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Simulating TRSs by Minimal TRSs
a Simple� E�cient� and Correct Compilation Technique

J�F�Th� Kamperman and H�R� Walters �fpum�jasperg�cwi�nl�

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

Abstract

A simple� e�cient� and correct compilation technique for left�linear Term Rewriting Systems �TRSs� is pre�

sented� TRSs are compiled into Minimal Term Rewriting Systems �MTRSs�� a subclass of TRSs�

presented in �WK	
�� In MTRSs� the rules have such a simple form that they can be seen as instructions for

an easily implementable abstract machine� the Abstract Rewriting Machine �ARM�� In the correctness

proof� it is shown that the MTRS resulting from compilation of a TRS simulates neither too much �sound�
ness� nor too little �completeness�� nor does it introduce unwarranted in�nite sequences �termination
conservation�� The compiler and its correctness proof are largely independent of the reduction strategy�

CR Subject Classi�cation ������� D��� �Programming languages�� Processors � Compilers�

D���� �Programming Techniques�� Applicative �Functional� Programming� D����� Logic Program�

ming�

AMS Subject Classi�cation ������� ��N��� Compilers and generators� ��Q�
� Models of Computa�

tion� ��Q��� Rewriting Systems� ��Q�
� Abstract data types� algebraic speci�cation�

Keywords 	 Phrases� minimal term rewriting systems� program transformation�

Note� Partial support received from the Foundation for Computer Science Research in the Netherlands �SION�

under project ����������� �Generic Tools for Program Analysis and Optimization��

�� Introduction

Term �graph� rewriting systems �TRSs� are becoming increasingly important for the imple�
mentation of theorem provers� veri�cation tools� algebraic speci�cations� compiler generators�
program analyzers and functional programming languages� Hence� a clear need arises for
techniques enabling fast execution of TRSs�

A standard technique for speeding up the execution of a program in a formal �programming�
language is compilation into the language of a concrete machine �e�g�� a microprocessor�� In
compiler construction �c�f� �ASU	
��� it is customary to use an abstract machine as abstraction
of the concrete machine� On the one hand� this allows hiding details of the concrete machine in
a small part of the compiler� and thus an easy reimplementation on other concrete machines�
On the other hand� a good design of the abstract machine enables a simple mapping from
source language into abstract machine language�

A compiler consists of zero or more transformations in the semantic domain of its source
language� followed by a mapping to a lower�level language� This is repeated until the level



	� Term Rewriting �

of the concrete machine is reached� Because they take place in one domain� the source�to�
source transformations are easier to grasp semantically than the mappings to lower levels�
In this paper� we present a compilation technique for TRSs which stays entirely within the
well�known source language domain�

In �WK��� we have presented Minimal Term Rewriting Systems �MTRSs�� a syntactic
restriction of TRSs� and shown that by a modest change of perspective� an MTRS can
be seen as a program for the Abstract Rewriting Machine �ARM�� which is in turn easily
implemented on a concrete machine� In �WK��� we concentrate on the concretization of
MTRSs into abstract machine programs� we only show the plausibility of simulating arbi�
trary pattern�matching by discussing an example� and we assume innermost rewriting with
syntactic speci�city ordering throughout� In this paper� we concentrate on the mapping
from TRSs into simulating MTRSs� and the correctness proofs of these mappings� and we
have formulated our transformations in such a way as to minimize the assumptions regarding
strategy and rule ordering�

The idea to express patternmatching of TRSs in the language of TRSs itself was inspired
by �Pet���� where patternmatching of ML is expressed in ML itself� This paper does not
contain a correctness proof� and the algorithm is formulated in a less formal way than our
algorithm� The resulting pattern match code appears to have the same complexity as the
code produced by our algorithm�

The idea to include a corectness proof is taken from �HG���� in which steps towards a
provably correct compiler for OBJ� are taken� Their compiler is less geared towards e�ciency
than ours�

In the remainder of this paper� we proceed as follows� First� in Sections �� � and �� we
review TRSs� simulation and MTRSs� respectively� In Section  we discuss an example of
the application of our technique�

Then� in Section 
� we present a transformation that yields a simulatingMTRS from a given
TRS� provided the latter is left�linear� and simply complete �in a simply complete TRS� every
de�ned function f has a most general rule� i�e�� a rule with an LHS consisting of f applied
to a su�cient number of distinct variables�� In Section 
��� we drop the latter requirement
of simple completeness by a second transformation�

The �rst transformation has the remarkable property that the simulation holds for the
unrestricted rewrite relation� i�e� no assumptions regarding the rewrite strategy are made�

The second transformation is shown to be correct when we assume innermost rewriting
with priorities between rules �similar to the priorities de�ned in �BBKW	���� This is not as
bad as it seems� because given an implementation of innermost rewriting� other strategies
can be simulated by further transformations �for an example of this� see �KW����

We conclude our paper with a discussion of related work� conclusions and directions for
future work�

�� Term Rewriting

In this section� we mainly follow �Klo���� except for the notation of paths and contexts� which
is taken from �DJ����



	� Term Rewriting �

A signature � consists of�

� A countably in�nite set V of variables� x� y� � � �

� A non�empty set F of function symbols� f� g� � � �� each with an arity �� ��� which is the
number of arguments the function requires� We denote the arity of f by jf j�

The set T ��� of terms over � is the smallest set satisfying

� V � T ����

� for all f � F with arity n� and t�� � � � tn � T ���� we have f�t�� � � � � tn� � T ����

We will write var�t� for the set of variables occuring in t� Occasionally� we will abbreviate

a sequence t�� � � � � tn to
�

t � and write j
�

t j for n� We generalize this to empty sequences�

which have j
�

t j � ��

A path in a term is represented as a sequence of positive integers� By tjp� we denote the
sub�term of t at path p� For example� if t � f�g� h�f�y� z���� then tj��� is the �rst sub�term of
t�s second sub�term� which is f�y� z�� We write p � s if p is a valid path in s �i�e�� indicates
a sub�term of s�� and p� � p� if p� is a pre�x of p� �i�e�� �p� � p� � p��p��� We write pjq i�
neither p � q nor q � p� The empty path �referring to root� is written as �� We write t�s�p
for the term resulting from the replacement at p of tjp in t by s� Following �HL���� we write
O�s� for the occurences of s� that is fpjp � sg�

We write ofs�f�
�

t �� � f for the outermost function symbol f of a term f�
�

t �� lhs�l� r� � l

for the left hand side l of a rule l� r� and rhs�l� r� � r for the right hand side r of a rule
l� r�

A context is a �term� containing one occurrence of a special symbol �� denoting an empty
place� A context is generally denoted by C��� If t � T ��� and t is substituted for �� the
result is C�t� � T ��� and t is said to be a subterm of C�t�� notated as C�t� 	 t�

A substitution is a �total� map � � T ��� 
� T ��� satisfying

�f � F � ��f�t�� � � � � tn�� � f���t��� � � � � ��tn���

By convention� we often write t� for ��t��

A rewrite rule is a pair of terms written as s� t with s� t � T ���� It is assumed that the
left�hand side s of a rule s� t is not a single variable� and that var�t� 	 var�s��

A term rewriting system R consists of a signature � and a set of rewrite rules R over ��

A term rewriting system de�nes a rewrite relation �R� Since the subscript R is usually
clear from the context� it is omitted� The overloading of � is by convention�

s� t
def
� ��� p� u� v � R � sjp � u� � t � s�v��p�

The sub�term u� is referred to as redex �for reducible expression�� the sub�term v�� as
reduct�
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If we want to be speci�c about the rule and the redex position p� we write s
p
��l�r� t�

We write
�
� for the transitive re�exive closure of ��

The rewrite relation is closed under contexts� i�e�� if s� t� then for all C��� C�s�� C�t��

A series of terms s � s�� s�� � � � such that s� � s� � � � � is called a rewrite sequence� A term
s is said to be in normal form if there is no t such that s� t� A function�symbol f is called
a de�ned function symbol if there is a rule f�t�� � � � � tn�� r� A function�symbol c is called a
constructor symbol if there is a normal form in which it occurs� and a free constructor if it is
not a de�ned symbol�

A TRS is called left�linear if all left�hand sides are linear� A TRS is called con�uent if�
for all terms t�� t�� t�� we have that t�

�
� t� and t�

�
� t� implies that there exists a term t�

such that t�
�
� t� and t�

�
� t�� A TRS is called terminating if there are no in�nite rewrite

sequences� Note that con�uence and termination are generally undecidable�

Let r� � l� r and r� � g � d be rewrite rules� If there exists a context C��� a non�variable
term s� and a substitution � such that l � C�s� and s� � g�� then g overlaps with l� We say
there is overlap between a rule r and a TRS T i� either r overlaps with a rule of T � or there
is a rule of T that overlaps with r�

A TRS is called orthogonal if it is left�linear� and there is no overlap between the rules�

Following �HL���� we write R�s� for the set of paths to redexes in s�

Given a rewrite step A � s
pA��l�r� t and p � R�s�� where there is no overlap between l and

the rule of p� we de�ne the set pnA of residuals or descendants of p by A as a subset of O�s��

pnA �

���
��
� if p � pA�
fpg if pjpA or p � pA�
fpipnprj rjpn � xg if p � pipmpr and ljpm � x � V �

For rewrite sequences� we de�ne pnA by�
pn� � fpg
pnAB � fpanBj pa � pnAg

For orthogonal systems �where there is no overlap at all� these de�nitions generalize to the
ones given in �HL����

In general� a term may contain many redexes� A rewriting strategy determines which of
these is chosen� Con�uence guarantees unique normal forms� regardless of the strategy� A
well�known strategy is rightmost innermost� which chooses the rightmost redex that does not
contain another redex�

In priority rewrite systems �PRSs� �BBKW	��� the rules are �partially� ordered� and a rule
may be applied only if there are no applicable rules �i�e�� even after reduction of subterms�
with higher priority� We will also consider syntactic priority� in which the decision whether
a rule is applicable is made without considering reductions of sub�terms�

The ordering we will use is syntactic speci�city ordering� where a rule l� r � s� t� when
there exists a substitition � such that s� � l �in �BBKW	��� speci�city ordering implies that
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all ambiguities are between terms that are ordered according to speci�city� which we do not
demand for syntactic speci�city ordering��

Under syntactic speci�city ordering� any set of terms with the same outermost function
symbol has a greatest lower bound �glb�� We will call such a glb� a term of the form f�

�
x�� a

most general LHS�

A TRS is called su�ciently complete if de�ned functions do not appear in normal forms�
In general� su�cient completeness is undecidable� We will call a TRS simply complete if
every de�ned function has a most general rule� It is clear that simple completeness implies
su�cient completeness�

�� Term Rewriting Simulations

In this section� we de�ne the notion of simulation of a TRS by another TRS�

In principle� a TRS T � ��� R� is simulated by a TRS T � � ���� R�� if every rewrite
sequences w�r�t� R can be related to a rewrite sequence w�r�t� R�� To this end� there must
be a map from T ���� to T ���� which is called the simulation map�

This notion of simulation can be developed for arbitrary relations� but we will only use
it in the more limited context of �minimal� term rewriting systems� In that context� as we
will see� it is preferable to regard a simulating TRS of which the signature is an extension of
that of the simulated TRS �i�e�� �� � ��� and for which the simulation map is identity on the
common set of terms T ����

��� Simulation maps between terms
De�nition � Let � � �F �V� and �� � �F ��V �� be signatures	 such that �� � �� A simulation
map is a partial map S � F � � F for which �f � F � S�f� � f � Let DS be a predicate that
holds precisely for all symbols in F � for which S is de�ned�

Note that the composition of two simulation maps is again a simulation map�
Under this de�nition� symbols in the original signature simulate themselves� and a simu�

lating TRS may use intermediate symbols �terms� which are not a simulation of any symbol
�term� in F �
We extend S and DS to T ���� by �partial� homomorphic extension�
As an example� consider F � ff� ag and F � � ff� a� fc� hg� In this example� fc is a variant

�a so�called constructor variant� discussed further in the sequel� of f with S�fc� � f � and h

is an auxiliary function that has no counterpart in F � Supposing that the arity of f is �� and
the arity of a is �� we have �by partial homomorphic extension� that S�f�fc�a��� � f�f�a���
and �DS �f�h�a���� so S�f�h�a��� is unde�ned�

��
 Simulating Relations
Let � � h�� Ri and �� � h��� R�i be TRSs� with the understanding that by R and R� we
sometimes mean the rewrite relation� rather than the rewrite rules�� and let S � �� � � be a
simulationmap� We will de�ne simulation of � by �� under S� First� we de�ne three auxiliary

�This makes it easier to discuss restrictions of the rewrite relation� e�g� the relation with only innermost

rewrites�
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notions� soundness� completenes and termination conservation� In the �gures illustrating the
de�nitions below� dashed arrows are implied by solid arrows� closed points are universally
quanti�ed� and open points are existentially quanti�ed�
Soundness of the triple �R�S� R�� means that su�ciently many sequences in R� are mapped

�by S� to sequences in R� If we have a sequence sR��t in the simulating system with S de�ned
on s and t� it is only reasonable to call �R�S� R�� sound when S�s�R�S�t�� so the image of
R�� under S is contained in R� �depicted in Fig� �a�� In case S is not de�ned on t� we do not
want the sequence to �escape into unde�nedness�� so we demand that there is some u with
tR��u and S de�ned on u �depicted in Fig� �b�� Formally� soundness is de�ned in De�nition
��

t

R* R’*

s

S

S
t

s

u

R*

S

S

R’*

Fig� �a� Fig� �b�

De�nition � A simulation �S� R�� of R is sound whenever

�st �DS�s� � sR��t� � S�s�R�S�t� � ��DS�t� � �uDS�u� � tR��u�

The triple �R�S� R�� is complete� when every step S�s�Rt in the simulated relation has as
counterpart a simulating sequence sR��t� with S�u� � t� provided s is reachable� i�e� soR

��s�
for some so � Ter���� written reachable�R��s�� This is de�ned formally in De�nition �� and
depicted in Fig� ��

R R’+

t u
S

sS
De�nition � A simulation �S� R�� of a relation R is com�
plete whenever

�st reachable�R��s�� DS�s�� S�s�Rt � �u sR��u � S�u� � t

Fig� �� Completeness

Termination conservation of the triple �R�S� R�� means that only terms taking part in
in�nite sequences in R� have origins �under S� occurring in in�nite sequences in R��

inf

R+ R’+

t1 sS

inf

1

De�nition � A simulation �S� R�� is termination preserv�
ing whenever

�s � inf �R�� � DS�s�� � �t � inf �R� S�s�� � t�

where inf �R� is the set of in�nite sequences in R	 and we
denote the ith term in a rewrite sequence s by si�

Fig� �� Conservation of termination

We can now de�ne simulation�
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De�nition � �Simulation� Let � � h�� Ri and �� � h��� R�i be TRSs with � 	 �� and let
S � �� � � be a simulation map� We say that � is simulated by �� under S	 written as
� jo

S
��	 i the triple �R�S� R�� is sound	 complete and termination conserving�

When S unde�ned on ��n�� or if S is clear from the context� we will write � jo ���
Normal forms� con�uence� and strong and weak normalization are preserved under simu�

lation� It is easy to verify that normal forms are preserved under simulation� that is� if we
have S�m� � n with n a normal form then for all mR��m�� we have that S�m�� � n� and
from termination preservation it follows that there are no in�nite sequences starting with m�
Con�uence follows directly from completeness� Conservation of strong normalization follows
directly from termination preservation� With regard to weak normalization we remark that
from completeness it follows that the sequence leading to a normal form n can be simulated�
Note that our notion of simulation is transitive� given that � jo S �� and �� jo S� ���� we

have that � jo
S�S� ����

In a simple simulation� the e�ect of a single rule is simulated by a pair of complementary
rules�

Lemma � �Simple Simulation� Let � � h�� Ri and �� � h��� R�i such that�

�� �� � � � ffg �f �� ���


� R � R� � fr� � l� rg �r� �� R���

�� R� � R� � fr� � l� f�
�

t �� r� � f�
�
x�� r�g�

�� s�r� t � s�r� s
� � s�r� s

� �r� t�

�� All �sub�terms occurring in
�

t also occur in l or in r�

Then � jo I� �
��

Proof We have to prove completeness� soundness� and termination conservation of the triple
�R� I	� R

���
Completeness is trivial� it follows directly from requirement ��
For soundness� we �rst observe that given a sequence sR��t with DS�s� � DS�t� �i�e�� both

s� t � Ter���� we have sR�t� This follows from the fact that applications of rule r� are
only possible on terms created by applications of rule r�� Because r� has no overlap with
other rules� and no redexes of r� remain in t �this follows from DS�t��� we can replace the
applications of r� in sR��t by applications of r�� delete the applications of r�� and thus obtain
sR�t� Second� we observe that when we have sR��t with �DS �t�� this must be because there
are some r��redexes left in t� We can rewrite these and obtain sR��tR��t�� with DS�t��� Now�
by the �rst observation� sR�t� which completes the proof of soundness�
We prove termination conservation by considering the number of r��contractions� If there

are no r��contractions in an in�nite R��sequence starting in a term t with DS�t�� there are
no r��contractions either� so the in�nite sequence is itself an R�sequence� If there is only a
�nite number of r��contractions in an in�nite sequence� there can only be an in�nite number
of r��contractions if there is some context C�� in which �descendants of� an r� redex can be
duplicated in�nitely many times� But because r� has no overlap with other rules� this means
that �descendants of� the r��redex can already be duplicated in�nitely many times in C���
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which is a contradiction� so all r� and r��contractions occur in a �nite pre�x of the in�nite
sequence� and the in�nite su�x corresponds to an in�nite R�sequence� Finally� if there is an
in�nite number of r� contractions� then there is also an in�nite number of r��contractions
possible� because all subterms in an instantiated RHS of r� are also in an instantiated RHS
of r�� and an instance of the RHS of r� itself can only be contracted by r�� with the same
result as a direct contraction by r�

�� Minimal Term Rewriting Systems

Here� we repeat the de�nition of minimal term rewriting systems �MTRSs�� a syntactic re�
striction of TRSs that can be interpreted as the language of an abstract machine �see �WK����
In MTRSs� all rules have an extremely simple form� The most conspicuous aspect is that

any rule has at most three function symbols� of which at most two are found on either side�
Even the SKI calculus ��Klo����� which is minimal in the number of rules ���� and in the
total number of function symbols ��� S� K� I� and ��� needs � function symbols in its most
complicated rule �S �x�y �z� �x�y���y �z��� Somewhat less conspicuous� but equally important
for the interpretation as a machine language� is the fact that the �action� �adding� changing
or deleting function symbols or variables� performed by application of a rule is �local�� i�e�
restricted to a number of consecutive arguments and the outermost function symbol�

De�nition 	 �MTRS� Let � � h�� Ri be a TRS	 and r � s � t a rule in R� The rule r is
called minimal if it is left�linear and it is in one of the following six forms�

C � f�
�
x�

�
y �

�
z � � h�

�
x� g�

�
y ��

�
z �

R � f�y� � y

M � f�
�
x� g�

�
y ��

�
z � � h�

�
x�

�
y �

�
z �

A � f�
�
x�

�
z � � h�

�
x� y�

�
z � �y is xi or zi�

D � f�
�
x�

�
y �

�
z � � h�

�
x�

�
z � �j

�
y j �� ��

I � f�
�
x� � h�

�
x�

A TRS � is called a Minimal Term Rewriting System �MTRS� if all its rules are minimal�

We have labeled the forms with mnemonics reminding of their basic purpose �in the context
of innermost rewriting�� The mnemonic C stands for continuation� in the sense that h is the
continuation after the evaluation of g� Conversely� R stands for return� in the sense that
control is passed to a continuation if that was issued earlier� or rewriting is �nished if there
is no such continuation� Rules of the form M take apart a term� when there is a match of
the symbol g� The forms A� D and I are for addition	 deletion and identity on the set of
variables�

�� An illustrative example compilation

Before we present our compilation technique in its general form� we would like to give an
intuitive impression by showing how a concrete TRS is transformed into a simulating MTRS�
Consider the following example of a simply complete TRS�

f�g�X�� h�Y �� � a�g�Y �� X� ����

f�X� f�Y� Z�� � b ����

f�X� Y � � c ����



�� Every simply complete TRS can be simulated by an MTRS �

In Section 
��� we will show how pattern�matching is simulated by a transformation� On the
TRS above� this transformation would yield�

f�g�X�� Y � � fg�X� Y � ����

f�X� Y � � fS�X� Y � ���

fg�X� h�Y �� � fgh�X� Y � ��
�

fg�X� Y � � fS�g�X�� Y � ����

fS�X� f�Y� Z�� � fSf �X� Y� Z� ��	�

fS�X� Y � � fSS�X� Y � ����

fgh�X� Y � � a�g�Y �� X� �����

fSf �X� Y � � b �����

fSS�X� Y � � c �����

The newly introduced functions fg� f
S � fSg and fSS can be understood as representants of

the states of a matching automaton for LHS patterns �inspired by �HO	�� Wal��� Pet����� In
this TRS� all rules are minimal� except for ������ in which a non�trivial RHS appears �the
variables are in the wrong order�� In Section 
��� we will show how the construction of RHSs
is simulated by a transformation� This transformation replaces ����� by the rules

fgh�X� Y � � aR�X� Y�X� �����

aR�X� Y�X �� � aRR�Y�X �� �����

aRR�Y �� X �� � a�g�Y ��� X �� ����

The result is an MTRS� The reader is invited to verify that this MTRS simulates the original
TRS� using as simulation map I	� the identity on ��
Now suppose that rule ���� were not present in the original system� then the system would

not be simply complete� But� as is shown in general in Section 
��� the TRS

f�g�X�� h�Y �� � a�g�Y �� X� ���
�

f�X� fc�Y� Z�� � b �����

f�X� Y � � fc�X� Y � ���	�

simulates this system� when we assume innermost rewriting with speci�city� and S�fc� � f �
The idea is that rule ���	� only applies when none of the other rules apply� so that in normal
forms� fc occurs exactly where in the original system f would have occurred� Rule ����� is
adapted to match such normal forms �in innermost rewriting� the proper subterms of a redex
are in normal form by de�nition��

�� Every simply complete TRS can be simulated by an MTRS

We will now show that every simply complete left�linear TRS can be simulated by an MTRS�
We will give a constructive proof by providing a terminating transformation that transforms
any simply complete left�linear TRS into a simulatingMTRS� Because simulation is transitive�
it su�ces to prove simulation for every individual step of the transformation�
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��� Transforming complicated LHSs
We will now present a speci�cation of the function sim� and prove that applying sim to a
simply complete TRS h�� Ri yields a TRS h��� R�i such that R jo I� R��� The speci�cation of
sim is itself nonambiguous and terminating� so it can be used as a pattern matching compiler�
In the speci�cation� we will extensively use union of TRSs�

h�� Ri � h��� R�i � h� � ��� R �R�i

Given some index set I � fi�� � � � � ing� we will use the notation
S
i�I Ti for the ��nite� union

Ti� � � � �� Tin �
If all rules in R are most general� then�

�sim�base� simh�� Ri � h�� Ri�

Otherwise� let i be the least index such that for some rule f�
�

t � � s � R� we have ti �� V �

and let G � fgjf�
�

t � � r � R � ti � g�
�
u�g� the set of function symbols found at position i

of LHSs de�ning f in R� Then� taking j
�
x j � j

�

t j � i� �� and fS � fg �� � fresh symbols� we
have�

�sim�rec� simh�� Ri � �
S
g�GMatchg �Matchedg� � Skip �Other �

where

Matchg � hff� g� fgg� f�m� ��f�
�
x� g�

�
y ��

�
z �� fg�

�
x�

�
y �

�
z �gi�

Matchedg � simh� � ffg� f
Sg� f�m� ��fg�

�

t �
�
u�

�
v �� rj �m� ��f�

�

t � g�
�
u��

�
v �� r � Rg

�f�m� ��fg�
�
x�

�
y �

�
z �� fS�

�
x� g�

�
y ��

�
z �gi�

Skip � h� � ffSg� f�s� ��f�
�
x�� fS�

�
x�gi�

Other � simh� � fS � f�o� ��fS�
�

t �� sj �o� ��f�
�

t �� s � R�
�

t i� V g
�f�o� ��rj r � R � ofs�lhs�r�� �� fgi�

An intuitive explanation of �sim�rec� is� that Matchg has a rule m� that matches a symbol g
at position i� Matchedg deals with a succesful match of g at position i� by either completing
a match of m� by applying m�� or restoring the LHS of m� �up to fS� by applying m�� Skip
just replaces f by fS �with the e�ect of sharing an �automaton� state between reconstructed
terms and terms for which matching fails right away�� and Other simulates the rules o� that
have a variable at position i with rules o�� and rules o� for other function symbols than f �
Let NVP �R� be the number of paths to nonvariable proper subterms of LHSs of the

rewrite rules R� It is clear that NVP �R� is a well�founded measure on TRSs� It is easily
established that� when read from left to right� the recursive rule �sim�rec� is decreasing in
this measure� Furthermore� the conditions are decidable� so the speci�cation of sim is an
executable speci�cation that can be used as a pattern�match compiler�

Theorem � Let h��� R�i � sim�h�� Ri�� Then the triple �R� I	� R�� is complete�

Proof By induction on NVP �R�� If NVP �R� � �� we have case �sim�base�� which is trivially
complete� Otherwise� �sim�rec� must be applied� Because the simulation map is I	� we only
have to consider terms in Ter���� There are three cases� either a rule of type m� is applied�
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or another rule de�ning f � or a rule de�ning another function symbol than f � A rule of
type m� is simulated by applying m� and then m�� other rules de�ning f are simulated by
applying s� and then m�� rules de�ning other symbols than f are available as rules of type
o�

Theorem � Let h��� R�i � sim�h�� Ri�� Then the triple �R� I	� R
�� is sound�

Proof With induction on NVP �R�� When NVP �R� � �� it is clear we have case �sim�base��
and soundness is trivial� Otherwise� let i be the least index such that there is a rule r � R

with lhs�r�ji �� V � Without loss of generality� we can assume r to be f�
�

t � g�
�
u��

�
v �� s� with

j
�

t j � i� �� We have to prove that

�st �DS�s� � sR��t� � S�s�R�S�t�� ��DS�t� � �uDS�u� � tR��u�

By the induction hypothesis� we may assume Matchedg to simulate

h� � ffg� fSg�

f�m� ��fg�
�

t �
�
u�

�
v �� rj �m� ��f�

�

t � g�
�
u��

�
v �� r � Rg

�f�m� ��fg�
�
x�

�
y �

�
z �� fS�

�
x� g�

�
y ��

�
z �gi

�

and Other to simulate

h� � fS �

f�o� ��rS j r � R � ofs�lhs�r�� � f � lhs�r�ji � V g
�f�o� ��rj r � R � ofs�lhs�r�� �� fgi

�

It is clear that when the sequence sR��t does not contain a �sub�term with a function symbol
fg or f

S � sR�t holds trivially� A �sub�termwith function symbol fg is necessarily a descendant
of a term introduced by rule m�� Such a term is a redex for m�� and potentially also for m��
Five things can happen to the descendants� they may be contracted according to m� or m��
they may persist in t� they may be duplicated and they may be deleted by contraction of a
higher redex� Duplication and deletion are trivially copied in R� If the redex persists in t�
we can construct t� by applying m�� which brings us to the case where we have a �sub�term
with function symbol fS �see below�� The result of a contraction according to m� can be
obtained in R by contracting the original term according to m�� The result of a contraction
according to m� brings us again to the case where we have a �sub�term with function symbol
fS � Apart from the two cases above� a �sub�term with function symbol fS can be introduced
by s�� Because of simple completeness� such a �sub�term is a redex of at least one of the rules
in Other � but there can only be root�overlap with other rules� because fS does not occur
in �� Therefore� the descendants of this redex may be duplicated� deleted� or contracted
according to one of the rules in Other � Duplication and deletion are again trivially copied
in R� contraction according to o� or o� corresponds to a contraction according to o� or o��
respectively� Finally� if a �sub�term with fS is left in t� we have �DS �t�� but we have tR��t�

by a most general rule in Other � By the argument above� we now have that sRt�

Theorem � Let h��� R�i � sim�h�� Ri�� Then the simulation �I	� h��� R�i� of h�� Ri is ter�
mination preserving under innermost rewriting
Proof Obvious by induction on NV P �R�
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��
 Transforming Complicated RHSs
Here we present a transformation that will transform a TRS N � which may have RHSs that
do not conform to the restrictions imposed on MTRSs� into a simulating TRS M � whose
RHSs are minimal� Any rule with a minimal LHS and a non�minimal RHS has the form

l�
�
x�

�
y �

�
z �� h�

�
x�

�

t � u�
�
z �� where u is either a variable �not equal to the last variable of

�
y �

or a term g�
�
u�� and

�
x and

�
z contain only variables� and are taken of maximal length� The

goal is to reduce the non�compliant segment
�

t � u�
In case u is a variable� we replace the rule by the following rules�

l�
�
x�

�
y �

�
z �� hR�

�
x�

�
y � u�

�
z � �
����

hR�
�
x�

�
y � u��

�
z �� h�

�
x�

�

t � u
��
�
z �� �
����

Where u� is a fresh variable� Rule �
���� is an instance of A� and rule �
���� has a shorter

non�compliant segment
�

t �
In case u � g�

�
u� we replace the rule by the following rules�

l�
�
x�

�
y �

�
z � � hR�

�
x�

�

t �
�
u�

�
z � �
����

hR�
�

x��
�

y��
�
z � � h�

�

x�� g�
�

y���
�
z � �
����

where j
�

x� j � j
�
x j� j

�

t j� j
�

y� j � j
�
u j� hR is a fresh function symbol which did not already

occur in the TRS� and
�

x� and
�

y� consist entirely of fresh variables� Rule �
���� contains one
function symbol less than the original rule� and rule �
���� is an instance of C�
We take the simulation map S to be unde�ned for hR� Repeated application of the trans�

formation above to a TRS with minimal LHSs leads to an MTRS�
We note that both the variable case and the nonvariable case ful�ll the requirements for a

simple simulation �see Lemma ��� so the RHS transformation yields a simulating TRS�

��� Simulating General Left�Linear TRSs by Simply Complete left�linear TRSs
Until now� we have only dealt with simply complete TRSs� Unfortunately� simple complete�
ness is a rare property� Here we will show that� under the restriction to innermost rewriting
with syntactic speci�city ordering� every TRS can be simulated by a simply complete TRS�
Let the TRS h�� Ri be given� and let �p 	 � be the set of function symbols for which

R has no most general rule� Let �c contain a so�called constructor variant fc for every

f � �u� and let S�fc� � f � Given a term t or a sequence
�

t � de�ne tc or
�

t c to be the
term or sequence obtained by replacing all f � �u by their constructor variants fc� Taking

R� � fo� � f�
�

t c� � sjf�
�

t � � Rg � fc� � f�
�
x� � fc�

�
x�jf � �ug� we have obtained a simply

complete TRS h�� �c� R
�i�

It is easy to see that the triple �h�� Ri�S� h��� R�i� is sound� complete and termination
conserving� so R joS R�� For soundness� we observe that� given a rewrite sequence t� � t� �
� � � tn in R�� it follows that either S�ti� � S�ti��� �in case c� is applied�� or S�ti�RS�ti��� �in
case o� is applied�� so always t�R � tn�
For completeness� we observe that a step S�ti�RS�ti��� may not be possible in R� because

some subterms of ti have an original function symbol where a constructor variant is needed�
We may �rst rewrite exactly these subterms with rules of type c�� however� tiR� � t�i� with
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S�t�i� � S�ti�� and then we have t�iR
�ti��� Because a step tiRti�� is only taken when all

subterms of ti are already in normal form� rewriting ti to t�i does not invalidate future R�
rewrites and because of speci�city ordering� rules of type c� can only rewrite terms t for
which S�t� is a normal form�
Finally� conservation of termination follows from the fact that only a �nite number of

applications of rules of type c� is possible on any term� so if there is an in�nite reduction on
t according to R�� there is necessarily an in�nite reduction on S�t� according to R�
Without proof� we mention that non�linear TRSs can be simulated in a simular vein� under

the same restrictions and for given ��

��� E�ciency Considerations
The e�ciency of compilers can be expressed by several measures�

� The size �in number of rules� of the target program�

� The time and space taken for compilation from source to target language�

� The time and space taken by an execution of the target program� compared to the time
and space taken by execution of the source program�

It is clear that the size of the target program depends in a linear fashion on the total number
of occurrences of function symbols in the source program� and rules in the target program
are at least as simple as the rules in the source program�
With regard to the space taken by the compilation� we observe that the number of new

rules constructed depends in a linear fashion on the total number of occurrences of function
symbols in the source program� Thus� a naive implementation needs at most an amount of
space linear in the size of the source program�
With respect to the time taken� even a naive implementation of sim that scans all rules

to �nd a rule with nonvariable arguments� will only be quadratic in the number of rules and
linear in the number of symbol occurrences in LHSs�
Considering the time taken by the execution of the target program� we remark that indeed

the number of rewriting steps is linearly increased by the compilation� The complexity of
executing a single step� however� is decreased� In practice� this leads to comparable perfor�
mance� The big gain� however� is in the fact that the MTRS can easily be seen as a program
to be executed by a concrete machine �see �WK���� The resulting machine code and its
performance is similar to that of existing compilers for functional languages �HF��
��

�� Conclusions and Future Work

We have presented transformations from arbitrary left�linear TRSs into simulating MTRSs�
The transformations can be expressed in a concise way� and their correctness proofs are short
and easy to grasp� Furthermore� the transformations are described as executable speci�ca�
tions� which can be used as an e�cient compiler� The resulting code is similar to the code
generated by an earlier version of our TRS compiler� with which favorable results have been
reached �HF��
��
In �KW��� we presented a transformation to simulate lazy rewriting by eager �innermost�

rewriting� It appears that this transformation can be simpli�ed greatly by �rst applying the
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transformations in this paper� and then the laziness transformation� which is much simpler
when only MTRSs have to be considered�
Similarly� we expect that the transformations given in this paper could simplify other

research on TRSs �e�g�� Hans Zantema suggested that termination proofs might be simpler
after our transformations� but we have not yet investigated this issue in any depth��
In the future� we hope to �nd a bigger class of TRSs for which a strategy�independent

simulation by MTRSs can be given� For our current implementation requirements� however�
the current class is su�cient�
An interesting class of TRSs �which unfortunately has no inclusion relation with simply

complete TRSs� is the class that admits speci�city ordering as de�ned in �BBKW	��� It
appears that applying the transformation in this paper to a member of this class yields a
simulatingMTRS� if we consider the priority rewrite relation� without any further assumption
about the strategy� We would like to establish this rigorously�
Finally� we thank Bas Luttik for commenting on various drafts of this paper�
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