ma
the
ma
tisch

cen
trum

REKENAFDEL iNG

R.P. VAN DE RIET, G. NOGAREDE
A NOTE ON AUTOMATIC STORAGE OF
ARBITRARY TREES IN ALGOL 60

NR 16/71

MEI

amsterdam

1971



RA

stichting
mathematisch
centrum MC

REKENAFDEL iNG NR 16/71 ME ]

R.P. VAN DE RIET, G. NOGAREDE
A NOTE ON AUTOMATIC STORAGE OF
ARBITRARY TREES IN ALGOL 60

2e boerhaavestraat 49 amsterdam

IRt A R R TS



Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amstendam.

The Mathematical Centre, founded the 11-th of February 1946, 4is8 a non-
progit institution aiming at the promotion of pure mathematics and its
appLications. 1t is sponsored by the Netherlands Government through the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0),
by the Municipality of Amsterdam, by the University of Amsterndam, by
the Free University at Amstendam, and by industries.



(@]

sSummar
In this note a method is demonstrated for making an elegant ALGOL 60

program which stores a tree in a one-dimensional array.

The problem

Consider a set s of trees t; each tree being either an atom (representable

by an integer) or the root of an arbitrary number n(n > 0) of other
trees ti’ 1= 1,.0..,0, ti € s.
The trees are assumed to be pure in the sense that no two trees are

subtrees of each other.

It is supposed that the trees have to be stored once, have to be
ingpected often, but will not be changed or deleted.
In that case the following storage organization may be chosen.

Declare the integer array INFL1: bound].

If t is an atom, then store the integer representing this atom in
INF[t], where t is some appropriate value, called the location of t;

otherwise, if t 1s the root of n trees ti, with locations ti, i=1,..

£fill n+1 consecutive array elements INFLt),...,INF(t+n] as follows:

INFLt] := t+n+1 and

for i = 1,...,n: if tj is a root then INFLt+i] := ti, otherwise

Colly

t+i = ti and INF[t+1] contains the integer representing the atom ti’

where ¢ 1s again some appropriate value, called the location of t.

tree consisting of N atoms and M roots will occupy N+2M places
in INF. For the storage of this tree a program has to be written which
performs the N+2M necessary assignaments. For any given tree it is not
too difficult to write down these assignment statements; the order of
which has to be chosen judiciously however.
The problem is to construct auxiliary procedures, which perform the
assignment statements, by means of which for every arbitrary tree a
program can be made with a structure reflecting directly the structure

of this tree.

In section 3 the solution the solution of the problem will be given

in the form of the procedures STORE TREE and L, which store an arbitrary

tree consisting of at least one root.
Before doing this it 1s necessary to introduce, in the next sectlon,
means for treating lists with a variable number of elements as actual

parameters in procedure statements.



.1

. Lists of variable length as parameter

Consider a set of lists, each list consisting of a variable number n of
elements ei, i=1,...,n; these elements have to be treated by a
standard process P in the ordering S RERRERL N Before treating the
elements, an initialization process PO has to be executed which uses
the number n.

A way of programming this in ALGOL 60, where it is not allowed to have
a variable number of actual parameters in a procedure statement, is

the following:

Declare the procedure L:

Boolean procedure L(first,ei); Boolean first; integer et;

begin comment cownt the number of elements; cnt := cnt+l;

if first then Pys
P; L := false
end L

2,...,en) is then treated by the statement:

L(...L(L(txue,

The list (e1,e

el)_,

e2),

e ).

n

Storage of trees

A procedure STORE TREE and a procedure L are given now, by means of

which the tree of the following example is stored in the array INF.
Note that STORE TREF stores trees consisting of at least one root.

Example
In the ALGOL 60 program of section 3.2. the following tree t is stored.

In bracketed form:
t = (100,200, (300, ((400,500),600),700),(800,900)).
Two-dimensionally t looks like:



— 100
— 200

— 300

[__ L00
t = 1
L L 500
600

— 700

[—800

L 900

3.2. The ALGOL 60 program

begin integer ptr,fi1l ptr,t;
Integer array INF[1:1000];
integer procedure STORE TREE(1list); Boolean list;

begin STURE TREE:= fill ptri= ptr:= ptr + 1;
I 1ist then;
end STORE TREE;

Boolean procedure L{first ,inf) 3 Boolean first; integer inf;
begIn Integer loc fill ptr; - -
ptr:= ptr + 13
if first then
begin INF[TII1 ptr]:= ptr + 1;
T TI1 ptr:= £111 ptr + 1;
if ptr > 1000 then EXIT
end;
Toc f£ill ptr:= £il11 ptr;
INF[loc f£111 ptr]:= inf;
£111 ptr:= loc fill ptr + 1;
L:= falsge
ea LT




ptre= 0;
t:= STORE TREE(L(L(L{L(true,
100), -
200),
STORE TREE(L(L(L(true,
300}, -

STORE TREE(L(L(true,
STORE TREE{L(L(true,
L00),

STORE TREE(L{L(true,
800),
900))));
NLCR; PRINTTEXT{<{the contents of INF is displayed,
Each line contains the information of one root});
te= 0; £111 ptre:= 1; for t:= t + 1 while t < ptr do
begin if t = fill ptr then - -
begin NLCR; fill ptr:= INF[fill ptr] end;
EBSFIXT(2,0,t); FIXT(3,0,INF[t]); SPACE(S)

end end

the contents of INF 1s displayed.
Each line contains the information of one root

1 +6 2 +100 3 +200 L +6
6 +10 7 +300 8 +10 9 +700
10 +13 11 +13 12 +600
13 +16 14 +400 15 +500

16 +19 17 +800 18 +900

5 +16



