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* Task reduction systems 

by 

H.J. Boom 

ABSTRACT 

The essential computational dependencies in a problem to be progranuned 

can be expressed as a "task replacement system" which indicates how tasks 

can be accomplished if other tasks are first accomplished. Associating a 

well-ordering with a suitable task replacement system can provide a con

structive proof that an algorithm exists for solving a problem, without 

actually requiring the effort of writing a program. The method is demon

strated on very small examples. 

KEYWORDS & PHRASES: task replacement, task reduction, programming method,o

logy, termination, well-ordering. 
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O. INTRODUCTION. 

When writing a large program, it is necessary to have some plan of 

attack before beginning to use a methodology such as top-down progrannning. 

In particular, one must have some measure of simplicity to ensure that a 

refinement step indeed does lead in the proper direction. An operation can 

be replaced by other operations only when there exist algortihms to imple

ment the new operations. 

Using oversimplified examples, this paper presents one method for 

organizing the essential computational dependencies in a problem into a 

proof that an algorithm exists. First, a set of "tasks" is constructed, 

which includes the tasks that the program is to perform. Each of these 

tasks can be viewed as a challenge to the computer to solve some problem. 

Statements about the problem domain then lead to methods of replacing tasks 

by other simpler tasks. The topology of the resulting graph of interredu

cible tasks is then analyzed by using a well-ordering to ensure the exi

stence of one or more algorithms. Afterwards, it is possible to schedule 

the indicated computations in order to achieve efficient execution. 

I • TASK REPLACEMENT SYSTEMS 

A task replacement system consists of: 

II T"' 
fl " 

"H"' 

a set of "tasks", possibly infinite, 

the "empty" task, 

a set of "methods", 

">>", a relation of "replacability on TXTu{ • }xM. 

"t >> s(m)" means that "t" can be solved by solving "s" an then applying 

method "m". We write "t >>·(m)" or even "t >>(m)" to indicate that method 

"m" solves "t" directly. If the method mis clear from context or not 

relevant, we omit it and simply write "t >>s" or "t >>". Such a relation 

"t >>s" is called a "task replacement". We are primarily interested in 

finite sequences of the form 

t >> t >> t 2 >> •.. >> t2 >> t >> . 
n n-1 n- I 
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The set T of tasks will often consist of several parameterized sets. In 

this case we can speak of "task replacement schemata". A task rep.lacement 

schema is simply a general rule for summarizing many task replacements. 

Task replacement schemata will usually be written using free variables, and 

occasionally with validity conditions as constraints. 

2. TASK REPLACEMENT SYSTEMS 

Let us suppose a computer is occasionally faced with the task of eva

luating a factorial. Then 

T = { l>n! = ? I n is an integer}. 

The notation ''J>,n! = ?" means the task of finding some value v for "?" and 

proving n! = v. We have the following task replacement schemata: 

l>I! =? » 

l>n! =? >> l>(n-1)! =? 

l>(n-1) ! = ? » l>n! = ? 

The integers and the symbols" I>", "=", 

(method: take I!= I) 

if n >"O. 

(method: if (n-1)! = v, 

multiply v by n to get w, and let 

n! = w). 

if n > O. 

(method: if n! = v, divide v by n to 

get w, and let (n-1)! = w). 

II? II . , and II f II . above are symbols used 

in the notations for tasks. 11 ( 11 , 11 ) 11 , "n", "+l", and "-I" are us~d 

to summarize many task replacements in one line. These schemata lead to the 

following set of replacement rules: (the methods have not been written) 

I> 1 ! = ? >> . 
l>O ! = ? »l>I! = ? I> 1 ! = ? » l>O! = ? 

I> 1 ! = ? » 1>2! = ? 1>2! = ? »l>I! = ? 

1>2 ! = ? » 1>3! = ? 1>3 ! = ? » 1>2 ! = ? 

1>3! = ? » 1>4 ! = ? 1>4 ! = ? »1>3! = ? 



To compute the value of 6!, we might take the following heuristic: 

solve (t): if 

t >>.(m) for some m + apply method m 

D t >>s(m) for some m + 

solve (s); apply method m 

fi 

solve (I> 6! = ?) 

This method might lead to 

6! >> 5! >> 4! >> 3! >> 2! >> t! >>. 

It might equally well lead to 

6! >> 5! » 6! » 7! » 8! » 7~ .» 8! » 9! » 10! .•.. 

3 

Although a Universal Problem Solver could solve ~6! =? by the above task 

replacement schemata, in practice it is necessary to impose extra structure 

on the system. Sections 3 and 4 describe ways of obtaining task replacements; 

section 6 shows how a task replacement system can be transformed into an 

algorithm. 

3. TRANSFORMING IDENTITIES INTO TASK REPLACEMENTS 

Given an identity 

where F and Gare expressions in the x's, we can obtain the following task 

replacements. For each valid set of values of x0 ,x 1, ••• ,xn we get 
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I>? = F(x1 ,x2 , ••• ,xn) » I>? = G(x1 ,x2 , ••• ,xn) 

I>? = G(x1, x2 , ••• ,xn) >> I>? = F(x1 ,x2 , ••• ,xn) 

l>xo = F( ?,xz,···,xn) >> l>xo = G( ? ,x2'. • • ,xn) 

l>xo = F( ?,xz,···,xn) >> l>xo = F( ? ,x2' ••• ,xn) 

I>? = F( ? ,xz, • •• ,xn) >> I>? = G( ?,xz,•••,xn) 

... 

. . . 
I>? = F(,?, ••• ,?) >> I>? = G(?,?, ••• ?) 

Each rule like the above, which produce a task replacement when valid values 

are substituted for its "schema variables" is called a "task replacement 

schema". For example, the fifth schema above can lead to the task replace

ment 

I>?= F(?,137, ••• ,252) >>I>?= G(?,137, ••• ,252). 

Other task replacement schemata can also be obtained from identities, such 

as those generated by substituting one side of an identity for another 

in some other formula. 

4. TASK REPLACEMENTS FROM (CONSTRUCTIVE) THEOREMS 

Every (constructive) theorem 

gives us a task replacement schema 

This result does not hold in non-constructive mathematics, since it may 

there be impossible to derive a method from the proof of the theorem. This 

property of constructive mathematics suggests that it is reasonable to use 



it for computer programming, even in the (unreasonable) case that one is 

not a constructive mathematician. Constructive logic is used throughout 

this papeL To remind the reader of this, the word "constructive" will 

occasionally appear in parentheses. 

5. WELL-ORDERED SETS 

5 

A well-founded set is a partially-ordered set in which every descending 

sequence terminates. 

A well-ordered set is a totally-ordered set in which every descending 

sequence terminates. The literature on well-ordered sets is extensive 

[1,2,3] and will not be repeated here. However, it is worthwhile to mention 

a few of the properties of well-orderings for those not yet familiar with 

them. 

Every (constructive) well-ordered set 1s isomorphic to one that can 

be built up using the following methods: 

(1) The empty set is well-ordered (no sequences~) 

(2) Every totally-ordered finite set is well-ordered 

(3) The non-negative integers are well-ordered. (this well-ordered 

set is usually called "w") 

(4) Given any set {AiliE r} of well-ordered sets Ai indexed by a 

w1~ll-ordered index set I, their concatenation 

A. = { < i, a) 
1 

1s well ordered under the lexicographical order 

(:i,a) < (j,b) iff i < J or (i=j and a<b). 

There are standard well-ordered sets, called "ordinal numbers". 

Every well-ordered set is order-isomorphic to a subset of an ordinal num

ber. A well-founded ordering relation is defined on the ordinals. a~ S if£ 

a is order-isomorphic to an initial segment of S. Every ordinal is order

isomorpnic to the set of ordinals less than it. 
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The class of all ordinal numbers is denoted On. 
The first ordinal numbers are identified with the nonnegative integers 

0 {} 

1 { o} 

2 {0,1} 

3 {0,1,2} 

The first ordinal after the integers is 'w'. Then we get 

W {0,1,2, ••• } 

W+l {0, 1,2, ••• ;w} 

W+2 {0,1,2, ••• ;W,w+l} 

After this sequence we get 

w2 = w + w {o,1,2, ••• ;w,w+1, ••• } 

W2+1 

W2+2 

W3 

W3+1 

{ 0 , I , 2 , ••• ; W, w+ 1 , ••• , W2} 

{o,1,2, ••• ;w,w+1, ••• ,w2,w2+1} 

{0, I ,2, ••• ;w,w+l, ••• ;w2,W2+1, •• • } 

{ o, I, 2, ••• ;W,W+I, ••• ;w2,w2+1, ••• ;w3}. 

2 
After o,w,w2,w3, ••• we get «.W = w, and so forth: 

0, I , 2, 3, , • , ;W, W+ 1 , w+2, • , • ;W2, W2+ 1 , ••• ;W2, , •• ;W4 ••• ; •• , ; 
2 2 2 2 2 2 2 2 2 

w,w +1,W +2, ••• ;w +w,w +W+l, ••• ;w +W2, ••• ; ••• ;w +W =W 2, 
2 2 2 2 3 4 W w 2+ I, ••• ; ••• ;w 3 •• • w 4 ... ;w «1=w , •• • w •• • w . . . . . . . 

Warning: 

Addition, multiplication, etc., are in general non-connnutative; in 

particular 



l+w = W ::) w+l, 

since given a one-element set {a} and an W-element set W= {O, 1,2, ••• } we 

have the order isomorphism 

l+W: a,0,1,2, ••• 

W: 0,1,2,3; .••• 
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But W+l = {O, 1, ••• ;w} has W as a limit point, whereas W = {O, 1, ••• } has no 

limit point. 

6. ALGORITHMIC CONTENT 

Even though, in principle, a task replacement system may contain enough 

information to enable a Universal Problem Solver to accomplish a task, it 

does not yet provide an algorithm. Repeated task replacement may proceed in 

useless direction, encounter blind alleys, or fail to terminate. Some 

intelligence is necessary to act as guide. The knowledge obtained from this 

intelligence can be (represented) as a "complexity mapping" f!lrlOm tasks to 

ordinal numbers. 

Given a set T of tasks and a task replacement relation>>, a mapping 

c: T + On is called a complexity mapping. It is said to provide "algorithmic 

content" iff 

Vt ET: {(3s ET: t»s A c(t) > c(s))v(t»•)} 

holds (constructively). If there is algorithmic content, there is an algo

rithm for performing an arbitrary task t ET: 

proc perform (t): 

if 

t >>• (method M) + use M 

D 3s ET: t>>s {method M) A c(t) > c(s) 

+ perform (s); use M 

fi 



When we have algorithmic content, we obtain a "task reduction system" from 

a task replacement system, by selecting those task replacements, 

which reduce complexity. A task replacement system with algorithmic content 

is called a "task reduction system". The general programming heuristic sug

gested by this paper now reads: 

Determine properties of relevant (and possibly irrelevant) concepts. 

Obtain replacement system, possibly expressed as a collection of 

schemata. 

Attempt to find a complexity mapping which provides algorithmic content, 

possibly adding more task replacements to accomplish this. 

Perform proper scheduling of the computations. 

Determine data representations and write the program. 

It is only in the last steps that one can use anything like top-down 

coding, bottom-up refinement, middle-out implementation or any other conven

tional programming "methodology". By this time, all the important decisions 

about the program have been made, and therefore nearly any systematic 

methodology will work. Furthermore, the task replacement schemata clearly 

indicate the necessary data dependencies involved in the global design. 

7. BACK TO FACTORIAL 

Let 

c ( n !) = I n-1 I . 

This proves algorithmic content for the task replacement system for 

factorial. The resulting task reduction system is: 

l>I ! = ? >> . 
l>O! = ? >> l>1 ! = ? 

l>2 ! = ? >> I ! = ? 

l>3 ! = ? >> 2! = ? 

1>4 ! = ? >> 3! = ? 



Here those task replacements which are solutions or decrease complexity 

have been selected. It is a poper task reduction system because every task 

is either solution or reducible to a simpler task. 

(Note: I first tried c(n!) = n, but this failed to provide a reduction for 

~O! =?.Adding the fact that O! = 1 as a new task replacement 
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~O! =? >> • would also have patched things up, but the above dis

cussion is more in line with my intuitive understanding of factorial • .) 

8. THE ACKERMAN FUNCTION 

Suppose a computer (a human or mechanical being) is given ·the task of 

determining Ack(3,4), a value of the Ackerman function. He opens the 

Chemical Rubber Company Handbook of Peculiar Recursions Used in Informatics, 

and finds several identities: 

Ack(O,n) = n+l 

Ack(m,Ack(m+l,n)) = Ack(m+I,n+l) 

Ack(2,n) = 3+2n 

Ack(m+l,O) = Ack(m,1) 

x+y = y+x 

(1) 

(2) 

(3) 

(4) 

(5) 

Each of those identities shows how he can replace some computations by 

others. For example, we get: 

~Ack(3,4) =?>>~find an n such that Ack(4,n) = 4; 

then evaluate Ack(4,n+l). 

~Ack(3,4) =? >> ~Ack(2,Ack(3,3)) =? 

~2n =? >> ~Ack(2,n) (method: subtract 3). 

~6+7 =? >> ~7+6 =? 

~7+6 =? >> ~6+7 =? 

etc., etc. 

We decide that task replacements deriving from the first four schemata may 

be relevant. Now we attempt to find a complexity mapping. A standard 

heuristic for complexity is to see if it can be built up as a polynomial 
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in Wwith the task parameters as coefficients. First we try 

c(~Ack(m,m) = ?) = wn+m 

and 

c(~Ack(m,n) = ?) = !Mn+n. 

The first one does not provide us with a reduction for I> Ack(l ,0) = ? , since 

c(~Ack(I,0) = ?) = 1, 

and 

c(~Ack(0,1) = ?) = w. 

The second one works quite nicely, except that we do not know what to do 

with the task 

~Ack(m,Ack(m+l,n)) = ?. 

If we define its complexity as 

!Mn + Ack (m+ I , n) 

we are begging the question, since we assume the existence of a terminating 

algorithm for Ackermann in the complexity function. We can break it up into 

two tasks, to be performed in order, however: 

~Ack(m+l,n) = 

Completing the first task will cause the second one to be changed by re-

l · 11 11 1 f 11 ? " d . · 11 f pacing ~1 by the proper va ue o . 1 an then it too wi be o a proper 

form. 

So we try 

c(~Ack(m,~) = ?) = !Mn+w = W(m+l). 



To make the task reduction for Ack(m+l,O) =? work, we redefine 

cn>Ack(m,n) = ?) = Wm.+n+l 

c(t>Ack(m,~1) = ?) = W(m+I). 

Now we have rules resembling task replacement schemata, but occasionally 

our rules decompose a task into more than one simpler task. 

!>Ack(O,n) = ? » . (choose n+I) 

!>Ack(m+I ,O) = ? » ~Ack(m, I) = ? 

l>Ack(m+I,n+I) =? » 

!>Ack(m+l,n) = ? 1; 

l>Ack(m;~1) = ? 2 

In the next section, we shall show that a multiple task reduction system 

with multiple substitution tasks can be converted into a task replacement 

system, and so the problem can be solved. 

9. MUTIPLE TASK REPLACEMENT 

Let S be a "multiple task reduction sys tern" i.e., one in which a task 

may be replaced by zero, one, or more simpler replacement tasks. For this 

formulation, instead of reducing a task to the empty task".", we shall 

replace it by zero tasks. 

Construct a task reduction system T as follows: 

T -- the set of all finite "subsets" of S. 

1 1 

We allow these "subsets" to have multiplicities; i.e., an element of Smay 

appear more than once in one of these "subsets". This is realistic, since 

it requires effort to determine that one is given the same task to solve 

twice. 

Let W > 0 be a strict upper bound on the complexity of tasks in S, i.e., 
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for s ES, c(s) < W. 

If t ET, and i is an ordinal, let pop(i,t) be the number of tasks s Et 

such that c(s) = i. Let 

d(t) = I wi pop(i,t). 
i<W 

For t 1, t 2 ET, let t 1 » t 2 if£ t 2 is obtained from t 1 by replacing one 

of the tasks s of t 1 by a reduction s 1, ••• ,sn. If c(si) ~ c(s) for each i, 

then d(t 2) < d(t 1). Then Tis a task reduction system, with{} as empty 

task and d as complexity function. 
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