
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Simulating TRSs by minimal TRSs: a simple, efficient, and correct
compilation technique

J.F.Th. Kamperman and H.R. Walters

Computer Science/Department of Software Technology

CS-R9605 1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301665992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9605
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Simulating TRSs by Minimal TRSs
a Simple� E�cient� and Correct Compilation Technique

J�F�Th� Kamperman and H�R� Walters �fpum�jasperg�cwi�nl�

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

Abstract

A simple� e�cient� and correct compilation technique for left�linear Term Rewriting Systems �TRSs� is pre�

sented� TRSs are compiled into Minimal Term Rewriting Systems �MTRSs�� a subclass of TRSs�

presented in �WK	
�� In MTRSs� the rules have such a simple form that they can be seen as instructions for

an easily implementable abstract machine� the Abstract Rewriting Machine �ARM�� In the correctness

proof� it is shown that the MTRS resulting from compilation of a TRS simulates neither too much �sound�
ness� nor too little �completeness�� nor does it introduce unwarranted in�nite sequences �termination
conservation�� The compiler and its correctness proof are largely independent of the reduction strategy�

CR Subject Classi�cation ������� D��� �Programming languages�� Processors � Compilers�

D���� �Programming Techniques�� Applicative �Functional� Programming� D����� Logic Program�

ming�

AMS Subject Classi�cation ������� ��N��� Compilers and generators� ��Q�
� Models of Computa�

tion� ��Q��� Rewriting Systems� ��Q�
� Abstract data types� algebraic speci�cation�

Keywords 	 Phrases� minimal term rewriting systems� program transformation�

Note� Partial support received from the Foundation for Computer Science Research in the Netherlands �SION�

under project ����������� �Generic Tools for Program Analysis and Optimization��

�� Introduction

Term �graph� rewriting systems �TRSs� are becoming increasingly important for the imple�
mentation of theorem provers� veri�cation tools� algebraic speci�cations� compiler generators�
program analyzers and functional programming languages� Hence� a clear need arises for
techniques enabling fast execution of TRSs�

A standard technique for speeding up the execution of a program in a formal �programming�
language is compilation into the language of a concrete machine �e�g�� a microprocessor�� In
compiler construction �c�f� �ASU	
��� it is customary to use an abstract machine as abstraction
of the concrete machine� On the one hand� this allows hiding details of the concrete machine in
a small part of the compiler� and thus an easy reimplementation on other concrete machines�
On the other hand� a good design of the abstract machine enables a simple mapping from
source language into abstract machine language�

A compiler consists of zero or more transformations in the semantic domain of its source
language� followed by a mapping to a lower�level language� This is repeated until the level

	� Term Rewriting �

of the concrete machine is reached� Because they take place in one domain� the source�to�
source transformations are easier to grasp semantically than the mappings to lower levels�
In this paper� we present a compilation technique for TRSs which stays entirely within the
well�known source language domain�

In �WK��� we have presented Minimal Term Rewriting Systems �MTRSs�� a syntactic
restriction of TRSs� and shown that by a modest change of perspective� an MTRS can
be seen as a program for the Abstract Rewriting Machine �ARM�� which is in turn easily
implemented on a concrete machine� In �WK��� we concentrate on the concretization of
MTRSs into abstract machine programs� we only show the plausibility of simulating arbi�
trary pattern�matching by discussing an example� and we assume innermost rewriting with
syntactic speci�city ordering throughout� In this paper� we concentrate on the mapping
from TRSs into simulating MTRSs� and the correctness proofs of these mappings� and we
have formulated our transformations in such a way as to minimize the assumptions regarding
strategy and rule ordering�

The idea to express patternmatching of TRSs in the language of TRSs itself was inspired
by �Pet���� where patternmatching of ML is expressed in ML itself� This paper does not
contain a correctness proof� and the algorithm is formulated in a less formal way than our
algorithm� The resulting pattern match code appears to have the same complexity as the
code produced by our algorithm�

The idea to include a corectness proof is taken from �HG���� in which steps towards a
provably correct compiler for OBJ� are taken� Their compiler is less geared towards e�ciency
than ours�

In the remainder of this paper� we proceed as follows� First� in Sections �� � and �� we
review TRSs� simulation and MTRSs� respectively� In Section we discuss an example of
the application of our technique�

Then� in Section
� we present a transformation that yields a simulatingMTRS from a given
TRS� provided the latter is left�linear� and simply complete �in a simply complete TRS� every
de�ned function f has a most general rule� i�e�� a rule with an LHS consisting of f applied
to a su�cient number of distinct variables�� In Section
��� we drop the latter requirement
of simple completeness by a second transformation�

The �rst transformation has the remarkable property that the simulation holds for the
unrestricted rewrite relation� i�e� no assumptions regarding the rewrite strategy are made�

The second transformation is shown to be correct when we assume innermost rewriting
with priorities between rules �similar to the priorities de�ned in �BBKW	���� This is not as
bad as it seems� because given an implementation of innermost rewriting� other strategies
can be simulated by further transformations �for an example of this� see �KW����

We conclude our paper with a discussion of related work� conclusions and directions for
future work�

�� Term Rewriting

In this section� we mainly follow �Klo���� except for the notation of paths and contexts� which
is taken from �DJ����

	� Term Rewriting �

A signature � consists of�

� A countably in�nite set V of variables� x� y� � � �

� A non�empty set F of function symbols� f� g� � � �� each with an arity �� ��� which is the
number of arguments the function requires� We denote the arity of f by jf j�

The set T ��� of terms over � is the smallest set satisfying

� V � T ����

� for all f � F with arity n� and t�� � � � tn � T ���� we have f�t�� � � � � tn� � T ����

We will write var�t� for the set of variables occuring in t� Occasionally� we will abbreviate

a sequence t�� � � � � tn to
�

t � and write j
�

t j for n� We generalize this to empty sequences�

which have j
�

t j � ��

A path in a term is represented as a sequence of positive integers� By tjp� we denote the
sub�term of t at path p� For example� if t � f�g� h�f�y� z���� then tj��� is the �rst sub�term of
t�s second sub�term� which is f�y� z�� We write p � s if p is a valid path in s �i�e�� indicates
a sub�term of s�� and p� � p� if p� is a pre�x of p� �i�e�� �p� � p� � p��p��� We write pjq i�
neither p � q nor q � p� The empty path �referring to root� is written as �� We write t�s�p
for the term resulting from the replacement at p of tjp in t by s� Following �HL���� we write
O�s� for the occurences of s� that is fpjp � sg�

We write ofs�f�
�

t �� � f for the outermost function symbol f of a term f�
�

t �� lhs�l� r� � l

for the left hand side l of a rule l� r� and rhs�l� r� � r for the right hand side r of a rule
l� r�

A context is a �term� containing one occurrence of a special symbol �� denoting an empty
place� A context is generally denoted by C��� If t � T ��� and t is substituted for �� the
result is C�t� � T ��� and t is said to be a subterm of C�t�� notated as C�t� 	 t�

A substitution is a �total� map � � T ���
� T ��� satisfying

�f � F � ��f�t�� � � � � tn�� � f���t��� � � � � ��tn���

By convention� we often write t� for ��t��

A rewrite rule is a pair of terms written as s� t with s� t � T ���� It is assumed that the
left�hand side s of a rule s� t is not a single variable� and that var�t� 	 var�s��

A term rewriting system R consists of a signature � and a set of rewrite rules R over ��

A term rewriting system de�nes a rewrite relation �R� Since the subscript R is usually
clear from the context� it is omitted� The overloading of � is by convention�

s� t
def
� ��� p� u� v � R � sjp � u� � t � s�v��p�

The sub�term u� is referred to as redex �for reducible expression�� the sub�term v�� as
reduct�

	� Term Rewriting �

If we want to be speci�c about the rule and the redex position p� we write s
p
��l�r� t�

We write
�
� for the transitive re�exive closure of ��

The rewrite relation is closed under contexts� i�e�� if s� t� then for all C��� C�s�� C�t��

A series of terms s � s�� s�� � � � such that s� � s� � � � � is called a rewrite sequence� A term
s is said to be in normal form if there is no t such that s� t� A function�symbol f is called
a de�ned function symbol if there is a rule f�t�� � � � � tn�� r� A function�symbol c is called a
constructor symbol if there is a normal form in which it occurs� and a free constructor if it is
not a de�ned symbol�

A TRS is called left�linear if all left�hand sides are linear� A TRS is called con�uent if�
for all terms t�� t�� t�� we have that t�

�
� t� and t�

�
� t� implies that there exists a term t�

such that t�
�
� t� and t�

�
� t�� A TRS is called terminating if there are no in�nite rewrite

sequences� Note that con�uence and termination are generally undecidable�

Let r� � l� r and r� � g � d be rewrite rules� If there exists a context C��� a non�variable
term s� and a substitution � such that l � C�s� and s� � g�� then g overlaps with l� We say
there is overlap between a rule r and a TRS T i� either r overlaps with a rule of T � or there
is a rule of T that overlaps with r�

A TRS is called orthogonal if it is left�linear� and there is no overlap between the rules�

Following �HL���� we write R�s� for the set of paths to redexes in s�

Given a rewrite step A � s
pA��l�r� t and p � R�s�� where there is no overlap between l and

the rule of p� we de�ne the set pnA of residuals or descendants of p by A as a subset of O�s��

pnA �

���
��
� if p � pA�
fpg if pjpA or p � pA�
fpipnprj rjpn � xg if p � pipmpr and ljpm � x � V �

For rewrite sequences� we de�ne pnA by�
pn� � fpg
pnAB � fpanBj pa � pnAg

For orthogonal systems �where there is no overlap at all� these de�nitions generalize to the
ones given in �HL����

In general� a term may contain many redexes� A rewriting strategy determines which of
these is chosen� Con�uence guarantees unique normal forms� regardless of the strategy� A
well�known strategy is rightmost innermost� which chooses the rightmost redex that does not
contain another redex�

In priority rewrite systems �PRSs� �BBKW	��� the rules are �partially� ordered� and a rule
may be applied only if there are no applicable rules �i�e�� even after reduction of subterms�
with higher priority� We will also consider syntactic priority� in which the decision whether
a rule is applicable is made without considering reductions of sub�terms�

The ordering we will use is syntactic speci�city ordering� where a rule l� r � s� t� when
there exists a substitition � such that s� � l �in �BBKW	��� speci�city ordering implies that

� Term Rewriting Simulations �

all ambiguities are between terms that are ordered according to speci�city� which we do not
demand for syntactic speci�city ordering��

Under syntactic speci�city ordering� any set of terms with the same outermost function
symbol has a greatest lower bound �glb�� We will call such a glb� a term of the form f�

�
x�� a

most general LHS�

A TRS is called su�ciently complete if de�ned functions do not appear in normal forms�
In general� su�cient completeness is undecidable� We will call a TRS simply complete if
every de�ned function has a most general rule� It is clear that simple completeness implies
su�cient completeness�

�� Term Rewriting Simulations

In this section� we de�ne the notion of simulation of a TRS by another TRS�

In principle� a TRS T � ��� R� is simulated by a TRS T � � ���� R�� if every rewrite
sequences w�r�t� R can be related to a rewrite sequence w�r�t� R�� To this end� there must
be a map from T ���� to T ���� which is called the simulation map�

This notion of simulation can be developed for arbitrary relations� but we will only use
it in the more limited context of �minimal� term rewriting systems� In that context� as we
will see� it is preferable to regard a simulating TRS of which the signature is an extension of
that of the simulated TRS �i�e�� �� � ��� and for which the simulation map is identity on the
common set of terms T ����

��� Simulation maps between terms
De�nition � Let � � �F �V� and �� � �F ��V �� be signatures	 such that �� � �� A simulation
map is a partial map S � F � � F for which �f � F � S�f� � f � Let DS be a predicate that
holds precisely for all symbols in F � for which S is de�ned�

Note that the composition of two simulation maps is again a simulation map�
Under this de�nition� symbols in the original signature simulate themselves� and a simu�

lating TRS may use intermediate symbols �terms� which are not a simulation of any symbol
�term� in F �
We extend S and DS to T ���� by �partial� homomorphic extension�
As an example� consider F � ff� ag and F � � ff� a� fc� hg� In this example� fc is a variant

�a so�called constructor variant� discussed further in the sequel� of f with S�fc� � f � and h

is an auxiliary function that has no counterpart in F � Supposing that the arity of f is �� and
the arity of a is �� we have �by partial homomorphic extension� that S�f�fc�a��� � f�f�a���
and �DS �f�h�a���� so S�f�h�a��� is unde�ned�

��
 Simulating Relations
Let � � h�� Ri and �� � h��� R�i be TRSs� with the understanding that by R and R� we
sometimes mean the rewrite relation� rather than the rewrite rules�� and let S � �� � � be a
simulationmap� We will de�ne simulation of � by �� under S� First� we de�ne three auxiliary

�This makes it easier to discuss restrictions of the rewrite relation� e�g� the relation with only innermost

rewrites�

� Term Rewriting Simulations �

notions� soundness� completenes and termination conservation� In the �gures illustrating the
de�nitions below� dashed arrows are implied by solid arrows� closed points are universally
quanti�ed� and open points are existentially quanti�ed�
Soundness of the triple �R�S� R�� means that su�ciently many sequences in R� are mapped

�by S� to sequences in R� If we have a sequence sR��t in the simulating system with S de�ned
on s and t� it is only reasonable to call �R�S� R�� sound when S�s�R�S�t�� so the image of
R�� under S is contained in R� �depicted in Fig� �a�� In case S is not de�ned on t� we do not
want the sequence to �escape into unde�nedness�� so we demand that there is some u with
tR��u and S de�ned on u �depicted in Fig� �b�� Formally� soundness is de�ned in De�nition
��

t

R* R’*

s

S

S
t

s

u

R*

S

S

R’*

Fig� �a� Fig� �b�

De�nition � A simulation �S� R�� of R is sound whenever

�st �DS�s� � sR��t� � S�s�R�S�t� � ��DS�t� � �uDS�u� � tR��u�

The triple �R�S� R�� is complete� when every step S�s�Rt in the simulated relation has as
counterpart a simulating sequence sR��t� with S�u� � t� provided s is reachable� i�e� soR

��s�
for some so � Ter���� written reachable�R��s�� This is de�ned formally in De�nition �� and
depicted in Fig� ��

R R’+

t u
S

sS
De�nition � A simulation �S� R�� of a relation R is com�
plete whenever

�st reachable�R��s�� DS�s�� S�s�Rt � �u sR��u � S�u� � t

Fig� �� Completeness

Termination conservation of the triple �R�S� R�� means that only terms taking part in
in�nite sequences in R� have origins �under S� occurring in in�nite sequences in R��

inf

R+ R’+

t1 sS

inf

1

De�nition � A simulation �S� R�� is termination preserv�
ing whenever

�s � inf �R�� � DS�s�� � �t � inf �R� S�s�� � t�

where inf �R� is the set of in�nite sequences in R	 and we
denote the ith term in a rewrite sequence s by si�

Fig� �� Conservation of termination

We can now de�ne simulation�

� Term Rewriting Simulations �

De�nition � �Simulation� Let � � h�� Ri and �� � h��� R�i be TRSs with � 	 �� and let
S � �� � � be a simulation map� We say that � is simulated by �� under S	 written as
� jo

S
��	 i the triple �R�S� R�� is sound	 complete and termination conserving�

When S unde�ned on ��n�� or if S is clear from the context� we will write � jo ���
Normal forms� con�uence� and strong and weak normalization are preserved under simu�

lation� It is easy to verify that normal forms are preserved under simulation� that is� if we
have S�m� � n with n a normal form then for all mR��m�� we have that S�m�� � n� and
from termination preservation it follows that there are no in�nite sequences starting with m�
Con�uence follows directly from completeness� Conservation of strong normalization follows
directly from termination preservation� With regard to weak normalization we remark that
from completeness it follows that the sequence leading to a normal form n can be simulated�
Note that our notion of simulation is transitive� given that � jo S �� and �� jo S� ���� we

have that � jo
S�S� ����

In a simple simulation� the e�ect of a single rule is simulated by a pair of complementary
rules�

Lemma � �Simple Simulation� Let � � h�� Ri and �� � h��� R�i such that�

�� �� � � � ffg �f �� ���

� R � R� � fr� � l� rg �r� �� R���

�� R� � R� � fr� � l� f�
�

t �� r� � f�
�
x�� r�g�

�� s�r� t � s�r� s
� � s�r� s

� �r� t�

�� All �sub�terms occurring in
�

t also occur in l or in r�

Then � jo I� �
��

Proof We have to prove completeness� soundness� and termination conservation of the triple
�R� I	� R

���
Completeness is trivial� it follows directly from requirement ��
For soundness� we �rst observe that given a sequence sR��t with DS�s� � DS�t� �i�e�� both

s� t � Ter���� we have sR�t� This follows from the fact that applications of rule r� are
only possible on terms created by applications of rule r�� Because r� has no overlap with
other rules� and no redexes of r� remain in t �this follows from DS�t��� we can replace the
applications of r� in sR��t by applications of r�� delete the applications of r�� and thus obtain
sR�t� Second� we observe that when we have sR��t with �DS �t�� this must be because there
are some r��redexes left in t� We can rewrite these and obtain sR��tR��t�� with DS�t��� Now�
by the �rst observation� sR�t� which completes the proof of soundness�
We prove termination conservation by considering the number of r��contractions� If there

are no r��contractions in an in�nite R��sequence starting in a term t with DS�t�� there are
no r��contractions either� so the in�nite sequence is itself an R�sequence� If there is only a
�nite number of r��contractions in an in�nite sequence� there can only be an in�nite number
of r��contractions if there is some context C�� in which �descendants of� an r� redex can be
duplicated in�nitely many times� But because r� has no overlap with other rules� this means
that �descendants of� the r��redex can already be duplicated in�nitely many times in C���

�� Minimal Term Rewriting Systems �

which is a contradiction� so all r� and r��contractions occur in a �nite pre�x of the in�nite
sequence� and the in�nite su�x corresponds to an in�nite R�sequence� Finally� if there is an
in�nite number of r� contractions� then there is also an in�nite number of r��contractions
possible� because all subterms in an instantiated RHS of r� are also in an instantiated RHS
of r�� and an instance of the RHS of r� itself can only be contracted by r�� with the same
result as a direct contraction by r�

�� Minimal Term Rewriting Systems

Here� we repeat the de�nition of minimal term rewriting systems �MTRSs�� a syntactic re�
striction of TRSs that can be interpreted as the language of an abstract machine �see �WK����
In MTRSs� all rules have an extremely simple form� The most conspicuous aspect is that

any rule has at most three function symbols� of which at most two are found on either side�
Even the SKI calculus ��Klo����� which is minimal in the number of rules ���� and in the
total number of function symbols ��� S� K� I� and ��� needs � function symbols in its most
complicated rule �S �x�y �z� �x�y���y �z��� Somewhat less conspicuous� but equally important
for the interpretation as a machine language� is the fact that the �action� �adding� changing
or deleting function symbols or variables� performed by application of a rule is �local�� i�e�
restricted to a number of consecutive arguments and the outermost function symbol�

De�nition 	 �MTRS� Let � � h�� Ri be a TRS	 and r � s � t a rule in R� The rule r is
called minimal if it is left�linear and it is in one of the following six forms�

C � f�
�
x�

�
y �

�
z � � h�

�
x� g�

�
y ��

�
z �

R � f�y� � y

M � f�
�
x� g�

�
y ��

�
z � � h�

�
x�

�
y �

�
z �

A � f�
�
x�

�
z � � h�

�
x� y�

�
z � �y is xi or zi�

D � f�
�
x�

�
y �

�
z � � h�

�
x�

�
z � �j

�
y j �� ��

I � f�
�
x� � h�

�
x�

A TRS � is called a Minimal Term Rewriting System �MTRS� if all its rules are minimal�

We have labeled the forms with mnemonics reminding of their basic purpose �in the context
of innermost rewriting�� The mnemonic C stands for continuation� in the sense that h is the
continuation after the evaluation of g� Conversely� R stands for return� in the sense that
control is passed to a continuation if that was issued earlier� or rewriting is �nished if there
is no such continuation� Rules of the form M take apart a term� when there is a match of
the symbol g� The forms A� D and I are for addition	 deletion and identity on the set of
variables�

�� An illustrative example compilation

Before we present our compilation technique in its general form� we would like to give an
intuitive impression by showing how a concrete TRS is transformed into a simulating MTRS�
Consider the following example of a simply complete TRS�

f�g�X�� h�Y �� � a�g�Y �� X� ����

f�X� f�Y� Z�� � b ����

f�X� Y � � c ����

�� Every simply complete TRS can be simulated by an MTRS �

In Section
��� we will show how pattern�matching is simulated by a transformation� On the
TRS above� this transformation would yield�

f�g�X�� Y � � fg�X� Y � ����

f�X� Y � � fS�X� Y � ���

fg�X� h�Y �� � fgh�X� Y � ��
�

fg�X� Y � � fS�g�X�� Y � ����

fS�X� f�Y� Z�� � fSf �X� Y� Z� ��	�

fS�X� Y � � fSS�X� Y � ����

fgh�X� Y � � a�g�Y �� X� �����

fSf �X� Y � � b �����

fSS�X� Y � � c �����

The newly introduced functions fg� f
S � fSg and fSS can be understood as representants of

the states of a matching automaton for LHS patterns �inspired by �HO	�� Wal��� Pet����� In
this TRS� all rules are minimal� except for ������ in which a non�trivial RHS appears �the
variables are in the wrong order�� In Section
��� we will show how the construction of RHSs
is simulated by a transformation� This transformation replaces ����� by the rules

fgh�X� Y � � aR�X� Y�X� �����

aR�X� Y�X �� � aRR�Y�X �� �����

aRR�Y �� X �� � a�g�Y ��� X �� ����

The result is an MTRS� The reader is invited to verify that this MTRS simulates the original
TRS� using as simulation map I	� the identity on ��
Now suppose that rule ���� were not present in the original system� then the system would

not be simply complete� But� as is shown in general in Section
��� the TRS

f�g�X�� h�Y �� � a�g�Y �� X� ���
�

f�X� fc�Y� Z�� � b �����

f�X� Y � � fc�X� Y � ���	�

simulates this system� when we assume innermost rewriting with speci�city� and S�fc� � f �
The idea is that rule ���	� only applies when none of the other rules apply� so that in normal
forms� fc occurs exactly where in the original system f would have occurred� Rule ����� is
adapted to match such normal forms �in innermost rewriting� the proper subterms of a redex
are in normal form by de�nition��

�� Every simply complete TRS can be simulated by an MTRS

We will now show that every simply complete left�linear TRS can be simulated by an MTRS�
We will give a constructive proof by providing a terminating transformation that transforms
any simply complete left�linear TRS into a simulatingMTRS� Because simulation is transitive�
it su�ces to prove simulation for every individual step of the transformation�

�� Every simply complete TRS can be simulated by an MTRS 	

��� Transforming complicated LHSs
We will now present a speci�cation of the function sim� and prove that applying sim to a
simply complete TRS h�� Ri yields a TRS h��� R�i such that R jo I� R��� The speci�cation of
sim is itself nonambiguous and terminating� so it can be used as a pattern matching compiler�
In the speci�cation� we will extensively use union of TRSs�

h�� Ri � h��� R�i � h� � ��� R �R�i

Given some index set I � fi�� � � � � ing� we will use the notation
S
i�I Ti for the ��nite� union

Ti� � � � �� Tin �
If all rules in R are most general� then�

�sim�base� simh�� Ri � h�� Ri�

Otherwise� let i be the least index such that for some rule f�
�

t � � s � R� we have ti �� V �

and let G � fgjf�
�

t � � r � R � ti � g�
�
u�g� the set of function symbols found at position i

of LHSs de�ning f in R� Then� taking j
�
x j � j

�

t j � i� �� and fS � fg �� � fresh symbols� we
have�

�sim�rec� simh�� Ri � �
S
g�GMatchg �Matchedg� � Skip �Other �

where

Matchg � hff� g� fgg� f�m� ��f�
�
x� g�

�
y ��

�
z �� fg�

�
x�

�
y �

�
z �gi�

Matchedg � simh� � ffg� f
Sg� f�m� ��fg�

�

t �
�
u�

�
v �� rj �m� ��f�

�

t � g�
�
u��

�
v �� r � Rg

�f�m� ��fg�
�
x�

�
y �

�
z �� fS�

�
x� g�

�
y ��

�
z �gi�

Skip � h� � ffSg� f�s� ��f�
�
x�� fS�

�
x�gi�

Other � simh� � fS � f�o� ��fS�
�

t �� sj �o� ��f�
�

t �� s � R�
�

t i� V g
�f�o� ��rj r � R � ofs�lhs�r�� �� fgi�

An intuitive explanation of �sim�rec� is� that Matchg has a rule m� that matches a symbol g
at position i� Matchedg deals with a succesful match of g at position i� by either completing
a match of m� by applying m�� or restoring the LHS of m� �up to fS� by applying m�� Skip
just replaces f by fS �with the e�ect of sharing an �automaton� state between reconstructed
terms and terms for which matching fails right away�� and Other simulates the rules o� that
have a variable at position i with rules o�� and rules o� for other function symbols than f �
Let NVP �R� be the number of paths to nonvariable proper subterms of LHSs of the

rewrite rules R� It is clear that NVP �R� is a well�founded measure on TRSs� It is easily
established that� when read from left to right� the recursive rule �sim�rec� is decreasing in
this measure� Furthermore� the conditions are decidable� so the speci�cation of sim is an
executable speci�cation that can be used as a pattern�match compiler�

Theorem � Let h��� R�i � sim�h�� Ri�� Then the triple �R� I	� R�� is complete�

Proof By induction on NVP �R�� If NVP �R� � �� we have case �sim�base�� which is trivially
complete� Otherwise� �sim�rec� must be applied� Because the simulation map is I	� we only
have to consider terms in Ter���� There are three cases� either a rule of type m� is applied�

�� Every simply complete TRS can be simulated by an MTRS 		

or another rule de�ning f � or a rule de�ning another function symbol than f � A rule of
type m� is simulated by applying m� and then m�� other rules de�ning f are simulated by
applying s� and then m�� rules de�ning other symbols than f are available as rules of type
o�

Theorem � Let h��� R�i � sim�h�� Ri�� Then the triple �R� I	� R
�� is sound�

Proof With induction on NVP �R�� When NVP �R� � �� it is clear we have case �sim�base��
and soundness is trivial� Otherwise� let i be the least index such that there is a rule r � R

with lhs�r�ji �� V � Without loss of generality� we can assume r to be f�
�

t � g�
�
u��

�
v �� s� with

j
�

t j � i� �� We have to prove that

�st �DS�s� � sR��t� � S�s�R�S�t�� ��DS�t� � �uDS�u� � tR��u�

By the induction hypothesis� we may assume Matchedg to simulate

h� � ffg� fSg�

f�m� ��fg�
�

t �
�
u�

�
v �� rj �m� ��f�

�

t � g�
�
u��

�
v �� r � Rg

�f�m� ��fg�
�
x�

�
y �

�
z �� fS�

�
x� g�

�
y ��

�
z �gi

�

and Other to simulate

h� � fS �

f�o� ��rS j r � R � ofs�lhs�r�� � f � lhs�r�ji � V g
�f�o� ��rj r � R � ofs�lhs�r�� �� fgi

�

It is clear that when the sequence sR��t does not contain a �sub�term with a function symbol
fg or f

S � sR�t holds trivially� A �sub�termwith function symbol fg is necessarily a descendant
of a term introduced by rule m�� Such a term is a redex for m�� and potentially also for m��
Five things can happen to the descendants� they may be contracted according to m� or m��
they may persist in t� they may be duplicated and they may be deleted by contraction of a
higher redex� Duplication and deletion are trivially copied in R� If the redex persists in t�
we can construct t� by applying m�� which brings us to the case where we have a �sub�term
with function symbol fS �see below�� The result of a contraction according to m� can be
obtained in R by contracting the original term according to m�� The result of a contraction
according to m� brings us again to the case where we have a �sub�term with function symbol
fS � Apart from the two cases above� a �sub�term with function symbol fS can be introduced
by s�� Because of simple completeness� such a �sub�term is a redex of at least one of the rules
in Other � but there can only be root�overlap with other rules� because fS does not occur
in �� Therefore� the descendants of this redex may be duplicated� deleted� or contracted
according to one of the rules in Other � Duplication and deletion are again trivially copied
in R� contraction according to o� or o� corresponds to a contraction according to o� or o��
respectively� Finally� if a �sub�term with fS is left in t� we have �DS �t�� but we have tR��t�

by a most general rule in Other � By the argument above� we now have that sRt�

Theorem � Let h��� R�i � sim�h�� Ri�� Then the simulation �I	� h��� R�i� of h�� Ri is ter�
mination preserving under innermost rewriting
Proof Obvious by induction on NV P �R�

�� Every simply complete TRS can be simulated by an MTRS 	�

��
 Transforming Complicated RHSs
Here we present a transformation that will transform a TRS N � which may have RHSs that
do not conform to the restrictions imposed on MTRSs� into a simulating TRS M � whose
RHSs are minimal� Any rule with a minimal LHS and a non�minimal RHS has the form

l�
�
x�

�
y �

�
z �� h�

�
x�

�

t � u�
�
z �� where u is either a variable �not equal to the last variable of

�
y �

or a term g�
�
u�� and

�
x and

�
z contain only variables� and are taken of maximal length� The

goal is to reduce the non�compliant segment
�

t � u�
In case u is a variable� we replace the rule by the following rules�

l�
�
x�

�
y �

�
z �� hR�

�
x�

�
y � u�

�
z � �
����

hR�
�
x�

�
y � u��

�
z �� h�

�
x�

�

t � u
��
�
z �� �
����

Where u� is a fresh variable� Rule �
���� is an instance of A� and rule �
���� has a shorter

non�compliant segment
�

t �
In case u � g�

�
u� we replace the rule by the following rules�

l�
�
x�

�
y �

�
z � � hR�

�
x�

�

t �
�
u�

�
z � �
����

hR�
�

x��
�

y��
�
z � � h�

�

x�� g�
�

y���
�
z � �
����

where j
�

x� j � j
�
x j� j

�

t j� j
�

y� j � j
�
u j� hR is a fresh function symbol which did not already

occur in the TRS� and
�

x� and
�

y� consist entirely of fresh variables� Rule �
���� contains one
function symbol less than the original rule� and rule �
���� is an instance of C�
We take the simulation map S to be unde�ned for hR� Repeated application of the trans�

formation above to a TRS with minimal LHSs leads to an MTRS�
We note that both the variable case and the nonvariable case ful�ll the requirements for a

simple simulation �see Lemma ��� so the RHS transformation yields a simulating TRS�

��� Simulating General Left�Linear TRSs by Simply Complete left�linear TRSs
Until now� we have only dealt with simply complete TRSs� Unfortunately� simple complete�
ness is a rare property� Here we will show that� under the restriction to innermost rewriting
with syntactic speci�city ordering� every TRS can be simulated by a simply complete TRS�
Let the TRS h�� Ri be given� and let �p 	 � be the set of function symbols for which

R has no most general rule� Let �c contain a so�called constructor variant fc for every

f � �u� and let S�fc� � f � Given a term t or a sequence
�

t � de�ne tc or
�

t c to be the
term or sequence obtained by replacing all f � �u by their constructor variants fc� Taking

R� � fo� � f�
�

t c� � sjf�
�

t � � Rg � fc� � f�
�
x� � fc�

�
x�jf � �ug� we have obtained a simply

complete TRS h�� �c� R
�i�

It is easy to see that the triple �h�� Ri�S� h��� R�i� is sound� complete and termination
conserving� so R joS R�� For soundness� we observe that� given a rewrite sequence t� � t� �
� � � tn in R�� it follows that either S�ti� � S�ti��� �in case c� is applied�� or S�ti�RS�ti��� �in
case o� is applied�� so always t�R � tn�
For completeness� we observe that a step S�ti�RS�ti��� may not be possible in R� because

some subterms of ti have an original function symbol where a constructor variant is needed�
We may �rst rewrite exactly these subterms with rules of type c�� however� tiR� � t�i� with

�� Conclusions and Future Work 	�

S�t�i� � S�ti�� and then we have t�iR
�ti��� Because a step tiRti�� is only taken when all

subterms of ti are already in normal form� rewriting ti to t�i does not invalidate future R�
rewrites and because of speci�city ordering� rules of type c� can only rewrite terms t for
which S�t� is a normal form�
Finally� conservation of termination follows from the fact that only a �nite number of

applications of rules of type c� is possible on any term� so if there is an in�nite reduction on
t according to R�� there is necessarily an in�nite reduction on S�t� according to R�
Without proof� we mention that non�linear TRSs can be simulated in a simular vein� under

the same restrictions and for given ��

��� E�ciency Considerations
The e�ciency of compilers can be expressed by several measures�

� The size �in number of rules� of the target program�

� The time and space taken for compilation from source to target language�

� The time and space taken by an execution of the target program� compared to the time
and space taken by execution of the source program�

It is clear that the size of the target program depends in a linear fashion on the total number
of occurrences of function symbols in the source program� and rules in the target program
are at least as simple as the rules in the source program�
With regard to the space taken by the compilation� we observe that the number of new

rules constructed depends in a linear fashion on the total number of occurrences of function
symbols in the source program� Thus� a naive implementation needs at most an amount of
space linear in the size of the source program�
With respect to the time taken� even a naive implementation of sim that scans all rules

to �nd a rule with nonvariable arguments� will only be quadratic in the number of rules and
linear in the number of symbol occurrences in LHSs�
Considering the time taken by the execution of the target program� we remark that indeed

the number of rewriting steps is linearly increased by the compilation� The complexity of
executing a single step� however� is decreased� In practice� this leads to comparable perfor�
mance� The big gain� however� is in the fact that the MTRS can easily be seen as a program
to be executed by a concrete machine �see �WK���� The resulting machine code and its
performance is similar to that of existing compilers for functional languages �HF��
��

�� Conclusions and Future Work

We have presented transformations from arbitrary left�linear TRSs into simulating MTRSs�
The transformations can be expressed in a concise way� and their correctness proofs are short
and easy to grasp� Furthermore� the transformations are described as executable speci�ca�
tions� which can be used as an e�cient compiler� The resulting code is similar to the code
generated by an earlier version of our TRS compiler� with which favorable results have been
reached �HF��
��
In �KW��� we presented a transformation to simulate lazy rewriting by eager �innermost�

rewriting� It appears that this transformation can be simpli�ed greatly by �rst applying the

References 	�

transformations in this paper� and then the laziness transformation� which is much simpler
when only MTRSs have to be considered�
Similarly� we expect that the transformations given in this paper could simplify other

research on TRSs �e�g�� Hans Zantema suggested that termination proofs might be simpler
after our transformations� but we have not yet investigated this issue in any depth��
In the future� we hope to �nd a bigger class of TRSs for which a strategy�independent

simulation by MTRSs can be given� For our current implementation requirements� however�
the current class is su�cient�
An interesting class of TRSs �which unfortunately has no inclusion relation with simply

complete TRSs� is the class that admits speci�city ordering as de�ned in �BBKW	��� It
appears that applying the transformation in this paper to a member of this class yields a
simulatingMTRS� if we consider the priority rewrite relation� without any further assumption
about the strategy� We would like to establish this rigorously�
Finally� we thank Bas Luttik for commenting on various drafts of this paper�

References

�ASU	
� A�V� Aho� R� Sethi� and J�D� Ullman� Compilers� Principles	 Techniques and
Tools� Addison�Wesley� ��	
�

�BBKW	�� J�C�M� Baeten� J�A� Bergstra� J�W� Klop� and W�P� Weijland� Term�rewriting
systems with rule priorities� Theoretical Computer Science�
������	������ ��	��

�DJ��� N� Dershowitz and J��P Jouannaud� Rewrite systems� In J� van Leeuwen� edi�
tor� Handbook of Theoretical Computer Science	 Vol B�� pages �������� Elsevier
Science Publishers� �����

�HF��
� Pieter H� Hartel� Marc Feeley� et al� Benchmarking implementations of functional
languages with �pseudoknot � a �oat�intensive benchmark� Journal of Functional
Programming� ���
� Accepted for publication�

�HG��� Lutz H� Hamel and Joseph A� Goguen� Towards a provably correct compiler for
OBJ�� In Proceedings of the International Conference on Programming Language
Implementation and Logic Programming	 PLILP ���� �����

�HL��� G!erard Huet and Jean�Jacques L!evy� Computations in orthogonal rewriting sys�
tems� I� In Jean�Louis Lassez and Gordon Plotkin� editors� Computational Logic�
Essays in honor of Alan Robinson� chapter ��� MIT Press� Cambridge� Mas�
sachusetts� �����

�HO	�� C�M� Ho�mann and M�J� O�Donnell� Pattern matching in trees� Journal of the
ACM� ������
	��� ��	��

�Klo��� J�W� Klop� Term rewriting systems� In S� Abramsky� D� Gabbay� and
T� Maibaum� editors� Handbook of Logic in Computer Science	 Volume
�� pages
����
� Oxford University Press� �����

�KW�� J�F�Th� Kamperman and H�R� Walters� Lazy rewriting and eager machinery�
In Jieh Hsiang� editor� Rewriting Techniques and Applications� number ��� in
Lecture Notes in Computer Science� pages �����
�� Springer�Verlag� ����

�Pet��� Mikael Pettersson� A term pattern�match compiler inspired by �nite automata
theory� In U� Kastens and P� Pfahler� editors� Proceedings of the Fourth Inter�

References 	�

national Conference on Compiler Construction� number
�� in Lecture Notes in
Computer Science� pages �	����� Springer�Verlag� �����

�Wal��� H�R� Walters� On Equal Terms	 Implementing Algebraic Speci�cations�
PhD thesis� University of Amsterdam� ����� Available by ftp from
ftp�cwi�nl�"pub"gipe"reports as Wal���ps�Z�

�WK�� H�R� Walters and J�F�Th� Kamperman� Minimal term rewriting systems� Techni�
cal Report CS�R���� CWI� december ���� Submitted for publication� Available
as http�""www�cwi�nl" gipe"epic"articles"CS�R����ps�Z�

