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ABSTRACT
In a series of papers, J. Garrido and Y. Lu have proposed and investigated a doubly-periodic
Poisson model, and then applied it to analyze hurricane data. The authors have suggested
several parametric models for the underlying intensity function. In the present paper we
construct and analyze a non-parametric estimator for the doubly-periodic intensity function.
Assuming that only a single realization of the process is available in a bounded window, we
show that the estimator is consistent and asymptotically normal when the window expands
indefinitely. In addition we calculate the asymptotic bias and variance of the estimator, and in
this way gain helpful information for optimizing the performance of the estimator.
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1 Introduction and the model

Non-homogeneous and, in particular, periodic non-homogeneous Poisson processes have

been used to model random phenomena in areas such as communications, hydrology,

meteorology, insurance, reliability, seismology; we refer to the books by Lewis (1972), Cox

and Lewis (1978), Cox and Isham (1980), Diggle (1983), Karr (1986), Daley and Vere-

Jones (1988), Cressie (1991), Kingman (1993), Reiss (1993), Snyder and Miller (1995),

Kutoyants (1998), as well as to the references therein.

Recently, a far reaching research has been conducted by Garrido and Lu (2004), Lu

(2005), Lu and Garrido (2005, 2006), where the authors analyze El Niño and La Niña

related data using the therein proposed doubly-periodic Poisson model. The model is

described by an underlying intensity function λ that can be expressed as the product of

two periodic intensity functions that model short-term (e.g., one year) and long-term (e.g.,

five years) fluctuations. Specifically, let the (minimal) period of the short-term intensity

function λS be τ > 0, and the (minimal) period of the long-term intensity function λL

be T = Kτ , where K ≥ 1 is the number of short-term periods inside one long-term

period. Throughout the paper we assume that τ and K (and thus T ) are known. This

is not an unreasonable assumption given the underlying example that has inspired the

Garrido-Lu model. Specifically, Lu (2005) notes that “from a graphical analysis of the

data set, we conclude that a long-term period of five years and a short-term period of one

year reasonably describe the Atlantic hurricanes”.

The Garrido-Lu model is a special case of the general periodic Poisson model for

which non-parametric estimators and statistical inferential results have been developed

by Helmers, Mangku and Zitikis (2003, 2005). However, the more refined structure of the

intensity function λ as described above has allowed Garrido and Lu (2004), Lu (2005),

Lu and Garrido (2005, 2006) to achieve new depths in the area. The authors have also

suggested several parametric families for the intensity functions λS and λL. Nevertheless,

the successful research by J. Garrido and Y. Lu also shows that choosing well fitting

parametric families is not a simple task. In view of this, in the present paper we suggest

to have a look at the non-parametric approach to the problem, which supplements the

aforementioned research by J. Garrido and Y. Lu with new insights into the problem and

possible ways to tackle it. We next define the problem rigorously.

Let X be a Poisson point process on the real line with (unknown) locally integrable
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intensity function λ. We assume that λ is periodic (or cyclic) with period T > 0; that is,

we have the equation λ(s) = λ(s + kT ) for all real s and all integer k. We assume that

λ = λSλL, where λS has a known period τ > 0 and λL has the period T = Kτ > 0 with a

known integer K ≥ 1. As to the long-term intensity function λL, we additionally assume

the following step-wise structure (cf. Lu, 2005; Lu and Garrido, 2005)

λL(s) =

T/τ∑

k=1

ak 1{s ∈ W 0
k } for all s ∈ [0, T ),

where 1{·} is the indicator function, W 0
k = [(k − 1)τ, kτ), and ak ∈ (0,∞) are unknown

‘amplitudes’. The periodic extension of λL(s) to the entire real line is accomplished by

the equation λL(s) = λL(s + kT ) for all integer k. The amplitudes ak are unknown, but

we find it convenient to assume – which does not restrict the generality – that one of

them, say a1, is equal to 1. Indeed, writing the equation λ(s) = λ∗S(s)
∑K

k=1 a∗k1{s ∈ W 0
k }

with λ∗S(s) = a1λS(s) and a∗k = ak/a1, we obviously have the property a∗1 = 1. Skipping

the stars from the above equations, we have (cf. eq. (11) in Lu and Garrido, 2005, p. 23)

λ(s) = λS(s)

T/τ∑

k=1

ak1{s ∈ W 0
k } for all s ∈ [0, T ), (1.1)

with the desired property a1 = 1. The equation λ(s) = λ(s+kT ) for all integer k extends

the above definition of λ(s) to the entire real line. Hence, in view of a1 = 1, the earlier

made assumption about the minimality of the periods, and thus in particular of T , implies

that ak 6= 1 for every 2 ≤ k ≤ K. We conclude the current paragraph with the note that,

if desired, one can extend the above doubly-period model of λ to products of finite number

of periodic intensity functions; in the present paper, however, we restrict ourselves to only

the Garrido-Lu doubly-periodic model, as it has a solid practical justification.

The rest of the paper is organized as follows. In Section 2 we construct a consistent

estimator for the intensity function λ(s). In Section 3 we investigate statistical properties

of the estimator, including its consistency, unbiasedness and asymptotic normality. Sec-

tion 4 provides a number of auxiliary results that we later use in Section 5, which contains

proofs of the statistical properties formulated in Section 3.
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2 Constructing an estimator

Suppose that at time n we have a single realization {X(t; ω) : t ∈ Wn} of a Poisson

process X in an interval Wn ⊂ [0,∞) usually called ‘window’, where ω is an element of

the sample space. Let the intensity function of X be the above specified doubly-periodic

λ. We want to construct a non-parametric estimator for λ(s) at any given point s on

the real line using the realization {X(t; ω) : t ∈ Wn}. We assume that the windows

W1, W2, · · · ⊂ R are intervals of finite length, containing the origin t = 0, and such that

their length |Wn| increases indefinitely when n → ∞. It is natural to expect that, in

practice, many situations involve nested windows Wn ⊆ Wn+1, which means that we do

not lose information, only accumulate it as the time n progresses.

Given that both τ and T are known, equation (1.1) implies that in order to construct

an estimator for λ(s) (cf. equation (2.5) below), we need to estimate the amplitudes ak

as well as the short-term intensity function λS. We start with estimating the amplitudes.

Using equation (1.1) and the law of large numbers, we have that

ak =

∫
W 0

k
λ(s)ds

∫
W 0

1
λS(s)ds

≈ ak,n, (2.2)

where

ak,n :=
X(Wk,n)

X(W1,n)
and Wk,n =

∞⋃
j=−∞

{(
W 0

k + jT
) ∩Wn

}
.

The ratio ak,n may not always be well defined as the numerator and/or denominator can

be zero. Hence, we define an estimator of ak as follows:

âk,n = ak,n1{ak,n ∈ (0,∞)}.

Plugging âk,n instead of ak in the definition of the long-term intensity function λL, we

have λ(s) ≈ λn(s), where

λn(s) =

T/τ∑

k=1

âk,nλS(sk)1
{
s ∈ W 0

k

}
(2.3)

with the notation sk = s − (k − 1)τ ∈ [0, τ). Note that λn(s) is neither an empirical

estimator nor a population function; it is just an auxiliary function. To make this function

an estimator, we estimate the short-term intensity λS, keeping in mind that we need to

estimate it at the point sk ∈ [0, τ) only, as the right-hand side of equation (2.3) suggests.
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To this end, we aggregate information about λS(sk) from [0, τ) and also from other regions

of the window Wn, as suggested by the equation λS(sk) = λS(sk+jτ). This way we obtain

the first equation below:

λS(sk) =

∑∞
j=−∞ λS(sk + jτ)1 {sk + jτ ∈ Wn}∑∞

j=−∞ 1 {sk + jτ ∈ Wn}

≈ τ

|Wn|
∞∑

j=−∞
λS(sk + jτ)1 {sk + jτ ∈ Wn} , (2.4)

where the second (approximate) equation holds since
∑∞

j=−∞ 1 {sk + jτ ∈ Wn} is approx-

imately |Wn|/τ , which is the number of short-term periods in the window Wn. Next we

replace λS(sk + jτ) on the right-hand side of equation (2.4) by λ(sk + jτ), which we can

estimate from data. For this, we first rewrite the sum on the right-hand side of equation

(2.4) by separating its short- and long-term related summands as follows:

λS(sk) ≈ τ

|Wn|
∞∑

j=−∞

T/τ∑
m=1

λS(sk + (m− 1)τ + jT )1 {sk + (m− 1)τ + jT ∈ Wn} .

Since sk ∈ [0, τ), equation (1.1) implies that λS(sk + (m − 1)τ + jT ) equals a−1
m λ(sk +

(m − 1)τ + jT ). Next we replace the amplitude am by its estimator âm,n in the latter

quantity. These arguments lead to the approximation

λS(sk) ≈ τ

|Wn|
T/τ∑
m=1

1

âm,n

∞∑
j=−∞

λ(sk + (m− 1)τ + jT )1 {sk + (m− 1)τ + jT ∈ Wn} .

Replacing λ(sk + (m− 1)τ + jT ) by its empirical estimator, we arrive at an estimator of

λS(sk):

λ̂S,n(sk) =
τ

|Wn|
T/τ∑
m=1

1

âm,n

∞∑
j=−∞

1

2hn

X
((

sk + (m− 1)τ + jT + [−hn, hn]
) ∩Wn

)
,

where hn ↓ 0 when n →∞. (The choice of hn depends on how fast |Wn| tends to infinity.)

Plugging in λ̂S,n(sk) instead of λS(sk) on the right-hand side of equation (2.3), we arrive

at an estimator for λ(s) at any s ∈ [0, T ):

λ̂n(s) =

T/τ∑

k=1

âk,n λ̂S,n(sk)1
{
s ∈ W 0

k

}
. (2.5)

In the next section we investigate statistical properties of the estimator λ̂n(s), such as

consistency, bias, mean-squared error, asymptotic normality.
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As we have already noted above, the construction of the estimator λ̂n(s) assumes that

the periods τ and T are known. Despite the reasonableness, for example, of the choices

τ = 1 and T = 5 in the aforementioned hurricane-related context, we can of course find

situations where it is desirable to dispense with the assumption that the periods τ and

T are known. Finding good estimators for the periods, however, is a challenging task.

For hints and references on the topic, we refer to Vere-Jones (1982) for a periodogram-

type estimator, and to Mangku (2001), Helmers and Mangku (2003), Bebbington and

Zitikis (2004) for several non-parametric estimators. Naturally, when estimators of τ and

T have been found, plugging them in on the right-hand side of equation (2.5) produces

a desired modification of the underlying intensity function. This, of course, introduces

further technical complexities, as seen from Helmers, Mangku and Zitikis (2003, 2005)

where the case of the classical ‘singly’ periodic Poisson process is investigated.

3 Statistical properties

The intensity function λ is periodic, and its period T , by assumption, is known. Hence,

when estimating the intensity function, we can and thus do restrict ourselves to only those

s that are in the interval [0, T ). We also assume throughout the paper that s is a Lebesgue

point of λS, which is a weak assumption meaning that (2δ)−1
∫ δ

−δ
|λS(s+x)−λS(s)|dx → 0

when δ ↓ 0. Indeed, if the intensity function λS is locally integrable (which is minor

requirement), then the set of all Lebesgue points of λS is dense in the real line.

Theorem 3.1 If hn|Wn| → ∞, then λ̂n(s) is a (weakly) consistent estimator of λ(s).

To achieve asymptotic unbiasedness of the estimator λ̂n(s), we need to slightly modify

it. Namely, we introduce (small) εn > 0 such that ak ∈ (εn, ε
−1
n ) for every 1 ≤ k ≤ K and

for all sufficiently large n. The only (minor) restriction that we impose on εn > 0 is the

existence of L ≥ 1 such that εn|Wn|L → ∞ when n → ∞. Hence, if we think about the

window Wn as the interval [0, n], then can simply choose εn = 1/n. Of course, if we know

(e.g., from historical data) a sufficiently small ε > 0 such that all the amplitudes ak are

in the interval (ε, ε−1), then we can take εn = ε. Hence, assuming that we have decided

on the choice of εn, our new estimator of ak is

ãk,n =
X(Wk,n)

X(W1,n)
1

{
X(Wk,n)

X(W1,n)
∈ (εn, ε

−1
n )

}
.
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In turn, the estimator of λ(s) becomes

λ̃n(s) =

T/τ∑

k=1

ãk,n λ̃S,n

(
sk

)
1

{
s ∈ W 0

k

}
,

where

λ̃S,n(sk) =
τ

|Wn|
T/τ∑
m=1

1

ãm,n

∞∑
j=−∞

1

2hn

X
((

sk + (m− 1)τ + jT + [−hn, hn]
) ∩Wn

)
.

Theorem 3.2 Let h4
n|Wn| → ∞, and let the second derivative λ′′S(s) be finite. Then

E[λ̃n(s)] = λ(s) +
1

6
λ′′S(s)λL(s)h2

n + o(h2
n). (3.6)

Statement (3.6) suggests choosing hn as fast converging to 0 as possible, as long as

h4
n|Wn| → ∞ holds. However, the variance of the estimator has to be taken into account

as well, which is the topic of the next theorem. We shall see later in this section that the

optimal (i.e., minimizing the mean-squared error) bandwidth is hn = O(|Wn|−1/5).

Theorem 3.3 If hn|Wn| → ∞, then

Var[λ̃n(s)] =
τλ(s)λL(s)

2hn|Wn|
(

1

T/τ

T/τ∑
m=1

1

am

)
+ o

(
1

hn|Wn|
)

. (3.7)

Combining statements (3.6) and (3.7), and also noting that λ(s) = λS(s)λL(s), we see

that the mean-squared error of the estimator λ̃n(s) is minimal with respect to hn when

hn =
c
1/5
0

|Wn|1/5
with c0 =

9τλS(s)

2(λ′′S(s))2

(
1

T/τ

T/τ∑
i=1

1

ai

)
. (3.8)

The average on the right-hand side of the definition of c0 is the harmonic mean of the

amplitudes ai. If all the amplitudes are equal to 1, then the harmonic mean is equal to 1

and thus statement (3.7) reduces to a special case of statement (3.4) in Helmers, Mangku

and Zitikis (2005).

Corollary 3.1 Let h4
n|Wn| → ∞, and let λS be twice differentiable at s ∈ [0, T ). If, in

addition to the above, we have that h5
n|Wn| = O(1), then

√
hn|Wn|
d0(s)

(
λ̃n(s)− λ(s)− 1

6
λ′′S(s)λL(s)h2

n

)
→d N (0, 1),

where

d0(s) =
τλ(s)λL(s)

2

(
1

T/τ

T/τ∑
m=1

1

am

)
.

7



The corollary can be used for constructing confidence intervals for, and test hypotheses

about, λ(s). It is useful to note in this regard that under the conditions of Corollary 3.1

and with the optimal hn given by equations (3.8), we have that

√
hn|Wn|
d0(s)

(
λ̃n(s)− λ(s)

) →d N (µ, 1) (3.9)

with µ = 1/2. If, however, hn is such that h5
n|Wn| = o(1), then the limiting distribution

becomes standard normal N (0, 1), that is, statement (3.9) holds with µ = 0.

4 Auxiliary results

Based on the construction of the estimator λ̂n(s), we derive its asymptotic properties

by establishing appropriate convergence rates of âk,n to ak and λ̂S,n(sk) to λS(sk) when

n →∞. Furthermore, since the estimator λ̂S,n(sk) contains randomness in both âm,n and

X(. . . ), we find it convenient to separate them using the auxiliary function

λS,n(z) =
τ

|Wn|
T/τ∑
m=1

1

am

∞∑
j=−∞

1

2hn

X
((

z + (m− 1)τ + jT + [−hn, hn]
) ∩Wn

)
(4.10)

defined on the interval [0, τ). Specifically, in the proofs below we frequently use the

decomposition

λ̂n(s) =

T/τ∑

k=1

(âk,n − ak) λ̂S,n(sk)1{s ∈ W 0
k }+

T/τ∑

k=1

ak

(
λ̂S,n(sk)− λS,n(sk)

)
1{s ∈ W 0

k }

+

T/τ∑

k=1

ak λS,n(sk)1{s ∈ W 0
k } (4.11)

(or an analogous one with ‘hats’ replaced by ‘tildes’) and show that the first two sums on

the right-hand side of equation (4.11) are asymptotically smaller than the third one. To

accomplish this, we need a rate of convergence of âk,n to ak; hence, the next lemma.

Lemma 4.1 For every γ < 1/2 and 1 ≤ k ≤ K, we have âk,n = ak + oP(|Wn|−γ).

Proof. We only need to show that ak,n = ak + oP(|Wn|−γ). Write ak,n as the ratio

ξk/ξ1 with the notation ξk = KX(Wk,n)/|Wn|, and then express ak as the ratio of akθ

and a1θ (recall that a1 = 1) with θ = τ−1
∫ τ

0
λS(s)ds. Hence, ak,n = ak + oP(|Wn|−γ)

8



holds provided that |Wn|γ (ξk − akθ) →P 0. The latter statement, in turn, follows from

|Wn|γ(ξk − E[ξk]) →P 0 and |Wn|γ(E[ξk]− akθ) → 0. The former statement follows from

the latter. Indeed, using the Chebyshev inequality together with the fact that the mean

and the variance of X(Wk,n) coincide, we have the bound

P [|Wn|γ|ξk − E[ξk]| > ε] ≤ K

ε2|Wn|1−2γ

(
akθ +O

(
1

|Wn|γ
))

. (4.12)

The right-hand side of bound (4.12) converges to 0 since γ < 1/2 and |Wn| → ∞.

Consequently, we complete the proof of the lemma by showing that |Wn|γ(E[ξk]−akθ) → 0.

In fact, we next prove (and use later) a stronger statement, namely, |Wn|(E[ξk]−akθ) → 0,

which we start proving with the equations

E[ξk] =
K

|Wn|
∞∑

j=−∞
E

[
X ([(k − 1 + jK)τ, (k + jK)τ ] ∩Wn)

]

=
K

|Wn|
∞∑

j=−∞

∫

W 0
k

λ(x + jT )1{x + jT ∈ Wn}dx.

Note that λ(x+jT ) is equal to λ(x), which is akλS(x) for x ∈ W 0
k . Furthermore, uniformly

in x, the sum
∑∞

j=−∞ 1{x + jT ∈ Wn} is equal to |Wn|/T +O(1). Consequently,

E[ξk] =
T

|Wn|
(

1

τ

∫

W 0
k

akλS(x)dx

)( |Wn|
T

+O(1)

)
,

which implies |Wn|(E[ξk]− akθ) → 0 and completes the proof of Lemma 4.1. ¤

Lemma 4.2 Let hn|Wn| → ∞, and let z ∈ [0, τ) be a Lebesgue point of λS. Then

E[ λS,n(z)] = λS(z) + o(1) (4.13)

and

Var[λS,n(z)] =
τλS(z)

2hn|Wn|
(

1

T/τ

T/τ∑
m=1

1

am

)
+ o

(
1

hn|Wn|
)

. (4.14)

Proof. We start with statement (4.13). The expectation E[ λS,n(z)] is equal to

τ

|Wn|
T/τ∑
m=1

1

am2hn

∫ hn

−hn

λ(x + z + (m− 1)τ)
∞∑

j=−∞
1{x + z + (m− 1)τ + jT ∈ Wn}dx,

where we also used the fact that the period of λ is T . Uniformly in x, the inner sum

(with respect to j) is |Wn|/T + O(1). Furthermore, since z ∈ [0, τ) is a Lebesgue point
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of λS, so is the point z + (m − 1)τ . Hence, (2hn)−1
∫ hn

−hn
λ(x + z + (m − 1)τ)dx equals

λ(z + (m− 1)τ) + o(1), which is amλS(z) + o(1) since z + (m− 1)τ ∈ W 0
m. Hence,

E[ λS,n(z)] =
τ

|Wn|
T/τ∑
m=1

1

am

(amλS(z) + o(1))

( |Wn|
T

+O(1)

)
,

which is λS(z)+o(1). This completes the proof of statement (4.13). The proof of statement

(4.14) is similar. Assuming that n is sufficiently large so that hn is small and the summands

of λS,n(s) are independent, the variance Var[λS,n(s)] can be written as

τ 2

2hn|Wn|2
T/τ∑
m=1

1

a2
m2hn

∫ hn

−hn

λ(x + z + (m− 1)τ)
∞∑

j=−∞
1{x + z + (m− 1)τ + jT ∈ Wn}dx.

Using analogous arguments to those in the proof of statement (4.13), we have that

Var[λS,n(s)] =
τ 2

2hn|Wn|2
T/τ∑
m=1

1

a2
m

(
amλS(z) + o(1)

)( |Wn|
T

+O(1)

)
,

which completes the proof of statement (4.14). ¤

Lemma 4.3 Let h2
n|Wn| → ∞, and let λS be twice differentiable at z ∈ [0, τ). Then

E[λS,n(z)] = λS(z) +
1

6
λ′′S(z)h2

n + o(h2
n).

Proof. The Taylor expansion gives the equation

1

2hn

∫ hn

−hn

λ(x + z + (m− 1)τ)dx = λ(z + (m− 1)τ) +
1

6
λ′′(z + (m− 1)τ)h2

n + o(h2
n).

The right-hand side of the equations is equal to amλS(z)+ 6−1amλ′′S(s)h2
n + o(h2

n). Hence,

proceeding as in the proof of Lemma 4.2, we have that

E[λS,n(z)] =
τ

|Wn|
T/τ∑
m=1

1

am

(
amλS(z) +

1

6
amλ′′S(z)h2

n + o(h2
n)

) ( |Wn|
T

+O(1)

)

= λS(z) +
1

6
λ′′S(z)h2

n + o(h2
n) +O

(
1

|Wn|
)

.

Since h2
n|Wn| → ∞, the remainder term O(|Wn|−1) is o(h2

n). This finishes the proof of

Lemma 4.3. ¤
The classical Lindeberg theorem and Slutzky’s arguments (cf., e.g., Serfling, 1980)

together with Lemmas 4.2 and 4.3 imply the following corollary.
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Corollary 4.1 Let h2
n|Wn| → ∞, and let λS be twice differentiable at z ∈ [0, τ). If

h5
n|Wn| = O(1), then

√
hn|Wn|
D(z)

(
λS,n(z)− λS(z)− 1

6
λ′′S(z)h2

n

)
→d N (0, 1),

where

D(z) =
τλS(z)

2

(
1

T/τ

T/τ∑
m=1

1

am

)
.

Corollary 4.1 is tailored to accommodate the optimal choice of hn, which, by definition,

minimizes the mean-squared error (MSE) of λS,n(z). The MSE is the sum of the variance

and the squared bias, which are Var[λS,n(z)] and Bias[λS,n(z)] = E[λS,n(z)] − λS(z),

respectively. Hence, Lemmas 4.2 and 4.3 imply that the optimal hn is

hn =
dS(z)1/5

|Wn|1/5
with dS(z) =

9τλS(z)

2(λ′′S(z))2

(
1

T/τ

T/τ∑
i=1

1

ai

)
.

Given this choice of the bandwidth hn, we have the asymptotic normality

√
hn|Wn|
D(z)

(
λS,n(z)− λS(z)

) →d N (µ, 1) (4.15)

with µ = 1/2. If, however, we choose h5
n|Wn| = o(1), then (1/6)λ′′S(z)h2

n can be dropped

from the statement of Corollary 4.1; equivalently, we have statement (4.15) with µ = 0.

5 Proofs

Proof of Theorem 3.1 To prove Theorem 3.1, it suffices to show (cf. equation (4.11))

that for every 1 ≤ k ≤ K and when n → ∞, the following three statements hold: A)

(âk,n − ak) λ̂S,n(sk) →P 0, B) λ̂S,n(sk) − λS,n(sk) →P 0, and C) λS,n(sk) →P λS(sk).

Lemma 4.2 implies statement C). Statement C) and Lemma 4.1 imply B). Statements B)

and C) give λ̂S,n(sk) = OP(1), which reduces the proof of statement A) to showing that

âk,n →P ak. The latter follows from Lemma 4.1, completing the proof of Theorem 3.1. ¤

Proof of Theorem 3.2 We start with equation (4.11) and replace all the ‘hats’ by ‘tildes’.

By Lemma 4.3, the expectation of the right-most sum in equation (4.11) equals the right-

hand side of equation (3.6). Hence, we are left to check that the expected values of the first

11



two sums on the right-hand side of equation (4.11) are of the order o(h2
n). The expectation

of the first sum is such if E[ |ãk,n−ak|λ̃S,n(sk)] = o(h2
n). To prove this statement, we use the

Cauchy-Schwarz inequality and reduce the problem to showing that E[(ãk,n−ak)
2] = o(h4

n)

and E[λ̃2
S,n(sk)] = O(1). To prove that the expectation E[(ãk,n−ak)

2] is of the order o(h4
n),

we write the expectation as the sum of a2
kP[ak,n /∈ (εn, ε−1

n )] and E[(ak,n − ak

)2
1{ak,n ∈

(εn, ε
−1
n )}]. We need to show that the latter probability and expectation are of the order

o(h4
n). We start with the probability and write (cf. the proof of Lemma 4.1 for detail;

recall the notation of ξk = KX(Wk,n)/|Wn| )

ak,n =
akθ +O(|Wn|−1) + (ξk − E[ξk])

θ +O(|Wn|−1) + (ξ1 − E[ξ1])
. (5.16)

If both |ξk − E[ξk]| and |ξ1 − E[ξ1]| do not exceed a sufficiently small δ > 0, then for all

large n, we have from equation (5.16) that ak,n ∈ (εn, ε
−1
n ), since the latter open interval

contains all the amplitudes ak. Hence, P[ak,n /∈ (εn, ε
−1
n )] is of the order o(h4

n) if both

P[|ξk − E[ξk]| ≥ δ] and P[|ξ1 − E[ξ1]| ≥ δ] are of the same order, which follows from

bound (4.12) with γ = 0 since h4
n|Wn| → ∞. Consequently, we are left to show that

the expectation E[(ak,n − ak

)2
1{ak,n ∈ (εn, ε

−1
n )}] is of the order o(h4

n), which reduces to

proving the statements

E
[
(ak,n − ak)

21
{
ak,n ∈ (εn, ε

−1
n )

}
1
{|ξ1 − E[ξ1]| ≥ θ/2

}]
= o(h4

n)

and

E
[
(ak,n − ak)

21
{|ξ1 − E[ξ1]| ≤ θ/2

}]
= o(h4

n). (5.17)

The first statement holds since ε−2
n P[|ξ1 − E[ξ1]| ≥ θ/2] = O(ε−2

n |Wn|−L) for any L ≥ 1,

which follows from: the Markov inequality, the Poisson distribution of X(Wk,n), and the

assumption h4
n|Wn| → ∞. To verify statement (5.17), we use equation (5.16) and have

|ak,n − ak|1
{|ξ1 − E[ξ1]| ≤ θ/2

} ≤ O(|Wn|−1) + |ξk − E[ξk]|+ ak|ξ1 − E[ξ1]|
θ/2 +O(|Wn|−1)

. (5.18)

The second moment of the right-hand side of bound (5.18) is of the orderO(|Wn|−1), which

implies statement (5.17). Hence, the statement E[(ãk,n−ak)
2] = o(h4

n) holds. To complete

the proof of E[(ãk,n− ak)λ̃S,n(sk)] = o(h2
n), we still need to show that E[λ̃2

S,n(sk)] = O(1).

To this end, we next prove that E[(λ̃S,n(sk) − λS,n(sk))
2] = O(1) and E[λ2

S,n(sk)] =

O(1). The latter statement immediately follows from Lemma 4.2. To prove that the

former statement holds, we use the Cauchy-Schwarz inequality and see that it follows

12



from E[(ã−1
i,n − a−1

i )2] = o(h4
n). The latter statement can be established similarly to

the eaerlier statement E[(ãk,n − ak)
2] = o(h4

n), as the only difference between the two

statements is the reversed roles of X(Wk,n) and X(W1,n). With this note we conclude the

proof that the expectation of the first sum on the right-hand side of equation (4.11) is of

the order o(h2
n). To show that the expectation of the second sum is of the order o(h2

n),

we need to verify the statement E[ |λ̃S,n(sk)− λS,n(sk)| ] = o(h2
n), which follows from the

Cauchy-Schwarz inequality and the already proved statement E[λ2
S,n(sk)] = O(1). The

proof of Theorem 3.2 is now complete. ¤

Proof of Theorem 3.3 We start with equation (4.11) and replace all ‘hats’ by ‘tildes’.

By Lemma 4.2, the variance of the right-most sum in equation (4.11) is equal to the

right-hand side of equation (3.7). Hence, Theorem 3.3 follows if E[(ãk,n − ak)
2λ̃2

S,n(sk)]

and E[(λ̃S,n(sk) − λS,n(sk))
2] are of the order o(h−1

n |Wn|−1) when n → ∞. To verify

the first of these conditions, we reduce it to showing that E[(ãk,n − ak)
4] = O(|Wn|−2)

and E[λ̃4
S,n(sk)] = O(1). Analogous arguments to those in the proof of Theorem 3.2

show, for example, that E[(ãk,n − ak)
4] = O(|Wn|−2) holds if the fourth moment of the

right-hand side of bound (5.18) is of the order O(|Wn|−2), which follows easily from the

fact that the fourth moments of the variable ξk − E[ξk] is of the order O(|Wn|−2). In

summary, we have that the expectation E[(ãk,n − ak)
2λ̃2

S,n(sk)] is of the order O(|Wn|−1),

and hence o(h−1
n |Wn|−1). We are left to prove E[(λ̃S,n(sk) − λS,n(sk))

2] = o(h−1
n |Wn|−1).

Using analogous arguments to those in the proof of Theorem 3.2, we have that E[(ã−1
i,n −

a−1
i )4] = O(|Wn|−2) and E[λ4

S,n(sk)] = O(1). Combining these facts with the Cauchy-

Schwarz inequality, we obtain that the expectation E[(λ̃S,n(sk)−λS,n(sk))
2] is of the order

O(|Wn|−1), and hence o(h−1
n |Wn|−1). This completes the proof of Theorem 3.3. ¤

Proof of Corollary 3.1. The corollary follows from equation (4.11) with ‘hats’ replaced

by ‘tildes’ and the following three statements: 1)
√

hn|Wn| E
[ | ãk,n − ak| λ̃S,n(sk)

] →P 0,

which follows from the earlier proved (cf. the proof of Theorem 3.2) E[ |ãk,n−ak|λ̃S,n(sk)] =

o(h2
n) since h5

n|Wn| = O(1) by assumption; 2)
√

hn|Wn| E
[∣∣λ̃S,n(sk) − λS,n(sk)

∣∣] →P

0, which follows from the earlier proved (cf. the proof of Theorem 3.2) E[ |λ̃S,n(sk) −
λS,n(sk)| ] = o(h2

n) since h5
n|Wn| = O(1); and 3)

√
hn|Wn|
d0(s)

( T/τ∑

k=1

ak λS,n(sk)1{s ∈ W 0
k } − λ(s)− 1

6
λ′′S(s)λL(s)h2

n

)
→d N (0, 1).
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To verify statement 3), we note that s ∈ [0, T ) uniquely determines k, which we denote

by κ. Hence, statement 3) is equivalent to

√
hn|Wn|
D(sκ)

(
λS,n(sκ)− λS(sκ)− 1

6
λ′′S(sκ)h

2
n

)
→d N (0, 1),

which follows from Corollary 4.1 with z = sκ. The proof of Corollary 3.1 is complete. ¤
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