Of Mechanism Design and Multiagent Planning

Roman van der Krogt' and Mathijs de Weerdt? and Yingqgian Zhang?

Abstract. Multiagent planning methods are concerned with
planning by and for a group of agents. If the agents are self-
interested, they may be tempted to lie in order to obtain an
outcome that is more rewarding for them. We therefore study
the multiagent planning problem from a mechanism design
perspective, showing how to incentivise agents to be truthful.
We prove that the well-known truthful VCG mechanism is
not always truthful in the context of optimal planning, and
present a modification to fix this. Finally, we present some
(domain-dependent) poly-time planning algorithms using this
fix that maintain truthfulness in spite of their non-optimality.

1 Introduction

While planning has been, and is, extensively studied in single-
agent environments, many interesting applications of plan-
ning feature an environment with more than one agent. This
is where multiagent planning methods come into play. These
enable the agents to reason about their interactions and en-
sure that their individual plans are efficient and effective. To
solve various forms of the multiagent planning problem, sev-
eral systems exist, such as (Generalised) Partial Global Plan-
ning (PGP) [3] and, more recently, MPOPR [15].

Most of these existing systems assume that the agents are
cooperative. Consequently, complex interactions among mul-
tiple agents can be coordinated by one of them, or even by
some central system, because it can be expected that all
agents serve the same common cause, and that they all reveal
any required information truthfully. However, often agents
represent companies or other autonomous entities which may
have (partially) conflicting preferences. Such self-interested
agents do not have the option of simply trusting each other
and solving the problem centrally, but will have to negotiate
to ensure that their individual plans are valid in combination.
This introduces the problem of mechanism design.

Mechanism design (MD) is a sub-field of economics and
game theory. The goal of mechanism design is to design a set
of rules for a “game”, achieving certain criteria such as truth-
fulness. The designer may accomplish this by building in an
incentive for the players to behave as intended. An example of
such a mechanism ensuring truthfulness is the Vickrey-Clarke-
Groves (VCG) mechanism. Mechanism Design has received a
lot of attention over the past few years from the agent commu-
nity, for example to help in the design of (auction) protocols
for multiagent systems [13]. However, the consequences for

1 Cork Constraint Computation Centre, University College Cork,
Ireland; email: roman@4c.ucc.ie

2 Delft University of Technology, Delft, The Netherlands; email:
{M.M.deWeerdt,Yinggian.Zhang} @tudelft.nl

multiagent planning have received only very little attention.
It is from this perspective that the current paper arises.

First, we give a formal definition of a multiagent planning
problem (MAP) and discuss mechanism design in this context.
After that, we show how a well-known truthful mechanism
(VCG) is not truthful for MAP, and we show how to modify
this mechanism to make it truthful again. Our final contribu-
tion is to show which approximating planning algorithms can
be used to obtain a truthful VCG-based mechanism.

2 Multiagent Planning Mechanisms

A multiagent planning problem 0 € © for a set of agents
A =1{1,...,n} is a tuple 0 = (01,...,6;,...,0,) of private
planning problems 0; € O; for these agents. Following the
set-theoretic notation for single-agent planning [5] where pos-
sible, agent ¢’s planning problem 6; consists of (i) a set F; of
ground atomic formulae, i.e. the propositions used to describe
the domain of this agent; (17) a set O; C O of operators (ac-
tions) this agent may carry out that are defined by changes in
the state, represented by sets of propositions; (1) a cost func-
tion ¢; : O; — R~ that assigns a cost to each operator; (iv)
that part of the (common) initial state the agent is aware of,
I; C F;; (v) aset of goals G; C F;; and (vi) a reward function
r; : Gi — RT, assigning a reward to each of the goals.

We assume that all agents start from a global initial state
1, although they may have a limited view of it. This global
initial state is consistent (i.e. I = |J,;c 4 I: is conflict-free). The
goals of different agents can be mutually exclusive, however.

The solution to a multiagent planning problem is a plan. We
consider a plan to be a partially ordered sequence of actions
7= (0}',...,0im), where each o' € O;. The subplan of 7 for
agent i is m; = (0; | 0j €). The space of all plans is denoted
by II. The result of executing the plan 7 in the context of a
planning problem 6 is the state that is achieved after execut-
ing all actions sequentially. We denote this by Result (I,),
where I = J,. 4 i is the initial state as specified by 6.

Given a plan 7 = (0',...,0lm) for a planning problem 6,
we define the cost of that plan to be ¢ (m,0) =3 i . ci (0%).
The costs that a particular agent 7 incurs equals tﬁe sum over
the actions it is to execute: ¢; (m,0) = Y i ci (0}). The
revenue of m for a given problem 6 is givenj by the reward
functions for the goals that have been attained:

B ri(g) if g € Result (I,)
(M 0) = Liea Xgeo; { 0 otherwise.

Similar to ¢; (m,0), we identify r;(m,0) with the revenue
of a particular agent i. The wtility of plan = is defined as:
U(rm,0) = c(m,0) + r(m,6). An optimal planner returns the
plan which has the highest utility.

https://core.ac.uk/display/301665924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.1 Mechanism Design

We are interested in a mechanism to construct the best multi-
agent plan. This formation of a multiagent plan 7 can be seen
as a soctal choice over all possible plans II, where each agent
i has preferences over the possible plans defined by its valua-
tion v; (7, 0) = c;(m, 0) +ri(m, 0). The set of all possible plans
depends on the local planning problems of the agents. These
local planning problems comprise the input of our mechanism.

In this paper we consider these local planning problems to
be private information of the concerned agent. This private
information is usually called the type of an agent i. For MAP
problems, this is 0; = {F;, O, ci, I;, Gs,r;}. The space of all
possible types for an agent i is denoted by ©;. When all agents
declare their type to the mechanism, we can use a planning
algorithm to try to find the best multiagent plan.

As the agents can directly influence the generated plan by
their declaration, sometimes they can profit from lying about
their type. We distinguish three types of lying: (i) lying about
the value of a plan, i.e. the functions ¢; and r;, and the goals
Gi; (i) under-reporting the available objects, i.e. reporting
O} C O; and/or I; C I;; and (%44) over-reporting non-existing
objects, i.e. O; D O; and/or Ij D I,.

The output of the mechanism given the types as declared
by the agents is a plan 7 € II. A mechanism using an optimal
planning algorithm will choose the best plan in II. Determin-
ing the best plan is not trivial, as self-interested agents may
have conflicting preferences. One way is to look at the total
valuation v of the agents for solving 6 with a plan

v(m,0) = Zw(ﬂ, 0) = Zci (m,0) + 7; (m,0)

€A i€EA

Here v;(mr, 0) refers to the valuation of a particular agent i.
We call v(m, 0) the social welfare. However, when agents are
over-reporting their initial state or operations, the plan 7 may
not be executed completely. In that case, we use 7 to denote
that part of w that can still be successfully executed, and the
valuation of an agent ¢ becomes v; (7, 0).

2.2 Introducing Payments

Finding the best plan would be much easier if agents were
not lying. In this paper we therefore study so-called truthful
mechanisms that guarantee that agents are not better off by
lying. In other words, truth-telling is a dominant strategy for
agents in such mechanisms. Unfortunately, a direct corollary
of the Gibbard-Satterthwaite Theorem [6] says that the only
truthful mechanism for MAP is a dictatorship, i.e., there exists
an agent ¢ € A such that if f(0) denotes the outcome of the
mechanisms, then f(0) € argmax, .y vi(m, §) for all 6.

Corollary. The only mechanisms for multiagent planning
with general utility functions that are truthful are dictatorial.

Clearly, such dictatorial mechanisms are not desirable. We
can circumvent this issue by introducing payments to penalize
some agents and possibly reimburse some others based on
their contribution to the social welfare. For this, we introduce
a payment function p; : ©1 x --- X 0, — R that specifies
for each agent 7 the amount that ¢ pays. From here on, we
consider a mechanism to be a tuple (f,p1,...pn) where f :
©1 X .-+ X ©, — II is planning function, and p1,...,p, are

payment functions. The goal of mechanism design for MAP is
thus to find a mechanism (f, p1,...pn) such that f(0) returns
the plan which maximizes the social welfare. With payments,
the wtility of the agent ¢ on the outcome 7w = f () is defined
by: ui(m,0) = vi(mw,0) — p; (6). The utility is what rational
agents aim to maximize.

3 VCG Mechanisms for MAP

In this section we investigate the applicability of the most
common class of payment functions to a mechanism for MAP.
For this we first introduce some definitions and notations
(based on [11]). For example, when we reason about replac-
ing the input of one of the agents ¢ in a MAP problem 6,
we use the notation (0;,60_;) to indicate the agents’ declared
planning problems where agent i declared 6;, and all other
declared planning problems are left unchanged.

Definition 1. A mechanism (f,p1,...pn) is called incen-
tive compatible (or truthful) iff for every agent i, every set
of true types 01,...,0;,...,0, €01 X...Xx0; X...x0, and
every alternative 0] € O;: v; (f (0:,0—:),0) — pi (0;,0_;) >
Vi (f (021 9*2)) 9) -D (9;7 9*1)

In words, no agent can achieve a higher utility by lying
about its type. Truthfulness is one of the most desirable prop-
erties of a mechanism. So-called Vickrey-Clarke-Groves mech-
anisms are very successful in satisfying this property [11].

Definition 2. A mechanism (f,p1,...,pn) is called a
Vickrey- Clarke-Groves (VCG) mechanism if:

f(0) € argmaxremn v (7, 0), i.e. f maximises social welfare;
for some functions hi,...,h, O™ 1 — R, we have
that for all valuations 0 = (61,...,60,): pi(0) =
hi (01, e ,61;1,0141, N ,Hn) — Zj;éi Vj (f (0) ,0)

In the remainder of the paper we choose h;(0_;) = 0 for
ease of representation. However, all truthfulness arguments
hold for any choice for h;(f_;), because its value is indepen-
dent of agent i’s declared type.® Given a set of declared types
of the agents, the mechanism generates a plan using f and
computes the payment p; for each agent i. The agents then
deliver the payments pi1,...,p, to the mechanism. Previous
work has shown that every VCG mechanism is incentive com-
patible [11]. Using an optimal planning algorithm f, VCG
mechanisms work that well, because (i) the agents’ utility
and thus their incentives are aligned with the social welfare,
and moreover (%) the goal of the algorithm is also to max-
imise the social welfare. In the following we show that VCG
works for two out of the three types of lying introduced in the
previous section.

Theorem 3. The VCG mechanism for MAP with an optimal
algorithm prevents lying about values and under-reporting, or
a combination of both.

This theorem is not very surprising, considering the previ-
ous work on VCG mechanisms [11]. The reason that agents

3 The Clarke pivot rule is a popular alternative, defining h;(6_;)
as the social welfare without ¢’s participation [11].

have no incentive to lie about their values is that the payment
function changes an agent’s utility as follows.

ui(m, 0) = vi(m,0) — pi(0;,0-;) =

vi(m, 0) + Zvj (m,0) + hi(0-;) = v(m, 0),
JF#i

where m = f(0;,6—;). Therefore, agent i’s utility can be seen
as being equal to the social welfare. This social welfare is
maximised by an optimal algorithm only if it is given the
correct (i.e., true) valuations to optimise.

With respect to the second type of lying, agents run the
risk of generating less revenue by not reporting all their ob-
jects, because the plan generated by the optimal planner
when 4 under-reports cannot have a higher utility than the
one generated when i fully reports its objects. Hence, since
U(r,0) = >, cari(m,0) + ci(m,0) = v(m, 0), agent 4’s utility
can also not be higher.

Surprisingly, for the third type of lying, i.e. over-reporting,
agent i can gain from reporting more than it has at its dis-
posal. Intuitively, the reason for this is in the case of VCG
for MAP the outcome is a global, distributed plan that only
achieves its value upon successful execution. This gives the
agents additional ways to cheat which aren’t prevented by
the VCG mechanism: their penalties are based on what they
promise to do; not on what they actually achieve. An agent
may for example be rewarded for actions that it claims it has
and that help other agents to achieve their goals, but which
it cannot actually execute. If those actions are included in
the generated plan m, the utility of 7 is not representing the
social welfare. So even an optimal planner cannot guarantee
to output a “best” plan which maximizes the social welfare.

Theorem 4. The VCG mechanism with an optimal algorithm
for MAP cannot prevent over-reporting.

Proof. As we have shown above, agent ¢’s utility for 7 when
reporting truthfully is u;(m,) = v(m, 0). Now let agent i over-
declare in 0] the actions it can execute, i.e. O; D O;, and let
the costs of such declared actions be 0. Consider a result-
ing plan 7’ such that the over-declared actions do not let i
achieve more goals compared to those in 7, but helps other
agents j # i to reach some additional goals G’, i.e. G’ =
{9 € Gj | g € Result (I, ') \ Result (I,7)}. Agent ¢’s utility of
7' is ui (', 0) = vi(7',0) — pi(0;,0—;) = v(n',0) + vi(7',0) —
vi(n’,05,0_;), where v;(7’,0) denotes the valuation of i based
on the feasible plan 4’ and its true type 6;, and v; (', 6;,0_;)
is the valuation based on declaration ;. Since the costs of
over-declared actions are 0 and no additional goal of agent ¢ is
attained in 7', we have v;(7’,0) = r;(#',0) + ZD; ex, Ci(0j) =
vi(n',0;,0_;). Hence, u;(n’,0) = v(n’,0). Furthermore, be-
cause the goals in G’ are attained in 7’ but not in 7, we have
v(n’,0) > v(m,0). Thus the utility of 7’ for 7 is greater than
that of 7, i.e. u;(w’,0) > u(m,). Therefore, agent i increases
its utility by over-reporting. O

Of course, over-reporting by agents does not necessarily
induce infeasible (local) plans. However, when over-reporting
results in a feasible plan, i.e., 7 = 7, then the optimal planning
algorithm ensures that this plan maximises the social welfare.
Since each agent’s utility is aligned with the social welfare,
agents will not be better off by over-reporting.

Proposition 5. Under a VCG mechanism, the agents have
an incentive to over-report or to miz over-reporting with other
lying types only if such declarations incur an infeasible plan.

4 VCG with Deposits

In order to avoid over-reporting agents, we introduce the
deposit-VCG mechanism. The idea of this mechanism is that
every agent is required to place a deposit in order to partici-
pate. Each agent gets its deposits back only after the success-
ful execution of its local plan.

Definition 6. Given a planning problem, the deposit-VCG
mechanism works as follows:

1. The mechanism asks the agents to declare their types 6;.

2. The mechanism then asks each agent to pay the amount
T(G) =3 ica2gcq, ri(gi) as a deposit.

3. The mechanism finds a plan 7 using an optimal planning
algorithm f, taking into account only the agents who paid
the deposit.

4. Each agent i pays p; according to the VCG formula in Def-
inition 2 with for example h;(6) = 0.

5. The mechanism informs the agents of the plan 7, and each
agent 7 executes its part ;.

6. If any local plan fails due to the agent i’s declaration, agent
¢ will not get its deposit back. All other agents are returned
their deposits.

Since the separate deposit stage does not enlarge the strat-
egy space of the agents, it is straightforward to see that if the
agents are truthful under the VCG mechanism, they will not
be better off by lying under the deposit-VCG mechanism.

Proposition 7. The deposit-VCG mechanism is truthful
when the VCOG mechanism is truthful.

Consequently, deposit-VCG is truthful with respect to lying
about values and under-reporting. Moreover, we show below
that it can also prevent over-reporting.

Theorem 8. The deposit-VCG mechanism with an optimal
algorithm is truthful for MAP.

Proof. From Proposition 5, we know that agent ¢ has an in-
centive to over-report only if the resulting plan is infeasible.
Suppose such an infeasible plan 7’ is generated due to i’s
declaration 6. Agent i will then be caught by the mecha-
nism during the execution of 7, because some goal in 7’ can-
not be reached. Using a VCG mechanism its utility would
have been u;(n’,0) = v(x’,0). In the deposit-VCG mecha-
nism, the agent will not be returned its deposit of r(G) and
we know that 7(G) > v(n’,0) by definition. Therefore, we
have u;(7’,0) < 0 if ¢ over-reports. This is usually a much
smaller amount than the case where agent i is truthful, be-
cause then it will get its deposit returned. So, its utility then
is: ui(m,0) = r(G) — r(G) + v(m,0) > 0. Therefore, agent ¢ is
never worse off by truth-telling. O

The following setting illustrates that the proposed deposit
is the smallest deposit possible in the worst case. Suppose
no goal can be attained, but one agent claims it can help
to achieve the goals of all (other) agents. This agent then
collects r(G) in payments (both when h; (f—;) = 0 and using
the Clarke pivot rule), but fails to execute his actions.

5 VCG-based Approximations

The (deposit-)VCG mechanism requires that f makes opti-
mal decisions. Except for some specific domains (such as re-
ported in [7, 8]), or for domains with restrictions as identified
in [2], this is intractable, as planning in general is PSPACE-
complete. However, there are many non-optimal planning al-
gorithms that often produce very reasonable results on gen-
eral domains. This begs the question whether we can de-
sign a truthful, polynomial-time mechanism around such non-
optimal planners. We will call a mechanism (f,p1,...,pn)
deposit- VCG-based, if f is a sub-optimal planning algorithm
and p(-) is calculated according to the deposit-VCG mecha-
nism (Definition 6). Unfortunately, where deposit-VCG mech-
anisms are incentive compatible, deposit-VCG-based mecha-
nisms are generally not. The reason is that VCG payments
align the agent’s utility with value of the system’s solution.
Therefore by lying, an agent may “help” a non-optimal mech-
anism to achieve a better solution, and thus make more profit
for itself. Hence, only under special conditions can we show
(deposit-) VCG-based mechanisms to be truthful [12].

Definition 9. Given a planning algorithm f, let II' denote
the range of f at ©, i.e. II' = {f(0)|0 € ©}. We say f is
mazimal in its range (MIR) if for every type 6 € ©, f(6)
maximises Y, , v; (7,6) over 7 € IT'.

A (deposit-)VCG-based mechanism
,pn) with f mazimal in its range is truthful.

Proposition 10.

(f,pl,...

Informally speaking, a planning algorithm f is MIR if it op-
timises the social welfare by selecting the best plan out of an
on forehand determined set of allowable plans. Obviously, op-
timal planning algorithms are MIR. In general, non-optimal
planning algorithms are not. However, for a number of plan-
ning domains, approximations are known that can be used
to create MIR mechanisms, because they select the best plan
among a restricted set of plans.

In the remainder of this section we give one such exam-
ple. A well-known result for Blocks World (BW) states that
although optimal planning for BW is NP-hard, non-optimal
planning is tractable [14]: one can first unstack all blocks onto
the table, and then use move actions to assemble the towers
of these blocks that match the goal(s). In fact, there exists a
slightly more efficient version of this method. Instead of un-
stacking all blocks to the table first, we only unstack those
blocks that are either (%) not in their final position, or (i) pre-
vent a block that satisfies the first condition from being moved
(i.e. it is above such a block or taking the goal location of such
a block). Denote this algorithm by fp.,. Note that this algo-
rithm is not optimal, because sometimes a block can be moved
immediately from its current position to its goal position with-
out being unstacked to the table in between. Now imagine a
multiagent BW-variant, where the agents’ goals specify which
blocks should be on top of which others. Morever, these goals
are the only private information in the system. We discuss
why this algorithm is MIR.

Such a BW instance § = {F, O, ¢, I,G,r} consists of (i) the
domain F of all block’s positions; (i7) two operations in O:
unstack a block to the table, or move a block upon another
block and their costs ¢; (i11) the initial state I that specifies
the initial position of each block; and (v) for each agent ¢ a
set of goals G; to specify the final position of some blocks, and

the reward function r;. Given 0, let first m be the number of
blocks that are not in their final position yet, and then let n
be the number of remaining blocks that are to be moved out
of the way of the first m blocks (without counting a block by
both m and n).

Assume the set of goals does not contain any conflicts, and
that the rewards for the goals are relatively high.® Then the
range of fp,, is the set of all plans that consist of first unstack-
ing the n blocks that are in the way and the m blocks that are
to be moved, and then assembling the stacks of blocks to at-
tain the goals by m stacking actions. We now verify that fp.,
is MIR. In this situation, the plan that attains the most goals
is the plan with the highest social welfare), , v; (7, 0). If
the goals are not conflicting, fi., always attains all goals with
at most n+ 2m actions. By Proposition 10, a (deposit-)VCG-
based mechanism using fi., is truthful.

Proposition 11. The
(fbuhpla s

(deposit-) VCG-based mechanism
,Pn) s truthful and runs in polynomial time.

If, however, the goals have conflicts, the social welfare de-
pends on which goals are satisfied. Therefore fp,, is only MIR
if it selects the set of non-conflicting goals with the highest
reward. To realise this it should either (i) consider all possi-
ble combinations of goals that can be satisfied, an intractable
task, or (i) put a limit on the number of goals it will satisfy,
and consider all combinations of this number of goals. By lim-
iting the number of goals to be attained by K, we can impose
a polynomial bound on the mechanism’s time complexity.

Proposition 12. Given a polynomial-time algorithm fq :
© — II for a planning domain d that is MIR on problems
without conflicting goals, and an upper-bound K on the num-
ber of goals that is considered, an algorithm fX exists that is
MIR and polynomial in the input size.

Proof. The algorithm fX should impose a limit K on the
number of goals that is satisfied at most. In the worst case, f

needs to consider at most 31 < l?') < K -|G|¥ possible

(i.e. non-conflicting) combinations of goals, and select the best
one to ensure it is maximal in range. As this is a polynomial
amount (except in K), and fX runs polynomially, the result
can still be computed in polynomial time. O

Let fX denote the algorithm that limits the number of
goals considered by K and is based on fi,,. It follows immedi-
ately from the above proposition that f£ is a polynomial-time
algorithm for BW problems with or without conflicting goals.

Proposition 13. The approzimation algorithm fX for BW
problems with an upper-bound K on the number of goals to be
satisfied is MIR and runs in polynomial time.

Fortunately, many realistic domains are naturally conflict-
free. So it is not necessary to limit the number of goals to
be attained. For example, if the agents involved have control
over distinct sets of resources, and their individual goals are
formulated over their own resources, and locally conflict-free,
the domain as a whole is conflict-free as well. An example of

4 We assume that the rewards of the goals are higher than the
costs of the required actions. If not, the agents have no incentive
to achieve the goals.

such a domain is the Logistics domain (for which non-optimal
strategies exist similar to the BW-strategy [9]). In a MAP
variant of this domain, each of the trucks and airplanes is
owned by a single agent. Moreover, it is not unreasonable to
assume that each task of delivering a package belongs to pre-
cisely one agent, and that this agent takes on only one delivery
order for each package. The deposit-VCG mechanism can be
used to ensure that the local deliveries are coordinated with
the scheduled flights such that all goals are met efficiently.

6 Discussion

When planning is performed by and for a group of self-
interested agents, mechanisms must be in place to ensure that
the agents behave honestly. Heretofore, this notion has been
largely overlooked. One early attempt is described in [4]. It
uses an iterative voting mechanism that lets the agents vote
on subsequent steps in the plan. Truthfulness is guaranteed
for each individual voting round using a Clarke taxation, but
not for the complete mechanism. At each step, the agents
reveal additional information to the other agents regarding
their goals, and based on this, a set of candidate successor
states is generated. It is this set that a vote is held over. The
main difference between that work and ours is that we also
consider truthfulness with respect to the declaration of goals,
operators, and the initial state and thus indirectly over the
set of candidate plans, instead of only making the declaration
of the value of candidates plans strategyproof. Also our theo-
retical results apply to any planning algorithm; not just to an
iterative forward state-space planning algorithm. Moreover,
in our work the private information of agents is only shared
with the central mechanism, not with the other agents.
More recent work [10] starts from a setting where the indi-
vidual plans of the agents are already known, but where the
agents collectively need to decide on the order in which the
actions are executed. The strategy space for each agent is de-
fined there as the set of possible orders for its individual plan.
A solution is then indicated by a Nash equilibrium in the re-
sulting matrix game. In our work, we generalise this setting,
starting not from individual plans, but from the individual
sets of possible operations and goals. We have shown how to
guarantee desirable solutions by truthful mechanisms. In such
mechanisms these solutions are indicated by a dominant strat-
egy equilibrium, which is a much stronger solution concept
than a Nash equilibrium, making such guarantees possible.
We believe that a better understanding of such game theo-
retical notions is essential to the development of future multi-
agent planning systems for self-interested agents. In this paper
we therefore placed several results from the field of mechanism
design in the context of planning. We showed how the mul-
tiagent planning problem can be conceived as a social choice
over all possible plans, where each agent has preferences over
the plans as given by its part of the planning problem, i.e. it
will favour plans that achieve its goals in a cost-effective way.
In problem domains where the only private information is a
value, as for instance in combinatorial auctions [1], the stan-
dard VCG mechanism with an optimal algorithm is truthful.
However, as we have seen in this paper, the VCG mechanism
is not generally applicable in the setting of MAP. Informally,
the reason for this is that VCG cannot prevent over-reporting
of capabilities resulting in infeasible plans. This issue can be

resolved by extending the VCG mechanism. In this mecha-
nism agents pay a deposit, to be returned when the plan is
verified to be feasible (i.e. upon successful execution). Our
current work is to show that this result generalises to other
mechanism design settings where the private information of
agents is not only used to calculate the social welfare of an
alternative, but in fact to determine this set of alternatives.

Finally, we studied deposit-VCG-based approximation
mechanisms for MAP. Although it is not possible to con-
struct a general, domain-independent VCG-based approxima-
tion [12], we were able to show how some domain-dependent
approximations can be used to solve MAP in polynomial time.

As future work, we are interested in studying how other
(approximation) algorithms for planning can be used to con-
struct efficient and truthful mechanisms, focusing especially
on variants of existing distributed MAP algorithms.

Acknowledgements

Roman van der Krogt is supported by an Irish Research Coun-
cil for Science, Engineering and Technology (IRCSET) Post-
doctoral Fellowship. Mathijs de Weerdt and Yingqgian Zhang
are partially supported by the Technology Foundation STW,
applied science division of NWO, and the Ministry of Eco-
nomic Affairs of the Netherlands.

References

[1] L. Blumrosen and N. Nisan, ‘Combinatorial auctions’, in
Algorithmic Game Theory, 267-300, Cambridge University
Press, (2007).

[2] Tom Bylander, ‘The computational complexity of propo-
sitional STRIPS planning’, Artificial Intelligence, 69(1-2),
165-204, (1994).

[3] K.S. Decker and J. Li, ‘Coordinating mutually exclusive re-
sources using GPGP’, Autonomous Agents and Multi-Agent
Systems, 3(2), 113-157, (2000).

[4] E. Ephrati and J.S. Rosenschein, ‘Multi-agent planning as
search for a consensus that maximises social welfare’, in Ar-
tificial Social Systems, pp. 207-226, (1994).

[5] M. Ghallab, D. Nau, and P. Traverso, Automated Planning,
theory and practice, Morgan Kaufmann Publishers, 2004.

[6] A. Gibbard, ‘Manipulation of voting schemes: A general re-
sult’, Econometrica, 41(4), 587-601, (July 1973).

[7] M. Helmert, ‘Complexity results for standard benchmark do-
mains in planning’, Art. Int., 143(2), 219-262, (2003).

[8] M. Helmert, ‘New complexity results for classical planning
benchmarks’; in Proc. of the 16th Int. Conf. on Automated
Planning and Scheduling (ICAPS), pp. 52-62, (2006).

[9] M. Helmert, R. Mattmiiller, and G. Rdger, ‘Approximation
properties of planning benchmarks’, in Proc. of the 17th Eu-
ropean Conf. on AI (ECAI), pp. 585—-589, (2006).

[10] R. Ben Larbi, S. Konieczny, and P. Marquis, ‘Extending clas-
sical planning to the multi-agent case: A game-theoretic ap-
proach’, in Eur. Conf. on Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty, pp. 731-742, (2007).

[11] N. Nisan, ‘Introduction to mechanism design (for computer
scientists)’, in Algorithmic Game Theory, 209-242, Cam-
bridge University Press, (2007).

[12] N. Nisan and A. Ronen, ‘Computationally feasible VCG
mechanisms’, Journal of AI Research, 29, 19-47, (2007).

[13] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Al-
gorithmic, Game-Theoretic and Logical Foundations, Cam-
bridge University Press, 2008.

[14] J. Slaney and S. Thiébaux, ‘Blocks world revisited’, Artificial
Intelligence, 125(1-2), 119-153, (2001).

[15] R. van der Krogt and M. de Weerdt, ‘Coordination through
plan repair’, in MICAI 2005: Advances in Artificial Intelli-
gence, pp. 264-274. Springer, (2005).

