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Several methods for studying the asymptotic behaviour of infinite dimen-
sional stochastic systems are described and applied to spin models and to
stochastic heat and Burgers equations. The results that are presented were
developed in [2,3,4,10]. Some extensions are announced as well.

1. Invariant measures for dynamical systems

Let (E, ρ) be a separable, complete metric space, B(E) the σ-field of its Borel
subsets. The space of all probability measures on B(E), equipped with the
metric topology of weak convergence will be denoted by P1(E) or shortly P1.
The space P1 is separable and complete, see [B].

A transition function Pt(x,Γ), t ≥ 0, x ∈ E, Γ ∈ B(E), is a mapping from
[0,+∞)×E × B(E) into [0, 1] such that:

i) Pt(x, ·) ∈ P1, for all t ≥ 0 and x ∈ E,

ii) Pt(·,Γ) is B(E)-measurable for all t ≥ 0 and Γ ∈ B(E),

iii) For all s, t ≥ 0, x ∈ E and Γ ∈ B(E),

Ps+t(x,Γ) =
∫
E

Ps(x, dy)Pt(y,Γ).(1.1)

If a transition function P , regarded as a mapping from [0,+∞) × E into
P1, is continuous, than P is called continuous. In the present paper we will
deal only with continuous transition functions.

Assume, for instance, that for each t ≥ 0 and x ∈ E, the measure Pt(x, ·)
is concentrated at a point St(x). Then (1.1) implies that

St+s(x) = Ss
(
St(x)

)
, t, s ≥ 0, x ∈ E,(1.2)
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and therefore P can be identified with a semigroup of transformations St, t ≥ 0
acting on E. Thus P is a deterministic dynamical system in this case, see [H].
Continuity of P means that the mapping St(x), t ≥ 0, x ∈ E, is continu-
ous. Conversely a deterministic dynamical system satisfying (1.2) determines
a transition function P by the formula

Pt(x, ·) = δ{St(x)}(·), t ≥ 0, x ∈ E.(1.3)

If ν ∈ P1 then P ∗t ν, t ≥ 0 denotes a probability measure given by

P ∗t η(Γ) =
∫
Pt(x,Γ)η(dz), γ ∈ B(E).(1.4)

Note that the family of transformations P ∗t , t ≥ 0, from P1 into P1 satisfies
(1.2) and therefore it is a dynamical system on P1. If for some η ∈ P1 and
all t ≥ 0, P ∗t η = η, then η is said to be invariant for P . In particular if P is
determined by a dynamical system (St) and z ∈ E is its equilibrium point:

St(z) = z, t ≥ 0,(1.5)

then η = δ{z} is invariant for P . However, there might be many different
invariant measures for (St).

Important examples of deterministic dynamical systems, see [H], are defined
through differential equations on Hilbert or Banach spaces or on subsets of such
spaces. If, for instance, a linear operator A generates a C0-semigroup Tt, t ≥ 0
on a Banach space E and F : E → E is a continuous mapping and for arbitrary
x ∈ E the semilinear equation:

dy

dt
= Ay + F (y), y(0) = x ∈ F,(1.6)

has a unique generalized solution yx(t), t ≥ 0 then the mappings St : x→ yx(t)
define a continuous transition function on E.

Let (Ω,F ,P) be a probability space and W (t), t ≥ 0, a Wiener process on a
Hilbert space U , with covariance operator Q. The operator Q is assumed to be
nonnegative definite on U and bounded. In this paper we are concerned with
stochastic evolution equations,

dX =
(
AX + F (X)

)
dt+B(X)dW (t), X(0) = x = E(1.7)

on a Hilbert space E. Under various sets of conditions equation (1.7) has a
unique solution Xx(t), t ≥ 0, and

P (t, x,Γ) = P(ω,Xx(t, ω) ∈ Γ), t ≥ 0, x ∈ E,Γ ∈ B(E),(1.8)

is a transition function. If B(x) = 0 for all x ∈ E, then equation (1.7) reduces to
(1.6). Invariant measures for such P are called invariant measures or invariant
distributions for (1.7)
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It is important to note that if P is a continuous transition function on a
compact space E then it has at least one invariant measure. In fact any weak
limit as t→ +∞, of measures

νt =
1
t

∫ t

0

P ∗s νds, t ≥ 0,(1.9)

where ν is any element of P1(E), is invariant for P . Compactness of E implies
tightness of the family {νt, t > 0} and therefore the existence of the weak limit
of {νtn} for some tn ↑ +∞.

If the space E is only locally compact then the existence of an invariant
measure for an equation follows from the boundedness in probability of its
solutions. In particular if E = Rd, A = 0, B = 0, F is a bounded Lipschitz
mapping and for some x ∈ F , the set {St(x), t ≥ 0} is bounded then there
exists an invariant measure for the corresponding transition function P . If
the Banach space is infinite dimensional the boundedness of all solutions of an
equation does not imply the existence of an invariant measures. The following
result due to I. Vrkoc̆ [13] is instructive.

Theorem 1.1 (Vrkoc̆) There exists a bounded, Lipschitz mapping F on a Hilbert
space E, dimE = +∞, such that F (z) 6= 0 for all z ∈ E and all solutions yx(t),
t ≥ 0, of

dy

dt
= F (y), y(0) = x,(1.10)

are bounded and tend weakly to 0 as t → +∞. In particular there are no
invariant measures for (1.10).

Therefore in the case when the state space is an infinite dimensional Hilbert
space new principles are needed . Some of them are discussed in the following
sections.

2. Dissipativity and spin systems

One way of establishing the existence of invariant measures when E is not lo-
cally compact is to show that the system under considerations has a dissipation
property. We describe here a class of equations for which this is the case. They
are of the form:

dX =
(
AX + F (X)

)
dt+BdW (t), X(0) = x = E,(2.1)

where E is a separable Hilbert space, W a Wiener process on a Hilbert space
U and B is a bounded linear operator from U into H. The mappings A and F
will satisfy appropriate dissipativity conditions which we formulate now.

Let (E, || · ||E) be a Banach space and E∗ its dual. For arbitrary x ∈ E, the
subdifferential ∂||x||E of the norm || · ||E at x is given by the formula:

∂||x||E = {x∗ ∈ E∗ : ||x+ y||E − ||x||E ≥ x∗(y), ∀y ∈ E}.(2.2)
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A mapping G : D(G) : E → E is dissipative if for arbitrary x, y ∈ D(G) there
exists z ∈ ∂||x− y||E such that,

z∗
(
G(x) −G(y)

)
≤ 0.(2.3)

If in addition, for some α > 0, the mapping I − αG is surjective, G is called
m-dissipative. If K ⊂ E is a Banach space continuously embedded into E then
the part GK of G in K is the restriction of G to the set

D(GK) = {x ∈ D(G) ∩K : G(x) ∈ K}.(2.4)

We will need the following assumption:

(A.1) E is a Hilbert space and a reflexive Banach space K is continuously em-
bedded into E.

To obtain existence of a solution to (2.1) we will require that the process,

WA(t) =
∫ t

0

T (t− s)dW (s), t ≥ 0,(2.5)

is regular in the following sense:

(A.2) The process WA takes values in D(FK) and for each t > 0,

sup
0≤s≤t

(
||WA(t)||K +

∣∣∣∣FK(WA(t)
)∣∣∣∣

K

)
< +∞, P a.s.(2.6)

Note that the process WA is a generalized solution of the linear version of
the equation (2.1).

The following theorem is taken from [3].

Theorem 2.1. Assume that the operator A generates a C0-semigroup T (t),
t ≥ 0 on E and that assumptions (A.1) and (A.2) hold. Let moreover for some
constants η1, η2 operators A + η1I, F + η2I are m-dissipative on E and on K
and F maps bounded sets in K into bounded sets in E. Then the equation (2.1)
has a unique generalized solution. If, in addition, w = η1 + η2 > 0 and

sup
t≥0

(
E||WA(t)||E +

∣∣∣∣F(WA(t)
)∣∣∣∣

E

)
< +∞,(2.7)

then there exists a unique invariant measure µ for the transition function P
determined by (2.1) and for all bounded, Lipschitz continuous functions ϕ on
E one has∣∣∣∣∫

E

ϕ(y)Pt(x, dy)−
∫
E

ϕ(y)µ(dy)
∣∣∣∣(2.8)

≤ (c+ 2||x||E)e−wt||ϕ||Lip, x ∈ E, t ≥ 0,

where
c = sup

t≥0
E
(
||WA(t)||E +

1
w

∣∣∣∣F(WA(t)
)∣∣∣∣

E

)
.(2.9)
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As an illustration we shall apply this theorem to spin systems, see [3].
Let Z be the set of all integers and Zd the lattice which elements can be

interpreted as atoms. A configuration x is any real function on Zd. Spin
systems on Zd are determined by an infinite matrix (aγj)γ,j∈Zd and a real
function f : R → R called respectively a global interaction matrix and a local
interaction function. Let X(t) be the configuration of the spin system at time
t ≥ 0. The process X(t) =

(
Xγ(t)

)
γ∈Zd , t ≥ 0, satisfies an infinite system of

equations:

dXγ(t) =
(∑

j

aγjXj(t) + f
(
Xγ(t)

))
dt+ dWγ(t)(2.10)

Xγ(0) = xγ , γ ∈ Zd, t ≥ 0,

in which Wγ , γ ∈ Zd are real Brownian motions. Invariant measures for (2.10)
are called Gibbs measures.

The preceding theorem will be applied with the operators A and F defined
as follows:

A(xγ) =

∑
j∈Zd

aγjxj

 , x = (xγ) ∈ E,

F (xγ) =
(
f(xγ)

)
, x = (xγ),

where E = l2ρ(Zd) is a Hilbert space of sequences (xγ), summable with respect
to a positive weight function ρ : Zd → R+. Let U = l2(Zd) and B be the
inclusion of U into E. We will restrict to the weight

ρκ(γ) =
1

1 + κ|γ|r , γ ∈ Z
d

where κ > 0 and r > d.

Theorem 2.2. Assume that f = f0 + f1 where f1 is Lipschitz and f0 is con-
tinuous, decreasing such that for some s ≥ 1 and c0 > 0:

|f0(ξ)| ≤ c0(1 + |ξ|s), ξ ∈ R1.

Let in addition, for some η > 0, w > 0, the operator A + ηI, restricted to
l2(Zd) be dissipative and η−||f1||Lip > w. Then there exists a unique invariant
measure µ for (2.10) in any E = l2ρκ(Zd), κ > 0. Moreover, there exists c > 0
such that∣∣∣∣∫

E

ϕ(y)Pt(x, dy) −
∫
E

ϕ(y)µ(dy)
∣∣∣∣ ≤ (c+ 2||x||E)e−wt||ϕ||Lip.

Theorem 2.2 has natural extensions to spin systems on Rd. In particular
we have the following theorem from [3] concerned with an Rd-analog of (2.10):

dX(t, ξ) =
[
(∆− η)X(t, ξ) + f

(
X(t, ξ)

)]
dt+ dW (t, ξ)(2.11)

X(0, ξ) = x(ξ), ξ ∈ Rd, t > 0.
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In the formulation of the theorem L2
ρr(R

d) denotes the space of all Borel func-
tions x on Rd such that:

||x||2r =
∫
Rd
|x(ξ)|2 1

1 + |ξ|r dξ < +∞,

where r > d. We will assume also that the Wiener process W is space homo-
geneous:

EW (t, ξ)W (s, η) = t ∧ sq(ξ − η), t ≥ 0, ξ, η ∈ Rd,(2.12)

where q is a positive definite, continuous function.

Theorem 2.3. Assume that q is a continuous and integrable positive definite
function and that the function f satisfies the same conditions as in Theorem 2.2.
Then there exists a unique invariant measure µ for (2.11) in E = L2

ρr(R
d), for

any r > d. Moreover, there exists c > 0 such that∣∣∣∣∫
E

ϕ(y)Pt(x, dy)−
∫
E

ϕ(y)µ(dy)
∣∣∣∣ ≤ (c+ 2||x||E)e−wt||ϕ||Lip.

3. The compactness method and Burgers equation

Theorem 2.1 cannot be directly extended to systems with state dependent
diffusion operators,

dx =
(
AX + F (X)

)
dt+B(X)dW (t)(3.1)

X(0) = x.

The dissipativity method imposes additional conditions on the noise process
and on the coefficients, see [2] and [4]. More convenient in the present situation
is the compactness method from [2] which was adapted in [10] to stochastic heat
equations of the form:

dX(t, ξ) = ∆X(t, ξ)dt+ b
(
X(t, ξ)

)
dW (t, ξ)(3.2)

X(0, ξ) = x(ξ)

in the space E = L2
ρκ(Rd) introduced in Section 2. Let Tt, t ≥ 0, be the

semigroup on L2
ρκ(Rd) generated by ∆. Thus

Ttx(ξ) =
∫
Rd
pt(ξ − η)x(η)dη,

where

pt(ξ) =
1√

(4πt)d
e−
|ξ|2
4t , ξ ∈ Rd, t > 0.

The following lemmas are important ingredients of the compactness method,
see [10].
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Lemma 3.1. If r, r̂ > d and r > r̂+d then for all t > 0 the operators Tt, t ≥ 0,
are compact from L2

ρr̂
(Rd) into L2

ρr(R
d).

Lemma 3.2. If the assumptions of Lemma 3.1 are satisfied and there exists
a x̂ ∈ L2

ρr̂
(Rd) such that the solution X x̂(t), t ≥ 0, of (3.2) is bounded in

probability in L2
ρr̂

(Rd), then there exists an invariant measure for (3.2) in the
space L2

ρr (R
d).

From these lemmas one can deduce the following important result. Let the
covariance function q be determined by (2.12) and let Γ denote the Euler gamma
function.

Theorem 3.1. Assume that the function b is Lipschitz continuous with Lips-
chitz constant c > 0, and that d ≥ 3, r > 2d and q is a positive definite function
such that ∫

Rd
q(ξ)|ξ|2−ddξ < 1

c2
· 4πd/2

Γ
(
d
2 − 1

) .(3.3)

Then there exists an invariant measure for (3.2) in L2
ρr (R

d).

Theorem 3.1 can be applied to the so called stochastic Burgers equation,
see [7] and [10]. This is a vector equation of the form:

duk(t, ξ) =

(
∆uk(t, ξ)−

d∑
l=1

∂uk(t, ξ)
∂ξl

ul(t, ξ)

)
dt+ d

∂

∂ξk
W (t, ξ),(3.4)

where k = 1, 2, . . . , d, ξ ∈ Rd. If X denotes a solution to (3.2) with a linear
function b(σ) = cσ, σ ∈ R1 then the process u(t, ξ) =

(
u1(t, ξ), . . . , ud(t, ξ)

)
defined by

uk(t, ξ) = − ∂

∂ξk
[lnX(t, ξ)], k = 1, 2, . . . , d, t > 0, ξ ∈ Rd,(3.5)

is, at least formally, a solution to (3.4), see [7]. The transformation (3.5)
connecting the process X and u is called the Cole-Hopf transform.

As a corollary one can show that under the assumptions of Theorem 3.1,
there exists an invariant measure for the stochastic Burgers equation. For more
details we refer to [10]. A longer, computational proof of a similar result can
be found in [7]. The more abstract proof indicated here is considerably shorter.
The special case of one and two dimensional systems is the subject of [12]. It
is a challenging question to derive theorems from [12] using the compactness
method, see also the comments in [11].

4. Notes

Extensions to more general spin systems can be found in [3,4,11]. In particular,
in [11] the existence of invariant measures for general stochastic heat equations

dX(t, ξ) = (∆X(t, ξ) + f(X(t, ξ)))dt+ b
(
X(t, ξ)

)
dW (t, ξ)(4.1)

X(0, ξ) = x(ξ) ,
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as well as for stochastic wave equations

dX(t, ξ) = Y (t, ξ)dt,(4.2)
dY (t, ξ) = (∆X(t, ξ) + CY (t, ξ)))dt + b

(
X(t, ξ)

)
dW (t, ξ)(4.3)

X(0, ξ) = x(ξ)

are investigated. For both equations the noise process is space homogeneous
with a general covariance function. Recent existence and regularity results,
developed in [6,8,9] are used in an essential way.
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