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Abstract

We present an evolutionary tool to solve free�route Air Tra�c Flow Management problems within a three�

dimensional air space ���� This is the �rst evolutionary tool which solves free�route planning problems involving

a few hundred aircraft� We observe that the importance of the recombination operator increases as we scale

to larger problem instances� The evolutionary algorithm is based on a variant of the elitist recombination

algorithm� We show a theoretical analysis of the problem	 and present the results of experiments�

AMS Subject Classi�cation ������� 
�T�
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Note� This paper was presented at the Parallel Problem Solving from Nature conference PPSN�IV	 Berlin	

Germany	 ���


�� Introduction

Previous work on application of Evolutionary Algorithms �EA�s� to the Air Tra�c Flow Management
�ATFM� problem ��� 	� 
� handles only small problems involving few aircraft within a two�dimensional
air space
 We develop an evolutionary tool that can handle three�dimensional ATFM planning prob�
lems involving a few hundred of aircraft


For smaller �D�problem instances we obtained good results with a mutation based EA �
�
 This
system solves problems involving up to �� aircraft within a square �D sector of size ��� � ��� km

Using these problem instances it appeared to be impossible to de�ne a good recombination operator

All aircraft are relatively close to one another� and as a result of the small size of the �D sector the
probability that a combination of trajectories from di�erent plans resulted in good o�spring is small

When making the transition to the large scale problems we are studying currently� involving up to
��� aircraft within a 	D�sector of size ����� ���� km� there are more aircraft which do not get into




� Air Tra
c Flow Management Problem �

each others proximity
 As a result di�erent con�icts can be resolved in parallel� and a recombination
operator can bring the solutions together in a single plan
 So by scaling the size of the problem
instances� the recombination operation changed from a virtually useless operator to an important
operator


There is no reason for abandoning the use of a probabilistic algorithm� as deterministic algorithms
can not be guaranteed to give a solution within a reasonable amount of time either on the ATFM
problem
 This problem� which will be de�ned formally in section �� is assumed to be NP�hard
 Hence
we have to rely on e�ective �probabilistic� approximation methods
 The plans are created before the
aircraft departs
 Real�time planning is only used when aircraft deviate from the original plan� and
should involve only a subset of all aircraft trajectories
 On the ATFM problem a probabilistic method
can be as good as any deterministic method� when designed carefully
 Deterministic methods can also
end up in deadlock situations� or encounter problems which can not be solved by that method
 Our
method has been designed in such a way that it searches a broad class of possible solutions� and it
is not biased toward speci�c solutions in this class
 This helps in preventing deadlock situations� and
improves global search


In section � we discuss air tra�c �ow management problems� in section 	 we show a theoretical
analysis� in section � we introduce the evolutionary algorithm� section � gives the experimental set�up
and the results� and �nally we draw conclusions and discuss further work in section �


�� Air Traffic Flow Management Problem

Air Tra�c Flow Management �ATFM� is involved in planning the movements of aircraft
 A complete
plan describes the trajectories of all involved aircraft
 A trajectory de�nes the exact position of
an aircraft as a function of time� so it corresponds to a path with additional temporal information

Two trajectories are con�icting when at a certain time the separation between these trajectories is too
small
 The minimal required separation between trajectories is �� nautical miles in the horizontal plane
�� nautical mile � ����� meters�� or ���� ft vertical separation �� foot � �
	��� meters�
 Usually
a plan is created for a sector of limited size
 A sector contains a number of layers� called �ight�
levels
 The altitudes of di�erent �ight�levels are chosen in such a way that aircraft �ying in di�erent
�ight�levels are never in con�ict
 An ATFM plan assigns a single trajectory to each aircraft
 These
trajectories should be chosen in such a way that there are no con�icts between aircraft
 Furthermore
the length of all trajectories and the number of maneuvers should be kept low
 There is also a fairness
requirement that states that the additional distances and maneuvers should be divided among all the
aircraft �i
e
 it should not be the case that only a few aircraft do all the maneuvering and do all the
extra �ying�
 The primary target of a planning is to let all aircraft move from their entry to their exit
location in such a way that none of the trajectories are con�icting
 As a secondary target� one can
minimize the number of maneuvers� the additional distance� and try to satisfy the fairness requirement

Maneuvers are usually uncomfortable for the passengers� and too much additional distance may lead
to a delayed arrival of the aircraft
 Currently ATFM is based on a restricted model of the air space�
the so called network model
 This model assumes a �xed network of corridors within the air space�
each containing a number of �ight�levels
 An aircraft is assumed to �y through a corridor from
beacon to beacon
 Intersections of corridors are always marked by beacons
 Only near those beacons�
an aircraft is allowed to switch to a di�erent corridor
 So this model introduces a kind of three
dimensional highway network
 The main di�erence compared to a highway network is that �ight
control within this ATFM network is more strict
 Aircraft are assumed to follow the trajectory which
is agreed upon in advance� and pilots have to ask for clearance when they want to deviate from the
planned trajectory
 The network model restricts the number of possible trajectories
 As a result the
network model does not use the full capacity of the air space
 Due to the increasing amount of air
tra�c� the air space above Europe is almost saturated
 Increased accuracy of navigation equipment
and the availability of better computers allows for less restricted air space models
 One such model



�� Theoretical Analysis of the ATFM problem �

is the free�route model which allows arbitrary shaped trajectories� has a larger degree of �exibility�
but it results in a completely di�erent planning problem
 In this paper we propose an evolutionary
algorithm to create such a planning� and we study how this algorithm scales with respect to the size
of the problem instances


�� Theoretical Analysis of the ATFM problem

We assume that a planning has to be created for a square sector of size s � s � containing l separate
�ight�levels
 The source and the destination of the aircraft are �D�locations� chosen at random within
the sector� using a uniform distribution
 The �ight�level of the aircraft at the entry� and exit�location
can be chosen freely
 The entry and exit locations of �ights in a planning do not have to correspond
to actual locations of airports
 When aircraft are departing or approaching an airport their trajectory
is managed by the controllers at the corresponding airport
 Such a local Air Tra�c Control center at
an airport usually manages lower regions of the airspace that do not overlap with the high altitude
sector we are considering here
 We may hence assume that the aircraft enter the airspace at some
distance from the airport
 We assume that all the aircraft have the same velocity v 
 The �ights are to
be planned within the interval ��� thor �
 The time of entry is selected at random within this interval

This time of entry is accepted if the aircraft can reach its exit location within the interval ��� thor ��
when �ying in a straight line


In order to predict the number of con�icts we can use physical models describing the number of
collisions between a set of gas molecules in a box per unit of time ���
 When translating such a model
to our case we get the following formula�

E ��Conf � � �
thordsepv

s�l
n��

Here v is the average velocity
 The constant � is introduced to account for the non�uniform distribution
of aircraft over the sector
 The density of aircraft will be highest near the center of the sector� and
lowest near its borders
 Within the gas model this constant is one as the gas molecules are distributed
uniformly over the complete volume
 The complexity of a problem instance scales quadratically with
the number of aircraft involved
 This is tested as follows
 We have varied the number of aircraft from
��� to ���
 For each number of aircraft �� random problem instances are created
 For each problem
instance ���� random plans� containing only straight�line trajectories� were generated
 Figure � shows
the average number of con�icts detected as a function of the number of aircraft� and a �tted curve
showing a quadratic scaling in the number of aircraft
 Observe the close match between the �tted
curve and the simulation results
 Figure � also contains the average number of con�icts of the best plan
E ��Con�icts best � which is estimated by taking an average over �� independent problem instances
�for each instance the �con�icts in the best plan out of ���� random plans is used�
 When comparing
the result for a horizontal separation dsep of �� nm to those for a separation of � nm we observe the
linear scaling in this parameter
 This is in accordance with the gas model


�� Evolutionary Algorithm

The elements of the population are plans
 A plan is a set of trajectories� one for each �ight to be
scheduled
 The plans in the initial population involve only straight�line trajectories from the entry
to the exit location at a �xed �ight�level
 If we consider a problem with three �ight�levels� then
this yields already 	n possible �ight plans �n is the number of �ights�
 It seems to be a reasonable
choice to consider only trajectories with a small number of maneuvers
 We do this by starting from
an initial population containing straight�line trajectories only� and use the recombination operator
to search for non�con�icting combinations of trajectories
 Trajectories containing many additional
maneuvers are not likely to be good due to the fairness requirement� a solution with only straight�line
trajectories is an optimal solution� according to our �tness measure
 As evolution proceeds� more
complex trajectories arise due to the application of a mutation operator




�� Evolutionary Algorithm �

0

100

200

300

400

500

600

700

800

900

100 200 300 400 500 600 700 800

E[#Confl] sep. =16nm
C*x^2

Best found sep. =16nm
E[#Confl] sep. = 8nm

Figure �� E ��conf � as a function of n for a horizontal separation of � nm and �� nm


The �tness is de�ned as follows�

f �plan� � �C �plan� �
M �plan� �R�plan�

d

Here C �plan� is the total number of con�icts within the plan� M �plan� is the number of avoid�
ance maneuvers� and R�plan� is the sum of all the distances traveled by the aircraft divided by the
summation over the lengths of the straight�line trajectories
 The constant d is chosen such that
�M �plan� � R�plan�� �d never becomes larger than one
 In this way a �tness f �plan� � �� corre�
sponds to a con�ict free planning


The Elitist recombination algorithm ��� is used as a basis for our algorithm
 This algorithm does
a random pairing of all elements of the population� without using �tness information
 Each pair of
parents creates two o�spring by means of recombination
 The best two individuals among parents
and o�spring are propagated to the next generation
 This competition between parents and o�spring
prevents rapid duplication of relatively �t individuals� and as a result decreases the probability of
premature convergence
 Within our implementation each o�spring competes with only one of its
parents
 This scheme has a lower selective pressure than the standard elitist recombination
scheme
 This competition with one parent is also used in the deterministic crowding scheme ���
 But
deterministic crowding lets o�spring compete with the most similar parent
 The Elitist recombination
algorithm is chosen as it does not deteriorate the average �tness when inferior o�spring is produced
due to the �population� elitism� and it prevents too rapid convergence of the population �the o�spring
always has to compete against its parents�


The main operator in our algorithm is the recombination operator
 If two con�icts involve two
disjoint sets of aircraft� then often it is possible to resolve these con�icts independently
 A good
recombination operator should be able to merge separate resolutions
 The recombination operator
creates one o�spring using two parents
 It starts with an empty plan for the o�spring
 Then it
iteratively selects an aircraft and takes the corresponding trajectory from one of its parents
 This



�� Evolutionary Algorithm �

while � ready do

�� apply Elitist recombination for Ngen generations ��
for i � � to Ngen do
elitist recombine Population

�� introduce new trajectories by means of mutation ��
for i � � to �Fmut ��con�icts best� do
pl � random plan from Population

� � random con�icting trajectory from pl

k � �
repeat
k � k � �
if k � Ntry then
ntr � mutate���

else
ntr � random straight���

until ncon�icts�pln� �ntr� � ncon�icts�pln� ��� � k � Ntry

if ncon�icts�pln� �ntr� � ncon�icts�pln� ��� then
pl � ntr � pln�

Figure �� Pseudo�code of main loop of Evolutionary ATFM

parent is selected as follows
 One of the parents is selected at random� and it is checked whether
the corresponding trajectory would introduce new con�icts within the child
 If it does not introduce
con�icts this parent is selected� otherwise the other parent is selected
 The trajectory of the selected
parent is added to the child
 So aircraft are selected in a random order� and for each �ight the primary
parent is selected at random
 This selection procedure results in a preference for non�con�icting
trajectories
 This bias helps the recombination operator to scale�up well with the size of the problem
instances
 When a �purely random� uniform recombination operator is applied it likely results in
o�spring performing worse than the parents� when a few hundred of aircraft are involved


The mutation operator is the only operator that introduces new trajectories within our algorithm

A new trajectory is created by making a copy of one of the existing trajectories and adding some
additional maneuvers to it
 Two di�erent mutation operators have been de�ned�

level�mutation� modi�es an existing trajectory by adding a random change of �ight�level at a ran�
dom time


detour�mutation� introduces a detour by changing its heading by���o � �ying for a random duration
in this new direction� and then changes its heading towards the exit�location again


Note that the detour mutation can cancel previously inserted maneuvers
 Although these mutation
operators are relatively easy to implement one can not guarantee that a single application of these
operators will produce a good trajectory
 New trajectories that do not resolve any con�icts will
rapidly be �ltered out of the population by the EA �such trajectories only introduce a penalty and
no bene�t for the �tness�
 If the probability that good trajectories are produced becomes small�
premature convergence becomes likely
 In order to prevent this we have taken the mutation out of
the selection�production cycle
 We run the EA for a few generations and then we apply mutation
to the plans present within the population
 A mutation is only accepted if the produced trajectory
increases �tness when replacing the original trajectory
 Using this scheme we get a more constant
production of well�performing trajectories




�� Experiments and Results �

Figure � summarizes the main loop of the evolutionary ATFM in pseudocode
 The ready�predicate
becomes true when a con�ict�free solution is obtained� or when the maximal number of function
evaluations is reached� and ncon�icts�pl � tr� counts the number of between trajectory tr and the
trajectories with plan pl 


Our evolutionary algorithm is designed in such a way that we get a good balance between explo�
ration and exploitation
 Good exploration is obtained because two independent applications of the
recombination operator to the same pair of parents are still likely to result in di�erent o�spring and
from the bias towards better trajectories within the mutation operator
 Good exploitation comes
from the bias towards preserving better combinations in the recombination operator� and from Elitist
recombination algorithm with low selective pressure


Our experience is that incorporation of problem speci�c knowledge is usually necessary when solving
large problems
 In this case we have introduced knowledge in several ways
 We start with a population
containing only straight�line trajectories
 Within acceptable plans the trajectories usually do not
contain many maneuvers� so this is a reasonable starting point
 A single application of the mutation
operator can only introduce a small number of additional maneuvers
 Furthermore knowledge is
incorporated in the recombination operator as it makes a biased decision when it has to decide which
parent will provide the trajectory for a certain aircraft
 Using this knowledge the probability that
a well�performing o�spring is created is increased� especially for problems involving many aircraft

Designing biased operators is not a trivial task
 One has to introduce a bias to enhance the probability
that an operator produces reasonable o�spring� but introducing too much bias might easily lead to
premature convergence
 An important guideline we used is that independent operator application
should likely result in di�erent o�spring� even when using the same pair of parents


An aspect of our algorithm is that it does not rely too much on local search methods
 Instead it
uses a kind of random generation of trajectories by means of the mutation operator
 The primary goal
of the EA is to �nd those trajectories that perform well and combine these trajectories to a complete
planning
 Such a probabilistic approach does not use an explicit local search method
 As a result it
does not easily get trapped in a kind of deadlock situation where no enhancements are possible


�� Experiments and Results

During the experiments we varied the number of aircraft to be planned� and as a result the expected
number of con�icts in the sector
 The parameters shown in Table � were used during all the exper�
iments
 A single application of the current mutation operators introduces one avoidance maneuver

Such an avoidance maneuver contains several elementary maneuvers
 For example an application of
the detour�mutation introduces two additional maneuvers� the �rst is a change of heading by ���o�
and the second is a curve to move the heading of the aircraft towards the exit location


The �rst set of results is obtained using straight�line trajectories only
 Mutation is only used to
�re�introduce straight�line trajectories that got lost
 It does not introduce new trajectories
 Even for
this �restricted� subset of possible trajectories� l for each �ight� the search space already is large
 The
number of possible plans is proportional to ln 
 The other experiments use level�mutation� detour�
mutation and mixed mutation
 The mixed mutation operator �rst tries to �nd a better trajectory
by applying detour�mutation� if this fails the level�mutation is applied once
 The detour�mutation
is applied �rst because it has better convergence properties
 During the experiments we varied the
number of aircraft
 For each problem instance �� random plans were created
 All graphs show the
negated �tness
 A run is terminated when its negated �tness drops below one� this corresponds
to a con�ict�free planning
 We recall that the �tness measure has been chosen in such a way that
b�f �plan�c corresponds to the number of con�icts within the plan
 Only detour mutation is used�
unless stated otherwise


Figure 	 �left� shows the overall worst solution over all �� independent problem instances
 Di�erent



�� Experiments and Results �

Parameter Value

plannings horizon thor � hours
number of aircraft n ������� aircraft
velocity v ��� km�hour
separation dsep �� nautical miles
size of sector s ���� km
�levels l 	
population size ��
�function evaluations ���� maximum
�independent runs ��
�avoidance man
 per ac
 �
�generation inner loop Ngen �
rel
 �mutations in outer loop Fmut �
�
�tries for a mutation Ntry ��

Table �� Parameters used during the experiments
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Figure 	� overall worst solution over �� independent problems �left� and number of avoidance maneu�
vers �right� for di�erent population sizes

curves correspond to di�erent population sizes
 This graph suggests that the worst case behavior
gets better when the population size gets smaller
 The only exception is in the experiment using
the extremely small population size �� which gets trapped easily
 The good performance of small
populations is mainly due to the upper limit on the number of function evaluations
 The larger the
population size� the higher the probability that the algorithm is terminated because it hits this upper
limit
 Figure 	 �right� shows the average number of avoidance maneuvers per plan as a function of
the number of aircraft
 We see that the number of introduced maneuvers becomes smaller and hence
better solutions are obtained when we increase the population size
 When we measure quality in
terms of the additional distance to be �own then EA�s using larger populations also create solutions
of higher quality
 Our experiments show that EA�s using small populations are more likely to get
trapped in a con�guration where it seems impossible to make further progress
 We conclude that
larger populations result in a more reliable convergence process and better solutions


Figure � �left� shows the average negated �tness of the best solution as a function of the number
of function evaluations for a population size ��
 The small bulbs in most curves are due to the fact
that �tness is calculated over the non�terminated runs� so if a run terminates successfully� the shown



�� Conclusions 	
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Figure �� Convergence curves for di�erent problem sizes �left� and number of successful runs for
di�erent types of mutation �right�

average �tness can increase
 We see that the speed of convergence is dependent upon the problem
size
 The failure of the algorithm to solve our largest problem instances is probably due to the limit
on the number of function evaluations
 On the ��� aircraft problem instances the method still obtains
a 	��fold reduction in the number of con�icts on average


Figure � �right� shows the number of successful runs out of the �� independent runs� for the di�erent
types of mutation operators
 When allowing no mutation� the problem rapidly becomes unsolvable as
the number of aircraft increases
 Without mutation only solutions involving straight�line trajectories
are considered
 When mutation is allowed the probability of �nding a con�ict�free solution is much
larger� and the scaling properties are better
 The method using level�mutation performs slightly
better than the method without specialized mutation operators
 This is probably due to the fact that
a level�change takes quite some time� and that during a level�change an aircraft claims space within a
number of �ight�levels
 A single level change can also easily introduce dependencies between aircraft


�� Conclusions

The free�route planning problem has a search space that grows exponentially when the number of
aircraft increases
 To be able to handle large scale problems of this type it is required to incorporate
knowledge regarding the problem domain
 We have done so by means of a non�uniform seeding of
the initial population and by designing problem speci�c evolutionary operators
 Introduction of such
operators has to be done carefully in order to prevent that certain good solutions are ignored and
to prevent premature convergence
 The choice of the evolutionary algorithm and the way mutations
are introduced also have a strong in�uence on the balance between exploration and exploitation
 A
proper balance is necessary to obtain good solutions using only a limited amount of computation
 The
designed algorithm performs well and requires only small populations


Given the fact that the airspace above Europe contains at least � separate �ight levels� the our
current tool can route approximately �	 � � � ��� �� ���� aircraft within a time span of �� hours�
using a horizontal separation of �� nautical mile


Further research will be devoted to real�time replanning
 Due to weather conditions� or delays at
airports it is likely that some aircraft do not �y according to their planning
 Under such circumstances
it is important to have rapid replanning tools� which use the current planning as their starting point
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