new types of objects within
this framework, the corresponding operations are automatically available
in the programming language.

This report is divided into 4 sections. Section 1 gives an overview
of the approach taken in LISP. Section 2 describes the tuple oriented
system, and sections 3 and 4 discuss the handling of data types and syn
tax extensions in the proposed system.

*UNIX is a Trademark of Bell Laboratories.

2

1. THE LISP APPROACH

1.1. ~-expressions and Lists

The primitive data types in LISP systems are atoms and S
expressions. Atomic values are arbitrary symbols, some of which denote
integer, boolean, and floating point values. S-expressions are pairs of
atoms or other S-expressions. That is, we have:

<value>
<atom>
<S-expr>

::= <atom> I <S-expr> •
::= <id> I <int> I <real>
::= '(' <value> '.' <value>

. . . .
,) ,

To manipulate these values there are a number of elementary functions
available:

cons(v1 ,v2)
car(s)
cdr(s)
eq(a1,a2)
atom(v)

gives S-expression with components v1 and v2;
gives first component of S-expression s;
gives second component of S-expression s;
compares atoms a1 and a2;
tests if value vis atomic;

A special kind of S-expressions is called "list". A list is constructed
starting from the atomic value NIL:

<list>::= 'NIL' I '(' <value> '•' <list> ')' •

The external representation of lists is "(v1 ••• vn)". A list is a
sequence of values, from which values may be extracted using a combina
tion of "car" and "cdr" applications.

1.2. The LISP Meta-language

The original LISP report [3] defines a meta-language, which consists
of the following constructs (we use a slightly different notation):

<form> .. - <value> I <apply> I <cond> . . . -
<apply> .. - <fun> , (, [<form> (

,
, ' <form>)*] ,) , .. - .

<cond> .. - '[' <form>
,
->' <form> .. -

(
,
;' <form> '->' <form>)* ,] ,

<fun> .. - <id> I <lambda> . . . -
<lambda> .. - 'lambda' , (, [<id> (

,
,' <id>)*] ')' <form> .. -

These meta-language constructs are mapped on lists in the following way:

<apply>
<cond>
<lambda>
<value>

(fun form1 ••• formn)
(COND (form11 form12) ••• (formn1 formn2))
(LAMBDA (id1 ••• idn) form)
(QUOTE value)

3

The elementary functions are available as CONS, CAR, CDR, etc. LISP sys
tems providei an interpreter that processes programs translated to list
form. This interpreter is available as the function "eval". A LISP sys
tem interacts with the user by executing a "read-eval-print" loop, which
repeatedly reads an S-expression, evaluates it, and prints the result.

1 • 3. Discussion

The most distinguishing feature of LISP systems is the equivalence
of programs and data. In other computer systems executable programs are
represented as sequences of machine instructions stored in files. Such
code files can only be created by using compilers and linkers; incremen
tal modification of code files is impossible. In LISP, programs can
easily generate, modify, and execute other programs without any restric
tions.

A problem in LISP systems is that programs must be entered in list
form, instead of in the meta-language. Consequences are an unattractive
syntax and the quoting problem, i.e. list-values in the meta-language
must be quoted in the hand-translated list-form. Systems like REDUCE
partially solve this problem by providing a more readable representation
of LISP programs (at the cost of a greater distance between internal and
external representation of programs and difficulties in reconstructing
the external form [4]).

The applicative form of the LISP language does not seem general
enough. This is evident from the various nonfunctional extensions
(RPLACA, SET, PROG, etc.) • There are several reasons for these exten
sions: they are necessary for the implementation of history sensitive
systems, they are used to write more efficient "functions", and in some
algorithms the sequential notation is just simpler than the functional
notation.

Another problem in LISP is the binding of identifiers, which is han
dled differently in the various implementations of the language. The
most efficient binding mechanism for an interpreter is dynamic binding,
which always takes the most recent meaning given to an identifier. Com
pilers produce most efficient code if static binding is used, i.e. if the
meaning of an identifier can be determined from declarations of enclosing
blocks only. Static binding also seems to be the best scheme for human
readers of programs. Implementations of static binding in interpreters
must choose between extra work for each variable reference and extra work
for each function application (see Baker[5]). An example of a function

4

that depends on the type of binding used is:

(setq x 1)
(def f1 (lambda () x))
(def f2 (lambda (x) (f1)))

If static binding is used, (f2 2) produces 1; if dynamic binding is used,
it produces 2.

2. TUPLE ORIENTED SYSTEM

Our approach is similar to that taken in LISP. Instead of lists we
will take tuples as primitive data type, and instead of the applicative
LISP language we will use an imperative language with possibly a func
tional subset. The tuple data type is similar to record and array types
and can be implemented efficiently. We will not define a complete
language in this report; we will only show how "normal" syntactic con
structs can be mapped on tuples.

2.1. Tuples

A tuple is a sequence of zero, one or more component values. These
values are taken from the following value types:

The

<value>
<atom>
<tuple>

empty tuple

<bool>
<char>
<int>
<real>

::= <atom> I <tuple> •
: : = <bool> I <char> I <int> I <real> I •••
::='tuple''(' [<value> (','<value>)* J ,) ,

is called NIL. Atomic values are, for example:

.. - 'true' I 'false' . . . -.. - , , , , , ,
I '''b''' I .. - a .. - , 0, I , 1 , I -.. - '0.0' I '1 • 0' I -

The set of value types can be extended arbitrarily and we will do so if
this is necessary.

We define the following elementary operations on tuples:

ext(t,v)
len(t)
sel(t,i)
upd(t,i,v)
eq(v1,v2)

extend tuple t with value v;
length of tuple t;
i'th component of tuple t (counting from O);
assign value v to i'th component of tuple t;
compare values v1 and v2.

We shall abbreviate some of these operations as follows:

t[i]
t[i]

<=> sel(t,i)
:= v <=> upd(t,i,v)

<=> eq(v1,v2) v1 = v2

5

In the definition of tuples a choice is possible between value and
pointer semantics. Value semantics means that in the assignment of tuple
values the tuple, with all its component tuples if present, is copied;
pointer semantics means that only the address of the tuple is copied.

Both value and pointer semantics can be implemented efficiently by
representing tuple values as pointers to the actual tuple objects. The
difference between the two is that in value semantics a copy must be made
if a component is modified. An optimisation is possible here because
this copy is only necessary when there is more than one pointer to a
tuple, and this can be detected if reference counts are kept with each
tuple. In t,he majority of cases copying will not be necessary because
the value is never modified.

Both because it allows a simpler implementation and because the
availability of references and reference parameters can make programming
easier, we shall choose for pointer semantics. With pointer semantics,
however, it may still be necessary to copy values instead of addresses in
some cases. Because of the inefficiencies involved in copying large
values it would be useful if this copying could be postponed until one of
the values (original or "copy") is actually modified. This would give
great savings in both time and space requirements because only the com
ponents that.are actually changed need be copied. Such a mechanism would
also be an efficient alternative for recovery caches as used in e.g. SUM
MER [6]. It should therefore be investigated if the optimisation tech
niques possible in implementations of value semantics can also be used in
implementations of pointer semantics. Hibbard[7] describes a scheme used
in an Algol-68 run-time system; it may be possible to adapt this.

2.2. Mapping of Programs on Tuples

2.2.1. Mapping of Syntactic Constructs

In the same way as is done in LISP we will define a tuple represen
tation of programs. This tuple representation has the form of a tree
with as nodeis the syntactic constructs forming the program. We illus
trate this mapping for the following miniature language.

6

<block>
<prog>
<stats>
<assign>
<if>
<while>
<invoke>
<expr>
<proc>

.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -

<prog> I <proc> •
declare (<id> '=' <expr>)* begin <stats> end •
(<assign> I <if> I <while> I <invoke> <prog>)*
<id> ':=' <expr> •
if <expr> then <stats> else <stats> fi
while <expr> do <stats>oct'""°.
<id> '(' [<expr> (',' <expr>)*] ')' •
<id> I <atom> I <proc> •
proc '(' [<id> (',' <id>)*] ')' <prog>

We will map each construct on a tuple that has an indication of its syn
tactic category in the O'th component. For this purpose we introduce a
new atomic type 11 scode 11 • The mapping of the various constructs now
becomes:

<prog>
<stats>
<assign>
<if>
<while>
<invoke>
<proc>
<id>

(PROG,((id1,expr1), ••• ,(idn,exprn)),stats)
(SEQ,stat1, ••• ,statn)
(ASSIGN,id,expr)
(IF,expr,stat1,stat2)
(WHILE,expr,stat)
(INVOKE,id,expr1, ••• ,exprn)
(PROC,((id1), ••• ,(idn)),prog)
(ID,id)

This transformation of program text to program tree should be performed
by a syntax oriented editor. The text form should always be reconstruct
able from the internal tree representation of the program, possibly using
a standard layout.

2.2.2. Binding of Identifiers

The mapping given in the previous section does not allow an effi
cient interpretation of the program tree, mainly because of the diffi
culty of associating meanings with identifiers. We will therefore try to
include more information in the mapping about the binding of identifiers.
We will adopt the following principles:

(1) Static binding is used, i.e. the location corresponding to an iden
tifier is determined by the declarations in the sequence of enclos~
ing blocks.

(2) Binding should be efficient, i.e. no long search times as in the
11 alist 11 approach of LISP.

(3) Modifications in the program-tree should have only local effects (to
make editing of the program tree possible).

7

During the execution of a program the interpreter will generate
frames for holding the local variables of each block (= program or pro
cedure). At each moment only a subset of the frames will hold locations
that are accessible from the current block. The meaning of an identifier
is known if we can determine frame and index in frame that correspond to
the identifier. A scheme often used by compilers is to associate an
address couple <i, j > with each occurrence of an identifier. Such an
address couple refers to component "j" of frame "i". This frame can be
found by keeping the sequence of accessible frames in a display vector.
Although this mapping allows a fast interpretation of identifier refer
ences and can be made invertible, we shall not use it in the program map
ping. The reason for this is that a change in the declarations near the
root of the program tree may affect the address couple mapping of almost
the whole program. This is unacceptable because of principle (3).

A more localised translation of identifiers is obtained as follows.
We start by numbering all identifiers in a particular block in arbitrary
order. Furthermore, we attach to each block an association vector, which
gives a translation from these identifier numbers to either local or glo
bal variable references. For local variables the index in the local
frame is given; for global variables the identifier number (index in
association vector) for the enclosing block is given. Identifiers are
translated to tuples of the form (VAR,i), where "i" is the index in the
association vector. Entries in the association vector are of the follow
ing form:

(LOCV,i)
(GLOB,i)

i'th component of local frame
i'th variable of immediately enclosing block

The form of the tuples corresponding to blocks now becomes

(PROG, av, ((id1,expr1), ••• ,(idn,exprn)), stats)
(PROC, av, ((id1), ••• ,(idn)), prog)

Except for the association vector "av", the translation of a block does
not depend on other blocks. The association vector only depends on the
block to which it belongs and on the association vector of the immedi
ately enclosing block. During program execution, the time necessary to
find the meaning of an identifier is proportional to the number of asso
ciation vectors accessed, and this depends on how deeply nested the
reference is.

The association vector contains explicit information about the
import of global identifiers. This information allows the editor to
check for information hiding through overdeclarations. If a global iden
tifier is used in a deeply nested block, the association vectors of the
blocks in between contain entries for this identifier. The editor can
give a warning if a new declaration overwrites such an entry.

8

The editor can "unbind" a block by replacing the global references
in its association vector by the corresponding identifiers; the block can
then be bound again at a different location in the program by looking up
these identifiers.

Note that the static binding we use does not preclude having also
some form of dynamic binding. Only the binding of identifiers to loca
tions is static; the binding of locations to values is always dynamic.
Language constructs are possible that save the contents of locations and
temporarily assign new values, thus giving the effect of static binding.
(For an extensive discussion of binding schemes see Lang[8].)

2.2.3. Procedure Closures

A reference to a procedure not only refers to a program, but also to
the environment in which that program must be evaluated. For references
to global procedures the environment can be derived from the reference
itself. If procedures are passed as argument or returned as result, the
environment must be made explicit. This combination of procedure and
environment is called "closure". We shall demand that the closure opera
tion is performed implicitly whenever necessary.

In LISP the closure operation must be indicated explicitly using the
notation 11 (FUNCTION fun)" (this is not implemented in all LISP systems,
probably because it is difficult to do that efficiently). By converting
every procedure denotation immediately to a "closure tuple", the closure
operation can be completely hidden. Such a closure tuple has the form
(CLOSURE, ctx, proc) , where "ctx" is a tuple representing the context and
"proc" is the procedure denotation itself (see also appendix A).

The possibility of returning procedures as result prohibits the use
of a stack based memory allocation scheme. All frames for local vari
ables must be allocated from a heap. It may still be possible to optim
ise for almost stack-like allocation and deallocation.

3. DATA TYPES

3.1. Concrete Data Types

The system as described does not have explicit data types. For
practical reasons, such as error checking and program optimisation, it
may be useful to have type indications in declarations. A data type res
tricts the kind of values a variable can take. Each data type can be
expressed as a predicate on a value. We will need a new atomic type
11 tcode" and a new function "vtype", which maps values on type codes. A
type code has as values:

9

<tcode> ::= 'TUPLE' I 'BOOL' I 'CHAR' I 'INT' I ••••

The function "vtype" allows the construction of arbitrary pre di ca tes on
values. Some examples:

v:bool <=> vtype(v):BOOL
v:vector(n,tc) <=> len(v)=n and ¥i:vtype(v[i])=tc
v:record(t) <=> len(v):len(t) and ¥i:vtype(v[i])=t[i]
v:while node <=> len(v)=3 and v[O]=WHILE and

v[1]:expr_node and v[2]:stat_node

This interpretation of data types is wider than that available in most
languages (e.g. the type "while_node"). What possibilities this opens
should be investigated more fully. The equivalence of general predicates
is not decidable; restrictions on the predicates may lead to just the
kind of data types available in current programming languages, i.e.
records, arrays, sub-ranges, etc.

3.2. Abstract Data Types

Abstract data types are characterised by the kind of operations pos
sible and the relations between these operations. At the moment we see a
trend to make the semantics of as many syntactic constructs as possible
dependent on the type of objects that are handled (such "generic" opera
tions can, for example, be found in CLU[9] and ALPHARD[10]). Operations
that should be controllable by the data type are:

(1) Object creation (v := type(e1, ••• ,en))
(2) Component selection (v[i] or v.f)
(3) Component assignment (v[i] := e or v.f := e)
(4) Iteration (for id in v do Sod)
(5) Monadic operators (op v-)- --
(6) Output (put(v)) -
(7) Dyadic operators (v1 op v2)
(8) Type conversion (oftenimplicit)
(9) Input (v := get())

We will show how these operations can be reduced to operations determined
by a type description. We shall use "t$p" to denote component procedure
"P" of type description "t"; "T(v)" gives the type description associated
with object "v".

Operations (1) to (6) are easily transformed:

10

(1) v := type$create(e1, ••• ,en)
(2) T(v)$select(v,i) resp. T(v)$select(v,'f')
(3) T(v)$update(v,i,e) resp. T(v)$update(v,i,'f')
(4) T(v)$iterate(v,proc (id) S)
(5) T(v)$monadic(op~
(6) T(v)$put(v)

Operations (7) and (8) are more difficult because two types are involved.
A possible implementation of (7) is to try

T(v1)$dyadic(op,v1,v2)

first, and if this fails to try

T(v2)$dyadic(op,v1,v2)

The same scheme can be used for (8), trying respectively 11 t$convert(v,t) 11

and 11 T(v)$convert(v,t) 11 •

Operation (9) presents most difficulties because the type of the
value is not known beforehand. The operation "get" is only well defined
if there is a unique external representation corresponding to each type.
This implies a close relation between the "get" and "put" operation. The
addition of new types and associated external representations may cause
ambiguity in earlier representations. This ambiguity can only be
detected if a restricted grammar is used (like e.g. LL(1)).

A type description should define the following component procedures:
create, select, iterate, monadic, dyadic, convert, get, and put. This
can be reduced to a procedure "select" only; other operations are then
obtained by invoking the "select" procedure:

T(v)$p <=> T(v)$select('p')

This reduces the type description to a single procedure.

An instance of an abstract data type may be represented as a special
tuple of the form:

(CAPSULE,td,value)

where 11 td 11 is a tuple representing the type description (possibly con
sisting of the "select" procedure only).

11

4. LANGUAGE EXTENSIONS

If we want the programming language to be extensible by the user,
the new syntax must be communicated to the syntax oriented editor and the
semantics must be made available to the language processor. A possible
solution is to define an abstract data type corresponding to each new
construct. This data type should provide information about syntax and
semantics. The editor uses the syntactic information for the recognition
and translation of instances of the new construct (an extension always
has the form of a modification of an existing syntax rule). The semantic
information can be given in the form of a procedure that can be invoked
by the interpreter.

Syntax extensions give the same problems as the get/put operations
described earlier. An extension should be checked for compatibility with
the existing syntax rules, and this is only possible for restricted gram
mars.

5. CONCLUDING REMARKS

Basing a software system on a single internal representation of pro
grams has a number of advantages. It is possible to share several gen
eral programming tools between different language implementations. For
example, compilers and optimisers need only operate on the internal
representation. A syntax oriented editor together with an interpreter
for the internal representation forms an excellent environment for pro
gram development and testing (in the style of LISP).

Moving part of the context sensitive syntax handling to the editor
makes an efficient implementation of static binding possible. It also
allows the editor to do more static checks at an early moment.

A problem may be formed by the more complicated internal representa
tion of programs compared with LISP. This may inhibit programmers to
write program-generating programs. It may be better to step to a higher
level representation by building programs from abstract data types on
which edit, check, and execute operations are defined. The main problem
that must be solved then is how to detect inconsistencies in the external
representations without placing too many restrictions on the grammar used
to specify them.

ACKNOWLEDGEMENTS

I want to thank Paul Klint for reading earlier versions of this
report.

12

Appendix A. Example Interpreter

The following program fragment illustrates the interpretation pro
cess for the language defined in section 2. 2. 1 • The context parameter
has the following components:

0: the association vector of the current block
1: the frame of local variables
2: the context of the enclosing block (static environment)

eval stat= proc (ctx,s)
begin

end

ifs<> NIL then
if s[O] = ASSIGN then % (ASSIGN, var, expr)

- assign(ctx,s[1],eval expr{s[2]))
elif s[O] = INVOKE then - % (INVOKE, var, expr1, ••• , exprn)
--declare proc = eval_expr(ctx,s[1])

args = NIL
i = 2

begin while i < len(s) do
ext(args,eval_expr(ctx,s[i]))
i := i+1

od
invoke(ctx,proc,args)

end
elif?O] = SEQ then % (SEQ, stat1, ••• , statn)
--declare i = -,-

begin while i < len(s) do
eval_stat(ctx,s[i])
i := i+1

od
end

elif?O] = IF then % (IF, expr, stat1, stat2)
--if eval expr(ctx,s[1]) then

eval_stat(ctx,s[2])
else
eval_stat(ctx,s[3])

fi
elifs[O] = WHILE then % (WHILE, expr, stat)
--while eval expr(ctx,s[1]) do

eval stat(ctx,s[2]) -
od -

elifs[O] = PROG then % (PROG, av, decls, stat)
--ctx := tuple(s[1],NIL,ctx)

eval decls(ctx,s[2])
eval-stat(ctx,s[3])

else error() fi
fi

assign= proc (ctx,var,val)
begin

if var[O] = VAR then % (VAR, i)
- assign(ctx,ctx[O,var[1]],val)
elif var[O] = GLOB then % (GLOB, i)
--assign(ctx[2], ctx[2,0,var[1]], val)
elif var[O] = LOCV then % (LOCV, i)
--ctx[1,var[1]] := val
else error() fi

end

invoke= proc (ctx,proc,args)
begin

if proc[O] = CLOSURE then % (CLOSURE, ctx, proc)
invoke(proc[1], proc[2], args)

elif proc[O] = PROC then % (PROC, av, formals, stat)
--eval stat(tuple(proc[1],args,ctx), proc[3])
else error() fi

end

eval_expr = proc (ctx,e)
begin

if vtype(e) <> TUPLE then return e fi
if e[O] = VAR then -- % (VAR, i)
- return eval expr(ctx, ctx[O,e[1]])
elif e[O] = GLOB then % (GLOB, i)
--return eval expr(ctx[2], ctx[2,0,e[1]])
elif e[O] = LOCV then % (LOCV, i)
--return ctx[1,e[1]]
elif e[O] = PROC then % (PROC, av, formals, stat)
--return tuple(CLOSURE, ctx, e)
else error() fi

end

eval_decls = proc (ctx,d)
declare i = 0
begin

while i < len(d) do % d = ((id1,e1), ••• ,(idn,en))
ext(ctx[1],eval_expr(ctx,d[i,1]))
i == i+1

od
end

13

14

REFERENCES

[1] S.R. Bourne, "UNIX Time-Sharing System: The UNIX Shell," Bell Sys
tems Technical Journal Vol. 57, pp.1971-1990 (1978).

[2] Jan Heering and Paul Klint, "Towards Monolingual Programming
Environments," To be published as MC report.

[3] J. McCarthy et al. , LISP .! . .2. Programmer'~ Manual, The MIT Press,
Cambridge, Massachusetts (1965).

[4] E. Sandewall , 11 Programming in an Interactive Environment: the LISP
Experience," Computer Surveys Vol. 10, pp.35-71 (1978).

[5] H.G. Baker, "Shallow Binding in Lisp 1.5," Communications of the ACM
Vol. 21(7), pp.565-569 (1978).

[6] Paul Klint, "An Overview of the SUMMER Programming Language,"
Conference Record of the 7th Annual ACM Symposium on Principles
of Programming Languages';" pp.47-55 (1980).

[7] P.G. Hibbard, P. Knueven, and B.W. Leverett, "A Stackless Run-time
Implementation Scheme, 11 Proo. 4th International Conference on the
Description and Implementatiooof Algorithmic Languages, pp.176-
192 (1976).

[8] B. Lang, "The Binding of Variables," Proc. 4th International Confer-
ence on the Description and Implementation of Algorithmic
Languages, pp. 149-175 (1976).

[9] B. Liskov, "Abstraction Mechanisms in CLU," Communications of the
ACM Vol. 20, pp.564-576 (1977).

(10] M. Shaw and W.A. Wulf, "Abstraction and Verification in Alphard:
Defining and Specifying Iteration and Generators," Communications
of the ACM &y 20, pp.553-563 (1977).

