
stichting

mathematisch

centrum

AFDELING INFORMP:TICA
(DEPARTMENT OF COMPUTER SCIENCE)

H.J. BOOM

ABSTRACTO THOUGHTS

Preprint

~
MC

IW 101/78 DECEMBER

2e boerhaavestraat 49 amsterdam

£!BUOTHEEK MAT!!t~M\TiSC:H crnrnuM
-.. ~ --P,r1./iSTERDAiv1"-

PJunted at :t.he Ma:thema.:ti.~ CentJr,e, 49, 2e BoeJthaave1i.tluuLt, Am6:teJl.dam.

The Ma.thema.:ti.ca..t CentJr,e, 6ou.nded :the 11-:th 06 Feb1tWVLy 1946, -l6 a. non
p1to6U .ln6U:tr.LUon aim.ln.g a.t :the pJtomo.t.lon 06 pWl.e ma.thema.:ti.C-6 a.nd .lt6
a.ppUc.a.:ti.oYL6. 1:t ,l6 ~pon601ted by :t.he Ne:thell.la.nd6 GoveJl.Yl.ment :t.hltough :the
Ne:theJci.o.nd6 01tga.n.lza.:ti.on 601t :the Adva.nc.ement o 6 PU/le Re6 ea.Jtc.h (Z. W. 0) •

AMS(MOS) subject classification .scheme. (1970): .68A-30, 68A""."40, .02C"'."15

ACM-Computing Reviews-categories: 4.20, 4.29, 5.24

Abstracto Thoughts *)

by

H.J. Boom

ABSTRACT

Some deisign aspects of a language intended for verified programs are

discussed in relation to transformational programming. The data type system

of such a language can be intimately related to intuitionist logic.

KEY WORDS & PHRASES: Abstracto, transformational programming, verification,

data types, intuitionism, propositional calculus.

•) This paper will be submitted for publication elsewhere.

1. FOREWORD

In the last few years, Working Group 2.1 has started
investigating the transformational approach to programming, in
which the programming process is seen as starting with some
correct program which expresses some computation in a clear
language. By applying semantics-preserving transformations, this
program is then converted to a form which can be efficiently
implemented on a conventional machine. This is not the same as
the more traditional stepwise refinement process, which operates
by continually implementing previously unimplemented features.
The transformation approach can better be viewed as analysis,
translation, and optimization than as refinement. Throughout the
transformation process, the program is expressed in an at present
undefined language called "Abstracto". Programs in Abstracto
need not be directly executable; it is envisaged that Abstracto
will contain implementable and unimplementable features, as well
as specifications and other useful things. The aim is to support
the programming process from first conception of algorithm to
final expiession as executable code (in "Concreto"). There has
also been talk of a language "Transformo" in which to guide the
transformation process. The discussions on these points are
still extremely vague.

This is a working paper presented at the WG 2.1 meeting at
Jab¼onna. It is deliberately speculative, and was written to
suggest ideas, not to present conclusions of completed research.
This may account for a certain half-bakedness in the style of
presentation. Minor changes have been made to make it more
accessible to the uninitiated reader.

2. OLYMPO

This paper investigates what language can be at the top of
the hierarchy. Let us call it Olympo, to make it a highest-level
member of the -o family of languages. Olympo should be designed
principally to make verification easy, and efficiency be hanged.
Perhaps efficiency can be transformed in after, but then we are
speaking of Abstracto or even Concreto instead of Olympo.

The current state of the art in formal verification
techniques is at present very dependent on automatic theorem
proving. The normal approach seems to be to probe a program with
assertions much as an acupuncturist inserts strategic pins into a
patient, to look at the reaction, and to pass the resulting
verification conditions to an automatic verifier. The
verification conditions tend to be extremely complicated,
probably because attempts are made to let the assertion language
mimic faithfully all the convolutions of operational semantics.

An additional source of complexity is that the present-day
formal proof and assertions are variations of then-th order
predicate calculus for small n. Predicate calculus was not

originally constructed for the practical verification of
practical theorems. It was instead viewed as a minimal set of
axioms sufficient for the formalization of mathematics, so that
the necessary use of logic in mathematics can be precisely
studied. Serious attempts to use predicate calculus to formalize
mathematics involve massive use of abbreviation. This should be
a warning. Present-day assertion languages should be compared to
machine languages, and we should seriously attempt to raise their
level. A concerted attack on this problem may yield the same
kind of progress as we have achieved in high-level languages over
the last thirty years.

3. INTEGRATED VERIFICATION

Since the advent of Structured Programming (fanfare on
trumpets), there has been a growing suspicion that the
correctness proof of a program should be constructed at the same
time as its code. Much of the present work on verification
ignore this point; in particular, it is ignored in any design for
a compiler that accepts a program, generates object code, and
also generates verification conditions to be checked (or not) by
a separate verifier.

The most successful form of automatically verified
assertions to date has been strong data typing. It is extremely
rare for a programmer to be tempted to leave out the data types
in a strongly-typed language because they involve too much work,.
or because he can see that the program is correct anyway. The
data types are an integral part of the program, and not merely an
add-on feature. The temptation to omit assertions is very strong
with other mechanical verification schemes. These are clearly
add-on techniques. We may conclude:

The assertion mechanism of Olympo should be so well
integrated into the language that no one would think of
leaving out an assertion in the hope of getting a program
ready fast.

Each programming language feature should simultaneously
generate object code and a proof. It may well be that there may
be a variety of features with the same object code but different
proof rules. Each would be used in a different situation, and be
chosen to make a different application easy to prove. For
example, consider the ordinary integral for-loop:

for i from 1 ton do S(i) od,

where S(i) is a parameterized statement. Various axioms may be

convenient to verify programs involving such a loop:

(1) Axiom 11 forl 11

For i in l •. n,
Let V(i) be a set of variables,
Let S(i) involve only variables in V(i)
Let P(i) be a predicate.
Let P(i) involve only variables in V(i)
Let V(i) and V(j) be disjoint for i fj
Let { true} S (i) { P (i) }

Then
{true} for i from 1 ton do S(i) od {FORALL i in l •• n:

p (i) }

(2) Axiom "for2"

for i in 0 •. n, let P(i) be a set of predicates.
for i in l..n, let {P(i-1)} S(i) {P(i)}.
Then {P(0)} for i from 1 ton do S(i) od {P(n)}

(3) etc.

It is true that axiom (1) can be derived from axiom (2).
However, axiom (1) is much easier to use than axiom (2), and is
often sufficient. If loops with different axioms were to have
different syntax, verification might be simplified for common
constructions such as:

for i from 1 to n do A[i] := 0.0 od.

3

With the hint that axiom (1) suffices, this loop can be verified
(postcondition FORALL i in l .• n A[i]=0.0) without the trouble of
inventing an induction hypothesis.

There are probably no more than 10 to 30 commonly used loop
structures. It would not be hard to include each of them in a
programming language, perhaps as part of a standard prelude.
Each of the above for-loop constructions can be considered as a
procedure call. The procedure is the for-loop axiom, and its
arguments are the pieces of program text 11 1 11 , "n", "lambda i:
S(i) ", and the assertions that these pieces of program have
specific properties. (Alternatively, these assertions may be
considered to be included in the data types. More about this
later.)

4. BOUND VARIABLES IN MODES

Consider a procedure which accepts an integer i and yields
an array of size i. In Algol 68 we would be able to write its
mode as PROC(INT) []REAL. But why not PROC(INT i) [1:i]REAL? This
involves a bound variable in the mode, but provides more

information [3].

Bound variables within data types become more useful if one
permits tne parameters to be modes, and permits their modes to
depend on previous parameters. The traditional example is:

PROC sort= (MODEM, REF[]M arr, PROC(M,M)3OOL less) VOID:
C sort the array 'arr' according to the ordering 'less' C.

Such formal mode parameters have been traditionally called
"modals" in WG 2.1 [2].

5. DATA TYPES AS PROPOSITIONS

It is possible to use the conventional concept of data type
(or mode) as extended above to encode the intuitionistic
propositional and predicate calculi. Propositions are
represented by data types (and not by values of some fixed data
type) .

A proposition P, when encoded as a data type P, can be
considered as the data type of all its proofs. A value of mode P
then represents a proof of P. The existence of a value of such a
type is equivalent with the provability of the proposition. To
make this work, it is of course necessary to abolish facilities
like SKIP and NIL, which produce fake values of an arbitrary
mode; otherwise everything would become provable. Nonterminating
procedures must also be abolished.

The implication P
of Pinto proofs of Q.
A proof of P => Q is a
into a proof of Q.

=> Q provides a means of converting proofs
We therefore encode P => Q as PROC(P)Q.

procedure which will turn any proof of P

We can now construct procedural proofs of tautologies such
as P => ((P => Q) => Q). To avoid notational confusion below, we
shall use the word PROC as in Algol 6d when we are constructing a
mode, but shall write the word LAMB in front of every routine
text. P => ((P => Q) => Q) is represented by the mode
PROC(P)PROC(PROC(P)Q)Q. To prove P => ((P => Q) => Q), we must
construct i procedure of this mode, that is, a routine text
starting

LAMB(P a)PROC(PROC(P)Q)Q: ...

This accepts "a", a proof of P, and produces a proof of (P => Q)
=> Q. The" ••. " must be a routine text of mode PROC(PROC(P)Q)Q,
so we may write

LAMB(P a)PROC(PROC(P)Q)Q
LAMB(PROC(P)Q ab) Q:

5

But now it is easy to obtain an object of mode Q {i.e a proof of
Q} by writing ab(a) {combining the proof ab and the proof a},
thus:

LAMB(P a)PROC(PROC(P)Q)Q:
LAMB(PROC(P)Q ab)Q: ab(a).

The call ab(a) corresponds to the use of modus ponens.

It is clear that Algol 68 routine texts are not the best
vehicle for expressing proofs. Conventional proofs may even be a
better notation for some Algol 68 programs. Some combination of
the two may eventually turn out to be appropriate.

The conjunction P AND Q is represented by

MODE P AND Q = STRUCT(P first, Q second).

That is, to construct a proof of P AND Q one must combine the
separate proofs of P and Q. Furthermore,

MODE P OR Q = UNION(P, Q),
MODE FALSE= (PROC(MODE M) M),
MODE NOT P = (P =>FALSE).

With these definitions, it is possible to find procedures that
prove all of Heyting's axioms [1] for the propositional calculus
(see the appendix).

Typed universal quantification is straightforward:

MODE FORALL i: T P (i) = PROC ('r i) P (i) ,

using the parameterized procedure-yield modes we have already
seen. Typed existential quantification can be done with
parameterized unions, but we can do it with modals instead:

MODE THEREEXISTS i:T P(i) =

PROC(MODE R, FORALL i:T (P(i) => R) } R.

6. IMPLICATIONS FOR PROGRAMMING LANGUAGES

The above results strongly suggest that it is not necessary
to separate the assertion language from the data type system, nor
to separate the proof language from the procedural language. It
may even be undesirable, since the possibilities that may be
opened by the direct execution of proofs of theorems are still

largely unexplored.

7. FEATURES IN AND OUT OF OLYMPO

Olympo must have facilities for the free construction of
programs out of components. The components must be expressible
with a high degree of abstraction in order to increase their
applicability. Furthermore, there must be no facilities which
could lead to lurking side effects, since these would greatly
complicate verification.

Therefore:
NO

- side effects
- assignments,
- variables
- GOTOs
- explicit input/output.

6

These restrictions may well be too severe for anything resembling
normal programming; they are introduced so that we can have an
easier problem to solve before we start on a hard one. The
solution to the easy one may show us how to avoid the hard one
entirely.

MAYBE
- heuristic choice and backtracking.

YES
- procedures accepting multiple arguments and yielding

multiple results.
- arbitrary typed parameters.
- lots of data types.
- procedures and programs as parameters.
- free algebra with induction law as a primitive data type

constructor.
- well-ordering in some form (for termination)
- identity declarations
- promissory notes (see below).

A "promissory note" is a promise that in a later version of
a program, some component will be provided that is now missing.
Tne compiler can proceed with syntactic and semantic checks on
the rest of the program. Proofs, code, types, and assertions may
all be missing in this sense. It is clear that the program
cannot be expected to run until essential parts are provided.

It should also be possible to specify "undefined" types and
predicates. It may be too much work (or even impossible) to
formally write down the complete definition of some predicate or
proof. An undefined predicate can then be useful, provided that
there is some mechanism for letting the programmer claim that it
is satisfied. The compiler can then propagate the assertion

7

throughout the program as part of a data type or otherwise, and
can test whether it has been duly claimed whenever it.is required
to hold. There will then be two kinds of assertions:

- Announcements, where the compiler believes the programmer·,
and

- Assertions, where the compiler checks the programmer,
possibly using the announcements or other means.

8. SUBTYPES

If assertions are to become part of the data types of
objects, we are going to have to have convenient ways of adding
and removing assertions from a data type. Removing assertions
can be left to a coercion (this is similar to using a subtype
when a type is required in the DOD's languages), but adding
assertions will have to be done by a proof or as an implicit
consequence of a run-time test (IF test THEN test true ELSE test
false FI) •

APPENDIX

Intuitionistic propositional calculus can be built from data
types: procedural proofs of Heyting's axioms are listed below.
Each entry in the following list is of the form "proposition
proof".

P => (P AND P) ---
LAMB(P a) STRUCT(P first, second): (a, a);

(P AND Q) => (Q AND P)
LAMB(P AND Q ab) (Q AND .I?): (second OF ab, first OF ab)

(P => Q) => ((P AND R) => (Q AND R)) ---
LAMB(P => Q aD) ((P AND R) => (RAND R)):

LAMB(P AND R ac) (Q AND R) :
(ab(first OF ac), second OF ac)

((P => Q) AND (Q => R)) => (P => R) --
LAMB((P-=> Q) AND (Q => R) abbc) (P => R) :

LAMB(P a) R: (second OF abbc) ((first OF abbc) (a))

Q => (P => Q) ---
LAMB(Q b) (P => Q): LAMB(P a} Q: b

(P AND (P => Q)) => Q ---
LAMB(STRUCT(P first, (P => Q) second) aab) Q

(second OF aab) (first OF aab)

P => (P OR Q) ---
LAMB(P a)UNION(P, Q): a

(P OR Q) => (Q OR P) ---
LAMB(UNION(P, Q) ab) UNION(Q, P) : ab

Algol 68 mode equivalencing does this one ! #

((P => R) AND (Q => R)) => ((P OR Q) => R)
LAMB((P => R) AND (Q => R) abbc) ((P OR Q) => R) :

LAMB(P OR Q ab) R:
CASE ab IN

(P a) : (first OF acbc) (a) ,
(Q b): (second OF acbc) (b)

ESAC

NOT P => (P => Q) ---
LAMB(P => (MODE M)M af) (P => Q) : LAMB(P a)Q: af(a) (Q)

((P => Q) AND (P => NOT Q)) => (NOT P) ---
LAMB((P => Q) AND (P => NOT Q) abab) (P => FALSE)

LAMB(P a) FALSE:
(second OF abab) (a) (first OF abab(a)).

REFERENCES
[1] Heyting A., Intuitionism, North Holland Publishing Company,

1951.
[2] Lindsey, C.H., Modals, Algol Bulletin AB37.4.3, July, 1974.
[3] Boom, H.J., Extended type checking, in New Directions in

Algorithmic Languages, 1976, pp. 27-42, IRIA, also
separately as Mathematical Centre report IW60/76,
Amsterdam.

8

