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ABSTRACT 

Some deisign aspects of a language intended for verified programs are 

discussed in relation to transformational programming. The data type system 

of such a language can be intimately related to intuitionist logic. 
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1. FOREWORD 

In the last few years, Working Group 2.1 has started 
investigating the transformational approach to programming, in 
which the programming process is seen as starting with some 
correct program which expresses some computation in a clear 
language. By applying semantics-preserving transformations, this 
program is then converted to a form which can be efficiently 
implemented on a conventional machine. This is not the same as 
the more traditional stepwise refinement process, which operates 
by continually implementing previously unimplemented features. 
The transformation approach can better be viewed as analysis, 
translation, and optimization than as refinement. Throughout the 
transformation process, the program is expressed in an at present 
undefined language called "Abstracto". Programs in Abstracto 
need not be directly executable; it is envisaged that Abstracto 
will contain implementable and unimplementable features, as well 
as specifications and other useful things. The aim is to support 
the programming process from first conception of algorithm to 
final expiession as executable code (in "Concreto"). There has 
also been talk of a language "Transformo" in which to guide the 
transformation process. The discussions on these points are 
still extremely vague. 

This is a working paper presented at the WG 2.1 meeting at 
Jab¼onna. It is deliberately speculative, and was written to 
suggest ideas, not to present conclusions of completed research. 
This may account for a certain half-bakedness in the style of 
presentation. Minor changes have been made to make it more 
accessible to the uninitiated reader. 

2. OLYMPO 

This paper investigates what language can be at the top of 
the hierarchy. Let us call it Olympo, to make it a highest-level 
member of the -o family of languages. Olympo should be designed 
principally to make verification easy, and efficiency be hanged. 
Perhaps efficiency can be transformed in after, but then we are 
speaking of Abstracto or even Concreto instead of Olympo. 

The current state of the art in formal verification 
techniques is at present very dependent on automatic theorem 
proving. The normal approach seems to be to probe a program with 
assertions much as an acupuncturist inserts strategic pins into a 
patient, to look at the reaction, and to pass the resulting 
verification conditions to an automatic verifier. The 
verification conditions tend to be extremely complicated, 
probably because attempts are made to let the assertion language 
mimic faithfully all the convolutions of operational semantics. 

An additional source of complexity is that the present-day 
formal proof and assertions are variations of then-th order 
predicate calculus for small n. Predicate calculus was not 



originally constructed for the practical verification of 
practical theorems. It was instead viewed as a minimal set of 
axioms sufficient for the formalization of mathematics, so that 
the necessary use of logic in mathematics can be precisely 
studied. Serious attempts to use predicate calculus to formalize 
mathematics involve massive use of abbreviation. This should be 
a warning. Present-day assertion languages should be compared to 
machine languages, and we should seriously attempt to raise their 
level. A concerted attack on this problem may yield the same 
kind of progress as we have achieved in high-level languages over 
the last thirty years. 

3. INTEGRATED VERIFICATION 

Since the advent of Structured Programming (fanfare on 
trumpets), there has been a growing suspicion that the 
correctness proof of a program should be constructed at the same 
time as its code. Much of the present work on verification 
ignore this point; in particular, it is ignored in any design for 
a compiler that accepts a program, generates object code, and 
also generates verification conditions to be checked (or not) by 
a separate verifier. 

The most successful form of automatically verified 
assertions to date has been strong data typing. It is extremely 
rare for a programmer to be tempted to leave out the data types 
in a strongly-typed language because they involve too much work,. 
or because he can see that the program is correct anyway. The 
data types are an integral part of the program, and not merely an 
add-on feature. The temptation to omit assertions is very strong 
with other mechanical verification schemes. These are clearly 
add-on techniques. We may conclude: 

The assertion mechanism of Olympo should be so well­
integrated into the language that no one would think of 
leaving out an assertion in the hope of getting a program 
ready fast. 

Each programming language feature should simultaneously 
generate object code and a proof. It may well be that there may 
be a variety of features with the same object code but different 
proof rules. Each would be used in a different situation, and be 
chosen to make a different application easy to prove. For 
example, consider the ordinary integral for-loop: 

for i from 1 ton do S(i) od, 

where S(i) is a parameterized statement. Various axioms may be 



convenient to verify programs involving such a loop: 

(1) Axiom 11 forl 11 

For i in l •. n, 
Let V(i) be a set of variables, 
Let S(i) involve only variables in V(i) 
Let P(i) be a predicate. 
Let P(i) involve only variables in V(i) 
Let V(i) and V(j) be disjoint for i fj 
Let { true} S ( i) { P ( i) } 

Then 
{true} for i from 1 ton do S(i) od {FORALL i in l •• n: 

p ( i) } 

(2) Axiom "for2" 

for i in 0 •. n, let P(i) be a set of predicates. 
for i in l..n, let {P(i-1)} S(i) {P(i)}. 
Then {P(0)} for i from 1 ton do S(i) od {P(n)} 

(3) etc. 

It is true that axiom (1) can be derived from axiom (2). 
However, axiom (1) is much easier to use than axiom (2), and is 
often sufficient. If loops with different axioms were to have 
different syntax, verification might be simplified for common 
constructions such as: 

for i from 1 to n do A[i] := 0.0 od. 

3 

With the hint that axiom (1) suffices, this loop can be verified 
(postcondition FORALL i in l .• n A[i]=0.0) without the trouble of 
inventing an induction hypothesis. 

There are probably no more than 10 to 30 commonly used loop 
structures. It would not be hard to include each of them in a 
programming language, perhaps as part of a standard prelude. 
Each of the above for-loop constructions can be considered as a 
procedure call. The procedure is the for-loop axiom, and its 
arguments are the pieces of program text 11 1 11 , "n", "lambda i: 
S(i) ", and the assertions that these pieces of program have 
specific properties. (Alternatively, these assertions may be 
considered to be included in the data types. More about this 
later.) 

4. BOUND VARIABLES IN MODES 

Consider a procedure which accepts an integer i and yields 
an array of size i. In Algol 68 we would be able to write its 
mode as PROC(INT) []REAL. But why not PROC(INT i) [1:i]REAL? This 
involves a bound variable in the mode, but provides more 



information [3]. 

Bound variables within data types become more useful if one 
permits tne parameters to be modes, and permits their modes to 
depend on previous parameters. The traditional example is: 

PROC sort= (MODEM, REF[]M arr, PROC(M,M)3OOL less) VOID: 
C sort the array 'arr' according to the ordering 'less' C. 

Such formal mode parameters have been traditionally called 
"modals" in WG 2.1 [2]. 

5. DATA TYPES AS PROPOSITIONS 

It is possible to use the conventional concept of data type 
(or mode) as extended above to encode the intuitionistic 
propositional and predicate calculi. Propositions are 
represented by data types (and not by values of some fixed data 
type) . 

A proposition P, when encoded as a data type P, can be 
considered as the data type of all its proofs. A value of mode P 
then represents a proof of P. The existence of a value of such a 
type is equivalent with the provability of the proposition. To 
make this work, it is of course necessary to abolish facilities 
like SKIP and NIL, which produce fake values of an arbitrary 
mode; otherwise everything would become provable. Nonterminating 
procedures must also be abolished. 

The implication P 
of Pinto proofs of Q. 
A proof of P => Q is a 
into a proof of Q. 

=> Q provides a means of converting proofs 
We therefore encode P => Q as PROC(P)Q. 

procedure which will turn any proof of P 

We can now construct procedural proofs of tautologies such 
as P => ((P => Q) => Q). To avoid notational confusion below, we 
shall use the word PROC as in Algol 6d when we are constructing a 
mode, but shall write the word LAMB in front of every routine­
text. P => ((P => Q) => Q) is represented by the mode 
PROC(P)PROC(PROC(P)Q)Q. To prove P => ((P => Q) => Q), we must 
construct i procedure of this mode, that is, a routine text 
starting 

LAMB(P a)PROC(PROC(P)Q)Q: ... 

This accepts "a", a proof of P, and produces a proof of (P => Q) 
=> Q. The" ••. " must be a routine text of mode PROC(PROC(P)Q)Q, 
so we may write 

LAMB(P a)PROC(PROC(P)Q)Q 
LAMB(PROC(P)Q ab) Q: 
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But now it is easy to obtain an object of mode Q {i.e a proof of 
Q} by writing ab(a) {combining the proof ab and the proof a}, 
thus: 

LAMB(P a)PROC(PROC(P)Q)Q: 
LAMB(PROC(P)Q ab)Q: ab(a). 

The call ab(a) corresponds to the use of modus ponens. 

It is clear that Algol 68 routine texts are not the best 
vehicle for expressing proofs. Conventional proofs may even be a 
better notation for some Algol 68 programs. Some combination of 
the two may eventually turn out to be appropriate. 

The conjunction P AND Q is represented by 

MODE P AND Q = STRUCT(P first, Q second). 

That is, to construct a proof of P AND Q one must combine the 
separate proofs of P and Q. Furthermore, 

MODE P OR Q = UNION(P, Q), 
MODE FALSE= (PROC(MODE M) M), 
MODE NOT P = (P =>FALSE). 

With these definitions, it is possible to find procedures that 
prove all of Heyting's axioms [1] for the propositional calculus 
(see the appendix). 

Typed universal quantification is straightforward: 

MODE FORALL i: T P ( i) = PROC ('r i) P ( i) , 

using the parameterized procedure-yield modes we have already 
seen. Typed existential quantification can be done with 
parameterized unions, but we can do it with modals instead: 

MODE THEREEXISTS i:T P(i) = 

PROC(MODE R, FORALL i:T (P(i) => R) } R. 

6. IMPLICATIONS FOR PROGRAMMING LANGUAGES 

The above results strongly suggest that it is not necessary 
to separate the assertion language from the data type system, nor 
to separate the proof language from the procedural language. It 
may even be undesirable, since the possibilities that may be 
opened by the direct execution of proofs of theorems are still 



largely unexplored. 

7. FEATURES IN AND OUT OF OLYMPO 

Olympo must have facilities for the free construction of 
programs out of components. The components must be expressible 
with a high degree of abstraction in order to increase their 
applicability. Furthermore, there must be no facilities which 
could lead to lurking side effects, since these would greatly 
complicate verification. 

Therefore: 
NO 

- side effects 
- assignments, 
- variables 
- GOTOs 
- explicit input/output. 
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These restrictions may well be too severe for anything resembling 
normal programming; they are introduced so that we can have an 
easier problem to solve before we start on a hard one. The 
solution to the easy one may show us how to avoid the hard one 
entirely. 

MAYBE 
- heuristic choice and backtracking. 

YES 
- procedures accepting multiple arguments and yielding 

multiple results. 
- arbitrary typed parameters. 
- lots of data types. 
- procedures and programs as parameters. 
- free algebra with induction law as a primitive data type 

constructor. 
- well-ordering in some form (for termination) 
- identity declarations 
- promissory notes (see below). 

A "promissory note" is a promise that in a later version of 
a program, some component will be provided that is now missing. 
Tne compiler can proceed with syntactic and semantic checks on 
the rest of the program. Proofs, code, types, and assertions may 
all be missing in this sense. It is clear that the program 
cannot be expected to run until essential parts are provided. 

It should also be possible to specify "undefined" types and 
predicates. It may be too much work (or even impossible) to 
formally write down the complete definition of some predicate or 
proof. An undefined predicate can then be useful, provided that 
there is some mechanism for letting the programmer claim that it 
is satisfied. The compiler can then propagate the assertion 
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throughout the program as part of a data type or otherwise, and 
can test whether it has been duly claimed whenever it.is required 
to hold. There will then be two kinds of assertions: 

- Announcements, where the compiler believes the programmer·, 
and 

- Assertions, where the compiler checks the programmer, 
possibly using the announcements or other means. 

8. SUBTYPES 

If assertions are to become part of the data types of 
objects, we are going to have to have convenient ways of adding 
and removing assertions from a data type. Removing assertions 
can be left to a coercion (this is similar to using a subtype 
when a type is required in the DOD's languages), but adding 
assertions will have to be done by a proof or as an implicit 
consequence of a run-time test (IF test THEN test true ELSE test 
false FI) • 

APPENDIX 

Intuitionistic propositional calculus can be built from data 
types: procedural proofs of Heyting's axioms are listed below. 
Each entry in the following list is of the form "proposition 
proof". 

P => (P AND P) ---
LAMB(P a) STRUCT(P first, second): (a, a); 

(P AND Q) => (Q AND P) 
LAMB(P AND Q ab) (Q AND .I?): (second OF ab, first OF ab) 

(P => Q) => ((P AND R) => (Q AND R)) ---
LAMB(P => Q aD) ((P AND R) => (RAND R)): 

LAMB(P AND R ac) (Q AND R) : 
(ab(first OF ac), second OF ac) 

((P => Q) AND (Q => R)) => (P => R) --­
LAMB((P-=> Q) AND (Q => R) abbc) (P => R) : 

LAMB(P a) R: (second OF abbc) ((first OF abbc) (a)) 

Q => (P => Q) ---
LAMB(Q b) (P => Q): LAMB(P a} Q: b 

(P AND (P => Q)) => Q ---
LAMB(STRUCT(P first, (P => Q) second) aab) Q 

(second OF aab) (first OF aab) 

P => (P OR Q) ---
LAMB(P a)UNION(P, Q): a 



(P OR Q) => (Q OR P) ---
LAMB(UNION(P, Q) ab) UNION(Q, P) : ab 

# Algol 68 mode equivalencing does this one ! # 

((P => R) AND (Q => R)) => ((P OR Q) => R) 
LAMB((P => R) AND (Q => R) abbc) ((P OR Q) => R) : 

LAMB(P OR Q ab) R: 
CASE ab IN 

(P a) : (first OF acbc) ( a) , 
(Q b): (second OF acbc) (b) 

ESAC 

NOT P => (P => Q) ---
LAMB(P => (MODE M)M af) (P => Q) : LAMB(P a)Q: af(a) (Q) 

((P => Q) AND (P => NOT Q)) => (NOT P) ---
LAMB((P => Q) AND (P => NOT Q) abab) (P => FALSE) 

LAMB(P a) FALSE: 
(second OF abab) (a) (first OF abab(a)). 
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