
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

H.J. BOOM

TASK REDUCTION SYSTEMS

Preprint

~
MC

IW 95/78 MAART

2e boerhaavestraat 49 amsterdam

PJun:ted a.:t ,the Ma.:the.ma.t-i..c.al CentJr.e, 49, 2e Boe.Jt.haa.ve6.bl..allt, Am.6te.Jt.dam.

The Ma.:the.ma;i':-i..c.al CentJr.e, 6ou.nded the 11-th on Feb1tuaJr.y 1946, b.. a. n.on.
p1to6U ..i..n..6.tl.:tu.Uon. a,un..i..n.g a.:t the pltomo.tion. 06 pUll.e ma.:the.ma.t-i..c..6 a.n.d U.6
a.pp.U.c.a.t-i..on..6,. It b., .6pon..601ted by the Ne:t.heJr.1.a.n.d.6 Gove.Jt.n.ment th/tough the
Ne:t.heJr.1.a.n.d.6 01tga.n...i..za.t-i..on. 601t the Adva.n.c.e.ment 06 PUll.e Re6ea.1tc.h (Z.W.O).

AMS/MOS subject classification scheme (1978): 68A05, 02E05
AMS/MC: 68J05.

Computing Reviews 4. 0

* Task reduction systems

by

H.J. Boom

ABSTRACT

The essential computational dependencies in a problem to be progranuned

can be expressed as a "task replacement system" which indicates how tasks

can be accomplished if other tasks are first accomplished. Associating a

well-ordering with a suitable task replacement system can provide a con

structive proof that an algorithm exists for solving a problem, without

actually requiring the effort of writing a program. The method is demon

strated on very small examples.

KEYWORDS & PHRASES: task replacement, task reduction, programming method,o

logy, termination, well-ordering.

* This report will be submitted for publication elsewhere

·•

O. INTRODUCTION.

When writing a large program, it is necessary to have some plan of

attack before beginning to use a methodology such as top-down progrannning.

In particular, one must have some measure of simplicity to ensure that a

refinement step indeed does lead in the proper direction. An operation can

be replaced by other operations only when there exist algortihms to imple

ment the new operations.

Using oversimplified examples, this paper presents one method for

organizing the essential computational dependencies in a problem into a

proof that an algorithm exists. First, a set of "tasks" is constructed,

which includes the tasks that the program is to perform. Each of these

tasks can be viewed as a challenge to the computer to solve some problem.

Statements about the problem domain then lead to methods of replacing tasks

by other simpler tasks. The topology of the resulting graph of interredu

cible tasks is then analyzed by using a well-ordering to ensure the exi

stence of one or more algorithms. Afterwards, it is possible to schedule

the indicated computations in order to achieve efficient execution.

I • TASK REPLACEMENT SYSTEMS

A task replacement system consists of:

II T"'
fl "

"H"'

a set of "tasks", possibly infinite,

the "empty" task,

a set of "methods",

">>", a relation of "replacability on TXTu{ • }xM.

"t >> s(m)" means that "t" can be solved by solving "s" an then applying

method "m". We write "t >>·(m)" or even "t >>(m)" to indicate that method

"m" solves "t" directly. If the method mis clear from context or not

relevant, we omit it and simply write "t >>s" or "t >>". Such a relation

"t >>s" is called a "task replacement". We are primarily interested in

finite sequences of the form

t >> t >> t 2 >> •.. >> t2 >> t >> .
n n-1 n- I

2

The set T of tasks will often consist of several parameterized sets. In

this case we can speak of "task replacement schemata". A task rep.lacement

schema is simply a general rule for summarizing many task replacements.

Task replacement schemata will usually be written using free variables, and

occasionally with validity conditions as constraints.

2. TASK REPLACEMENT SYSTEMS

Let us suppose a computer is occasionally faced with the task of eva

luating a factorial. Then

T = { l>n! = ? I n is an integer}.

The notation ''J>,n! = ?" means the task of finding some value v for "?" and

proving n! = v. We have the following task replacement schemata:

l>I! =? »

l>n! =? >> l>(n-1)! =?

l>(n-1) ! = ? » l>n! = ?

The integers and the symbols" I>", "=",

(method: take I!= I)

if n >"O.

(method: if (n-1)! = v,

multiply v by n to get w, and let

n! = w).

if n > O.

(method: if n! = v, divide v by n to

get w, and let (n-1)! = w).

II? II . , and II f II . above are symbols used

in the notations for tasks. 11 (11 , 11) 11 , "n", "+l", and "-I" are us~d

to summarize many task replacements in one line. These schemata lead to the

following set of replacement rules: (the methods have not been written)

I> 1 ! = ? >> .
l>O ! = ? »l>I! = ? I> 1 ! = ? » l>O! = ?

I> 1 ! = ? » 1>2! = ? 1>2! = ? »l>I! = ?

1>2 ! = ? » 1>3! = ? 1>3 ! = ? » 1>2 ! = ?

1>3! = ? » 1>4 ! = ? 1>4 ! = ? »1>3! = ?

To compute the value of 6!, we might take the following heuristic:

solve (t): if

t >>.(m) for some m + apply method m

D t >>s(m) for some m +

solve (s); apply method m

fi

solve (I> 6! = ?)

This method might lead to

6! >> 5! >> 4! >> 3! >> 2! >> t! >>.

It might equally well lead to

6! >> 5! » 6! » 7! » 8! » 7~ .» 8! » 9! » 10! .•..

3

Although a Universal Problem Solver could solve ~6! =? by the above task

replacement schemata, in practice it is necessary to impose extra structure

on the system. Sections 3 and 4 describe ways of obtaining task replacements;

section 6 shows how a task replacement system can be transformed into an

algorithm.

3. TRANSFORMING IDENTITIES INTO TASK REPLACEMENTS

Given an identity

where F and Gare expressions in the x's, we can obtain the following task

replacements. For each valid set of values of x0 ,x 1, ••• ,xn we get

4

I>? = F(x1 ,x2 , ••• ,xn) » I>? = G(x1 ,x2 , ••• ,xn)

I>? = G(x1, x2 , ••• ,xn) >> I>? = F(x1 ,x2 , ••• ,xn)

l>xo = F(?,xz,···,xn) >> l>xo = G(? ,x2'. • • ,xn)

l>xo = F(?,xz,···,xn) >> l>xo = F(? ,x2' ••• ,xn)

I>? = F(? ,xz, • •• ,xn) >> I>? = G(?,xz,•••,xn)

...

. . .
I>? = F(,?, ••• ,?) >> I>? = G(?,?, ••• ?)

Each rule like the above, which produce a task replacement when valid values

are substituted for its "schema variables" is called a "task replacement

schema". For example, the fifth schema above can lead to the task replace

ment

I>?= F(?,137, ••• ,252) >>I>?= G(?,137, ••• ,252).

Other task replacement schemata can also be obtained from identities, such

as those generated by substituting one side of an identity for another

in some other formula.

4. TASK REPLACEMENTS FROM (CONSTRUCTIVE) THEOREMS

Every (constructive) theorem

gives us a task replacement schema

This result does not hold in non-constructive mathematics, since it may

there be impossible to derive a method from the proof of the theorem. This

property of constructive mathematics suggests that it is reasonable to use

it for computer programming, even in the (unreasonable) case that one is

not a constructive mathematician. Constructive logic is used throughout

this papeL To remind the reader of this, the word "constructive" will

occasionally appear in parentheses.

5. WELL-ORDERED SETS

5

A well-founded set is a partially-ordered set in which every descending

sequence terminates.

A well-ordered set is a totally-ordered set in which every descending

sequence terminates. The literature on well-ordered sets is extensive

[1,2,3] and will not be repeated here. However, it is worthwhile to mention

a few of the properties of well-orderings for those not yet familiar with

them.

Every (constructive) well-ordered set 1s isomorphic to one that can

be built up using the following methods:

(1) The empty set is well-ordered (no sequences~)

(2) Every totally-ordered finite set is well-ordered

(3) The non-negative integers are well-ordered. (this well-ordered

set is usually called "w")

(4) Given any set {AiliE r} of well-ordered sets Ai indexed by a

w1~ll-ordered index set I, their concatenation

A. = { < i, a)
1

1s well ordered under the lexicographical order

(:i,a) < (j,b) iff i < J or (i=j and a<b).

There are standard well-ordered sets, called "ordinal numbers".

Every well-ordered set is order-isomorphic to a subset of an ordinal num

ber. A well-founded ordering relation is defined on the ordinals. a~ S if£

a is order-isomorphic to an initial segment of S. Every ordinal is order

isomorpnic to the set of ordinals less than it.

6

The class of all ordinal numbers is denoted On.
The first ordinal numbers are identified with the nonnegative integers

0 {}

1 { o}

2 {0,1}

3 {0,1,2}

The first ordinal after the integers is 'w'. Then we get

W {0,1,2, ••• }

W+l {0, 1,2, ••• ;w}

W+2 {0,1,2, ••• ;W,w+l}

After this sequence we get

w2 = w + w {o,1,2, ••• ;w,w+1, ••• }

W2+1

W2+2

W3

W3+1

{ 0 , I , 2 , ••• ; W, w+ 1 , ••• , W2}

{o,1,2, ••• ;w,w+1, ••• ,w2,w2+1}

{0, I ,2, ••• ;w,w+l, ••• ;w2,W2+1, •• • }

{ o, I, 2, ••• ;W,W+I, ••• ;w2,w2+1, ••• ;w3}.

2
After o,w,w2,w3, ••• we get «.W = w, and so forth:

0, I , 2, 3, , • , ;W, W+ 1 , w+2, • , • ;W2, W2+ 1 , ••• ;W2, , •• ;W4 ••• ; •• , ;
2 2 2 2 2 2 2 2 2

w,w +1,W +2, ••• ;w +w,w +W+l, ••• ;w +W2, ••• ; ••• ;w +W =W 2,
2 2 2 2 3 4 W w 2+ I, ••• ; ••• ;w 3 •• • w 4 ... ;w «1=w , •• • w •• • w

Warning:

Addition, multiplication, etc., are in general non-connnutative; in

particular

l+w = W ::) w+l,

since given a one-element set {a} and an W-element set W= {O, 1,2, ••• } we

have the order isomorphism

l+W: a,0,1,2, •••

W: 0,1,2,3; .•••

7

But W+l = {O, 1, ••• ;w} has W as a limit point, whereas W = {O, 1, ••• } has no

limit point.

6. ALGORITHMIC CONTENT

Even though, in principle, a task replacement system may contain enough

information to enable a Universal Problem Solver to accomplish a task, it

does not yet provide an algorithm. Repeated task replacement may proceed in

useless direction, encounter blind alleys, or fail to terminate. Some

intelligence is necessary to act as guide. The knowledge obtained from this

intelligence can be (represented) as a "complexity mapping" f!lrlOm tasks to

ordinal numbers.

Given a set T of tasks and a task replacement relation>>, a mapping

c: T + On is called a complexity mapping. It is said to provide "algorithmic

content" iff

Vt ET: {(3s ET: t»s A c(t) > c(s))v(t»•)}

holds (constructively). If there is algorithmic content, there is an algo

rithm for performing an arbitrary task t ET:

proc perform (t):

if

t >>• (method M) + use M

D 3s ET: t>>s {method M) A c(t) > c(s)

+ perform (s); use M

fi

When we have algorithmic content, we obtain a "task reduction system" from

a task replacement system, by selecting those task replacements,

which reduce complexity. A task replacement system with algorithmic content

is called a "task reduction system". The general programming heuristic sug

gested by this paper now reads:

Determine properties of relevant (and possibly irrelevant) concepts.

Obtain replacement system, possibly expressed as a collection of

schemata.

Attempt to find a complexity mapping which provides algorithmic content,

possibly adding more task replacements to accomplish this.

Perform proper scheduling of the computations.

Determine data representations and write the program.

It is only in the last steps that one can use anything like top-down

coding, bottom-up refinement, middle-out implementation or any other conven

tional programming "methodology". By this time, all the important decisions

about the program have been made, and therefore nearly any systematic

methodology will work. Furthermore, the task replacement schemata clearly

indicate the necessary data dependencies involved in the global design.

7. BACK TO FACTORIAL

Let

c (n !) = I n-1 I .

This proves algorithmic content for the task replacement system for

factorial. The resulting task reduction system is:

l>I ! = ? >> .
l>O! = ? >> l>1 ! = ?

l>2 ! = ? >> I ! = ?

l>3 ! = ? >> 2! = ?

1>4 ! = ? >> 3! = ?

Here those task replacements which are solutions or decrease complexity

have been selected. It is a poper task reduction system because every task

is either solution or reducible to a simpler task.

(Note: I first tried c(n!) = n, but this failed to provide a reduction for

~O! =?.Adding the fact that O! = 1 as a new task replacement

9

~O! =? >> • would also have patched things up, but the above dis

cussion is more in line with my intuitive understanding of factorial • .)

8. THE ACKERMAN FUNCTION

Suppose a computer (a human or mechanical being) is given ·the task of

determining Ack(3,4), a value of the Ackerman function. He opens the

Chemical Rubber Company Handbook of Peculiar Recursions Used in Informatics,

and finds several identities:

Ack(O,n) = n+l

Ack(m,Ack(m+l,n)) = Ack(m+I,n+l)

Ack(2,n) = 3+2n

Ack(m+l,O) = Ack(m,1)

x+y = y+x

(1)

(2)

(3)

(4)

(5)

Each of those identities shows how he can replace some computations by

others. For example, we get:

~Ack(3,4) =?>>~find an n such that Ack(4,n) = 4;

then evaluate Ack(4,n+l).

~Ack(3,4) =? >> ~Ack(2,Ack(3,3)) =?

~2n =? >> ~Ack(2,n) (method: subtract 3).

~6+7 =? >> ~7+6 =?

~7+6 =? >> ~6+7 =?

etc., etc.

We decide that task replacements deriving from the first four schemata may

be relevant. Now we attempt to find a complexity mapping. A standard

heuristic for complexity is to see if it can be built up as a polynomial

10

in Wwith the task parameters as coefficients. First we try

c(~Ack(m,m) = ?) = wn+m

and

c(~Ack(m,n) = ?) = !Mn+n.

The first one does not provide us with a reduction for I> Ack(l ,0) = ? , since

c(~Ack(I,0) = ?) = 1,

and

c(~Ack(0,1) = ?) = w.

The second one works quite nicely, except that we do not know what to do

with the task

~Ack(m,Ack(m+l,n)) = ?.

If we define its complexity as

!Mn + Ack (m+ I , n)

we are begging the question, since we assume the existence of a terminating

algorithm for Ackermann in the complexity function. We can break it up into

two tasks, to be performed in order, however:

~Ack(m+l,n) =

Completing the first task will cause the second one to be changed by re-

l · 11 11 1 f 11 ? " d . · 11 f pacing ~1 by the proper va ue o . 1 an then it too wi be o a proper

form.

So we try

c(~Ack(m,~) = ?) = !Mn+w = W(m+l).

To make the task reduction for Ack(m+l,O) =? work, we redefine

cn>Ack(m,n) = ?) = Wm.+n+l

c(t>Ack(m,~1) = ?) = W(m+I).

Now we have rules resembling task replacement schemata, but occasionally

our rules decompose a task into more than one simpler task.

!>Ack(O,n) = ? » . (choose n+I)

!>Ack(m+I ,O) = ? » ~Ack(m, I) = ?

l>Ack(m+I,n+I) =? »

!>Ack(m+l,n) = ? 1;

l>Ack(m;~1) = ? 2

In the next section, we shall show that a multiple task reduction system

with multiple substitution tasks can be converted into a task replacement

system, and so the problem can be solved.

9. MUTIPLE TASK REPLACEMENT

Let S be a "multiple task reduction sys tern" i.e., one in which a task

may be replaced by zero, one, or more simpler replacement tasks. For this

formulation, instead of reducing a task to the empty task".", we shall

replace it by zero tasks.

Construct a task reduction system T as follows:

T -- the set of all finite "subsets" of S.

1 1

We allow these "subsets" to have multiplicities; i.e., an element of Smay

appear more than once in one of these "subsets". This is realistic, since

it requires effort to determine that one is given the same task to solve

twice.

Let W > 0 be a strict upper bound on the complexity of tasks in S, i.e.,

12

for s ES, c(s) < W.

If t ET, and i is an ordinal, let pop(i,t) be the number of tasks s Et

such that c(s) = i. Let

d(t) = I wi pop(i,t).
i<W

For t 1, t 2 ET, let t 1 » t 2 if£ t 2 is obtained from t 1 by replacing one

of the tasks s of t 1 by a reduction s 1, ••• ,sn. If c(si) ~ c(s) for each i,

then d(t 2) < d(t 1). Then Tis a task reduction system, with{} as empty

task and d as complexity function.

REFERENCES:

HALMOS, P., Naive Set Theory.

2 KURATOWSKI, K. & A. MOSTOWSKI, Set Theory, (chapter VII: Well-ordered

Sets), North Holland, 1968.

3 BROUWER, L.E.J., Zur BegrU.nding der intuitionistischen Mathematik III,

Math. Annalen 96, pp. 451-488, Reprinted in L.E.J. Brouwer,

collected works, edited by A. Heyting, North Holland, 1975.

