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ABSTRACT

This article investigates the structure of Gaussian pricing models (that is, models in which future returns are

normally distributed). Although much is already known about such models, this article differs in that it is based

on a formulation of the theory of derivative pricing in which numeraire invariance is manifest, extending earlier

work on this subject. The focus on symmetry properties leads to a deeper insight in the structure of these

models. The central idea is the construction of the most general class of derived Gaussian tradables given a set

of underlying tradables which are themselves Gaussian. These derived tradables are called “generalized power

tradables” and they correspond to portfolios in which the fraction of total value invested in each asset is a

deterministic function of time. Applying this theory to Gaussian HJM models, the new tradables give an explicit

description of the interdependence of bonds implicit in such models. Given this structure, a simple condition

is derived under which these models allow a description in terms of an M -factor Markov functional model, as

introduced by Hunt, Kennedy and Pelsser. Finally, conditions are derived under which these Gaussian Markov

functional models are time homogeneous (bond volatilities depending only on the time to maturity). This result

is linked to recent results by Björk and Gombani.
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Keywords and Phrases: option pricing, interest rate modeling, markov functional models, local scale invariance,

partial differential equations
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1. Introduction

Models in which future returns are normally distributed, known as Gaussian models, are a cornerstone
in the theory of derivative pricing, despite their many well known deficiencies. The mathematical
tractability of these models makes it possible to find analytical expressions for the prices of a large
range of derivative contracts. For example, any contract which gives the right to exchange one asset
for another at a fixed future date (e.g. plain vanilla European puts and calls) has a price in the
familiar Black-Scholes-Merton form. Given the huge popularity of these models, it is important to
have a clear picture of their structure. Although Gaussian market models can never be incomplete,
they can be overcomplete, which implies that there exist deterministic relations between prices of
different assets in the market. If this is the case, it is necessary to impose conditions on the model
to exclude arbitrage possibilities. This is an issue that has been addressed in many articles. On the
other hand, it is interesting to characterize the nature of these deterministic relations, given that the
market is arbitrage free.

This article offers an investigation into the structure of Gaussian models from an alternative point
of view. It builds on a formulation of pricing theory in which numeraire invariance (a local scale
invariance) is manifest. This formulation was developed in a series of articles [HN01a, HN01b, HNV02].
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The core of the formalism is the idea that pricing problems should be formulated only in terms of
self-financing objects which are called tradables. From simple dimensional analysis one then finds that
derivative prices must be homogeneous functions of degree one in these tradables. The consequent use
of tradables as a proper parametrization of every object in a model that has a price makes numeraire
invariance manifest, and pricing problems more transparent.

Following this line of thought, the main tool in the investigation of Gaussian models is the introduction
of the most general class of derived Gaussian tradables that can be constructed given a set of underlying
tradables which are themselves Gaussian. These derived tradables will be called “generalized power
tradables”, and they correspond to a portfolio in which the fraction of total value invested in each of the
underlying tradables is a deterministic function of time. In general, these new tradables are strongly
path-dependent. Given these new tradables, the structure of Gaussian models is analyzed by looking
at the subspace of linear relations between volatility vectors of tradables which respect numeraire
invariance (“proper relations”). It is shown that, under some technical conditions, a Gaussian model
can be parametrized by a basic subset of tradables for which no proper relations exist between their
volatility vectors (they are “properly independent”). All tradables in the model can be expressed as
generalized power tradables constructed from this basic set.

The theory is especially useful when applied to interest rate models, in particular to Gaussian Heath-
Jarrow-Morton models, because it gives a clear picture of the deterministic relations between bonds
that are implicit in such models. This makes it possible to derive a simple condition under which
the current price of each tradable in the model depends only on the current prices of the basic set of
tradables, not on their paths. The model then becomes a Markov functional model, in the sense of
Hunt, Kennedy and Pelsser. Among these, models which are time homogeneous are of special interest.
In these models, the bond volatilities are a function of the time to maturity only. It is shown that
there exists an M(M + 3)/2 parameter family of time homogeneous models that allow a description
as an M -factor Gaussian Markov Functional model.

2. Review of the tradable formalism

The material in this section is a review from results appearing in Ref. [HN01a]. Details and proofs can
be found in the original paper. Consider a market consisting of N+1 tradables which is complete, and
denote the price at time t of asset i, in some fixed but arbitrary numeraire, by xi(t) where i = 0, . . . , N .
The prices in the market are assumed to be driven by K uncorrelated standard Wiener processes and
satisfy, under the objective measure

dxi(t)
xi(t)

= µi(x, t)dt+
K∑
k=1

σki (x, t)dW k
t (2.1)

for functions µ and σ which guarantee existence and uniqueness of the processes at all times, where
x = (x0, . . . , xN ). The central idea of the tradable formalism is that every object in the theory that
has the dimension of value should be expressed in terms of the underlying tradables only, which is
always possible because of the assumption of market completeness. Take for example the following
model

dx0

x0
= 0,

dx1

x1
= µdt+ (σx1)αdW

where µ, σ are constants and x0 is taken as numeraire: both x0 and x1 are expressed in units of x0,
which represents the unit of value. In other words, x0 and x1 have dimension [x0]. It is simple to see
that the parameter σ has implied dimension [x0]−1 so not everything in this model with the dimension
of value is expressed in terms of the underlying tradables only. But it is clear how to correct this:
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make the substitution σ → σ/x0. This leads to the equivalent model

dx0

x0
= 0,

dx1

x1
= µdt+

(
σ
x1

x0

)α
dW

where both µ and σ are now dimensionless (with respect to the value dimension, they still have a time
dimension). Now if the model Eq. (2.1) is formulated according to this principle, then the functions
µi(x, t) and σki (x, t) are necessarily homogeneous of degree zero in the variables x. Similarly, the value
V (x, t) of any derivative security depending on x must be homogeneous of degree one. By the Euler
formula this is equivalent to

N∑
i=0

xi
∂V (x, t)
∂xi

= V (x, t)

On the other hand, Itô’s lemma gives

dV = (LV )dt+
N∑
i=0

∂V (x, t)
∂xi

dxi

where

LV ≡ ∂V (x, t)
∂t

+ 1
2

N∑
i,j=0

K∑
k=1

σki (x, t)σkj (x, t)xixj
∂2V (x, t)
∂xi∂xj

So if a claim price V (x, t) satisfies the PDE LV = 0 it is the homogeneity property of V (x, t) which
ensures that this claim can be replicated by a self-financing portfolio using delta hedging. The solutions
of this PDE are invariant under simultaneous shifts of the volatility vectors σi = (σ1

i , . . . , σ
K
i ) by an

arbitrary vector λ

σi(x, t)→ σi(x, t)− λ(x, t) for all i

Such transformations correspond to numeraire changes. In fact, taking λ(x, t) equal to σj(x, t) for
some j corresponds to taking xj as numeraire. This article will be focused on market models in
which returns are Gaussian. In such models the volatility functions only depend on time, not on the
tradables

σi(x, t) = σi(t) for all i

In this case, asset prices are log-normally distributed, and it is possible to write down a very elegant
formula for the price of a European type claim at time t, defined by a payoff V (x, T ) at maturity T .
One first determines a singular value decomposition of the time integrated covariance matrix Σij

Σij ≡
K∑
k=1

∫ T

t

σki (u)σkj (u)du =
R∑
r=1

θri (t, T )θrj (t, T )

Here the dimension R of the vectors θi = (θ1
i , . . . , θ

R
i ) equals the rank of the matrix Σij . The price of

the claim is then given by

V (x, t) =
∫
V (x0φ(z − θ0(t, T )), . . . , xNφ(z − θN (t, T )), T )dRz

where z = (z1, . . . , zR) and

φ(z) =
1(√
2π
)R exp

(
−1

2

R∑
r=1

z2
r

)
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3. Linear relations between volatility vectors

In this section linear relations that might exist between volatility vectors in a Gaussian market model
are examined. Such relations can in general be time-dependent. Let’s start by looking at a fixed point
in time t. Of course, every linear relation can be written in the form

N∑
i=0

ci(t)σi(t) = 0

for some vector c(t) = (c0(t), . . . , cN (t)). The set of all such relations forms a linear space L in a
natural way. Linear relations are not necessarily invariant under numeraire changes. Indeed, consider
a simultaneous shift of the volatility vectors σi(t)→ σ̂i(t) = σi(t)− λ(t). The shifted vectors satisfy

N∑
i=0

ci(t)σ̂i(t) = −

(
N∑
i=0

ci(t)

)
λ(t)

so the relation will be numeraire independent if and only if

N∑
i=0

ci(t) = 0 (3.1)

Vectors c satisfying this condition form a linear subspace Lp ⊂ L which will be called the space of
proper relations. By construction, the dimension of this subspace is a numeraire-independent quantity.
A set of vectors for which no proper relations exist will be called properly independent. By abuse of
terminology, a set of tradables will also be called properly independent if their volatility vectors are.

Relations which are not in Lp will be called improper relations. Now let c1(t), c2(t) be two linearly
independent improper relations. Then the linear combination(

N∑
i=0

ci2(t)

)
c1(t)−

(
N∑
i=0

ci1(t)

)
c2(t)

corresponds to a proper relation. This shows that

dimL− dimLp ≤ 1

So either L = Lp or L is generated by Lp and exactly one improper relation. Whether or not an
improper relation exists depends on the choice of a numeraire. In fact, it is always possible to find
a numeraire such that an improper relation does exist. Simply choose a vector c(t) not satisfying
Eq. (3.1), then solve

N∑
i=0

ci(t)σ̂i(t) =
N∑
i=0

ci(t)(σi(t)− λ(t)) = 0

for λ(t). The result is

λ(t) =
∑N
i=0 c

i(t)σi(t)∑N
i=0 c

i(t)

Later in this article it will become clear that such a numeraire is related to a derivative security in
the tradables. In general, it is a good idea to use a numeraire of this kind, since this tends to simplify
calculations. Obviously, the simplest such choice is taking one of the tradables itself as numeraire.
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Conversely, it is always possible to construct a numeraire in such a way that no improper relations
exist. The simplest way to accomplish this is to extend the volatility vectors as follows:

(σ1
i (t), . . . , σKi )→ (σ1

i (t), . . . , σKi , 1)

This amounts to the introduction of an additional Wiener process. Obviously, the new volatility
vectors describe the same market in a different numeraire, one that is not related to a derivative
security in the tradables.

In the following sections the following trivial result will be used. Suppose that dimLp = N −M
for some M . Then there exists a subset of M + 1 volatility vectors which is properly independent.
Relabeling the tradables if need be, one may assume that this is the set {σ0(t), . . . , σM (t)}. The
volatility vector of every tradable xj where j = 0, . . . , N can be expressed as a linear combination of
vectors in this set as follows:

σj(t) =
M∑
i=0

ηij(t)σi(t) (3.2)

where the coefficient vectors ηj(t) = (η0
j (t), . . . , ηMj (t)) are subject to

M∑
i=0

ηij(t) = 1

The number M will be called the rank of the model at time t. This number equals the minimum
number of independent Wiener processes necessary to describe the market model. It is a numeraire
independent quantity and in general M ≤ K.

As mentioned before, linear relations can be time-dependent. In fact, the rank M might in general
not be constant in time. For the sake of simplicity, we will restrict our attention to models in which
this rank is constant. Furthermore it will be assumed that there exists a fixed subset of tradables
{x0, . . . , xM} such that for all t in a time interval [0, T ∗] (the lifetime of some contract to be priced)
every volatility vector σj(t) can be written in the form of Eq. (3.2). In other words, the volatility
vectors corresponding to this fixed subset are properly independent for t ∈ [0, T ∗]. In the next section
it will be shown that under these conditions every tradable can be considered as a (possibly path-
dependent) derivative security whose value is completely fixed by its initial value and the basic set of
tradables {x0, . . . , xM}.

4. Generalized power tradables

In this section a class of derived tradables is introduced that will be called generalized power tradables.
The starting point is a properly independent set of M + 1 tradables {x0, . . . , xM} satisfying

dxi(t)
xi(t)

= µi(t)dt+
K∑
k=1

σki (t)dW k
t (4.1)

The idea behind the new tradables is that they are constructed as a portfolio where at every point in
time t a fraction ηi(t) of the total value of the portfolio V is invested in tradable xi. The fractions
ηi(t) are deterministic functions of time, only subject to the condition that

M∑
i=0

ηi(t) = 1 (4.2)
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The hedge parameters can be expressed in terms of these fractions as

φi(t) =
ηi(t)V (t)
xi(t)

It is then obvious that
M∑
i=0

φi(t)xi(t) = V (t)

If the portfolio is to be self-financing, it should also satisfy

dV (t) =
M∑
i=0

φi(t)dxi(t)

and this is equivalent to

dV (t)
V (t)

=
M∑
i=0

ηi(t)
dxi(t)
xi(t)

=
M∑
i=0

ηi(t)

(
µi(t)dt+

K∑
k=1

σki (t)dW k
t

)
(4.3)

This shows that V is again a Gaussian tradable, and in fact it is the most general Gaussian tradable
that can be constructed from the given set of underlying Gaussian tradables. Obviously, if one
takes η(t) = ηj(t) as defined in Eq. (3.2), then the generalized power tradable V has exactly the same
volatility vector as xj . But this implies that the two must be equal up to a multiplicative constant, for
else there would be arbitrage opportunities. The constant of proportionality follows from specification
of the values of the tradables at some fixed time. This shows explicitly that in a Gaussian model with
rank M prices of all tradables can be expressed in terms of the price paths of a subset of M + 1 basic
tradables. It also shows that the model is arbitrage free if and only if for each proper relation c(t) the
drift terms satisfy

N∑
i=0

ci(t)µi(t) = 0

It is a simple exercise to show that this condition is necessary and sufficient for the existence of
functions γk(t) such that for all i, j = 0, . . . , N

µi(t)− µj(t) =
K∑
k=1

(σki (t)− σkj (t))γk(t)

This is a symmetric definition for market prices of risk γk(t) [HNV02]. So the existence of market
prices of risk is necessary and sufficient to ensure the absence of arbitrage opportunities, a fact that
is well known [MR97].

Now let’s turn to the construction of an explicit formula for the value of the generalized power tradable
V . Using Itô’s lemma, Eq. (4.3) can be rewritten as (omitting t dependencies to simplify the notation)

d lnV +
1
2
〈V, V 〉
V 2

dt =
M∑
i=0

(
d(ηi lnxi)−

∂ηi

∂t
lnxidt+

1
2
ηi
〈xi, xi〉
x2
i

dt

)
which in turn becomes

d lnV =
M∑
i=0

(
d(ηi lnxi)−

∂ηi

∂t
lnxidt

)
+

1
4

M∑
i,j=0

K∑
k=1

ηiηj(σki − σkj )2dt
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In this form, the equation can be integrated to give

V (t) = V (0)eξ(t)−Ξ(t)
M∏
i=0

(
xi(t)
xi(0)

)ηi(t)
where

ξ(t) =
1
4

M∑
i,j=0

K∑
k=1

∫ t

0

ηi(s)ηj(s)(σki (s)− σkj (s))2ds

Ξ(t) =
M∑
i=0

∫ t

0

∂ηi(s)
∂s

ln(xi(s))ds

It now becomes clear that the price V (t) will in general depend upon the price history up to time
t of the underlying tradables xi via the term Ξ(t). This path-dependence vanishes if and only if
the functions ηi(t) are constants in time. In this case, the tradable reduces to a power tradable, as
introduced in [HN01b]. This justifies the name “generalized power tradable” for the general tradable.

It turns out that generalized power tradables play an important role in the valuation of geometric
Asian options. Indeed, consider a market with two basic tradables x0 and x1 (for example a bond
and a stock). Take

η0(t) =
t

T
, η1(t) =

T − t
T

Then the value of V at time T becomes

V (0) exp

(
ξ(T ) +

1
T

∫ T

0

ln
x1(s)
x0(s)

ds

)
x0(T )
x0(0)

and this equals, up to a deterministic factor, the continuously sampled geometric average of x1(s)/x0(s)
for 0 < s < T times x0(T ). More details about the valuation of geometric average Asian options can
be found in [HN01b].

5. Gaussian Heath-Jarrow-Morton models

The most obvious application of this theory is in the field of interest rate modeling. Gaussian models
are still very popular since they can be related directly to Black formulae, which constitute the
market standard for valuation of plain-vanilla instruments. Of course, one has to make a choice which
instruments, available in the market, will be the basic tradables. One can think of discount bonds,
coupon bonds or swaps, depending on the type of contracts one would like to price. In this article, we
will restrict our attention to the modeling of discount bond prices, but note that the theory is equally
applicable to other choices.

Let P (t, T ) be the price at time t of a discount bond which pays one unit of currency, say dollars,
at time T . The price is expressed in terms of some fixed but arbitrary numeraire. The most general
Gaussian model for these bonds is given by

dP (t, T )
P (t, T )

= µ(t, T ) +
K∑
k=1

σk(t, T )dW k
t (5.1)

where K is some positive integer. It is in fact a K-factor Gaussian Heath-Jarrow-Morton model.
Since bonds cease to exist at maturity, the functions µ(t, T ) and σ(t, T ) are defined only when t ≤ T .
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From the discussion in the previous sections it follows that in this model at most K + 1 bonds can
be properly independent at any time. We will use similar assumptions as before, i.e. there exists a
fixed set of M + 1 bonds (M ≤ K) characterized by a set of maturities {T0, . . . , TM} whose volatility
vectors are properly independent for t ∈ [0, T ∗] (where T ∗ ≤ Ti for all i) and such that every σ(t, T )
can be written as

σ(t, T ) =
M∑
i=0

ηi(t, T )σ(t, Ti)

where the vectors η(t, T ) satisfy

M∑
i=0

ηi(t, T ) = 1

Again using the results from the previous section one can write

P (t, T ) = P (0, T )eξ(t)−Ξ(t)
M∏
i=0

(
P (t, Ti)
P (0, Ti)

)ηi(t,T )

(5.2)

where

ξ(t) =
1
4

M∑
i,j=0

K∑
k=1

∫ t

0

ηi(s, T )ηj(s, T )(σk(s, Ti)− σk(s, Tj))2ds

Ξ(t) =
M∑
i=0

∫ t

0

∂ηi(s, T )
∂s

ln(P (s, Ti))ds (5.3)

This explicitly shows the strong relations between bonds that are implicit in the use of a Gaussian
HJM-model. The no-arbitrage conditions can be written as

µ(t, T ) =
M∑
i=0

ηi(t, T )µ(t, Ti)

This is equivalent to the existence of functions γk(t), market prices of risk, such that for all S, T one
has

µ(t, S)− µ(t, T ) =
K∑
k=1

(σk(t, S)− σk(t, T ))γk(t) (5.4)

6. Cash, Cash bond and Forward rates

According to the principles of the tradable formalism, every contract specification should be expressible
in terms of tradable objects only. Of course, many contracts make reference to cash payments, which
are expressed in terms of money. However, money is not a tradable object, since it is not self-financing.
The way out is to observe that the bond P (t, T ) has a value of 1$ at time T . So references to cash
payments at time T should be replaced by references to the bond P (t, T ).

On the other hand, one can define a process which has a value of one unit of currency for all t by
C(t) ≡ P (t, t). This process is well defined in terms of the basic bonds, using Eq. (5.2)

C(t) = P (0, t)eξ(t)−Ξ(t)
M∏
i=0

(
P (t, Ti)
P (0, Ti)

)ηi(t,t)
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Note that C(t) is not constant when an arbitrary numeraire is used. Closely related to C(t) is the cash
bond or money market account B(t). This object is by definition a tradable, obtained by constantly
reinvesting in bonds with the shortest time to maturity. By a no arbitrage argument it follows that
it has to satisfy

dB(t)
B(t)

= µ(t, t)dt+
K∑
k=1

σk(t, t)dW k
t (6.1)

when its value is expressed in the same numeraire as the bonds. Unlike cash, the cash bond never
appears in real contract specifications. It is of theoretical interest only. There is a simple relation
between B(t) and C(t), which in fact defines the short rate r(t)

B(t)
B(0)

= exp
(∫ t

0

r(u)du
)
C(t)
C(0)

From this it follows that C(t) satisfies

dC(t)
C(t)

= (µ(t, t)− r(t))dt+
K∑
k=1

σk(t, t)dW k
t (6.2)

In the original formulation of the HJM approach, not bond prices but forward rates are the objects
being modeled. How is this related to the tradable approach? A numeraire-independent definition for
forward rates is

B(t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
C(t)

(with a factor C(t) in the right hand side). Assume that the forward rates satisfy

df(t, T ) = a(t, T )dt+
K∑
k=1

bk(t, T )dW k
t

Then consider the following object

I(t) = −
∫ T

t

f(t, u)du = log
P (t, T )
C(t)

On the one hand it satisfies [MR97]

dI(t) =

(
f(t, t)−

∫ T

t

a(t, u)du

)
dt−

K∑
k=1

(∫ T

t

bk(t, u)du

)
dW k

t

On the other hand, using Eq. (5.1), Eq. (6.2) and Itô’s lemma

dI(t) =

(
µ(t, T )− µ(t, t) + r(t)− 1

2

K∑
k=1

(σk(t, T )2 − σk(t, t)2)

)
dt

+
K∑
k=1

(
σk(t, T )− σk(t, t)

)
dW k

t
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Using the equality r(t) = f(t, t) one finds the equalities

−
∫ T

t

a(t, u)du = µ(t, T )− µ(t, t)− 1
2

K∑
k=1

(σk(t, T )2 − σk(t, t)2)

−
∫ T

t

bk(t, u)du = σk(t, T )− σk(t, t)

It is an easy check that the right hand sides are numeraire-invariant quantities, and consequently, the
same holds for the left hand sides. From these equations it follows that the no-arbitrage condition
Eq. (5.4) implies

a(t, T ) =
K∑
k=1

bk(t, T )

(∫ T

t

bk(t, u)du− σk(t, t) + γk(t)

)

with γk(t) market prices of risk. This is the well known HJM no-arbitrage condition. Furthermore,
by differentiation with respect to T one obtains

a(t, T ) = −∂Tµ(t, T ) +
K∑
k=1

σk(t, T )∂Tσk(t, T ), bk(t, T ) = −∂Tσk(t, T )

7. Gaussian Markov functional models

Of special interest among interest rate models are so-called Markov functional models [HKP00]. These
are models in which values of bonds (relative to each other) can be expressed as a functional of a
Markov process, i.e.

P (t, T )
P (t, T0)

= Ψ(α(t), t, T, T0) (7.1)

where Ψ is a deterministic function, and α(t) = (α1(t), . . . , αM (t)) follows an M dimensional Markov
process. The advantage of a Markov functional model is that it can be implemented efficiently, since
it is only necessary to track the process α(t). In this section we will consider under what conditions
a Gaussian HJM model can be described as a Markov functional model. Observe that by inversion,
the process α(t) can be inferred from the prices of M + 1 different bonds (barring degenerate cases),
characterized by a set of maturities {T0, . . . , TM}

α(t) = f

(
t,
P (t, T1)
P (t, T0)

, . . . ,
P (t, TM )
P (t, T0)

)
Inserting this in Eq. (7.1), it is possible to write

P (t, T ) = Ψ̂(P (t, T0), . . . , P (t, TM ), t, T ) (7.2)

for some deterministic function Ψ̂ which is homogeneous of degree one in the bond prices. In other
words, every bond can be expressed as a derivative security in terms of a basic set of M + 1 bonds,
and this derivative security is only allowed to depend on the prices of these basic bonds at time t;
there can be no path-dependency. If all bonds are to be Gaussian, it follows from the results of
the previous sections that this derivative security must be a generalized power tradable. To exclude
path-dependency, it is necessary that the path-dependent term Eq. (5.3) vanishes, which is the case
iff the ηi(t, T ) are constant in t for all i and T . All in all, this shows that a Gaussian HJM model
allows a description as an M dimensional Markov functional model if and only if the volatility vectors
of bonds can be written in the form

σ(t, T ) =
M∑
i=0

ηi(T )σ(t, Ti) (7.3)
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for functions η(T ) satisfying

M∑
i=0

ηi(T ) = 1 (7.4)

and

ηi(Tj) =
{

1 if i = j
0 otherwise for all i, j (7.5)

This generalizes the result of [Ca94]. Given these relations, one has the following explicit form for
Eq. (7.2)

P (t, T ) = P (0, T )eξ(t)
M∏
i=0

(
P (t, Ti)
P (0, Ti)

)ηi(T )

(7.6)

where

ξ(t) =
1
4

M∑
i,j=0

ηi(T )ηj(T )
K∑
k=1

∫ t

0

(σk(s, Ti)− σk(s, Tj))2ds

So every bond can be expressed as a power tradable in terms of the set of basic bonds.

8. Time homogeneous models

A useful class of Gaussian interest rate models are the so-called time homogeneous models. For these
models, the volatility vectors only depend on the time to maturity τ = T − t, i.e.

σ(t, T ) = ρ(T − t) = ρ(τ)

or equivalently

(∂t + ∂T )σ(t, T ) = 0 (8.1)

8.1 Markov conditions
An interesting question is under what conditions a time homogeneous model allows a description as
an M -factor Markov functional model. This class of models was characterized in [BG99]. Here we
re-derive their result. The claim is that a model belongs to this class if and only if there exist M real
constants β1, . . . , βM such that the vector ρ(τ) satisfies

∂M+1ρ(τ)
∂τM+1

+
M∑
i=1

βi
∂iρ(τ)
∂τ i

= 0 (8.2)

Indeed, such a model should satisfy both Eq. (7.3) and Eq. (8.1). By combining these two equations
one gets

M∑
i=0

(
ηi(T )

∂σ(t, Ti)
∂t

+
∂ηi(T )
∂T

σ(t, Ti)
)

= 0 (8.3)

for all t, T . In particular the equation holds for the set of times T ∈ {T0, . . . , TM}. So one can write,
making use of Eq. (7.5)

∂σ(t, Ti)
∂t

+
M∑
j=0

Aijσ(t, Tj) = 0, Aij =
∂ηj(T )
∂T

∣∣∣∣
T=Ti

(8.4)
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Now let p(λ) be the characteristic polynomial of the matrix A

p(λ) = det(λ1−A) =
M+1∑
i=0

βiλ
i

for some constants βj with βM+1 = 1. It is well known that p(A) = 0. This fact can be used to derive
a differential condition on the volatility vectors ρ(τ) (using Eqs. (7.3) and (8.4))

M+1∑
i=0

βi
∂iρ(τ)
∂τ i

=
M+1∑
i=0

(−1)iβi
∂iσ(t, T )
∂ti

=
M+1∑
i=0

M∑
j=0

(−1)iβiηj(T )
∂iσ(t, Tj)

∂ti

=
M+1∑
i=0

M∑
j,k=0

βi(Ai)jkηj(T )σ(t, Tk) = 0

It remains to consider Eq. (7.4). In view of Eq. (7.5) it is equivalent to the condition

M∑
j=0

∂ηj(T )
∂T

= 0 for all T

Again, this holds for T ∈ {T0, . . . , TM}. Using the definition of A one gets

M∑
j=0

∂ηj(T )
∂T

∣∣∣∣
T=Ti

=
M∑
j=0

Aij = 0 for all i

This shows that the matrix A must be degenerate. Consequently the coefficient β0 in p(λ) is zero.
Therefore the volatility vectors in an M -factor time homogeneous Gaussian Markov functional model
must satisfy Eq. (8.2). It is straightforward to show that the converse also holds. Indeed, Eq. (8.2)
can be solved for general constants βj . To do this, one first determines the roots of the characteristic
polynomial

p(λ) = λM+1 +
M∑
j=1

βjλ
j =

∏
k

(λ− αk)nk (8.5)

For every root αk with multiplicity nk one finds the following linearly independent solutions of the
equation

τ ieαkτ , for 0 ≤ i < nk

Let’s denote these solutions, in some particular order, by ψ0(τ), . . . , ψM (τ), such that ψ0(τ) = 1,
which is a solution because α = 0 is always a root. One can now check explicitly that any linear
combination of these solutions can always be written in the form of Eq. (7.3). This is left as an
exercise to the reader.

8.2 Finding η(T )
In this section an explicit solution for the vector η(T ) is constructed. It turns out to be completely
fixed by the constants β1, . . . , βM . By substituting Eq. (8.4) back into Eq. (8.3) one finds

N∑
i=0

∂ηi(T )
∂T

−
N∑
j=0

ηj(T )Aji

σ(t, Ti) = 0
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for all t, T . Without loss of generality one may assume that the σ(t, Ti) are linearly independent. This
implies that

∂ηi(T )
∂T

−
N∑
j=0

ηj(T )Aji = 0

Now an argument similar to that used in the previous section shows that η(T ) satisfies an equation
identical in form to Eq. (8.2)

∂M+1η(T )
∂TM+1

+
M∑
i=1

βi
∂iη(T )
∂T i

= 0 (8.6)

Therefore, each component of η(T ) is a linear combination of the functions ψi(T ). They are uniquely
determined by Eq. (7.5). Indeed, a little linear algebra leads to

ηi(T ) =
ω(T0, . . . , Ti−1, T, Ti+1, . . . , TM )

ω(T0, . . . , TM )

where ω is given by the determinant

ω(T0, . . . , TN ) =

∣∣∣∣∣∣∣
ψ0(T0) . . . ψM (T0)

...
. . .

...
ψ0(TM ) . . . ψM (TM )

∣∣∣∣∣∣∣
Note that the solutions ηi(T ) are invariant under a change of basis in the space of solutions of Eq. (8.6),
as they should be.

8.3 General time homogeneous model
The only numeraire changes σ(t, T )→ σ(t, T )+λ(t) which respect the time homogeneity property are
those for which λ(t) is constant. This corresponds to the fact that the constant function ψ0(τ) = 1 is
always a solution of Eq. (8.2). In order to classify time homogeneous models, it is useful to fix this
remaining freedom. One way to do this is to demand that

σ(t, t) = ρ(0) = 0

In view of Eq. (6.1), this amounts to the choice of the money market account as numeraire. Obviously,
under this restriction one is left with the following set of linearly independent solutions of Eq. (8.2)

ψ̄i(τ) = ψi(τ)− ψi(0)

where 1 ≤ i ≤ M . Every component of the volatility vector ρ(τ) must be a linear combination of
these basis functions

ρk(τ) =
M∑
m=1

ckmψ̄m(τ)

for some constants ckm. So the most general M -factor time homogeneous Gaussian Markov functional
model is described by an SDE of the form

dP (t, T )
P (t, T )

= µ(t, T )dt+
K∑
k=1

M∑
m=1

ckmψ̄m(T − t)dW k
t (8.7)
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where the drift terms µ(t, T ) are restricted by no-arbitrage conditions. They are not necessarily time
homogeneous. On the other hand, they are irrelevant for derivative pricing. The description Eq. (8.7)
is not yet unique. To make it unique, introduce a new basis in the space of Wiener processes

W̄m
t ≡

K∑
k=1

ckmW
k
t

In terms of these, the model simply becomes

dP (t, T )
P (t, T )

= µ(t, T )dt+
M∑
m=1

ψ̄m(T − t)dW̄m
t

The processes Ŵm
t are uniquely described by their covariance matrix

〈W̄ i
t , W̄

j
t 〉 =

K∑
k=1

ckickj ≡ Cij

Let’s count the number of degrees of freedom. It equals the sum of M (choice of the βi’s) and
M(M + 1)/2 (choice of a symmetric M ×M matrix Cij). This is

M(M + 3)
2

9. Some applications

9.1 One factor, the Vasicek model
For a one factor model, the characteristic polynomial Eq. (8.5) has two roots. One is always zero, the
other will be called α. This leads to the following solutions of Eq. (8.2)

ψ0(τ) = 1, ψ1(τ) =
{
τ if α = 0
eατ otherwise

We will concentrate on the case α 6= 0, since the case α = 0 can be obtained as a limit of this. Fixed
to the money market account numeraire, the solution becomes

ψ̄1(τ) = eατ − 1

One recognizes the well known (extended) Vasicek model. It is usually parametrized like

σ(t, T ) =
σ(eα(T−t) − 1)

α
(9.1)

with α < 0. The vector η(T ) is given by

η(T ) =
{
η0(T ), η1(T )

}
=
{
eαT1 − eαT

eαT1 − eαT0
,
eαT − eαT0

eαT1 − eαT0

}
and it is straightforward to check that the volatility vector can be written in the form of Eq. (7.3),
i.e. in terms of the volatility vectors of two basic bonds with maturity T0 and T1 respectively

σ(t, T ) = η0(T )σ(t, T0) + η1(T )σ(t, T1)

The functional relation for a general bond is given by Eq. (7.6), where

ξ(t) =
σ2

4α3
(1− e−2αt)(eαT1 − eαT )(eαT − eαT0)
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In the limit α→ 0 the model reduces to the Ho-Lee model, with

σ(t, T ) = σ(T − t)

η(T ) =
{
T1 − T
T1 − T0

,
T − T0

T1 − T0

}
ξ(t) =

σ2

2
t(T1 − T )(T − T0)

If two factors are used in the construction, it is possible to model the empirically observed volatility
hump. See e.g. [RC99].

9.2 Pricing an American option
In this section we consider a concrete example, the pricing of an American put option under stochastic
interest rates. The aim is to show explicitly how this problem can be expressed entirely in terms of
a reduced set of tradables. It can then be solved numerically. The put option is defined as follows.
It gives the owner the right to sell one stock at any time t up to maturity T0 for a strike price of K
dollars, thereby terminating the contract. The profit is then

KC(t)− S(t) (9.2)

where C(t) is the cash process. This leads to a well-defined free boundary problem. The underlying
model is as follows. The stock price S(t) satisfies

dS(t)
S(t)

= µSdt+ σSdW1

while the bonds are modeled by the extended Vasicek model

dP (t, T )
P (t, T )

= µ(t, T )dt+ σ(t, T )dW2

In both cases the dynamics are defined with respect to the money market account numeraire under
the objective measure. The function σ(t, T ) is defined by Eq. (9.1). To simplify matters, we will
assume that W1 and W2 are not correlated.

Now it was shown in the previous section that all bonds can be written as a function of two basic
bonds, for which we will use P0(t) ≡ P (t, T0) and P1(t) ≡ P (t, T1) with T1 > T0. This ensures that
both bonds will exist during the entire lifetime of the option. It will be clear that the value of the put
option can be written as a function of the stock and these two basic bonds. This follows from the fact
that the early exercise function Eq. (9.2), which essentially defines the contract, can be expressed in
terms of this set of tradables (and the initial term structure) using the relation

C(t) = P (t, t) = P (0, t)eξ(t)
(
P0(t)
P0(0)

)η0(t)(
P1(t)
P1(0)

)η1(t)

with

η(t) =
{
eαT1 − eαt

eαT1 − eαT0
,
eαt − eαT0

eαT1 − eαT0

}

ξ(t) =
σ2

4α3
(1− e−2αt)(eαT1 − eαt)(eαt − eαT0)
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It remains to derive the pricing PDE. For this, it is useful to rewrite the model, choosing one of the
tradables as numeraire. We will use P0 for this purpose. The reduced model now becomes

dS

S
= µ1(t)dt+ σSdW1 − σ(t, T0)dW2

dP0

P0
= 0,

dP1

P1
= µ2(t)dt+ (σ(t, T1)− σ(t, T0))dW2

where µ1(t), µ2(t) are certain drift functions which are irrelevant for the pricing problem. According
to the discussion in section 2, this leads to the following pricing operator

LV =
∂V

∂t
+

1
2
a0(t)S2 ∂

2V

∂S2
+ a1(t)SP1

∂2V

∂S∂P1
+

1
2
a2(t)P 2

1

∂2V

∂P 2
1

where

a0(t) = σ2
S + σ(t, T0)2

a1(t) = σ(t, T0)(σ(t, T0)− σ(t, T1))
a2(t) = (σ(t, T1)− σ(t, T0))2

The boundary conditions for an American put V (S, P0, P1, t) are [MR97]

V (S, P0, P1, T0) = (KC(T0)− S(T0))+ = (KP0(T0)− S(T0))+

LV (S, P0, P1, t) ≤ 0

V (S, P0, P1, t) ≥ (KC(t)− S(t))+

(LV (S, P0, P1, t) = 0) ∨ (V (S, P0, P1, t) = (KC(t)− S(t))+)

This concludes the description of the problem in the reduced set of tradables. To numerically solve
the problem, it is useful to reduce the dimension of the pricing PDE, making use of the homogeneity
of V (S, P0, P1, t). This is done by introducing new variables

s ≡ S

P0
, p ≡ P1

P0
, v(s, p, t) ≡ V (S, P0, P1, t)

P0
= V (s, 1, p, t)

The pricing operator then simplifies to

Lv =
∂v

∂t
+

1
2
a0(t)s2 ∂

2v

∂s2
+ a1(t)sp

∂2v

∂s∂p
+

1
2
a2(t)p2 ∂

2v

∂p2

10. Outlook

A possible extension to the theory presented here is to look at models in which prices are driven not
only by diffusion but also by jump processes. It was shown in [HNV02] that it is possible to define
power tradables in this setting if drifts, volatilities and jump sizes are deterministic functions of time.
This suggests that the theory can be extended to such models. This is work in progress.
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