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ABSTRACT

We study the minima of the functional
∫

Ω f(∇u). The function f is not convex, the set Ω
is a domain in R2 and the minimum is sought over all convex functions on Ω with values in a

given bounded interval. We prove that a minimum u is almost everywhere ‘on the boundary

of convexity’, in the sense that there exists no open set on which u is strictly convex. In

particular, wherever the Gaussian curvature is finite, it is zero.

An important application of this result is the problem of the body of least resistance as

formulated by Newton (where f(p) = 1/(1 + |p|2) and Ω is a ball), implying that the

minimizer is not radially symmetric. This generalizes a result in [1].
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RÉSUMÉ
On examine les minimums d’une fonctionnelle de la forme

∫
Ω f(∇u) où f n’est pas convexe

et Ω est un domaine borné de R2, l’ensemble des fonctions admissibles u étant restreint aux

fonctions convexes à valeurs dans un intervalle fixé. On démontre que ces minimums sont

presque partout à la limite de la convexité, en ce sens qu’il n’existe pas d’ouvert où ils sont

strictement convexes. En particulier, aux points où leurs graphes possèdent une courbure

gaussienne finie, celle-ci est nulle.

Ce résultat s’applique notamment au problème de la résistance minimale de Newton (où

f(p) = 1/(1 + |p|2) et Ω est une boule). Il implique que le minimum n’est pas à symétrie

radiale, généralisant ainsi le résultat de [1].

1. Introduction

1.1 Newton’s problem
The problem of the body of minimal resistance was introduced by Sir Isaac Newton in
Principia Mathematica [9, 4] and his treatment has generally become known as one of



1. Introduction 2

the first examples of variational calculus. The problem can be stated mathematically
in the following way: let Ω be a given domain (an open connected set) in R2, and
minimize∫

Ω

dx

1 + |∇u(x)|2
(1.1)

(where |p|2 = p2
1 + p2

2 is the Euclidean norm) over the set CM of convex functions u
defined on Ω that are bounded above and below by constants 0 and M > 0. Here the
graph of u is the shape of the body whose resistance is estimated by (1.1) under some
simple physical assumptions. We refer the reader to [2] for a more detailed presentation
of this problem, and some alternative ways to state it. It is also proved in [2] that the
minimum is attained.

Newton computed a minimizing function urad when Ω is a circular disc, assuming
radial symmetry of the minimizer. Indeed, since the problem is invariant under rota-
tion, one might reasonably expect that a minimizer has the same invariance. However,
it was recently proved [1] that this function only minimizes (1.1) in the set of radially
symmetric functions. This is related to the non-convex nature of (1.1), due to the fact
that the Hessian matrix of the function p ∈ R2 7→ (1+ |p|2)−1 has a negative eigenvalue
at every point; there is a ‘non-radial’ direction at urad in which (1.1) has a negative
second variation. Therefore we can achieve a lower value of the functional with non-
radial functions. In particular it follows that the minimizers on a disc are not unique.
Incidentally, P. Guasoni [5] has exhibited a non-radial function which achieves a lower
value of the functional for M & 1.88.

Unfortunately, the argument given in [1] provides no information on the shape of
the minimizers other than the lack of radial symmetry. It has been conjectured by
H. Berestycki that the minimizers could be ‘affine by parts’. This conjecture arises
from the following result:

Lemma 1 Assume that u is of class C2 in ω ⊂ Ω and satisfies det d2u > 0 in ω. Then
u is not a minimizer of (1.1).

Proof. The proof of this Lemma is similar to the one given in [1]; since it is not
essential to this paper, we will just sketch it.

The crucial observation is that u is ‘interior’ to the set CM , in the sense that for
any function φ ∈ C2

c (ω), the two functions u ± εφ both belong to CM if ε > 0 is
small enough. Therefore, if we assume that u is a minimum, then u satisfies the Euler
equation

div df(∇u) = 0 in ω, (1.2)

where f(p) := (1 + |p|2)−1, as well as∫
ω

d2f(∇u)∇φ · ∇φ ≥ 0, (1.3)
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for all φ ∈ C2
c (ω). The idea is now to consider a function φ whose gradient is mainly

oriented in the negative direction of the matrix d2f(∇u). Indeed, if ω is a sufficiently
small set, we can assume that the matrices {d2f(∇u)(x)}x∈ω have a common negative
direction. Supposing this direction to be along the first coordinate axis, we choose
φ(x1, x2) := η(x) sin(nx1) where η ∈ C2

c (ω) is a fixed function and n is a sufficiently
large number. It is now easy to verify that there is a contradiction with (1.3).

This lemma strongly suggests that in some sense a minimizer u should satisfy
det d2u ≡ 0. Unfortunately, the C2-requirement is very strong, and nothing indi-
cates that it is actually satisfied by a minimizer of Newton’s problem. Even the radial
solution is not of class C2, in fact not even C1 (it has a flat circular zone where it is
minimal, and the gradient is not continuous on its boundary). Moreover, ‘most’ convex
functions are of class C1 and strictly convex, but ‘almost none’ of them are C2, in the
sense of Baire category (see for instance [13] and the references cited there). Since
there is no regularizing effect in this sort of problems (see [7]), there is little hope that
the minimizer is of class C2.

Hence it is not clear what generalization of det d2u ≡ 0 should hold for minimizers.
We should note that the condition det d2u ≡ 0, even if it makes sense in some open
subset ω ⊂ Ω, does not imply that u is affine. It only indicates that the graph u has
vanishing Gauss curvature; hence u could also be (locally) cylindrical or conical.

In this paper we investigate this question and prove that minimizers cannot be
strictly convex in any open subset. (Throughout the paper, ‘u is strictly convex in ω’
means

∀x, y ∈ ω, ∀t ∈ (0, 1), x 6= y ⇒ u(tx+ (1− t)y) < tu(x) + (1− t)u(y). )

As we remarked above, this behaviour is very unusual for a convex function, since ‘most’
convex functions are of class C1 and strictly convex. Note that this result contains the
statement of Lemma 1.

1.2 The general problem
We consider the problem

inf
u∈C

∫
Ω

f(∇u) dx (1.4)

where Ω ⊂ R2 is an open bounded domain, f : R2 → R+ is a given nonnegative smooth
function, and

C := {u : Ω→ [0, 1]; u convex} . (1.5)

This corresponds to the problem of the body of least resistance as stated above by
changing u to u/M and setting f(p) = 1/(M2 + |p|2). Since the set C is compact in the
H1

loc(Ω) topology [2] and f is bounded from below, the minimum is always attained.
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If f is convex or concave, the problem has already been studied in [7] with a general
constraint of the form (1.7). It is proved there that if u = u on ∂Ω, then the minimizer
is equal to either u or u. It was already explained in [7] that this sort of problem
cannot be studied through the usual methods of the calculus of variations, due to the
convexity constraint on u. In particular there is no ‘regularizing effect’ even if f is
convex.

In this paper we are interested in the case where f is not convex but may not be
concave either: the Hessian matrix d2f has at least one negative eigenvalue. If this
is true for every p in some subset Q of R2 then we call f nowhere convex in Q. As
remarked before, the function p 7→ 1/(1+|p|2) considered by Newton is nowhere convex
in R2.

For technical reasons we have to sharpen this assumption and assume that f satisfies
the hypothesis (H):

Hypothesis (H): For all V,W ∈ R2,

d2f(V )W ·W = 0 = d3f(V )W ·W ·W =⇒ W = 0.

It is easy to verify that this condition is satisfied in the particular case f(p) = 1/(M2 +
|p|2). Note that this hypothesis is used only in step 3 of the proof of Lemma 5.

1.3 Statement of main results
Let us recall that a convex function u is almost everywhere twice differentiable in its
domain; moreover, it is actually of class C1 on the set dom(∇u) where it is differentiable
(see for instance [11], Theorem 25.5). If A ⊂ Ω, we will note by ∇u(A) the image set
of A under the map x 7→ ∇u(x), for those x ∈ A where it is defined. We write convA
for the convex hull of A.

Our main theorem is as follows:

Theorem 1 Let u be a minimizer of Problem (1.4), and let Ω1 be an open convex
subset of Ω. If f is nowhere convex and satisfies hypothesis (H) on conv∇u(Ω1), then
u is not strictly convex on Ω1.

Note that this implies that the graph of u contains at least one straight line segment
in Ω1; by repeated application of this theorem it follows that there is a dense collection
of line segments in the graph.

The proof of this statement will follow in Section 4. Let us first give some important
consequences of this theorem.

First of all let us apply this result to the ‘classical’ problem as studied by Newton:

Corollary 2 Let M > 0 and f(p) = 1/(M2 + |p|2), and let Ω1 be an open subset of Ω.
If u solves Problem (1.4), then u is not strictly convex in Ω1.

Observe that the radial minimizer calculated by Newton (which is strictly convex on
a subset of the ball) can not be a minimizer of (1.4), and consequently the minimizer
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of (1.4) is not radially symmetric. As mentioned before, this was already proved in [1]
by a different argument.

Secondly, here is an alternative statement of Theorem 1:

Corollary 3 Under the conditions of the theorem, if φ ∈ C0(Ω) is strictly convex in
some open subset of Ω, then u− φ is not convex.

(This follows from the theorem by observing that if φ is strictly convex in an open
set Ω1, and u − φ is convex, then u is strictly convex in Ω1.) Hence, u is an ‘almost
extremal’ point of C, considered as a convex subset of the set of functions C0(Ω).

It can be proved that if u is a minimizer, then the sets

N0 := {x ∈ Ω ; u(x) = 0} (1.6)

and {x ∈ Ω ;u(x) = 1} are non-empty; the latter is included in the boundary of Ω, due
to convexity. In the following, we do not examine the behaviour of u near N0, nor the
shape of this set, since u is not strictly convex in its interior; this question is studied
in [8].

As a consequence, one can easily generalize the constraint ‘u(x) ∈ [0, 1]’ to

u(x) ≤ u(x) ≤ u(x), (1.7)

where u, u are arbitrary functions (provided there exists at least one convex function
satisfying (1.7)). In that case, N0 is simply the set where equality is attained in one
side of (1.7), and the theorem still holds if u, u are affine functions, or if for instance
Ω1 ∩N0 = ∅.

More generally, the reader should note that in all the following the condition u ∈ [0, 1]
is not taken into account. This is permitted by the fact that we consider restrictions
of u to smaller sets ω compactly inbedded in Ω1, and therefore we have u ∈ [ε, 1− ε]
for some ε > 0. We do not recall this in each instance.

2. On convex functions

Let us recall some well-known properties of convex functions on R2, and give some
definitions. Most of these can be found in classic texts such as [11, 12].

We will denote aff [p, s] the affine function x 7→ p · x − s, where p ∈ R2 and s ∈ R
are given and · is the conventional inner product in R2. Throughout this paper we
assume convex functions to take finite values (in contrast to what is common in the
texts mentioned above).

A convex function u on Ω is continuous on Ω, and twice differentiable on a dense
subset of Ω. We will denote dom(∇u) the set on which u is once differentiable; in fact,
∇u is continuous on dom(∇u).
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The subdifferential ∂u generalizes the gradient ∇u, and is defined for all x ∈ Ω as
the set of all slopes of tangent planes at x, i.e. p ∈ ∂u(x0) if there exists s ∈ R such
that

aff [p, s](x0) = u(x0) and aff [p, s](x) ≤ u(x) ∀x.

For every x ∈ Ω, ∂u(x) is a closed convex subset of R2, and for x ∈ dom(∇u) we have
∂u(x) = {∇u(x)}. We will not insist on the difference between a singleton {∇u(x)}
and its value ∇u(x), and if A ⊂ Ω, then ∂u(A) is understood to signify

⋃
x∈A ∂u(x). If

A is an open convex set, then ∂u(A) = conv∇u(A).
The second derivative or Hessian matrix d2u and its determinant det d2u are defined

on Ω as Radon measures [3].
If p ∈ R2 is given, there exists a unique number u∗(p) such that u ≥ aff [p, u∗(p)],

with equality at least in one point. Indeed we have

u∗(p) = sup
x∈Ω

[p · x− u(x)], (2.1)

which is called the conjugate of u. We also have:

u(x) = max
p∈∇u(Ω)

aff [p, u∗(p)](x) (2.2)

since dom(∇u) is dense in Ω.
An exposed point of a convex body C is a point X ∈ ∂C such that there exists a

supporting hyperplane through X that only intersects C in X (see [11], p. 162). An
exposed point has the property that a small parallel displacement of the hyperplane
leads to a small intersection with C. In the context of convex functions u : Ω→ R we
shall call x ∈ Ω an exposed point if X = (x, u(x)) is an exposed point of the graph of
u. Note that for any convex open subset ω ⊂ Ω,

every x ∈ ω is exposed ⇐⇒ u is strictly convex in ω. (2.3)

Applying the conjugation operator twice to a convex function v returns the original
function v: v∗∗ = v. If v is not convex, then the convex function v∗∗ is called the convex
regularization or Γ-regularization of v. It is the largest convex function less than or
equal to v, or equivalently the supremum of all affine functions less than or equal to v.

Most of the functions we deal with in this paper are not defined on R2 but on a
bounded convex subset Ω. For such functions there is some freedom in defining the
convex regularization. We choose the definition

v∗∗(x) = sup{p · x− s : v(y) ≥ p · y − s for all y ∈ Ω}.

With this definition, v∗∗ takes finite values outside of the set Ω.
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In the proofs that follow we use the following perturbation scheme: for a convex
function u and a perturbation h (not necessarily convex), we define

uε = u+ εh.

This function is generally not convex, and we therefore regularize it to give ũε = (uε)
∗∗.

The following Lemma states some important properties of this perturbation. Here
and throughout this paper a ‘measure’ will be the Lebesgue measure unless specified
otherwise; the Lebesgue measure of a set ω is denoted |ω|. We also define ‖v‖H1

0 (Ω) :=

‖∇v‖L2(Ω).

Lemma 2 Let u : Ω′ → R be strictly convex, and let h ∈ W 1,∞(Ω′) have compact
support in Ω′. Let Ωc be the union of all open sets in Ω′ on which h is convex, and
suppose that |Ω′ \ Ωc| = 0. Set uε = u+ εh, ũε = (uε)

∗∗, and define hε by ũε = u+ εhε.

1. The set ωε = {x ∈ Ω′ : uε(x) 6= ũε(x)} is compactly included in Ω′ if ε is small
enough;

2. limε→0 |ωε| = 0;

3. ‖uε − ũε‖C0
0 (Ω′) = o(ε) as ε→ 0;

4. ‖uε − ũε‖2
H1

0 (Ω′) = o(ε) as ε→ 0.

Remark. In part 4 one would expect that the optimal convergence rate is O(ε2) (or
possibly o(ε2), in view of 3), but our attemps to prove this have been unsuccessful. A
result of this type, however, would simplify the proof of Theorem 1 considerably.

Proof. To prove part 1, we consider any open set Ω1 such that supp h ⊂⊂ Ω1 ⊂⊂ Ω′.
We define

ũ = sup{π[u; y] : y ∈ Ω′ \ Ω1}.

Since u is strictly convex, we have u > ũ in Ω1, hence there exists a number c > 0 such
that u > ũ + c in supph. If |ε| < c/ ‖h‖L∞ then uε > ũ in supp h; since ũ is a convex
function satisfying ũ ≤ uε ≤ u in Ω′, we have ũ ≤ (uε)

∗∗ ≤ u in Ω′. These inequalities
reduce to equalities on Ω′ \ Ω1, and it follows that Ω′ε ⊂ Ω1.

For part 2, pick x ∈ Ωc where both u and h are differentiable. We will prove that
x /∈ ωε if ε is small enough. The assertion follows from this result by remarking that
the characteristic function χωε tends to zero a.e., so that

|ωε| =
∫ ′

Ω

χωε → 0 as ε→ 0.
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By the strict convexity of u, x is an exposed point; since Ωc is open there exists δ > 0
such that the set

Aδ = {y ∈ Ω′ : u(y) < π[u; x](y) + δ}

is included in Ωc. Subsequently, if ε ‖h‖L∞(Ω′) < δ/2, then the set

{y ∈ Ω′ : uε(y) < π[u; x](y) + δ/2}

is included in Aδ. Note that since uε is strictly convex in Aδ, π[uε; x] > uε in Aδ \ {x}.
Since ∇uε(x)→∇u(x) as ε→ 0, we can choose ε so small that

‖π[uε; x]− π[u; x]‖L∞(Ω′) <
δ

2
.

Now for all y ∈ Ω′ \Aδ,

uε(y)− π[uε; x](y) > uε(y)− π[u, x](y)− δ

2
≥ 0,

so that π[uε; x] > uε outside Aδ. Hence ũε(x) = uε(x) and we have x 6∈ ωε. This proves
part 2.

For part 3 we first show that because of the strict convexity of u there exists a
function γ : [0,∞)→ R, satisfying γ(r) > 0 if r > 0, such that

u(x) ≥ u(x0) + p · (x− x0) + γ(|x− x0|), (2.4)

for all x, x0 ∈ Ω′ and all p ∈ ∂u(x0). This follows from an argument ad absurdum:
if this were not the case, then we can find, using the compactness of Ω′, x, x0 ∈ Ω′,
x 6= x0, and p ∈ ∂u(x0), such that

u(x) = u(x0) + p · (x− x0).

This implies a contradiction with the strict convexity of u in Ω′. Note that γ(r) ≤
Mr for small r, for some M > 0. For convenience we shall also assume that γ is
monotone increasing and invertible near the origin. This can be achieved without loss
of generality.

Suppose that hε(x)− h(x) is maximized at x = x0. If we write ũε as

ũε(x0) = sup{p · x0 + a : p · x+ a ≤ uε(x), ∀x ∈ Ω′}

then we find

hε(x0)− h(x0) = sup
{
p · x0 + a− 1

ε
u(x0)− h(x0) :

∀x ∈ Ω′, p · x+ a− 1

ε
u(x)− h(x) ≤ 0

}
.
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By making the particular choice εp ∈ ∂u(x0) and applying (2.4) we find

hε(x0)− h(x0) ≥ sup
{
a− h(x0) :

∀x ∈ Ω′, a− 1

ε
γ(|x− x0|)− h(x) ≤ 0

}
.

If the inequality in the conditional part is saturated at x = x1, i.e. a− γ(|x1 − x0|)/ε− h(x1) = 0,
then

γ(|x1 − x0|) = ε(h(x0)− h(x1)),

so that x1−x0 ≤ γ−1(ε ‖h‖L∞); by re-inserting this in the equation above we find that
γ(|x1 − x0|) ≤ ε ‖h‖W 1,∞ γ−1(ε ‖h‖L∞) and thus

0 ≥ hε(x0)− h(x0) ≥ 1

ε
γ(|x1 − x0|) + h(x1)− h(x0) ≤ Cγ−1(ε ‖h‖L∞).

Since hε − h is supposed to be maximal at x = x0, we therefore have

‖uε − ũε‖C0
0 (Ω′) = ε ‖hε − h‖C0

0 (Ω′) = o(ε) as ε→ 0.

For part 4, we note that since ∆uε and ∆ũε are bounded in the space of Radon
measures RM(Ω′), we therefore have

‖ũε − uε‖2
H1(Ω′) = −

∫
(ũε − uε)∆(ũε − uε)

≤ ‖ũε − uε‖C0
0 (Ω′) ‖∆(ũε − uε)‖RM(Ω′)

and this last term is of order o(ε).

3. Regularity of the minimizers

We turn to the study of properties of the minimizers of F . If u is convex, the set
of limits of ∂u(x) as x → x0 (or, equivalently, of ∇u(x) for those x for which this is
defined) is the boundary of the subdifferential ∂u(x0) [11, Corollary 25.4.1]. We will
denote this boundary ∂[∂u(x0)]. As mentioned above, the subdifferential is a singleton
if and only if u is differentiable at x0.

For given x0 ∈ Ω we define polar coordinates with center x0, that is r = |x− x0|,
φ = arg(x − x0), so that u(x) = u(x0) + rg(φ) + o(r) for some continuous function
g : S1 → R. Denoting (er, eφ) the varying orthonormal basis at x 6= x0 (such that
er = (x − x0)/r), we define V (φ) as the limit of ∇u(x0 + ter(φ)), as t > 0 goes to
zero (φ ∈ S1 fixed). Expressed differently, V (φ) is the gradient at x0 + ter(φ), for any
t > 0, of the convex function û(x) := u(x0) + rg(φ) whose graph is the tangent cone
of the graph of u at x0 (note that û ≤ u by the convexity of u). Therefore we have
V (φ) = g(φ)er(φ) + g′(φ)eφ(φ). A little calculation indicates that the convexity of û is
caracterized by the property g + g′′ ≥ 0 in the sense of distributions on S1.
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The map φ ∈ S1 7→ V (φ) is a partial parametrization of ∂[∂u(x0)] (the parametriza-
tion is incomplete wherever V is discontinuous, and non-injective whenever V is con-
stant). The function V is constant if and only if u is differentiable at x0.

We first derive a simple consequence of the minimisation.

Lemma 3 Let u be a minimizer of (1.4), and suppose that ∂u(x0) has non-empty
interior. We define the function g as described above. Let Hg ⊂ C0(S1) be the set of
functions h satisfying h ≤ g and h + h′′ ≥ 0 in distributional sense. Then

∀h ∈ Hg, 0 ≤
∫
S1

f(her + h′eφ)− f(ger + g′eφ)

(g − h)2
. (3.1)

Moreover, if V is discontinuous at φ0 ∈ S1, with left and right limits V1 := V (φ0−),
V2 := V (φ0+), then

∀t ∈ [0, 1], f(tV1 + (1− t)V2) ≥ tf(V1) + (1− t)f(V2). (3.2)

Proof. We prove (3.1) only for h < g; the more general case follows from a density
argument, taking into account that, since ∂u(x0) has non-empty interior, there exists
a dense subset of such functions h in Hg.

Let us choose h ∈ Hg, h < g; we define v̂(x) := u(x0) + rh(φ) in polar coordinates.
Since h+ h′′ ≥ 0, v̂ is convex, and v̂(x) < û(x) ≤ u(x) for all x 6= x0.

Therefore, for any ε > 0 small enough, the function v := max(u, v̂ + ε) is convex,
and coincides with u except in a small neighbourhood of x, a set {r < σ(ε, φ)} in
polar coordinates; inside this set, we have ∇v = ∇v̂ = her + h′eφ. Note that σ(ε, φ) =
ε/(g(φ) − h(φ)) + o(ε) as ε → 0. Also, since u(x0) ∈ (0, 1) by assumption, we have
v(x) ∈ [0, 1] for all x if ε > 0 is small enough. Hence F (v) ≥ F (u), that is

0 ≤
∫
S1

∫ σ(ε,φ)

0

[f(her + h′eφ)− f(∇u(r, φ))] r dr dφ

≤ ε2

∫
S1

∫ 1
g(φ)−h(φ)

0

[f(her + h′eφ)− f(∇u(εs, φ))] s ds dφ+ o(ε2)

using the change of variable r := εs. Since this holds for any ε > 0 small enough, we
can divide by ε2 and let ε tend to 0; the term ∇u(εs, φ) converges to V (φ) = ger +g′eφ
and f(her + h′eφ) does not change. We integrate s ds to obtain (3.1).

We now turn to the proof of (3.2). We write γ+ := g′(φ0+) and γ− := g′(φ0−) for
the right and left derivative of g at φ0, and consider any number a ∈ (γ−, γ+); let
Va := g(φ0)er + aeφ(φ0), and ga(φ) := g(φ0) cos(φ− φ0) + a sin(φ− φ0). The convex
function va(r, φ) := u(x0) + rga(φ) is in fact an affine function (since ga + g′′a = 0) with
gradient Va; moreover, by the choice of a, ga(φ) < g(φ) for any φ 6= φ0, or equivalently,
û(x) > va(x) for any x /∈ x0 + R+er(φ0).



3. Regularity of the minimizers 11

We pick ε > 0 and define

h := max
(

(1− ε)ga,
g

2

)
.

There exist αε, βε ∈ S1 such that h = (1− ε)ga in (αε, βε), and h = g/2 in (βε, αε). We
have limε→0 αε 6= φ0 6= limε→0 βε.

Let us now apply (3.1) to h. The function

δ(φ) :=
f(her + h′eφ)− f(ger + g′eφ)

(g − h)2

becomes infinite near φ0 as ε→ 0; more precisely, for φ ∈ (φ0, βε) we have:

δ(φ) =
f((1− ε)Va)− f(ger + g′eφ)

(g − ga + εga)2

To estimate this term for small ε we note that if a, b, and c are continuous functions
and b is continuously differentiable, satisfying b(0) = 0, b′(0) 6= 0, and c(0) 6= 0, then∫ 1

0

a(x) dx

(b(x) + εc(x))2
=

a(0)

εb′(0)c(0)
+ o(1/ε) as ε→ 0.

Hence, for small ε:∫ βε

φ0

δ =
1

ε

(f(Va)− f(V2))

g(φ0) (γ+ − a)
+ o(1/ε)

Similarly,∫ φ0

αε

δ = −1

ε

(f(Va)− f(V1))

g(φ0) (γ− − a)
+ o(1/ε).

We recall that
∫
S1 δ ≥ 0, hence in particular the dominant terms must have nonnegative

sum. This gives:

f(Va)− f(V2)

(γ+ − a)
≥ f(Va)− f(V1)

(γ− − a)
.

which is equivalent to (3.2) for an appropriate choice of t. By varying a the result
follows for all t ∈ [0, 1].

We continue by studying the character of V in a particular case. The following
technical lemma uses techniques similar to the previous ones, but will be needed only
in Section 5. Note that the set N0 is defined in (1.6).
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Lemma 4 Let u be a minimizer of F , and suppose that div df(∇u) = 0 (in a distri-
butional sense) on a subset Ω′ ⊂ Ω \N0 where u is stricly convex. Assume that ∂u(x0)
has non-empty interior for some x0 ∈ Ω′, and that there exists a neighborhood Q of
∂u(x0) such that f has a strictly positive eigenvalue (and a strictly negative one, since
f is nowhere convex) and⋂

p∈Q

{
ξ ∈ R2 ; d2f(p)ξ · ξ < 0

}
6= ∅. (3.3)

Then the limit gradient field V has at least two discontinuities in S1. Moreover, at
every discontinuity we have not only (3.2), but also

[df(V1)− df(V2)] · (V1 − V2) = 0. (3.4)

Note that the condition (3.3) is satisfied if the diameter of ∂u(x0) is small enough.

Proof. By the hypothesis, for all p ∈ Q, there exist linearly independent vectors
q1(p), q2(p) of unit length, depending smoothly on p, such that d2f(p) · qi(p) · qi(p) = 0
for i = 1, 2. By (3.3), there exist two closed convex cones Ki ⊂ R2 such that qi(Q) ⊂ Ki

and K1 ∩K2 = K1 ∩ (−K2) = {0}.
We fix a point x0 as the origin of coordinates; subtracting an affine function from u

(and translating f), we may assume that u(0) = 0, and that u attains a minimum at
x = 0 (this is a strict minimum since u is strictly convex). We will use polar coordinates
with respect to the center 0: r := |x|, φ := arg x ∈ S1. As in the proof of Lemma 4,
(er(φ), eφ(φ)) is a local orthonormal basis, and V (φ) is the limit, as r→ 0 of ∇u(rer);
this limit is not constant with respect to φ (since otherwise u would be differentiable
at 0 [11, Theorem 25.2]). We have V (φ) = g(φ)er + g′(φ)eφ.

By a blow-up argument very similar to that used in the proof of Lemma 4 it follows
that the function û(x) := u(x0) + rg(φ) again satisfies (5.4), i.e.

div df(∇û) = 0

in a distributional (or measure-) sense in R2. For any φ ∈ S1 such that V is continuous
at φ, this reduces to

d2f(V (φ)) · V ′(φ) · eφ = 0 (3.5)

and if V has a discontinuity at φ, then

[df(V (φ+))− df(V (φ−))] · (V (φ+)− V (φ−)) = 0. (3.6)

This last equation gives (3.4).
First suppose that V is a continuous function of φ on some connected part J ⊂ S1

having nonempty interior, implying by convexity that V, g′ ∈ W 1,1(J). We claim that
V is constant in J . Indeed, using V ′ = (g + g′′)eφ, we have

(g(φ) + g′′(φ)) d2f(V (φ)) · eφ · eφ = 0 for a.e. φ ∈ J .
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Therefore, for almost all φ ∈ J , either V ′(φ) = 0, or eφ ∈ {±q1(V (φ)),±q2(V (φ))}.
We can write J as a disjoint union

J = A+
1 ∪A−1 ∪ A+

2 ∪ A−2 ∪ B,

such that eφ = ±qi(V (φ)) in J if and only if φ ∈ A±i . Note that by continuity the sets
A±i are closed in J .

The sets A±i are connected parts of J (it is convenient to write them as intervals).
Indeed, if φ1, φ2 ∈ A+

1 , then

either [φ1, φ2] ∩ A−1 = [φ1, φ2] ∩ A±2 = ∅
or [φ2, φ1] ∩ A−1 = [φ2, φ1] ∩ A±2 = ∅ (3.7)

(note that both [φ1, φ2] and [φ2, φ1] are intervals in S1). This follows from the mono-
tonicity of eφ and the disjoint nature of the cones Ki. Now, without loss of generality,
suppose that the first of (3.7) is true. Since A+

1 is closed, if B ∩ [φ1, φ2] 6= ∅, then there
exist φ3, φ4 ∈ A+

1 , with [φ3, φ4] ⊂ (φ1, φ2), such that (φ3, φ4) ⊂ B. On (φ3, φ4), eφ 6∈
{±q1(V (φ)),±q2(V (φ))} and therefore V ′ ≡ 0, so that q1(V (φ3)) = q1(V (φ4)). But
since φ3 6= φ4, we have eφ3 6= eφ4 , which contradicts the assumption that φ3, φ4 ∈ A+

1 .
Therefore A+

1 , and in a similar manner the other A±i , are connected.
Let us also observe that some of these sets can have empty interior; if they all do,

then V ′ = 0 a.e. in J , and V is constant, and our claim is proved. So, assume that
J \B has non-empty interior: we will prove a contradiction.

We note that g+g′′ > 0 in the interior of every interval A±i . Indeed, if we assume for
instance that A+

1 has non-empty interior, we have here eφ = +q1(V (φ)) for all φ ∈ A+
1 ,

from its definition, and therefore,

1 = eφ ∧
d

dφ
eφ = eφ ∧

d

dφ
q1(V (φ))

= eφ ∧∇q1(V (φ)) · V ′(φ) = (g + g′′) eφ ∧∇q1(V (φ)) · eφ,

implying that g + g′′ > const. > 0.
Let h : S1 → R be a function in Hg, as defined in Lemma 4. In particular, we can

choose h in the form h := (1− εσ)g, with ε > 0 small and σ ∈ C2(S1), σ ≥ 0, having a
derivative with compact support in the interior of J \B; since the derivatives of σ are
bounded, and g + g′′ > 0 in the interior of J \ B, we have h + h′′ ≥ 0 in S1 for small
enough ε.

Developing (3.1) with respect to ε yields∫
S1

d2f(V (φ))(er + k(φ)eφ) · (er + k(φ)eφ) dφ ≥ 0 (3.8)

with

k(φ) :=
(σg)′

σg
(φ) =

σ′

σ
(φ) +

g′

g
(φ)
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(the first-order term vanishes by (3.5)). Recall that d2f(V (φ))eφ ·eφ = 0 in the interior
of J \B; hence (3.8) implies

2

∫
J\B

d2f(V (φ))eφ · er
σ′

σ
dφ ≥ Ig := −

∫
S1

d2f(V (φ))(er +
g′

g
eφ) · (er +

g′

g
eφ) dφ

Note that the right-hand side Ig does not depend on σ. We choose σ′/σ close to the
sum of two Dirac measures, by considering a σ close to a step function (we cannot have
only one Dirac, by the periodicity of σ); it follows that d2f(V (φ))eφ · er ≡ c = const in
the interior of J \B. Taking d2f(V (φ))eφ · eφ = 0 into account, we get d2f(V )eφ = c er
in J \B (note that although J \B is not connected, the constant c is the same for each
connected part).

For any function k ∈ C2(S1), a short computation gives:[
df(V (φ)) · (ker + k′eφ)

]′
= ck(g + g′′) + (k + k′′) df(V ) · eφ

in J \ B, and also in B where g + g′′ = 0. Since the variation of V is assumed to be
small, df(V ) ·eφ must change sign in S1, and hence we can choose a function k ≥ 0 such
that the sign of k + k′′ coincides with the sign of df(V ) · eφ. This choice of k renders
the right-hand side of the last equation nonnegative, contradicting the periodicity of
df(V (φ)) · (ker + k′eφ).

This ends the proof of our claim: if V is continuous on any connected part J ⊂ S1

having nonempty interior, then it is just constant on J .
As a consequence, and since by assumption V is not constant in S1, we conclude

that V is not continuous, and has at least two discontinuities in S1.

4. Proof of Theorem 1

The proof of the main theorem of this paper, Theorem 1, is based on the following
instability result. It conveys the property that a minimizer can not be a stationary
point and strictly convex at the same time.

Lemma 5 Let u minimize F and suppose that u is strictly convex in a convex open
subset Ω1 ⊂ Ω. Then there exists a convex polyhedral function θ : Ω→ R such that

ωθ = {x ∈ Ω : u(x) < θ(x)} (4.1)

is non-empty and included in Ω1, and such that∫
ωθ

df(∇u)∇(u− θ) < 0.

A convex polyhedral function is the pointwise supremum of a finite number of affine
functions.
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We defer the proof of this Lemma to the next section, and continue first with the
proof of Theorem 1, assuming for the moment that this Lemma is proved.

Suppose that u is strictly convex in Ω1, and let θ be the polyhedral function given
by Lemma 5. We write simply ω for the corresponding set ωθ. Set φ := u − θ in ω,
and extend φ outside of ω by zero. Define for ε > 0 the functions

uε = u+ εφ and ũε = (uε)
∗∗.

Note that if ε is small, then by Lemma 2 the set

ω̃ε = {x ∈ Ω ; ũε(x) < uε(x)}

is compactly included in Ω1, and the Lebesgue measure of ω̃ε tends to zero as ε → 0.
Therefore ũε is admissible if ε is small enough.

We find on applying a Taylor series expansion to F at u,

F (ũε)− F (u) = dF (u)(ũε − u) +O(‖∇(ũε − u)‖2L2(Ω)). (4.2)

The last term, O(‖∇(ũε − u)‖2
L2(Ω)), is of order o(ε) by Lemma 2, part 4.

The first term on the right-hand side of (4.2) is split into two parts:

dF (u)(ũε − u) = dF (u)(ũε − uε) + dF (u)(uε − u)

= dF (u)(ũε − uε) + ε dF (u)φ. (4.3)

The second of these two is of order ε since by the choice of θ we have dF (u)φ < 0.
To estimate the first term we note that∣∣dF (u)(ũε − uε)

∣∣ =

∣∣∣∣∫
Ω

df(∇u)∇(ũε − uε)
∣∣∣∣

=

∣∣∣∣∫
Ω

(ũε − uε) div df(∇u)

∣∣∣∣
≤ M

∥∥d2u
∥∥
RM(Ω)

‖ũε − uε‖C0
0 (Ω) ,

where M is a bound on the second derivative d2f . Therefore we have

dF (u)(ũε − uε) = o(ε), (4.4)

using Lemma 2, part 3.
By combining estimates (4.2) and (4.4) with (4.3) we find

F (ũε)− F (u) ≤ −cε

for some c > 0, which contradicts the minimality of u.
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5. The instability lemma

We continue with the proof of Lemma 5, which we repeat here for convenience:

Lemma 5 Let u minimize F and suppose that u is strictly convex in a convex open
subset Ω1 ⊂ Ω. Then there exists a convex polyhedral function θ : Ω→ R such that

ωθ = {x ∈ Ω : u(x) < θ(x)} (4.1)

is non-empty and included in Ω1, and such that∫
ωθ

df(∇u)∇(u− θ) < 0.

The proof of this lemma relies strongly on a simple density property of the vector
space generated by the ‘caps’ of a given strictly convex function, which can be expressed
as follows:

Lemma 6 Let Ω1 ⊂ R2 be a convex domain, u : Ω1 → R be strictly convex. Let Θ
be the set of all convex polyhedral functions θ such that the set ωθ defined by (4.1)
is non-empty and included in Ω1; for each θ ∈ Θ, we consider the ‘cap’ function
γθ := (θ − u)+ ∈ C0

0 (Ω1) (the set of continuous functions vanishing on the boundary).
Then the vector field generated by these functions is dense in C0

0 (Ω1) (in the usual C0

topology).

Proof. Note that Θ is not empty since Ω1 consists of exposed points of u by (2.3).
Therefore, if x0 ∈ Ω1 ∩ dom(∇u) is given, any affine function π[u; x0] + ε is in Θ, if
ε > 0 is small enough.

We denote E := Vect {γθ}θ∈Θ the (algebraic) vector field generated by Θ, and E its
closure. We have to prove that E = C0

0(Ω1); in order to do that, it suffices to prove
that E is a lattice and separates points, in view of the Kakutani-Krein theorem (see
for instance [10], p. 104). We recall that a lattice is a subset of C0 that is stable under
the min and max operations.

If θ1, θ2 are given in Θ, then θ3 := max(θ1, θ2) is a convex polyhedral function;
moreover, ωθ3 = ωθ1 ∪ωθ2 is non-empty and included in Ω1, so that θ3 ∈ Θ. In addition
θ3 ≥ θ1, so that ωθ3 contains ωθ1 and therefore is not empty; this implies that θ3 ∈ Θ.
We now have

γθ3 = max(0, θ3 − u) = max(0,max(θ1 − u, θ2 − u)) = max(γθ1, γθ2),

Hence E is stable under the max operation, and therefore E is also stable. On the
other hand, if f, g ∈ E are given, then min(f, g) = f + g − max(f, g) belongs to E.
This proves that E is a lattice.

It is easy to see that E separates points; indeed, even the smaller subset

{γθ ; θ ∈ Θ affine}

separates points since u is strictly convex.



5. The instability lemma 17

Proof of Lemma 5.
The proof proceeds in five steps.

Step 1.

For every θ ∈ Θ,
∫
ωθ
df(∇u)∇(u− θ) ≤ 0.

Indeed, suppose that
∫
ωθ
df(∇u)∇(u− θ) > 0 for some θ. Define φ = u − θ on ωθ,

and extend φ by zero outside of ωθ. The function

uε = u− εφ

is admissible if 0 ≤ ε ≤ 1. Using the Taylor expansion

f(p) = f(p0) + df(p0)(p− p0) + g(p0, p)(p− p0) · (p− p0), (5.2)

where g : R2 × R2 → R2×2 is bounded on compact subsets, we find

F (uε)− F (u) = −ε
∫
ωθ

df(∇u)∇φ+ ε2

∫
ωθ

g(∇u,∇uε)∇φ · ∇φ.

Clearly this contradicts the minimality of u when ε is small.

Step 2.

If ∫
ωθ

df(∇u)∇(u− θ) = 0, ∀θ ∈ Θ, (5.3)

then

div df(∇u) ≡ 0 in Ω1, in the sense of measures. (5.4)

Indeed, if we use the notations of Lemma 6, then equation (5.3) can be written∫
Ω1
df(∇u)∇γθ = 0, ∀θ ∈ Θ. Therefore, the continuous linear map ϕ 7→

∫
Ω1
df(∇u)∇ϕ

vanishes identically on E, and therefore on E = C0
0 (Ω1). This implies (5.4).

Step 3.

We prove now that there exists an open subset Ω2 ⊂ Ω1, such that for any x ∈ Ω2,
∂u(x) has empty interior.

We argue by contradiction and assume that there exists a dense set S ⊂ Ω1 of points
x where ∂u(x) has non-empty interior. In particular, if we consider some point y ∈
dom(∇u)∩Ω1, there exists a sequence (xn) ⊂ S with limit y. Since we assume that u is
differentiable at y, the diameter of ∂u(xn) tends to 0 as n→∞ [11, Corollary 24.5.1];
more precisely,

lim
n→∞

sup
p∈∂u(xn)

|∇u(y)− p| = 0. (5.5)
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We have mainly to consider the case where y is such that d2f(∇u(y)) has two non-
zero eigenvalues, with different signs. For if not, since we assume that f is nowhere
convex, both eigenvalues of d2f(∇u(y)) are non-positive at every point, that is, f is
concave on ∇u(Ω1); in that case, it is clear that u cannot be stricly convex.

As a consequence, there exists an open neigborhood Q ⊂ R2 of ∇u(y), such that
for each p ∈ Q, the matrix d2f(p) has one strictly positive and one strictly negative
eigenvalue. Hence, for all p ∈ Q, there exist linearly independent vectors q1(p), q2(p) of
unit length, depending smoothly on p, such that d2f(p) · qi(p) · qi(p) = 0 for i = 1, 2.
From (5.5), we can assume that for every n, ∂u(xn) ⊂ Q.

For every n, we are now in the conditions of Lemmas 3 and 4 at xn. Hence there
exist V n

1 , V n
2 in ∂u(xn) such that

[df(V n
1 )− df(V n

2 )] · (V n
1 − V n

2 ) = 0.

∀t ∈ [0, 1], f(tV n
1 + (1− t)V n

2 ) ≥ tf(V n
1 ) + (1− t)f(V n

2 )

We write ηn := |V n
1 − V n

2 | (lim ηn = 0) and W n := 1
ηn

(V n
1 − V n

2 ); since this is a unit
vector, we can assume that W n converges to some limit W as n→∞.

Hence the function j(t) := f(V n
1 + tηnW

n) satisfies j′(0) = j′(1). As a consequence,
there exist tn ∈ (0, 1) where j′′(tn) = 0, by Rolle’s Theorem. Since j(t) ≥ tj(0) + (1−
t)j(1) for all t ∈ [0, 1], we must have j′′(0) ≥ 0, j′′(1) ≥ 0, and j′′(t) must change sign
twice in [0, 1]; therefore, there exist τn ∈ (0, 1) such that j′′′(τn) = 0.

Returning to f , we have for all n:

d2f(V n
1 + tηnW

n)W n ·W n = 0

d3f(V n
1 + τnηnW

n)W n ·W n ·W n = 0

In the limit, as n→∞, recall that V n
1 → V := ∇u(y), ηn → 0, so that:

d2f(V )W ·W = 0 = d3f(V )W ·W ·W

with |W | = 1. This contradicts hypothesis (H) on f .

Step 4.

By the previous step there is an open subset Ω2 such that ∂u(x0) has empty interior
for all x0 ∈ Ω2, i.e. all subdifferentials are points or line segments. Therefore,∫

B(x0,ε)

det d2u dx =

∫
∂u(B(x0,ε))

dp = |∂u(B(x0, ε))| → 0

as ε → 0 (see e.g. [11, Corollary 24.5.1] for such convergence results). Consequently,
the singular part of the Radon measure d2u is zero in Ω2; since u is strictly convex, the
regular part is not identically zero in Ω2 (in fact the support of the regular part is Ω2).

Therefore we can choose a point in Ω2 such that d2u is defined in the classical sense
and non-zero, and we fix this point as the origin of coordinates. By subtracting an
affine function and translating f we may assume that u(0) = 0 and ∇u(0) = 0.
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We claim that there exist two one-dimensional strictly convex functions φ1, φ2, de-
fined in a neighbourhood of 0, such that φi(0) = φ′i(0) = 0 and u(x1, x2)−φ1(x1)−φ2(x2)
is a convex function.

Indeed, let a > 0 be small enough in order to ensure that the square [−a, a]2 is
included in Ω1. For each given x2 ∈ [−a, a], u(·, x2) is a convex function defined
on [−a, a]; its second-order derivative is a positive measure ∂11u(·, x2). We define a
measure µ on [−a, a] by

∀(α, β) ⊂ [−a, a], µ(α, β) = inf
x2∈[−a,a]

∂11u((α, β), x2)

= inf
x2∈[−a,a]

(∂1u(β, x2)− ∂1(α, x2)).

The latter infimum is necessarily positive, since a zero value would contradict the strict
convexity of u; hence µ is a strictly positive measure. Let A > 0 be a large number
to be chosen in a while, and define φ1 : [−a, a] → R as the unique strictly convex
function with second derivative µ/A, and satisfying φ1(0) = φ′1(0+) = 0. Since u is
differentiable at x = 0, φ1 is differentiable at 0, and φ′1(0) = 0.

Since φ′′1 ≤ A∂11u(·, x2) for all x2 ∈ [−a, a], we see that u(x1, x2)−Aφ1(x1) is convex
with respect to x1, for x2 fixed. Obviously, that does not mean that u−Aφ1 is convex;
but we can reduce to a smaller neighbourhood [−b, b]2 ⊂ [−a, a]2 where u−φ1 is strictly
convex. Indeed, let us note

γ(x, y) = γ(x1, x2, y1, y2) := u(x) + u(y)− 2u((x+ y)/2).

Since u is stricly convex, γ(x, y) > 0 if x 6= y. We assume now that A satisfies:

A >
∂11u(0) ∂22u(0)

det d2u(0)
(5.6)

(note that it is possible to find such a number, by the assumption that det d2u(0) is
non-zero), and we claim that there exists b ∈ (0, a) such that

∀x, y ∈ [−b, b]2, with x 6= y γ(x1, x2, y1, x2) < Aγ(x, y). (5.7)

Indeed, if not, we can find sequences (xn), (yn), xn 6= yn for all n, both converging
to 0, such that γ(xn1 , x

n
2 , y

n
1 , x

n
2 ) ≥ Aγ(xn, yn). A simple Taylor expansion near 0 gives

∂11u(0)(xn1 − yn1 )2 ≥ Ad2u(0) · (xn − yn) · (xn − yn) + o(|xn|+ |yn|), or

(1− 1

A
)∂11u(0)X2

1 + 2∂12u(0)X1X2 + ∂22u(0)X2
2 ≤ 0

with Xi = limn→∞(xni − yni )/ |xn − yn|. Therefore, the discriminant of this quadratic
form must be non-positive, i.e. ∂12u(0)2 ≥ (1 − 1

A
)∂11u(0)∂22u(0). But this contra-

dicts (5.6), as a little computation shows. This ends the proof of (5.7).
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Since u− Aφ1 is convex with respect to x1, we know that for each x, y (x 6= y):

φ(x1) + φ(y1)− 2φ(
x1 + y1

2
) ≤ 1

A

[
u(x1, x2) + u(y1, x2)− 2u(

x1 + y1

2
, x2)

]
≤ 1

A
γ(x1, y1, x2, x2)

< γ(x, y) = u(x) + u(y)− 2u((x+ y)/2).

Hence u− φ1 is strictly convex.
To obtain φ2, we merely repeat the same process, starting from the strictly convex

function u− φ1 and using the second coordinate.

Step 5.

We now obtain a contradiction with the minimality of u. Indeed, let us choose three
positive real numbers α1, α2, β. If β is small enough, the set

ωβ := {x = (x1, x2) ; α1φ1(x1) + α2φ2(x2) < β}

is a neighbourhood of 0 included in the domain where u − φ1(x1) − φ2(x2) is convex.
Note that for ε > 0 small enough, the function u − ε(α1φ1(x1) + α2φ2(x2)) is also
convex. Hence, the function

vε := max(u, u− ε(α1φ1(x1) + α2φ2(x2)− β))

is convex, defined on Ω, and differs from u only in ωβ. We must therefore have F (vε) ≥
F (u), which is∫

ωβ

f(∇vε)− f(∇u) ≥ 0.

By choosing ε small enough, we get from a Taylor expansion∫
ωβ

d2f(∇u)∇(vε − u) · ∇(vε − u) ≥ 0.

(the first order term vanishes by (5.4)). This can also be written∫
ωβ

d2f(∇u)∇ψ · ∇ψ ≥ 0. (5.8)

where ψ(x) := α1φ1(x1) + α2φ2(x2). Recall that this inequality holds for all num-
bers αi > 0 (i = 1, 2), if β is small enough, and for any coordinate system (x1, x2).

Hence, we can assume that d2f(0) is just a diagonal matrix

(
λ1 0
0 λ2

)
, with for in-

stance λ1 < 0 (recall that f is nowhere convex). Since the map x 7→ d2f(∇u(x))
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is continuous and |ωβ| → 0 as β → 0, we have limβ→0 c(β) = 0, if we write c(β) =
supωβ |d

2f(∇u(x))− d2f(0)|. Hence, we get from (5.8):

λ1k1(α, β) + λ2k2(α, β) ≥ −c(β)(k1 + k2)(α, β) (5.9)

where α = (α1, α2) and ki(α, β) := α2
i

∫
ωβ
φ′i(xi)

2 dx1 dx2.

Recall that φi is a strictly convex function minimal at 0. Hence, the function s ∈
R 7→ φi(s) sign s is increasing and has a reciprocal function that we denote ηi; note
that ηi(0) = 0, but the derivative η′i(s) = sign s/φ′i ◦ ηi(s) is infinite at s = 0. Hence,
if m > 0 is any number, we have (dropping indices i for short):

α2

∫
αφ(x)<m

φ′(x)2 dx = α

∫ m

−m
φ′ ◦ η

( t
α

)
sign t dt [set t = αφ(x) signx]

=

∫ m

−m

|t|∣∣ t
α
η′( t

α
)
∣∣ dt

>

∫ m

−m

|t|∣∣η( t
α

)
∣∣ dt −→ +∞ as α→∞.

(The last inequality is a consequence of tη′(t) < η(t), equivalent to xφ′(x) > φ(x),
which follows from the convexity of φ.)

Hence, k1(α, β) tends to∞ as α1 tends to infinity. As a consequence, it is possible to
find sequences (αn) ⊂ (0,∞)2, (βn) ⊂ (0,∞) such that βn and (k2/k1)(αn, βn) converge
to 0. Replacing these numbers in (5.9), and letting n going to infinity, we get λ1 ≥ 0,
a contradiction.

This concludes the proof of Lemma 5.
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