
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

The Tree Identify Protocol of IEEE 1394 in muCRL

C. Shankland, M.B. van der Zwaag

Software Engineering (SEN)

SEN-R9831 November 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301665974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9831
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

The Tree Identify Protocol of IEEE 1394 in µCRL

Carron Shankland1 & Mark van der Zwaag2

1. University of Stirling

Department of Computing Science and Mathematics

Stirling FK9 4LA, UK

E-mail: ces@cs.stir.ac.uk

2. CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

E-mail: Mark.van.der.Zwaag@cwi.nl

ABSTRACT

We specify the tree identify protocol of the IEEE 1394 high performance serial multimedia bus
at three different levels of detail using µCRL. We use the cones and foci verification technique of
Groote and Springintveld to show that the descriptions are equivalent under branching bisimulation,
thereby demonstrating that the protocol behaves as expected.

1991 Mathematics Subject Classification: 68Q22: Parallel and distributed algorithms; 68Q45: Formal

languages; 68Q60: Specification and verification of programmes

1991 Computing Reviews Classification System: D.2.1, D.2.4, D.3.3, F.3.1

Keywords & Phrases: process algebra, verification of distributed systems, leader election protocols

1 Introduction

Much time and effort is expended in the development of new techniques for description and analysis
of (computer) systems; however, many of these techniques remain the preserve only of their inventors,
and are never widely used. This is often due to the sharp learning curve required to adopt them; many
verification techniques have complex theoretical underpinnings, and require sophisticated mathemat-
ical skills to apply them. Case studies therefore have a valuable role to play both in promoting and
demonstrating particular verification techniques, and providing practical examples of their applica-
tion. This paper presents one such case study. We apply the cones and foci technique of Groote and
Springintveld [GS95] to a fragment of the software for a high performance serial multimedia bus, the
IEEE standard 1394 [IEE96], also known as “Firewire”.

Briefly, IEEE 1394 connects together a collection of systems and devices in order to carry all forms
of digitized video and audio quickly, reliably, and inexpensively. Its architecture is scalable, and it is
“hot-pluggable”, so a designer or user can add or remove systems and peripherals easily at any time.
The only requirement is that the form of the network should be a tree (other configurations lead to
errors).

The protocol is subdivided into layers, in the manner of OSI, and further into phases, corresponding
to particular tasks, e.g. data transmission or bus master identification. Much effort has been expended
on the description and verification of various parts of the standard, using several different formalisms
and proof techniques. For example, the operation of sending packets of information across the network
is described using µCRL in [Lut97] and using E-LOTOS in [SM97]. The former is essentially a
description only, with five correctness properties stated informally, but not formalised or proved. The

1

2 2 DESCRIPTION OF THE TREE IDENTIFY PROTOCOL

exercise of [SM97] is based on the µCRL description, adding another layer of the protocol and carrying
out the verification suggested, using the tool CADP [FGK+96].

In this paper we concentrate on the tree identify phase of the physical layer which occurs after a
bus reset in the system, e.g. when a node is added to or removed from the network. The purpose
of the tree identify protocol is to assign a (new) root, or leader, to the network. Essentially, the
protocol consists of a set of negotiations between nodes to establish the direction of the parent-child
relationship. Another way to look at this is that from a general graph a spanning tree is created
(where possible). Potentially, a node can be a parent to many nodes, but a child of at most one node.
A node with no parent (after the negotiations are complete) is the leader. The tree identify protocol
must ensure that a leader is chosen, and that it is the only leader chosen.

This part of the 1394 is described using I/O automata in [DGRV97]. Verification is by (manual)
manipulation of a number of invariants, phrased in predicate calculus. Also discussed is the mechani-
sation of this verification in the theorem prover PVS.

There are three descriptions of the protocol, written using µCRL [GP95], in this paper:

Specification The specification of the external behaviour of the protocol merely announces a single
leader has been chosen;

Implementation A In Implementation A nodes are specified individually and negotiate with their
neighbours to determine the parent-child relationship. Communication is by hand shaking;

Implementation B This implementation has negotiation as above, but communication between
nodes occurs via two unidirectional channels (therefore messages may pass each other, causing
conflicts in assigning the leader).

These descriptions may be found in Sections 2.1, 2.2 and 2.3 respectively. They were derived with
reference to the transition diagram in Section 4.4.2.2 of the standard [IEE96]. Section 3 gives an
informal overview of the cones and foci technique of [GS95], together with some common definitions.
The formal details of this technique are repeated in the appendix for convenience.

We prove, using the cones and foci technique, that Implementation A and Implementation B have the
same behaviour with respect to branching bisimulation as the simple specification, therefore showing
that these descriptions behave as required, i.e. a single leader is chosen. The proofs may be found in
Section 4 and Section 5, respectively.

We conclude with some remarks about the success of this case study and about verification using
the technique of [GS95] in general.

2 Description of the Tree Identify Protocol

The descriptions are given in µCRL, which is roughly ACP [BW90] extended with a formal treatment
of data. Familiarity is assumed with this formalism; an introduction may be found in [GP95].

Briefly, the main features of the formalism are as follows: δ represents deadlock, p · q indicates
sequential composition and p + q indicates alternative composition. The process

∑
x:D p(x) behaves

as the possibly infinite choice between processes p(d) where d is any data term of sort D. The parallel
composition of processes p and q is written p ‖ q. We have a sort B of booleans with two elements t
and f and the usual boolean operators. Conditionals are written p� b� q, meaning if b holds behave
as p, otherwise behave as q. The operator τI hides all those actions in the set I, by converting them to
silent τ actions, and ∂H restricts enabled actions, by renaming actions in H to δ. We choose H such
that the ∂H operator forces the enclosed processes to communicate with each other. For booleans we
assume the following binding conventions: ¬ binds stronger than ∧,∨, which bind stronger than →.

The µCRL data definitions used (e.g. N, NSet , NSetList) are assumed and not presented here;
these are straightforward and examples of the appropriate types or similar may be found in [GP95,
Lut97].

2.1 Specification 3

2.1 Specification

The most abstract specification of the tree identify protocol is the one which merely reports that a
leader has been found. The network is viewed as a whole, and no communications between nodes are
specified. We define

Spec = leader · δ.

2.2 Implementation A

A more fine grained model is given by representing each node in the network by a separate process.
Individual nodes are specified below as processes NodeA. Nodes are described by three parameters:

• a natural number i: the identification number of the node. This is used to parameterise com-
munications between nodes, and is not changed during the protocol;

• a set of natural numbers p: the set of node identifiers of potential parents of the node. The
initial value is the set of all neighbours, decreasing to either a singleton (containing the parent
node) or the empty set (indicating that the node is the elected leader);

• a natural number s: the current state of the node. We use two state values: 0 corresponds to
“still working” and 1 to “finished”. The initial value is 0.

The identification number of nodes has been introduced to aid specification and does not appear
in [IEE96]. In reality a device has a number of ports and knows whether or not a port is connected
to another node; there is no need for node identifiers.

A node can send and receive messages: an action s(i, j, par) is the sending of the parent request
par by node i to node j, and an action r(i, j, par) is the receiving of a parent request from node i by
node j. When the nodes of the network are composed in parallel, these two actions synchronise with
each other to produce c actions. An action c(i, j, par) is the establishment of a child-parent relation
between node i and node j, where i is the child and j is the parent. In this case, the type M of
messages has only one element, i.e. the parent request message par .

We define the set of actions

Act = {s, r, c :N×N×M, leader}

and the communication s|r = c. There are no other communications defined.
If a node is still active and its set of potential parents is empty, it declares itself leader by the

execution of the leader action. By definition, nodes in state 1 are equivalent to deadlock. Individual
nodes are defined in Figure 1 as processes NodeA.

NodeA(i:N, p:NSet , s:N) =

leader · NodeA(i, p, 1) � s = 0 ∧ empty(p) � δ+∑
j:N r(j, i, par) · NodeA(i, p \ {j}, s) � s = 0 ∧ j ∈ p� δ+∑
j:N s(i, j, par) · NodeA(i, p, 1) � s = 0 ∧ p = {j}� δ.

Figure 1: The process NodeA

The process ImpA(n, P0) is the parallel composition of n+ 1 nodes, with P0 describing the config-
uration of the network:

ImpA(n:N, P0:NSetList) = ∂H(NodesA(n, P0)),

4 2 DESCRIPTION OF THE TREE IDENTIFY PROTOCOL

where H = {s, r} and

NodesA(n, P0) = NodeA(0, P0[0], 0) � n = 0 � (NodeA(n, P0[n], 0) ‖ NodesA(n− 1, P0)).

P0 is a list of sets of connections for all nodes indexed by node number; it gives the initial values for
the sets of potential parents. Initially all nodes are in state 0.

2.3 Implementation B

Implementation A assumed hand-shaking communication between nodes; in reality messages are sent
by variations in voltage along wires of various lengths and are therefore not received instantaneously,
i.e. they are asynchronous communications. This means a node may ask to be a child of its neighbour,
while that neighbour has already sent out a message asking to be its child (but the messages have
crossed in transmission). That contention has to be resolved, and one node assigned to be the parent
and the other the child.

In Implementation B unidirectional one-element buffers are introduced to model communication
between nodes; there are two buffers for each pair of nodes. The communication events also become
more complex: in addition to the parent requests, nodes must also send acknowledgements (since a
node cannot assume its parent request is successful until an acknowledgement is received). Therefore
we introduce the acknowledgement message ack . Let M be the sort of messages with two elements
par and ack .

The parallel composition of all buffers is defined in Figure 2 as the process Buffers . The names of
actions in this definition may be confusing; for a buffer an s action is a read action and a r̄ action is
a send action. This is a consequence of the names used in the specification of nodes defined also in
Figure 2.

Again individual nodes of the network are specified by separate processes. The parameters are
similar to those for Implementation A, except there are now three more states, and there is an extra
parameter: a set of naturals c that is used to keep track of children that have to be acknowledged.

In state 0, a node receives parent requests setting up the parent-child relationship. When it has
received requests from all or all but one of its neighbours, it moves into state 1. In state 1 a node
acknowledges its children. A node can leave state 1 by sending a parent request to its only remaining
potential parent (if any). Leaf nodes can skip state 1, and go to state 2 immediately. In state 2, if a
node has an empty potential parent set it is the leader and it can do a leader action. If not, a node
waits for an acknowledgement from its parent. In state 2, a node may receive a parent request instead
of an acknowledgement from its requested parent; it then moves into state 3, attempting to resolve
contention.

In the standard, contention is resolved by waiting a randomly chosen time before checking for a
offer to be a child from the other node, and, if there is none, resending its own parent request. There
is no time in µCRL so here there is a choice between sending the parent request again and waiting to
receive a child request. Note that there is the possibility of an internal loop if the nodes in contention
keep sending each other parent requests. Contention is resolved if in the state where both nodes are
in state 3, one of the nodes sends a parent request and the other node does not retransmit its own
request, but waits to receive the request from the other node. After the contention has been resolved
one of the nodes returns to state 1; this node has received a parent request from the other node and it
has to acknowledge this new child. The other node moves into state 2 and waits to be acknowledged.
State 4 corresponds to finished.

As for Implementation A, there is the special case where n = 0, i.e. there is only one node in the
network. In this case this one node can do the leader action immediately.

An action s̄(i, j, par) is the sending of a parent request from i to j . Through the buffer, the s̄ action
is transformed into a r̄ action, synchronising with r actions in other nodes. An action r(j, i, par) is
therefore the receiving of a parent request from j by i. Acknowledgements s̄(i, j, ack) from i to j
acknowledge that i will be j’s parent.

5

Buffer (i:N, j:N) =
∑
m:M s(i, j,m) · r̄(i, j,m) · Buffer(i, j)

Buffers(index :N, n:N) =
BList(0, n) � index = 0 � (BList(index , n) ‖ Buffers(index − 1, n))

BList(row :N, col :N) =
Buffer(row , 0) � col = 0 � (Buffer (row , col)) ‖ BList(row , col − 1))

NodeB(i:N, p:NSet , c:NSet , s:N) =

leader · NodeB(i, p, c, 4) � (s = 0 ∨ s = 2) ∧ empty(p) � δ+∑
j:N r(j, i, par) · NodeB(i, p \ {j}, c ∪ {j}, if (singleton(p), 1, 0))

� s = 0 ∧ j ∈ p� δ+∑
j:N s̄(i, j, ack) ·NodeB(i, p, c \ {j}, 1)

� s = 0 ∧ singleton(p) ∧ j ∈ c� δ+∑
j:N s̄(i, j, par) · NodeB(i, p, c, 2)

� s = 0 ∧ p = {j} ∧ empty(c) � δ+∑
j:N s̄(i, j, ack) ·NodeB(i, p, c \ {j}, if (empty(p) ∧ singleton(c), 2, 1))

� s = 1 ∧ j ∈ c� δ+∑
j:N s̄(i, j, par) · NodeB(i, p, c, 2) � s = 1 ∧ p = {j} ∧ empty(c) � δ+∑
j:N r(j, i, ack) · NodeB(i, p, c, 4) � s = 2 ∧ p = {j}� δ+∑
j:N r(j, i, par) · NodeB(i, p, c, 3) � s = 2 ∧ p = {j}� δ+∑
j:N r(j, i, par) · NodeB(i, p \ {j}, c ∪ {j}, 1) � s = 3 ∧ p = {j}� δ+∑
j:N s̄(j, i, par) · NodeB(i, p, c, 2) � s = 3 ∧ p = {j}� δ

Figure 2: The processes NodeB and Buffers

We define the set of actions

Act = {r, r̄, r∗, s, s̄, s∗:N×N×M, leader}

and the communications r|r̄ = r∗ and s|s̄ = s∗. There are no other communications defined.
Individual nodes NodeB are specified in Figure 2. The complete process ImpB is the parallel

composition of all nodes and buffers. Note that buffers not required for communication will simply
not be used because of the requirement for synchronisation between NodesB and Buffers . We define

ImpB(n:N, P0:NSetList) = ∂H(NodesB(n, P0) ‖ Buffers(n, n)),

where H = {r, r̄, s, s̄} and

NodesB(n, P0) = NodeB(0, P0[0], ∅, 0) � n = 0 � (NodeB(n, P0[n], ∅, 0) ‖ NodesB(n− 1, P0)).

3 Correctness

Cones and Foci In process algebra it is common to verify the correctness of a description (the
implementation) by proving it equivalent in some sense, e.g. with respect to strong bisimulation, to
a more abstract specification. When data is introduced to the descriptions proving equivalence is

6 3 CORRECTNESS

more complex since data can considerably alter the flow of control in the process. The cones and
foci technique of [GS95] addresses this problem. The main idea of this technique is that there are
usually many internal events in the implementation, but they are only significant in that they must
progress somehow towards producing a visible event which can be matched with a visible event in the
specification. A state of the implementation where no internal actions are enabled is called a focus
point , and there may be several such points in the implementation. In Implementation A a focus
comes when the implementation can perform a leader action, because the leader action is always the
last action to be performed. In Implementation B there may be internal actions enabled in states
where the leader action is enabled, and a focus comes when the leader action is the only enabled
action. Focus points are characterised by a boolean condition on the data of the process called the
focus condition. The focus condition is the negation of the condition which allows τ actions to occur.
The cone belonging to a focus point is the part of the state space from which the focus can be reached
by internal actions; imagine the transition system forming a cone or funnel pointing towards the focus.
There may also be unreachable states in the implementation; these can be excluded by use of a data
invariant.

The final element in the technique is a mapping between the data states of the implementation and
the data states of the specification. This mapping is surjective, but almost certainly not injective,
since the data of the specification is likely to be simpler than that of the implementation. So in this
respect we have a refinement, but in terms of actions we have an equivalence.

Equivalence between the two systems can then be shown by proving six matching criteria to hold.
Informally, these say

1. The implementation must be convergent.

2. Internal actions in the implementation preserve the mapping.

3. If the implementation can do a visible action then so can the specification.

4. If the specification can do a visible action and the focus condition holds, then so can the imple-
mentation.

5. The implementation and the specification have the same data on visible actions.

6. If the implementation does a visible action then the mapping is preserved afterwards.

If these six criteria are satisfied then the specification and the implementation can be said to be
branching bisimilar under the General Equality Theorem of [GS95] (repeated in the appendix here
as Theorem A.1). The general forms of the matching criteria are given in Definition A.3. Given the
particular actions, conditions and mapping for a system, the matching criteria can be mechanically
derived. Of course, the choice of mapping requires some thought, as does the subsequent proof of the
criteria.

In Section 5 we will see that for Implementation B, the procedure is more complicated. In this case
contention results in internal loops within the cone (therefore the implementation is not convergent).
Fortunately, [GS95] has, in addition to the General Equality Theorem, a version which is extended by
notions of progression and fairness to counteract the problem of implementations with internal loops
(this is Theorem A.2). Fairness allows that we define convergence with respect to progressing internal
actions only, i.e. those which are somehow moving towards the focus point. A measure of progression
is defined which allows us to formalise this notion of distance from a focus point. The abstraction
from progressing internal actions is obtained by the application of a pre-abstraction function. We will
use a focus condition and matching criteria relative to this pre-abstraction (Definitions A.4 and A.6).

A requirement of the cones and foci proof method is that the process be defined by a linear equation
(Definition A.1). The linearisation of process terms is a common transformation in process algebra.
Informally, all operators other than ·, + and the conditional are eliminated. The linearisation technique

7

of [Gro96] provides rules for the transformation in the special case that the process is the parallel
composition of similar processes (as in ImpA and NodesB).

Good Topology As mentioned earlier, the protocol operates correctly only on tree networks, i.e. as-
suming the network has a good topology. Networks with loops will cause a timeout in the real protocol,
and unconnected nodes will simply be regarded as another network. The property of GoodTopology
is formalised below.

Definition 3.1 Given n:N, the maximal node identifier in the network, and a list P0:NSetList giving
a set of neighbours for all nodes in the network, the conjunction of the following properties is called
GoodTopology(n, P0):

• P0 is symmetric: ∀i, j.(i ∈ P0[j]⇔ j ∈ P0[i]).

• P0 is a tree, i.e. it is a connected graph with no loops.

– connected: there exists a path1 s between every pair of nodes.
∀k, j ≤ n.∃s = i0 . . . im.(i0 = k ∧ im = j)

– no loops : ∀i.¬∃ direct path s = i0i1 . . . im.(i = i0 ∧ i = im).

Linearisation of the specification As a preliminary step to applying the cones and foci proof
method for either Implementation A or Implementation B, the process Spec defined in Section 2.1
must be translated into linear form. Additionally, a data parameter must be added on which to base
a mapping from the data of process ImpA or ImpB . We define

L-Spec(b:B) = leader · L-Spec(f) � b� δ.

Clearly L-Spec(t) = Spec.

4 Correctness of Implementation A

4.1 Linearisation

The linearisation of ImpA is given in Figure 3 as L-ImpA. For recursive calls of L-ImpA only those
arguments which are updated are given, e.g. L-ImpA(1/S[i]) means replace the ith element of S by 1,
leaving all other elements as they are. This linearisation can be derived straightforwardly from the
definition of individual nodes using the linearisation technique of [Gro96]. We assert

ImpA(n, P0) = L-ImpA(n, P0, S0),

where S0 is the list of initial state values for the nodes, so ∀i.S0[i] = 0.

4.2 Invariants

The proof of correctness also requires an invariant on the data states of the implementation. The
invariant I(n, P, S) is the conjunction of the invariants listed below. These invariants hold in every
state that can be reached from the initial state (n, P0, S0). The variables i and j are universally
quantified over {0, . . . , n}.

I1 : S[i] = 0 ∨ S[i] = 1
1Define paths, s:NList = i0i1 . . . im such that ∀k < m.ik+1 ∈ P0[ik]. Direct paths are paths which do not backtrack

down an edge already followed (remember P0 is symmetric). A path s is direct if ∀k < m.(ikik+1 ∈ s)⇒ (ik+1ik 6∈ s).

8 4 CORRECTNESS OF IMPLEMENTATION A

L-ImpA(n:N, P :NSetList , S:NList) =∑
i:N leader · L-ImpA(1/S[i]) � S[i] = 0 ∧ empty(P [i]) ∧ i ≤ n� δ+∑
i,j:N c(j, i, par) · L-ImpA((P [i] \ {j})/P [i], 1/S[j])

� S[j] = 0 ∧ P [j] = {i} ∧ S[i] = 0 ∧ j ∈ P [i]∧
i 6= j ∧ i, j ≤ n� δ

Figure 3: The linearisation of ImpA

I2 : j ∈ P0[i]↔ j ∈ P [i] ∨ i ∈ P [j]

I3 : j ∈ P0[i] ∧ j 6∈ P [i]→ S[j] = 1

I4 : S[i] = 1→ singleton(P [i]) ∨ empty(P [i])

I5 : j ∈ P [i] ∧ S[i] = 0→ S[j] = 0 ∧ i ∈ P [j]

The proofs of these are straightforward, and omitted here.

4.3 Some intermediate steps

The linearisation L-ImpA is not sufficient to allow us to apply Theorem A.1. A prerequisite for
applying the cones and foci technique is that the indices of the sums preceding any visible actions
must be the same in both the specification and the implementation; clearly this is not the case. The
summation over the node identifiers preceding the leader action in L-ImpA correctly reflects that any
node can be the root, i.e. there are multiple foci. However, it is not important which node is the root,
only that one is chosen, and the boolean condition guarding the leader action in L-ImpA ensures that
this is the case, summed up in Lemma 4.1. This lemma says that if a node can do the leader action,
then all other nodes are in state 1. So if a node declares itself leader then it is the first one to do so,
and because after this action all nodes will be in state 1, there will be no leader action, or any other
action, after it.

Lemma 4.1 (Uniqueness of Root)

∀i ≤ n. empty(P [i])→ ∀j ≤ n. j 6= i→ S[j] = 1

Proof. We assume nodes i, j ≤ n such that i 6= j ∧ empty(P [i])∧ S[j] = 0, and derive a contradiction.
By GoodTopology there is a path of distinct nodes i = i0 . . . im = j, such that ∀k < m. ik+1 ∈ P0[ik].
By I2 and empty(P [i0]) we see that i0 ∈ P [i1]. Then by I3 S[i1] = 1, and by I4 singleton(P [i1]). In a
similar way we derive for all 0 < k ≤ m that P [ik] = {ik−1} and S[ik] = 1. So in particular S[j] = 1.

2

The information that the root node chosen is unique (once a certain point in the cone is reached) can
be exploited to give a new definition of the linearisation of ImpA. We introduce the function pr on
data states of the implementation, which is the minimal node identifier of nodes in state 0, and if
there is no node in state 0 it is defined to be 0:

pr (n, P, S) = if (∃i ≤ n. S[i] = 0,min({i ≤ n | S[i] = 0}), 0).

4.4 Verification 9

By Lemma 4.1, only one node will perform the leader action. We see that if a node i can perform the
leader action, i.e. if it satisfies S[i] = 0 ∧ empty(P [i]), then it will be the value of pr . So it is safe to
eliminate the summation over i in the first summand of L-ImpA by instantiating it with pr (n, P, S).
This elimination yields the redefinition of process L-ImpA defined in Figure 4. We often write pr to
denote the value of pr in the current state.

L-ImpA(n:N, P :NSetList , S:NList) =

leader · L-ImpA(1/S[pr]) � S[pr] = 0 ∧ empty(P [pr]) � δ+∑
i,j:N c(j, i, par) · L-ImpA((P [i] \ {j})/P [i], 1/S[j])

� S[j] = 0 ∧ P [j] = {i} ∧ S[i] = 0 ∧ j ∈ P [i] ∧ i 6= j ∧ i, j ≤ n� δ

Figure 4: The linearisation of ImpA (redefined)

4.4 Verification

The theorem to be demonstrated can now be stated as:

Theorem 4.1 Under the assumption of GoodTopology (n, P0) and I(n, P0, S0) it holds that

τ · L-Spec(t) = τ · τ{c}L-ImpA(n, P0, S0).

In the special case where n = 0 (there is only one node in the network) we have

L-Spec(t) = τ{c}L-ImpA(n, P0, S0).

This is a direct instantiation of Theorem A.1 with the initial state, because in the initial state the focus
condition (defined below) is true if and only if n = 0. In order to prove Theorem 4.1 the matching
criteria must be satisfied. To show that the matching criteria hold we first define the focus condition
and the state mapping for τ{c}L-ImpA. The focus condition FC is the condition under which no more
τ steps can be made, i.e. it is the negation of the condition for making a τ step:

FC (n, P, S) = ∀i, j ≤ n. S[i] = 1 ∨ P [i] 6= {j} ∨ S[j] = 1 ∨ i 6∈ P [j] ∨ i = j.

The state mapping h is a function mapping data states of the implementation into data states of the
simple specification. In this case h is defined so that it is t before the visible leader action occurs and
f afterwards:

h(n, P, S) = (S[pr] < 1).

Intuitively h says that as long as the possible root, pr , introduced in the last section, has not moved
to state 1, then the leader action has not yet occurred.

The matching criteria Given the particulars of L-ImpA, L-Spec, FC and h, the matching criteria
are mechanically derived from the general forms of Definition A.3. The instantiated matching criteria
are stated below, together with the proofs that they hold.

1.. The implementation is convergent.

Using the number of nodes i for which S[i] = 0 as a measure, then each τ step decreases that
measure by one.

10 5 CORRECTNESS OF IMPLEMENTATION B

2.. In any data state d = (n, P, S) of the implementation, the execution of an internal step leads to
a state with the same h-image.

Suppose an internal action is possible, i.e. there are nodes i, j ≤ n such that

S[i] = 0 ∧ P [i] = {j} ∧ S[j] = 0 ∧ i ∈ P [j] ∧ i 6= j.

We see that S[pr] = 0. We have to show that if we reach a state d′ = (n, P ′, S′) by the
communication between nodes i and j, then S′[pr ′] = 0, where pr ′ is the value of pr in state d′.
It holds that S = S′ except that S′[i] = 1. By definition of pr , pr′ 6= i because there is at least
one node, i.e. j, with a state value equal to 0.

3.. If the implementation can do the leader action, then so can the specification:

S[pr] = 0 ∧ empty(P [pr])→ S[pr] < 1.

Trivial.

4.. If the specification can do the leader action and the implementation cannot do an internal action,
then the implementation must be able to do the leader action:

S[pr] < 1 ∧ FC → S[pr] = 0 ∧ empty(P [pr]).

Assume S[pr] < 1 ∧ FC . Then trivially S[pr] = 0. We prove empty(P [pr]) by assuming
¬empty(P [pr]) and deriving a contradiction. Let i1 ∈ P [pr]. By I5 we have S[i1] = 0 and
pr ∈ P [i1]. By FC we see that ¬singleton(P [i1]), so there is a i2 6= pr in P [i1] such that
S[i2] = 0 and i1 ∈ P [i2]. We see that proceeding in this way we can construct an infinite path
i0i1i2 . . . , where pr = i0, such that for all k it holds that S[ik] = 0, ik ∈ P [ik+1] and ik 6= ik+2.
By I2 we see that this infinite path is also a path in P0. This contradicts GoodTopology .

5.. The implementation and the specification perform external actions with the same parameter.
Trivial; the action leader involves no data.

6.. After the implementation and the specification perform the leader action, the mapping h still
holds: if the implementation can reach data state d′ by the execution of the leader action, then
h(d′) = f.

Assume S[pr] = 0 ∧ empty(P [pr]) (the leader action can be executed).

Then by Lemma 4.1 we see that all nodes other than pr are in state 1. We also see that by the
execution of the leader action the state of the node that is the value of pr becomes 1. So after
the action all nodes are in state 1, so then the value of h will be f.

By Theorem A.1 it follows that Theorem 4.1 holds.

5 Correctness of Implementation B

In Figure 5 we give a new definition for individual nodes NodeB . The definition in Figure 2 is easier
to read, but we will use the new definition because it is more compact and therefore easier to reason
about. Using s = 3 → empty(c) and s > 0 → empty(p) ∨ singleton(p), that hold in every state
reachable from the initial state, it is easy to check that these definitions are equivalent (cf. I4 and I8

of Section 5.2).

5.1 Linearisation 11

NodeB(i:N, p:NSet , c:NSet , s:N) =

leader · NodeB(i, p, c, 4) � (s = 0 ∨ s = 2) ∧ empty(p) � δ+∑
j:N r(j, i, par) · NodeB(i, if (s = 2, p, p \ {j}), if (s = 2, c, c ∪ {j}),

if (s = 2, 3, if (singleton(p), 1, 0)))
� (s = 0 ∨ s = 2 ∨ s = 3) ∧ j ∈ p� δ+∑

j:N r(j, i, ack) · NodeB(i, p, c, 4) � s = 2 ∧ p = {j}� δ+∑
j:N s̄(i, j, par) · NodeB(i, p, c, 2)

� (s = 0 ∨ s = 1 ∨ s = 3) ∧ p = {j} ∧ empty(c) � δ+∑
j:N s̄(i, j, ack) ·NodeB(i, p, c \ {j}, if (empty(p) ∧ singleton(c), 2, 1))

� ((s = 0 ∧ singleton(p)) ∨ s = 1) ∧ j ∈ c� δ

Figure 5: New definition of process NodeB

5.1 Linearisation

The linearisation of the process Buffers is the process L-Buffers defined in Figure 6. We left out the
linearisation of the process Buffer . Individual buffers are modelled by the identifiers of their source
and target nodes, a natural 0 or 1 giving the state of the buffer – where 0 means the buffer is empty
and 1 means the buffer is full, and a message value of type M. The parameters BS and BM in the
definition of L-Buffers are tables containing entries for pairs of naturals: for all naturals i and j,
BS [i, j] of type N is the state value of the buffer from i to j and BM [i, j] of type M is the message
value of the buffer from i to j.

L-Buffers(n:N,BS :NTable,BM :MTable) =∑
i,j:N

∑
m:M s(i, j,m) · L-Buffers(m/BM [i, j], 1/BS [i, j]) � BS [i, j] = 0 ∧ i, j ≤ n� δ+∑

i,j:N r̄(i, j,BM [i, j]) · L-Buffers(0/BS [i, j]) � BS [i, j] = 1 ∧ i, j ≤ n� δ

Figure 6: The linearisation of Buffers

The linearisation of the process NodesB is defined in Figure 7 as process L-NodesB .
Let the initial values of the parameters be such that GoodTopology (n, P0) and

∀i, j. C0[i] = ∅ ∧ S0[i] = 0 ∧ BS 0[i, j] = 0 ∧ BM 0[i, j] = ack .

We took the initial message values to be acknowledgements for convenience; this is not essential. The
implementation ImpB is given by

ImpB(n:N, P0:NSetList) = ∂H(L-NodesB(n, P0, C0, S0) ‖ L-Buffers(n,BS 0,BM 0)).

Linearisation of ImpB is the process L-ImpB defined in Figure 7.

5.2 Invariants

The invariant I on data states (n, P,C, S,BS ,BM) is the conjunction of the invariants listed below.
It holds in every state that is reachable from the initial state. The variables i and j are universally
quantified over {0, . . . , n}.

12 5 CORRECTNESS OF IMPLEMENTATION B

L-NodesB(n:N, P :NSetList , C:NSetList , S:NList) =∑
i:N leader · L-NodesB(4/S[i])

� (S[i] = 0 ∨ S[i] = 2) ∧ empty(P [i]) ∧ i ≤ n� δ+∑
i,j:N r(j, i, par) · L-NodesB(if (S[i] = 2, P [i], P [i] \ {j})/P [i],

if (S[i] = 2, C[i], C[i] ∪ {j})/C[i],
if (S[i] = 2, 3, if (singleton(P [i]), 1, 0))/S[i])

� (S[i] = 0 ∨ S[i] = 2 ∨ S[i] = 3) ∧ j ∈ P [i] ∧ i, j ≤ n ∧ i 6= j � δ+∑
i,j:N r(j, i, ack) · L-NodesB(4/S[i])

� S[i] = 2 ∧ P [i] = {j} ∧ i, j ≤ n ∧ i 6= j � δ+∑
i,j:N s̄(i, j, par) · L-NodesB(2/S[i])

� (S[i] = 0 ∨ S[i] = 1 ∨ S[i] = 3) ∧ P [i] = {j}∧
empty(C[i]) ∧ i, j ≤ n ∧ i 6= j � δ+∑

i,j:N s̄(i, j, ack) · L-NodesB((C[i] \ {j})/C[i],
if (empty(P [i]) ∧ singleton(C[i]), 2, 1)/S[i])

� ((S[i] = 0 ∧ singleton(P [i])) ∨ S[i] = 1) ∧ j ∈ C[i] ∧ i, j ≤ n ∧ i 6= j � δ

L-ImpB(n:N, P :NSetList , C:NSetList , S:NList ,BS :NTable,BM :MTable) =∑
i:N leader · L-ImpB(4/S[i])

� (S[i] = 0 ∨ S[i] = 2) ∧ empty(P [i]) ∧ i ≤ n� δ+∑
i,j:N r∗(j, i, par) · L-ImpB(if (S[i] = 2, P [i], P [i] \ {j})/P [i],

if (S[i] = 2, C[i], C[i] ∪ {j})/C[i],
if (S[i] = 2, 3, if (singleton(P [i]), 1, 0))/S[i],
0/BS [j, i])

� (S[i] = 0 ∨ S[i] = 2 ∨ S[i] = 3) ∧ j ∈ P [i] ∧ i, j ≤ n ∧ i 6= j∧
BS [j, i] = 1 ∧ BM [j, i] = par � δ+∑

i,j:N r∗(j, i, ack) · L-ImpB(4/S[i], 0/BS [j, i])
� S[i] = 2 ∧ P [i] = {j} ∧ i, j ≤ n ∧ i 6= j∧

BS [j, i] = 1 ∧ BM [j, i] = ack � δ+∑
i,j:N s∗(i, j, par) · L-ImpB(2/S[i], 1/BS [i, j], par/BM [i, j])

� (S[i] = 0 ∨ S[i] = 1 ∨ S[i] = 3) ∧ P [i] = {j} ∧ empty(C[i])∧
i, j ≤ n ∧ i 6= j ∧ BS [i, j] = 0 � δ+∑

i,j:N s∗(i, j, ack) · L-ImpB((C[i] \ {j})/C[i],
if (empty(P [i]) ∧ singleton(C[i]), 2, 1)/S[i],
1/BS [i, j], ack/BM [i, j])

� ((S[i] = 0 ∧ singleton(P [i])) ∨ S[i] = 1) ∧ j ∈ C[i]∧
i, j ≤ n ∧ i 6= j ∧ BS [i, j] = 0 � δ

Figure 7: The linearisations of NodesB and ImpB

5.3 Some intermediate steps 13

I1 : S[i] ≤ 4

I2 : j ∈ P0[i]↔ j ∈ P [i] ∨ i ∈ P [j]

I3 : S[i] = 0 ∧ empty(P [i])→ empty(P0[i])

I4 : S[i] > 0→ empty(P [i]) ∨ singleton(P [i])

I5 : S[i] = 0 ∧ j ∈ P [i]→ (BS [j, i] = 0↔ BM [j, i] = ack)

I6 : S[i] ≤ 1 ∧ (j ∈ P [i] ∨ j ∈ C[i])→ BS [i, j] = 0 ∧ BM [i, j] = ack

I7 : S[i] = 1→ ¬(empty(P [i]) ∧ empty(C[i]))

I8 : S[i] = 3→ empty(C[i]) ∧ singleton(P [i])

I9 : S[i] = 3 ∧ P [i] = {j} → BM [j, i] = par

I10 : S[i] = 3 ∧ P [i] = {j} → P [j] = {i} ∧ (S[j] = 2 ∨ S[j] = 3)

I11 : S[i] > 0 ∧ j ∈ P0[i]→ P [i] = {j} ∨ (S[j] > 0 ∧ P [j] = {i})

I12 : S[i] = 4 ∧ P [i] = {j} → i 6∈ P [j]

I13 : S[i] = 0 ∧ j ∈ P [i]→ i ∈ P [j] ∧
(S[j] = 0 ∨ S[j] = 1 ∨ (S[j] = 2 ∧ BS [j, i] = 1))

I14 : S[i] = 3 ∧ P [i] = {j} ∧ S[j] = 3→ BS [i, j] = 0

I15 : S[i] = 2 ∧ S[j] = 2 ∧ P [i] = {j} ∧ P [j] = {i} → BS [i, j] = 1

I16 : S[i] = 2 ∧ S[j] = 3 ∧ P [i] = {j} ∧ P [j] = {i} →
(BS [j, i] = 0→ BS [i, j] = 1)

Most of these invariants are easy to check. The last three invariants relate to contention in the system;
they are illustrated by the picture in Figure 8. We hope the picture is self-explanatory. It shows nodes
i and j, and the buffers between them. A thick box indicates a buffer is in state 1, i.e. it holds a
message that is to be transmitted.

5.3 Some intermediate steps

Linearisation of ImpB yields an expression where the summand starting with the external leader
action is preceded by a summation over the node identifiers. We eliminate this summation in the
same way as in Section 4. Here the function pr on data states of the implementation is defined as
taking the minimum of the set

if (∃i.empty(P [i]), {i | empty(P [i])}, {i | ¬∃j.S[j] < S[i]}),

where variables i and j are quantified over {0, . . . , n}. We again need a “uniqueness of root” lemma.
Lemma 5.1 says that if a node i can declare itself leader or has declared itself leader, then there cannot
be another node that can do the leader action. We also see that this i will then be the value of the
function pr . Given the function pr , the new linearisation of ImpB is as presented in Figure 9.

Lemma 5.1 ∀i ≤ n. empty(P [i])→ ¬∃j ≤ n. j 6= i ∧ empty(P [j])

14 5 CORRECTNESS OF IMPLEMENTATION B

par

par

par

par

par par

par parpar

par par

Contention

resolvedContention

par

par par

i
s=2

j

s=2

p={i}p={j} p={j} p={j} p={j}p={i} p={i} p={i}

i i i

i

j j j

j

s=2 s=2s=3 s=3 s=3 s=3

s=2
p={j}

s=1

p={}
c={i}

Figure 8: Contention illustrated

Proof. By I1 S[i] ≤ 4. If S[i] = 0 ∧ empty(P [i]), then empty(P0[i]) by I3, and by GoodTopology there
is only one node in the network, so the lemma trivially holds.

Now assume S[i] > 0∧empty(P [i]). Take a j ≤ n such that j 6= i. By GoodTopology , there is a path
of distinct nodes i0i1 . . . im with i = i0, j = im and ∀k < m. ik+1 ∈ P0[ik]. By I11 we see that since
P [i0] 6= {i1}, it holds that S[i1] > 0 and P [i1] = {i0}. Also by I11 it now holds that P [ik] = {ik−1}
for all 0 < k ≤ m. So ¬empty(P [j]). 2

Let contention abbreviate the existence of i, j ≤ n such that

(S[i] = 2 ∨ S[i] = 3) ∧ (S[j] = 2 ∨ S[j] = 3) ∧ P [i] = {j} ∧ P [j] = {i}.

The following lemma says that if all nodes are in state 2 or higher and none has an empty parent set,
then there must be a case of contention.

Lemma 5.2 S[pr] > 1 ∧ ¬empty(P [pr])→ contention

Proof. Suppose S[pr] > 1 and ¬empty(P [pr]). Since ¬empty(P [pr]), there are at least two nodes.
By definition of pr all nodes i have S[i] > 1 and ¬empty(P [i]). Then by I4 singleton(P [i]) for all
nodes i. Now supposing there is no pair of nodes that have each other as potential parent leads
to a contradiction: Take any node i0. Construct a path i0i1 . . . such that ∀k. P [ik] = {ik+1}. By
assumption ¬∃k. P [ik+1] = {ik}. Now GoodTopology and I2 tell us ∀k.ik 6∈ {i0, . . . , ik−1}. So this
path must visit infinitely many nodes. This contradicts GoodTopology .

So there are nodes i, j such that S[i] > 1∧ S[j] > 1∧P [i] = {j} ∧P [j] = {i}. By I12 we know that
S[i] 6= 4 and S[j] 6= 4. The lemma follows by I1. 2

Corollary 5.3 S[pr] = 4→ empty(P [pr])

Proof. Suppose S[pr] = 4 and ¬empty(P [pr]). By the definition of pr it holds that S[i] = 4 for all
nodes i. So ¬contention, contradicting Lemma 5.2. 2

5.4 Verification 15

L-ImpB(n:N, P :NSetList , C:NSetList , S:NList , LS:NTable, LM :MTable) =

leader · L-ImpB(4/S[pr]) � (S[pr] = 0 ∨ S[pr] = 2) ∧ empty(P [pr]) � δ+∑
i,j:N r∗(j, i, par) · L-ImpB(if (S[i] = 2, P [i], P [i] \ {j})/P [i],

if (S[i] = 2, C[i], C[i] ∪ {j})/C[i],
if (S[i] = 2, 3, if (singleton(P [i]), 1, 0))/S[i],
0/LS[j, i])

� (S[i] = 0 ∨ S[i] = 2 ∨ S[i] = 3) ∧ j ∈ P [i]∧
i, j ≤ n ∧ i 6= j ∧ LS[j, i] = 1 ∧ LM [j, i] = par � δ+∑

i,j:N r∗(j, i, ack) · L-ImpB(4/S[i], 0/LS[j, i])
� S[i] = 2 ∧ P [i] = {j} ∧ i, j ≤ n ∧ i 6= j∧

LS[j, i] = 1 ∧ LM [j, i] = ack � δ+∑
i,j:N s∗(i, j, par) · L-ImpB(2/S[i], 1/LS[i, j], par/LM [i, j])

� (S[i] = 0 ∨ S[i] = 1 ∨ S[i] = 3) ∧ P [i] = {j} ∧ empty(C[i])
∧ i, j ≤ n ∧ i 6= j ∧ LS[i, j] = 0 � δ+∑

i,j:N s∗(i, j, ack) · L-ImpB((C[i] \ {j})/C[i],
if (empty(P [i]) ∧ singleton(C[i]), 2, 1)/S[i],
1/LS[i, j], ack/LM [i, j])

� ((S[i] = 0 ∧ singleton(P [i])) ∨ S[i] = 1) ∧ j ∈ C[i]∧
i, j ≤ n ∧ i 6= j ∧ LS[i, j] = 0 � δ

Figure 9: The process L-ImpB (redefined)

5.4 Verification

The correctness of Implementation B is stated by the following theorem.

Theorem 5.1 GoodTopology(n, P0) and I(n, P0, C0, S0,BS 0,BM 0) imply

τ · L-Spec(t) = τ · τ{r∗,s∗}L-ImpB(n, P0, C0, S0,BS 0,BM 0).

We will prove this theorem by application of Theorem A.2 (taking Int = {r∗, s∗} and Ext = {leader}).

Pre-abstraction, State Mapping and Focus Condition As explained in Section 2.3, the process
ImpB is not convergent. Theorem A.2 requires that we distinguish between progressing and non-
progressing internal actions. We define a pre-abstraction function on actions and their data, that
yields f on non-progressing internal actions only. In this case, non-progressing actions occur when two
nodes that are in contention send each other a parent request. More precisely: if one of the nodes has
sent a parent request, and has moved into state 2, then the sending of a parent request by the other
node is non-progressing. The pre-abstraction function ξ is defined by

ξ(a) =
{
¬(S[i] = 3 ∧ S[j] = 2) if a = s∗(i, j, par),
t otherwise.

The focus condition of L-ImpB relative to ξ is the conjunction of the negations of the conditions

16 5 CORRECTNESS OF IMPLEMENTATION B

for performing a progressing internal action (cf. Definition A.4):

FC ξ(n, P,C, S,BS ,BM) = ∀i, j ≤ n. i 6= j →
¬((S[i] = 0 ∨ S[i] = 2 ∨ S[i] = 3) ∧ j ∈ P [i] ∧ BS [j, i] = 1 ∧ BM [j, i] = par)
∧
¬(S[i] = 2 ∧ P [i] = {j} ∧ BS [j, i] = 1 ∧ BM [j, i] = ack)
∧
¬((S[i] = 0 ∨ S[i] = 1 ∨ S[i] = 3) ∧ P [i] = {j} ∧ empty(C[i])∧

BS [i, j] = 0 ∧ ¬(S[i] = 3 ∧ S[j] = 2))
∧
¬(((S[i] = 0 ∧ singleton(P [i]) ∨ S[i] = 1) ∧ j ∈ C[i] ∧ BS [i, j] = 0).

Using Invariants 4–9 we can simplify this formula to

FC ξ(n, P,C, S,BS ,BM) = ∀i, j ≤ n. i 6= j →
(S[i] = 0→ (j ∈ P [i]→ BS [j, i] = 0) ∧ ¬singleton(P [i]))
∧ S[i] 6= 1
∧ (S[i] = 2 ∧ P [i] = {j} → BS [j, i] = 0)
∧ (S[i] = 3 ∧ P [i] = {j} → BS [j, i] = 0 ∧ (BS [i, j] = 1 ∨ S[j] = 2)).

We define a state mapping h from data states of the implementation to data states of the specifi-
cation. As before, this mapping is only concerned with values of states:

h(n, P,C, S,BS ,BM) = (S[pr] < 4).

Before we prove the matching criteria, we add the following lemma.

Lemma 5.4 contention → ¬FC ξ

Proof. Suppose contention. So there are nodes i, j ≤ n such that

(S[i] = 2 ∨ S[i] = 3) ∧ (S[j] = 2 ∨ S[j] = 3) ∧ P [i] = {j} ∧ P [j] = {i}.

If one of these nodes, say i′ – call the other node j′, is in state 2, then we distinguish cases

• BS [j′, i′] = 1. This contradicts the third conjunct of FC ξ.

• BS [j′, i′] = 0. Now by I15 it must be the case that S[j′] = 3. By I16 we see that BS [i′, j′] = 1.
This contradicts the last conjunct of FC ξ.

So both nodes are in state 3. Then by I14 it holds that BS [i′, j′] = BS [j′, i′] = 0. This contradicts
the last conjunct of FC ξ. 2

The Matching Criteria We instantiate Definition A.6 with the processes L-ImpB and L-Spec, the
state mapping h and the pre-abstraction ξ.

1.. The process L-ImpB is convergent w.r.t. ξ.

Let rq be
∑
i≤n |P [i]|; ac be

∑
i≤n |C[i]|; sk be the number of nodes in state k; and l2 be the

number of requests sent to nodes in state 2, but not received yet. In other words: the number
of lines such that its state equals 1 and the receiving node is in state 2.

5.4 Verification 17

We define the following measure on data states:

Measure = 〈rq, ac, s0, s1, l2, s3, s2〉.

Let ≺ be the lexicographical ordering on N7. Now ≺ is a well-founded ordering on the data
states of L-ImpB such that the measure decreases at every execution of a progressing internal
step.

2.. In any state d of the implementation, the execution of an internal step leads to a state with the
same h-image.

Suppose S[pr] < 4. The only internal action that can change the state of a node i to 4, is the
receiving of an acknowledgement by i, where S[i] = 2 and singleton(P [i]).

Suppose in the state d′ reached by this action, i becomes the value of pr , then S′[pr ′] =
4 ∧ singleton(P ′[pr ′]). This contradicts Corollary 5.3.

So in every state d′ reachable by an internal action S′[pr ′] < 4.

Suppose S[pr] 6< 4. By I1 and Corollary 5.3 it holds that empty(P [pr]). Now we see by
Lemma 5.1 that pr will keep the same value.

3.. If the implementation can do the leader action, then so can the specification:

(S[pr] = 0 ∨ S[pr] = 2) ∧ empty(P [pr])→ S[pr] < 4.

Trivial.

4.. If the specification can do the leader action and the implementation cannot do a progressing
internal action, then the implementation must be able to do the leader action:

FC ξ ∧ S[pr] < 4→ (S[pr] = 0 ∨ S[pr] = 2) ∧ empty(P [pr]).

Suppose FC ξ and S[pr] < 4. S[pr] 6= 1 by FC ξ. If S[pr] = 3, then we have by I8 and I10 that
contention, contradicting the assumption FC ξ by Lemma 5.4.

So (S[pr] = 0∨ S[pr] = 2). We have to show empty(P [pr]). We distinguish cases S[pr] = 0 and
S[pr] = 2 and show that the assumption ¬empty(P [pr]) leads to a contradiction.

• S[pr] = 0. Assume ¬empty(P [pr]). Let pr = i0 and i1 ∈ P [i0]. By I13 we can make the
following case distinction, where S[i1] 6= 1 by FC ξ:

S[i1] = 0 or S[i1] = 2 ∧BS [i1, i0] = 1.

In the second case ¬FC ξ because ¬(i1 ∈ P [i0]→ BS [i1, i0] = 0) and S[i0] = 0. Contradic-
tion.
In the first case we see by FC ξ that ¬singleton(P [i1]), so there is a i2 6= i0 in P [i1]. We can
repeat the argument above for i1 and i2. But we cannot construct an infinite path i0i1i2 . . .
where ∀k.S[ik] = 0 ∧ ik+1 ∈ P [ik] ∧ ik 6= ik+2, as this would violate GoodTopology by I2.
So for some k we get S[ik] = 0 and ¬(ik+1 ∈ P [ik]→ BS [ik+1, ik] = 0), contradicting FC ξ

as above.

• S[pr] = 2. Suppose ¬empty(P [pr]). Then we find ¬FC ξ by Lemma 5.2 and Lemma 5.4.
Contradiction.

5.. The implementation and the specification perform external actions with the same parameter.
Trivial; the action leader involves no data.

18 6 CONCLUSIONS

6.. If from a data state d, the implementation reaches state d′ by the execution of the leader action,
then h(d′) = f.
We see by Lemma 5.1 that the value of pr will be the same for d and d′. It holds that S = S′

except that S′[pr] = 4. So h(d′) = 4 < 4, which is false.

Now Theorem 5.1 follows by Theorem A.2.

6 Conclusions

We have described the tree identify protocol of the 1394 multimedia serial bus. This was an exercise
in specification using µCRL and in verification using the cones and foci technique. While no errors
were identified in this view of the system, the exercise has been worthwhile for a number of reasons.

One of our original goals was to “test” the verification technique. We mentioned at the beginning
that uptake of verification techniques is often slow due to their complexity. The cones and foci
technique has a simple and appealing principle at its heart, and provides a useful structure for the
verification, but, as has been seen here, is complex to apply. In particular it relies on expertise in the
domain, experience in applying the technique to other examples, and some creativity! This is true of
many formal methods.

To aid the verification process it is essential to have good tool support. It should be straightforward
to automate parts of the technique of [GS95] used here. In particular, the initial linearisation can be
generated automatically, and some development in this area is underway. In fact, computer checked
proofs using this technique are described in [KS96]. Note, however, that in the study described here
the proof process fed back into the description, in that it was impossible to prove the matching criteria
held with the original linearisation of ImpA. At that point experience and creativity stepped in and
the function pr was introduced, altering the description of the system and therefore the matching
criteria and making the proof possible.

The matching criteria can be automatically generated given the linear specification and implemen-
tation, and the state mapping h. Automation of this and linearisation would leave the verifier free
to consider the more tricky questions of the definition of h and the proofs of the matching criteria.
Several proof assistants exist which could be used to computer check such proofs, eliminating the
possibility of manually introduced errors. If a more powerful tool such as HOL [GM93] were used
then it may also be possible to use higher level tactics to aid the proof process. An interesting problem
might be to examine a number of case studies using this verification technique to try to extract some
general principles which could be coded in some specialised tactics. In order for this to be possible, a
number of studies must be carried out.

Our second achievement is that our study is one example, and adds to the body of experience in
applying formal methods; however, at present there are too few examples of the application of [GS95]
to allow us to draw any useful conclusions. From the limited set of examples available, we note that
the verification of a distributed summation algorithm presented in [GS96] does have similar features
(the use of similar processes to describe the system, state-based descriptions, the use of the state
parameter to define the mapping function, a simple boolean in the specification and an invariant on
the topology of the network). With more case studies it may turn out that these are all common
features of specification and verification of distributed systems in µCRL.

This proof technique compares favourably with earlier proofs in µCRL, e.g. [GK95, FGK97], which
relied on much lower level proof rules (the usual rules for manipulating process algebra expressions),
although we note that the proof given in [FGK97] contains some similar features to the specifications
here and in [GS96] (state based specification, n similar processes). The cones and foci technique allows
the verifier to concentrate on features of the data, and the structure of the proof technique takes care
of the process algebra part.

This proof technique also contrasts with the approaches of [GM97] in which automated proofs
of branching bisimulation are carried out using the CADP toolbox, and [SM97] which again uses

REFERENCES 19

the CADP toolbox, but this time to check the validity of modal formulae with respect to labelled
transition systems generated from the descriptions. In both cases the size of the system must be
restricted in order to allow automated checking. These may then be useful as a prototype stage;
automated verification on a small number of nodes, followed by assisted verification on a bounded but
undetermined number of nodes using techniques such as cones and foci.

Acknowledgements

Thanks are due to Jan Friso Groote, who instigated this case study, for many helpful discussions
regarding the application of the cones and foci verification technique. Thanks also to Judi Romijn
and David Griffioen for discussions regarding the operation of the 1394 tree identify protocol. The
first author thanks the Programming Research Group at the University of Amsterdam, EXPRESS
project partners for providing a pleasant working environment, and the EC HCM Fellowship scheme
for funding her visit. The second author was supported by the Netherlands Organization for Scientific
Research (NWO) under contract SION-2854/612-61-002.

References

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

[DGRV97] M.C.A. Devillers, W.O.D. Griffioen, J.M.T Romijn, and F.W. Vaandrager. Verification
of a leader election protocol — formal methods applied to IEEE 1394. Technical report,
Computing Science Institute, University of Nijmegen, December 1997.

[FGK+96] J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu.
CADP (CAESAR/ALDEBARAN Development Package): A protocol validation and veri-
fication toolbox. In R. Alur and T.A. Henzinger, editors, Proceedings of CAV’96, number
1102 in LNCS, pages 437–440. Springer-Verlag, 1996.

[FGK97] L. Fredlund, J.F. Groote, and H. Korver. Formal verification of a leader election protocol
in process algebra. Theoretical Computer Science, 177(2):237–440, 1997.

[GK95] J.F. Groote and H. Korver. Correctness proof of the bakery protocol in µCRL. In A. Ponse,
C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra of Communicating Processes ’94,
Workshops in Computing, pages 63–86. Springer-Verlag, 1995.

[GM93] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: A theorem proving envi-
ronment for higher order logic. Cambridge University Press, 1993.

[GM97] H. Garavel and L. Mounier. Specification and verification of various distributed leader
election algorithms for unidirectional ring networks. Science of Computer Programming,
29(1–2):171–197, 1997.

[GP95] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In A. Ponse, C. Verhoef,
and S.F.M. van Vlijmen, editors, Algebra of Communicating Processes ’94, Workshops in
Computing. Springer-Verlag, 1995.

[Gro96] J.F. Groote. A note on n similar parallel processes. Technical Report CS-R9626, Centrum
voor Wiskunde en Informatica, Amsterdam, 1996.

[GS95] J.F. Groote and J. Springintveld. Focus points and convergent process operators. Technical
Report 142, University of Utrecht, Logic Group Preprint Series, 1995.

20 A THEOREMS AND DEFINITIONS

[GS96] J.F. Groote and J. Springintveld. Algebraic verification of a distributed summation algo-
rithm. Technical Report CS-R9640, Centrum voor Wiskunde en Informatica, Amsterdam,
1996.

[IEE96] IEEE Computer Society. IEEE Standard for a High Performance Serial Bus. Std 1394-
1995, August 1996.

[KS96] H.P. Korver and M.P.A. Sellink. On automating process algebra proofs. In V. Atalay et al,
editor, Proceedings of the 11-th International Symposium on Computer and Information
Sciences, ISCIS XI Antalya, Turkey, volume 2, pages 815–826, 1996.

[Lut97] S.P. Luttik. Description and formal specification of the link layer of P1394. Technical
Report SEN-R9706, Centrum voor Wiskunde en Informatica, Amsterdam, 1997.

[SM97] M. Sighireanu and R. Mateescu. Validation of the link layer protocol of the IEEE-1394
serial bus (FireWire): an experiment with E-LOTOS. Technical Report 3172, INRIA,
1997.

A Theorems and Definitions

We repeat here the most important definitions and theorems from [GS95]. For the formulation we
rely in part on the appendix of [GS96].

A.1 General Equality Theorem

Definition A.1 Let A ⊆ Act ∪ {τ} be a finite set of actions, and let D be a data type. A linear
process equation (LPE) over Act and D is an equation of the form

X(d:D) =
∑
a∈A

∑
e:Ea

a(fa(d, e)) ·X(ga(d, e)) � ba(d, e) � δ

for some data types Ea, Da, and functions fa:D → Ea → Da, ga:D → Ea → D, ba:D → Ea → B.
(We assume that τ has no parameter.)

A summand a(fa(d, e)) · X(ga(d, e)) � ba(d, e) � δ means that if for some e of type Ea the guard
ba(d, e) is satisfied, the action a can be performed with parameter fa(d, e), followed by a recursive call
of X with new value ga(d, e). The main feature of LPEs is that for each action a there is at most
one summand in the alternative composition. Note that therefore the definition of process L-ImpB in
Figure 9 does not directly fit into this format. We made sure that theorems were applied correctly.

Definition A.2 An LPE X written as in Definition A.1 is called convergent if it does not admit
infinite τ -paths, i.e. there is a well-founded ordering < on D such that for all e:Eτ and d:D we have
that bτ (d, e) implies gτ (d, e) < d.

An invariant of an LPE X written as in Definition A.1 is a function I:D → B such that for all
a ∈ A, e:Ea, and d:D we have ba(d, e) ∧ I(d)→ I(ga(d, e)).

Definition A.3 Let X and Y be LPEs given as follows:

X(d:DX) =
∑
a∈A

∑
e:Ea

a(fa(d, e)) ·X(ga(d, e)) � ba(d, e) � δ

Y (d:DY) =
∑

a∈A\{τ}

∑
e:Ea

a(f ′a(d, e)) · Y (g′a(d, e)) � b′a(d, e) � δ

A.2 Abstraction and idle loops 21

Let FCX be a formula over d:DX describing exactly the states of X from which no τ -action is enabled
(i.e. equivalent to ¬∃eτ :Eτ bτ (d, eτ)). Let h:DX → DY be a state mapping. The following 6 conditions
are called the matching criteria and their conjunction is denoted by CX,Y,h(d).

1. X is convergent

2. ∀e:Eτ (bτ (d, e)→ h(d) = h(gτ (d, e)))

3. ∀a ∈ A \ {τ} ∀e:Ea (ba(d, e)→ b′a(h(d), e))

4. ∀a ∈ A \ {τ} ∀e:Ea (FCX(d) ∧ b′a(h(d), e)→ ba(d, e))

5. ∀a ∈ A \ {τ} ∀e:Ea (ba(d, e)→ fa(d, e) = f ′a(h(d), e))

6. ∀a ∈ A \ {τ} ∀e:Ea (ba(d, e)→ h(ga(d, e)) = g′a(h(d), e))

Theorem A.1 (General Equality Theorem) Let X, Y , FCX , and h be as above. Suppose I is an
invariant of X and, for all d:DX , I(d)→ CX,Y,h(d). Assume that r and q are solutions of X and Y ,
respectively, then

∀d:DX I(d)→ r(d) � FCX(d) � τr(d) = q(h(d)) � FCX(d) � τq(h(d)).

A.2 Abstraction and idle loops

Let X and Y be LPEs given as follows:

X(d:DX) =
∑

a∈Ext∪Int∪{τ}

∑
e:Ea

a(fa(d, e)) ·X(ga(d, e)) � ba(d, e) � δ

Y (d:DY) =
∑
a∈Ext

∑
e:Ea

a(f ′a(d, e)) · Y (g′a(d, e)) � b′a(d, e) � δ

where Ext , Int and {τ} are mutually disjoint.

Definition A.4 Let ξ be a pre-abstraction function. The focus condition of X relative to ξ is defined
by:

FCX,Int,ξ(d) = ∀a ∈ Int ∪ {τ}∀e:Ea¬(ba(d, e) ∧ ξ(a)(d, e))

Definition A.5 X is convergent w.r.t. ξ iff there is a well-founded ordering < on DX such that for
all a ∈ Int ∪ {τ}, d:DX and all e:Ea we have that ba(d, e) and ξ(a)(d, e) imply ga(d, e) < d.

Definition A.6 Let X,Y be as above. Let h:DX → DY and let ξ be a pre-abstraction function. The
following 6 conditions are called the matching criteria for idle loops and their conjunction is denoted
by CIX,Y,ξ,h(d).

1. X is convergent w.r.t. ξ

2. ∀a ∈ Int ∪ {τ} ∀e:Ea (ba(d, e)→ h(d) = h(ga(d, e)))

3. ∀a ∈ Ext ∀e:Ea (ba(d, ea)→ b′a(h(d), e))

4. ∀a ∈ Ext ∀e:Ea (FCX,Int,ξ ∧ b′a(h(d), e)→ ba(d, e))

5. ∀a ∈ Ext ∀e:Ea (ba(d, e)→ fa(d, e) = f ′a(h(d), e))

6. ∀a ∈ Ext ∀e:Ea (ba(d, e)→ h(ga(d, e)) = g′a(h(d), e))

22 A THEOREMS AND DEFINITIONS

Theorem A.2 Let X, Y , ξ and h be as above. Let p and q be solutions of X and Y , respectively. If
I is an invariant of X and ∀d:DX (I(d)→ CIX,Y,ξ,h(d)), then

∀d:DX I(d)→ ττInt(p(d)) = τq(h(d)).

