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A Free Boundary Problem Involving a Cusp

Part II : Local Analysis
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ABSTRACT

We consider a stationary free boundary problem describing the stationary ow of fresh

and salt water in a porous medium. The salt water is supposed to be stagnant, while the

fresh water on top of it is drawn into wells. In a previous work it has been shown, that

for pumping rates Q < Qcr a solution with smooth interface exists. In this part we study

the case Q = Qcr in two dimensions. We show that the interface has isolated singularities.

At each singularity the free boundary develops a cusp or becomes vertical. By means of

local analysis techniques we obtain the asymptotic behaviour of the free boundary at these

singularities.

1991 Mathematics Subject Classi�cation: 35 J 20, 35 R 35

Keywords and Phrases: Porous media ow, free boundary problem

Note: Work carried out under project MAS1.3 Porous Media Research.

1. Introduction

In [4] we formulated a free boundary problem which models the stationary ow of fresh

and salt groundwater, say, in a reservoir. The uids are assumed to be separated by an

abrupt transition, the interface or free boundary, with salt water below fresh water. The

saltwater is supposed to be stagnant, while the fresh water is drawn into wells which are

present in the reservoir.

The variables involved in this problem are a reduced potential w and the location u of the

interface. Further it contains a parameter Q > 0 which is proportional to the pumping

rates of the wells. We demonstrated in [4] that a maximal (or critical) value Qcr of Q exists

such that for Q < Qcr the free boundary is smooth, i.e. it can be represented by an analytic

function u. The proof of this result is based on the local reduction of the problem to the

one - phase dam problem. For this it is crucial to have w > 0 in an upper neighborhood

1 Supported by SFB 256.
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of the free boundary. For Q = Qcr, without further investigation, the free boundary is

described by a lower semi{continuous function u and an upper semi{continuous function

u, see Theorem 1.1 below. Further we proved that for Q = Qcr points in the closure of the

free boundary exists for which the potential w has points of negativity in any neighborhood.

The aim of this paper is to make precise how the negativity of w leads to loss of smoothness

of the free boundary. In particular we show that singularities in the form of cusps occur

in the free boundary and we specify the local cusp behaviour of w and u. We prove our

results for ow domains of dimension 2.

First we introduce some notation. Let

V =]a1; a2[�]0; H[ ; �1 < a1 < a1 <1 ;

denote the two dimensional reservoir, where for points x 2 V we often write x = (y; z) with

y 2]a1; a2[ representing the horizontal coordinate and z 2]0; H[ the vertical coordinate. The

N wells are located at the interior points

W = fxW (l) : l = 1; : : : ; Ng :
In order to compensate for the singularities of w at the wells, we introduced in [4] a

truncated fundamental solution h. Along the vertical boundaries of the reservoir, w satis�es

the Dirichlet conditions
w(a1; z) = w(a2; z) = (z � u0)+ ;

where u0, with 0 < u0 < H, is the salt water level outside V . At the top of the reservoir

w satis�es the Neumann condition
@w

@�
= 1 :

In [4] we proved, in a more general (N > 2 dimensional) context, the following global

existence result at Q = Qcr.

Theorem 1.1 There exist functions u; u : [a1; a2]! [u0; H], satisfying

u0 � u � u in [a1; a2];

u l.s.c. ; u u.s.c. in [a1; a2];

u = u a.e. in [a1; a2];

and there exists a pair (w; ), with w + h 2 H1;2(V ) and  2 L1(V ) satisfying

(�)
Z
V

r� � (rw + ez) = 0

for all � 2 H1;2(V ) with supp(�) � V nW , such that

 = �fz<u(y)g in V;

w = 0 in fz < u(y)g ;
w < 0 in a neighbourhood of W ,

W lies above graph(u):
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From this it follows that
�w � 0 in V nW ;

�w = 0 in fz > u(y)g nW :

Throughout this work we assume that the free boundary does not touch the top of the

reservoir, i.e., u < H on [a1; a2]. For a given con�guration of wells, all withdrawing uid

from the reservoir, this assumption seems to be reasonable.

In Section 2 we �rst prove u = u in [a1; a2] and we denote by graph(u),

u: = u = u 2 C([a1; a2]) ;

the free boundary of the problem, i.e. w is harmonic above and zero below.

In the remaining sections we concentrate on the behaviour of w and u near singular free

boundary points (y�; u(y�)) 2 int(V ) which satisfy Property 4.17 of [4]. This property says

that there exists at least one sequence (yn; zn)! (y�; u(y�)) such that w(yn; zn) < 0. This

can also be characterized by (y�; u(y�)) 2 fw < 0g.
Using scaling arguments (blow up techniques) we �rst show in Section 3 that at a singular

free boundary point (which we translate to the origin for convenience), the free boundary

either forms a cusp (k = 1) or becomes vertical (k = 2), see [1, Figure2] or Figure 11 of

this paper.

In Section 4 and 5 we prove in a number of steps, using blow up arguments, that the scaled

function

wr(x) := w(rx)=r� ; r(x) = (rx) ;

with

� =
km

2
;

converge for r! 0 to

w�(x) = c� Im(~xm) ; ~x = ik(�ix)k=2

with c� > 0. Moreover, m is odd and m � 3. It is not clear whether as exceptional case

(and probably unstable case) situations with m � 5 can occur.

It is proven in Section 5 that free boundary points x = (y; z) satisfy jyj � Cjzj� .
Further, in Section 6, we show that the branches of the free boundary near the singularity

have the form

f�z < 0 : y = f(z)g
and that

lim
z!0

f(z)

z�
= �c� :

This clari�es the asymptotic behaviour of the free boundary near the singularity. For the

standard cusp case (k = 1, m = 3) such an expansion has been expected because special

solutions with such a behaviour have been found, see references given in [4]. For the part

of the free boundary below the singularty we prove that f 0(z)! 0 as z % 0, which shows

that indeed the free boundary becomes vertical. In the concluding section we shall pose
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some conjectures and open questions related to the behaviour of the free boundary. In

particular we discuss the occurrence of vertical cusps, the location of cusps in the reservoir

and the assumption made that the free boundary does not touch the top of the reservoir.

2. Preliminary remarks and tools

As a �rst observation we note that the weak di�erential equation (�) together with the

boundary conditions implies that w is H�older continuous in V nW . Moreover, w is Lipschitz

continuous locally in V nW . This can be seen as in Alt & van Duijn [3, Theorem 3.7].

Indeed (�) implies that ��� Z�
@Br(x)

(w � w(x))
��� � C � r

for all Br(x) � V nW , and w is harmonic in the set fw 6= 0g nW .

Next we consider a comparison lemma, that we often shall use to obtain non{oscillation

results.

2.1 Comparison Lemma. Consider a rectangle

R =]a; b[�]0; c[� V nW :

For x̂ 2 R and s0 2 IR, consider the unit vector

�0 :=
1p
s20 + 1

(�s0; 1)

and the function v : R! [0;1[ given by

v(x) =

�
1p
s2
0
+1
�0 � (x� x̂) for �0 � (x� x̂) > 0 ,

0 otherwise .

If x̂ and s0 are chosen such that w � v on @R, then

(i) w � v in R,

(ii) w = 0,  = 1 in fv = 0g.

Remark. The function v is a solution of the dam problem.

Proof. We use the Baiocchi transformation. Let � 2 H1;2(R) with � = 0 near the vertical

walls of R. Then set

�(y; z) :=

cZ
z

�(y; s) ds:

Because w = 0 and  = 1 in f0 � z � u0g, the function � is an admissible test function in

the di�erential equation
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for (w; ). It leads to Z
R

r� � (rw � (1� )ez) = 0:

In this equation we substitute

w(y; z) :=

zZ
0

w(y; s) ds ;

giving Z
R

(r� � rw + (1� )�)�
Z

fz=cg

�(�; c)w(�; c) = 0 :

As a test function we take � = (w � v)+, where

v(x; z) =

zZ
0

v(x; s) ds :

This gives Z
R

jr(w � v)+j2 +
Z

fv=0g

(1� )(w � v)+

�
Z

fv>0g

(w � v)+ +

Z
fz=cg

(w � v)+(�; c)(v(�; c)� w(�; c)) = 0 :

The third term only has a contribution when w > v. Suppose there exists (y0; z0) 2 R

such that w(y0; z0) > v(y0; z0) � 0. Then there must also exist z1 < z0 where w(y0; z1) >

0 and hence w > 0 in B"((y0; z1)) for some " > 0. This implies that  = 0 in and

above B"((y0; z1)). In particular (y0; z0) = 0, which shows that the third term gives no

contribution. Since the second and fourth term are nonnegative, the �rst term implies

w � v in R and in particular w � 0 in fv = 0g. The equation �w = 1 �  shows that

w is subharmonic in the set fv = 0g. Then either w < 0 or w � 0 in fv = 0g. The �rst
possibility contradicts w = w = 0 in f0 < z < u0g. Hence w = 0, w = 0 and  = 1 in

fv = 0g. ut
We apply the Comparison Lemma to prove that the free boundary is continuous.

2.2 Theorem. u = u 2 C([a1; a2]).

Proof. The continuity and the boundary conditions for w and u � u0 imply that u = u

at the boundary points a1 and a2. To show equality for an arbitrary point y0 2]a1; a2[,
consider sequences yn ! y0 and Qn % Qcr so that

uQn
(yn)! u(y0) ;

where uQn
denotes the free boundary of the solution obtained in [4] with pumping rate

Q = Qn. We distinguish two possibilities.
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(i) A sequence can be chosen which oscillates around y0: i.e. y0 is between yn and yn+1
for all n 2 IN. We argue as follows. Let " > 0. Then there exists n0 2 IN such that for

all n � n0

uQn
(yn) > u(y0)�

"

2
:

For n � n0 we de�ne

zn := minfuQn
(yn); uQn+1

(yn+1)g
and we consider

Rn := f(y; z) : 0 < z < zn; y between yn and yn+1g :

Then we have for n � n0, n su�ciently large, wQn+1
= 0 along the vertical sides of Rn

and wQn+1
< "=2 along the top of Rn (using the monotonicity of wQ in Q and using

the H�older continuity of wQ uniformly with respect to Q � Qcr, see [4; Proposition

4.7]. Using the function v(y; z) = (z� zn+
"
2
)+ and s0 = 0 in the Comparison Lemma

we conclude that wQn+1
= 0 and Qn+1

= 1 in the set

f(y; z) : 0 < z < zn � "=2 and y between yn and yn+1g ;

implying in particular

uQn+1
(y0) � zn �

"

2
> u(y0)� ":

Thus (by de�nition of u)

u(y0) > u(y0)� ";

giving the desired equality.

(ii) No sequence can be chosen with oscillations around y0, i.e. all the sequences (yn)n
come from the same side, say from the right. Then applying the Comparison Lemma

similar as in case (i) we are lead to a situation in which we have, see also Figure 1,

u(y0) � lim sup
y"y0

u(y) < u(y0) and lim inf
y#y0

u(y) = u(y0) :

Refering to Figure 1 we have

w = 0 ;  = 1 in B \ fy > y0g

and

�w = 0 ;  = 0 in B \ fy < y0g:
Moreover, by a global argument, w 6� 0 in B \ fy < y0g. Since ��w = @z = 0 in B,

we obtain a contradiction with w = 0 in B \ fy > y0g. ut
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Fig. 1. Possible con�guration near discontinuity.

Let (y�; u(y�)) 2 int(V ) be a free boundary point satisfying Property 4.17 of [4], i.e. a

cusp. We translate this point to the origin O, by shifting the coordinates so that y� = 0

and u(y�) = 0. We �rst de�ne

2.3 De�nition. Let B � IR2 denote an open ball centered at O. We call ~w 2 H1;2(B) \
C0(B) a phase of w at O if ~w(w � ~w) = 0 in B and if f ~w 6= 0g \ B is non{empty and

connected with O as a boundary point. We have rw � r ~w = jr ~wj2 and ~w has a sign. In

section 7 we prove that w has only �nitely many (m 2 IN) phases at O. Moreover, we prove

that in some smaller concentric ball ~B � B we have a decomposition w =
Pm

i=1wi, where

wi are the phases of w at O.

Since  = 1 and w = 0 in a neighborhood of the vertical line below the origin O, any test

function from identity (�) can be changed there arbitrarily. We have

2.4 Proposition (Separation Lemma) Below O test functions from expression (�) can
have di�erent values from both sides, i.e.Z

Br

r� � (rw + ez) = 0

for all � 2 H1;2(Br n f(0; z) : �r < z � 0g) having support in Br, where Br denotes the

open ball in IR2 with center O and radius r > 0.
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Proof. For � as above and " > 0 small, consider the expression

�(y; z) + �(�y; z)
2

+
�(y; z + ")� �(�y; z + ")

2
:

The �rst term belongs to H
1;2
0 (Br). The second term vanishes on f(0; z) : z > �"g and

near @Br. Because  = 1, w = 0 in a neighborhood of the segment f(0; z) : �r < z < �"g
also the second term is an admissible test function for (�). Hence we may substitute this

expression into the equation. Letting "! 0 gives the result. ut

Next we show that for any phase ~w of w, the values of jr ~wj and j ~wj
r

are balanced near O

in the following sense:

2.5 Proposition. There exists a constant C > 0 such that for every r > 0

Z
B r

2

jr ~wj2 � C
1

r2

Z
BrnB r

2

j ~wj2 � C sup
BrnB r

2

j ~wj2 ;

and

sup
B r

2

j ~wj2 � C

� Z
�

@B 3r
4

~w

�2

� C

Z
Br

jr ~wj2 :

Proof. By linear scaling we can take r = 1. Set � = ~w�2 with � 2 C10 (B1) in expression

(�). Then Z
B1

r( ~w�2) � rw +

Z
B1

r( ~w�2) � ez = 0 :

Since  = 0 in f ~w 6= 0g the second term vanishes. The �rst term can be written as

0 =

Z
B1

r( ~w�2) � r ~w =

Z
B1

�2jr ~wj2 + 2

Z
B1

~wr� � �r ~w :

Hence Z
B1

�2jr ~wj2 � 4

Z
B1

~w2jr�j2 :

When choosing � as cut{o� function from B1=2 to B1 we obtain the �rst pair of estimates.

For the second pair we use the fact that j ~wj is subharmonic in B1. Then by Poisson's

integral for any 3
4
� r � 1
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sup
B1=2

j ~wj � C

2�Z
0

j ~w(rei�)j d�

� C

2�Z
0

j@� ~w(rei�)j d� ( using ~w(re�i�=2) = 0)

� C

2�Z
0

jr ~w(rei�)j d� :

Squaring and integrating over r gives the result. ut

For several purposes we need that w cannot have long zero curves above and near the free

boundary. This is the content of the following two propositions.

2.6 Proposition. Let (w; ) be any (sub)solution of the local di�erential equation (�).
Suppose there exists a rectangle R � V in which (w; ) satis�es the properties as listed in

Figure 2. Then for some c > 0, depending only on the geometry of the rectangle,

Z
R

jwj2 � c :

Proof. In the weak inequality for a subsolution we choose � 2 C10 (R) ; � � 0 , such that

@z� � 0 in fz2 � h
4
< z < z2g \ R where  = 0 ;

@z� � 0 in fz1 < z < z2 � h
4
g \ R where 0 �  � 1 ;

@z� � c > 0 in D �� fz1 < z < z1 +
h
4
g \R where  = 1 :

This gives (the �rst inequality arises for subsolutions)

�
Z
R

rw � r� �
Z
R

@z� �
Z
D

@z� � c ;

where the constant c also depends on D. Hence

Z
supp(�)

jrwj2 � c > 0 :

Since dist(supp(�); @R) > 0, we can apply the �rst part of the proof of Proposition 2.5

with an appropriate test function to w and obtain the inequality. ut
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Fig. 2. Properties of (w; ) in R.

2.7 Proposition. Suppose there is a continuous Jordan curve (not closed) in the rectangle

fz1+ h
4
< z < z2� h

4
g\R, going from the left boundary to the right boundary as in Figure

3, such that

� above graph(u) ;

w = 0 on � ;

w > 0 in a right neighborhood of � , looking in the direction of � :

Then for some c > 0, depending only on the geometry of the rectangle and on the Lipschitz

constant of w,

jw(x)j � c for some x 2 R below � :

Proof. � divides the rectangle R into exactly two subdomains R+ (left of � ) and R� (right

of � ). Let

w� :=
�
0 in R+

w in R�

Since w > 0 in R� near � , it follows that �w� � 0 above the free boundary. Hence (w�; )
is a subsolution of equation (�) in R. Applying Proposition 2.6 gives

Z
R

jw�j2 � c > 0 :
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Fig. 3. Situation near � .

Hence there must exist points x 2 R� for which jw(x)j � c > 0, where c only depends

on the geometry of the rectangle. ut
For future use we also give here the monotonicity formula for the m{phases.

2.8 Monotonicity Formula. Suppose w has m 2 IN phases fwi : i = 1; : : : ;mg at O.

For each phase wi we de�ne

(2:1) 'i(r) :=
1

r�m

Z
Br

jrwij2 for 0 < r < r0 <1 ;

where � � 1. Moreover, let

(2:2) '(r) :=

mY
i=1

'i(r) for 0 < r < r0 <1 :

A value � > 1 is related to the fact that fw = 0g on each sphere might cover a certain

sector. To be precise, we assume that there are values 0 � �(r) < 1� 1
�
with �(r)! 0 as

r! 0 such that

(2:3)
1

2�
L1(f� 2 [0; 2�] : w(rei�) = 0g) � 1� 1

�(1� �(r))
;

where L1 denotes the one dimensional Lebesgue measure. It then follows, that

(2:4)
d

dr
log'(r) � ��m2 �(r)

r

in distributional sense. In particular,
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(2:5) log'(r) � log'(r0) + �m2

r0Z
r

�(~r)

~r
d~r :

If the function r 7! �(r)=r is integrable, e.g. if �(r) � Cr� for some � > 0, then (2.5)

implies that ' is bounded. In case that � = 0 inequality (2.5) gives that ' is monotonically

increasing in r. The proof of (2.4) is given in Appendix A. As a special case, see Alt et al.

[2], we decompose w into two contributions according to

w := w+ � w�

where w� := maxf0;�wg. Then we consider the functions

(2:6) '�(r) :=
Z
�
Br

jrw�j2 for 0 < r < r0 <1 ;

i.e., m = 2 and � = 1, consequently � = 0. It follows that

(2:7) '(r) := '+(r) � '�(r) for 0 < r < r0 <1
is monotonically increasing in r.

3. Sublinear decay of solution.

First let us note, that w decays at least linearly at the cusp, here situated at the origin O,

i.e.
w(x) = O(jxj) as x! O :

The follows from the Lipschitz continuity. This Lipschitz continuity also implies that the

functions '� in 2.8 are bounded and 'i(r) � Cr2��m.
The aim of this section is to prove that w decays faster than linearly, i.e.

w(x) = o(jxj) as x! O :

For this we apply blow-up techniques to the decomposition w = w+ � w�.
We �rst show

3.1 Proposition. For the function ' in (2.7) we have

lim
r#0

'(r) = 0 :

Proof. Suppose that limr#0 '(r) � C > 0. Then consider the blow{up (r # 0)

wr(x) :=
w(rx)

r
and r(x) := (rx) for x 2 B

where B denotes any ball in IR2 centered at O. Using the Lipschitz-continuity of w we

obtain as in [3] for a subsequence (rk)k with rk & 0,
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wk := wrk ! w0 uniformly in B and strongly in H1;2(B) ;

k := rk ! 0 weakly star in L1(B),

with w0 2 H
1;2
loc (IR

2) and 0 2 L1(IR2). Further, because ' is bounded away from zero,

the blow{up limit is a linear two{phase solution. Since w(0; z) = 0 for z � 0, we must have

w0(0; z) = 0 for all z 2 IR with for instance w0 > 0,0 = 0 in fy > 0g and w0 < 0,0 = 0

in fy < 0g. However by the Separation Lemma we also have @�w0(0�; z) = 0 for z < 0, a

contradiction. ut

3.2 Proposition. There is no sequence r # 0 for which

sup
Br

w+ = o(r) and sup
Br

w� � cr with c > 0 :

Proof. Suppose such a sequence (rk)k2IN exists. Then consider the blow up

wk(x) :=
w(rkx)

rk
for x 2 B1 :

The assumption implies the existence of points xk in B1 satisfying

�wk(xk) � c and xk ! x0 in B1 :

By the Lipschitz continuity we have �wk � c=2 in B�(x0) for some � > 0 and for k large.

Therefore the blow up w0 satis�es �w0 � c=2 in B�(x0), w0 � 0 in B1 and w0(0) = 0. The

property �w0 � 0 is inherited, hence giving a contradiction. ut

3.3 Proposition. w�(x) = o(jxj) as x! 0.

Proof.We argue by contradiction. Suppose there is a sequence (rk)k with rk & 0, for which

sup
Brk

w�
rk

� c > 0 :

By Proposition 3.2 also

sup
Brk

w+

rk
� c > 0 :

Applying the second inequality of Proposition 2.5 gives

'�(2rk) =
Z
�

B2rk

jrw�j2 � c ;

which contradicts the conclusion of Proposition 3.1. ut
Therefore we concentrate on the sublinear decay of w+. We �rst prove

3.4 Proposition. Let (w0; 0) be the blow up limit obtained for a sequence (rk)k with

rk # 0. If ~x 2 IR2 satis�es
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8" > 0 : 0 6= 0 in L1(B"(~x)) ;

then there exists a sequence (xk)k with xk = (yk; zk)! ~x such that k = 1 and wk = 0 in

a neighborhood of the segments

fykg � ]� Lk; zk[ where Lk is a suitable big number.

Proof. The sequence (xk)k is constructed as follows. The convergence of k implies that for

each " > 0, there exists k 2 IN such that k 6= 0 in L1(B"(~x)). Since (wk; k) is obtained

from (w; ) by scaling, we have that

fk 6= 0g = fk = 1g = fz < uk(y)g

is the subgraph of the scaled, continuous free boundary. Hence we can select a point xk
from the open set fz < uk(y)g \ B"(~x). Then choose Lk so that (yk;�Lk) lies on the

bottom of the scaled domain V . ut
We are now ready to prove the essential part of the section.

3.5 Proposition. w+(x) = o(jxj) as x! 0.

Proof. Again we argue by contradiction. Assume for some c > 0, there is a sequence (xk)k
with xk ! 0 and

w+(xk)

jxkj
� c :

Let rk := jxkj and consider the corresponding blow up sequence wk as above. For a

subsequence, denoted again by (rk)k, we have (wk; k) ! (w0; 0) as in Proposition 3.1.

Moreover we have

ek :=
xk

rk
! e0 =: (y0; z0) :

By Proposition 3.3, w�(x) = o(jxj) as x ! 0. Therefore we conclude w0 � 0 in IR2.

Moreover by the convergence properties of the sequence

c � w(xk)

rk
= wk(

xk

rk
)! w0(e0) ;

and the Lipschitz continuity implies

(3:1) w0 � c=2 and 0 = 0 in B�0(e0) for some �0 > 0 :

Thus for the blow up limit w0 we have a situation as show in the �gure below.

First we show

(3:2) w+(0; z) = o(z) for z # 0 :

If not, we can choose the above sequence such that xk = (yk; zk) with yk = 0 and zk > 0,

giving e0 = (0; 1). Now assume that w0 is harmonic in the half plane fy > 0g. Since w0 � 0

everywhere and, by (3.1),w0 > 0 in B�0((0; 1))\fy > 0g we must have w0 > 0 and therefore

also 0 = 0 in fy > 0g. As in the Separation Lemma we have that the weak di�erential

14
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Fig. 4. Situation for w0, with possible position for e0.

equation for (w0; 0) also holds for test functions � 2 C10 (fy > 0g[fy = 0; z < 0g). Using
�w0 = 0 and 0 = 0 in fy > 0g this means that

@yw0(0+; z) = 0 for all z < 0 :

But since w0(0; z) = 0 for z < 0 (inherited from w) we have a contradiction with the

Hopf-principle.

Therefore there exists a point ~x = (~y; ~z) with ~y > 0 so that w0 is not harmonic in any

neighborhood of ~x. Then clearly 0 satis�es the assumption of Proposition 3.4 at ~x (other-

wise we would have 0 = 0 and thus �w0 = 0 in some neighborhood of ~x). Let xk = (yk; zk)

denote the points from Proposition 3.4 and consider the rectangle

R = f(y; z) : 0 < y < yk and � Lk < z < minf0; zkgg ;

where again Lk is a suitably chosen large number. By Proposition 3.4 and because w(0; z) =

0 for z < 0 we have wk = 0 along the vertical boundaries of R. At the top, using the

Lipschitz continuity of w, we have wk � Cyk and near the bottom k = 1 and wk = 0 by

the choice of Lk. Then the Comparison Lemma 2.1 with s0 = 0 gives k = 1 and wk = 0

in

f(y; z) : 0 < y < yk and � Lk < z < minf0; zkg � Cykg :
Letting k ! 1 and repeating the same procedure in the half plane fy < 0g leads to the

situation from Figure 5.

By the regularity theory for the dam problem (see Alt [1]), this implies that the blow-up

(w0; 0) has a smooth free boundary, say graph(u0), passing through the z-axis at a point

(0; z0) with 0 � z0 � 1, such that w0 > 0, 0 = 0 above graph(u0) and w0 = 0, 0 = 1

below graph(u0). We show now that this leads to a contradiction.
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Fig. 5. Situation for blow up limit (w0; 0).

Let s0 := u00(0). For � > 0 consider the linear solution v� from Comparison Lemma 2.1

with x̂ = (0; z0 � �).

Now let 0 < " < "0 (small) be given. By the smoothness of u0 and w0 we have

ju0(y)� u00(0)yj � C1("0)"
2 for jyj < "

and

(3:3) jw0(x)� v0(x)j � C2("0)"
2 for x 2 B"(0; z0) :

Then taking � = C"2, where C is chosen large and independent of ", we have

v� > w0 in B"(0; z0) \ fw0 > 0g
and the free boundary of v� is below graph(u0).

At each free boundary point (y; u0(y)), the function 0 satis�es the assumption of Propo-

sition 3.4. Hence for k su�ciently large (wk ! w0 uniformly) we can select "�k near �7
8
"

and "+k near 7
8
", and apply the Comparison Lemma 2.1 to the scaled solution (wk; k) in

the rectangle

R = ]� "�k ; "
+
k [ � ]� Lk; supfu0(y) : �"�k � y � "+k g[ :

As a result we �nd

wk = 0; k = 1 below the free boundary of v� in f"�k < y < "+k g.
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By (3.3), the positivity of w0 above graph(u0) and again the uniform convergence of wk,

it follows that for su�ciently large k

wk > 0 ; k = 0 above the free boundary of v�� in f"�k < y < "+k g.

Thus we are left with the region between the free boundaries of v� and v��, which is a very

at strip of width O("2) and length O("). Now the origin O is an accumulation point of

fwk < 0g because it satis�es Property 4.17 of [4]. First this implies that z0�� � 0. Second

there must be curves on which wk < 0 coming from outside the strip and approaching O

arbitrarily close. These curves must come either from the left or the right. For de�niteness

consider a curve coming from the right. De�ne the rectangle

R" :=
�
(y; z) : jy � "

2
j < "

4
and jz � z0j < h

	
with h = C", C large. Then there exists a curve in R" going from the left side of R" to the

right side and lying inside the strip so that wk < 0 on this curve. Moreover, wk > 0 near

and above its free boundary. Therefore, after the scaling

~wk(x) :=
1

"
wk("x)

we obtain a situation as in Proposition 2.7, where a Jordan curve � separates f ~wk < 0g
above it from f ~wk > 0g below it. We deduce that in the at strip points must exist

where jwkj � c". Letting k ! 1 we obtain that there exists a point x in the strip with

jw0(x)j � c". But since jv0(x)j � C� = C"2 we conclude from (3.3) that jw0(x)j � C"2, a

contradiction for small ".

Therefore we conclude that (3.2) holds.

For the blow up w0 this implies

w0(0; z) = 0 ; also for z > 0 ;

and by (3.1)

dist(e0; fy = 0g) > �0 :

For de�niteness, let e0 = (y0; z0) has y0 > 0.

Next we choose s0 > maxf0; 2 z0
y0
g, i.e. the point e0 is below the line with slope s0=2,

passing through the origin. Since ek ! e0, also ek is below this line for large k. Choosing

such a k (�xed), we consider a second sequence (ekl)l�k de�ned by

ekl :=
rl

rk
el l 2 IN; l � k :

It satis�es

(3:4)

ekl =
xl

rk
! 0 for l!1 ;

ekl

jeklj
= el ! e0 for l!1 ;

wk(ekl) =
1

rk
w(xl) > 0 :
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Fig. 6. The sequence (ekl)l�k � fwk > 0g

converges to O tangent to the e0{direction.

Below we shall use the Comparison Lemma 2.1 with a function v de�ned for x̂ = (0; 0)

and s0 as above. First �x h > 2s0 and take any L su�ciently large. We have for 0 � z � h

v(0; z) =
z

s20 + 1

and, from (3.2),

(3:5) wk(0; z) � "kz

where "k ! 0 as k !1. Therefore if k is large enough (depending on h) we have

wk(0; z) � v(0; z) for all z 2 [�L; h] :
Now assume there is a point ~x = (~y; ~z) 2 R1 := ]0; 2[ � ]h;1[ satisfying the assumption

of Proposition 3.4. Then from this proposition it follows that for large k, there is yk 2
]0; 2[, say, so that (yk; h) is below the free boundary of wk. Now consider the rectangle

Rk := ]0; yk[ � ]� L; h[. Then also

wk(yk; z) = 0 � v(yk; z) for all z 2 [�L; h] :
Along the top of Rk we have (by the Lipschitz continuity and using (3.5))

wk(y; h) � C for 0 � y � yk(< 2) ;

where C, for large k, can be chosen independently of k and h. But

v(y; h) =
h� ys0

s20 + 1
� h� 2s0

s20 + 1
� C

for h large enough. Hence it follows from the Comparison Lemma that wk = 0 in fv = 0g,
i.e. below the line with slope s0. This contradicts (3.4), see also Figure 6. Therefore 0 = 0
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in R1. Using the monotonicity of 0 (@z0 � 0) and refering to (3.1) and Figure 4, we

obtain that 0 = 0 in the domain

D := R1 [ (]y0 � �0; y0 + �0[�]z0;1[) :

Hence

�w0 = 0 in D.

By (3.1) and the strong maximum principle

w0 > 0 in D,

while

(3:6) w(0; z) = 0 for all z 2 IR.

So far we worked only in the halfspace fy > 0g. To obtain a contradiction we also have to

consider the situation for y < 0. There are two possibilities: either

w0(~e0) > 0 for some ~e0 = (~y0; ~z0) with ~y0 < 0

(~e0 not necessarily a unit vector), or w0 = 0 in fy = 0g. In the �rst case there are points

~xk with
~xk

rk
! ~e0 ;

w(~xk)

rk
= wk

� ~xk
rk

�
! w0(~e0) > 0 :

As in (3.1) we conclude that 0 = 0 in some ball B~�0
(~e0). Then it follows as above, that

for some ~h the function w0 is positive and harmonic in ]� 2~y0; 0[�]~h;1[, and that 0 = 0

in this rectangle. Therefore 0 = 0 in

]� 2~y0; 2[�] maxfh; ~hg;1[ ;

so that w0 has to be harmonic in this region. But then (3.6) contradicts the strong maxi-

mum principle. In the second case @z0 = 0 in

]�1; 2[�]h;1[ ;

so that again w0 is harmonic in this region, again a contradiction. This completes the proof

of Proposition 3.5. ut
As a consequence we have

3.6 Theorem.

w(x) = o(jxj) as x! 0;(i)

lim
y#0

u(y)

y
= +1 or �1 ;(ii)

lim
y#0

u(�y)
y

= +1 or �1 ;

where at least one limit is �1.
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Note that

lim
y#0

u(y)

y
= �1 ; lim

y#0
u(�y)
y

= �1

refers to the cusp case, and

lim
y#0

u(y)

y
= �1 ; lim

y#0
u(�y)
y

= +1

refers to the vertical case with w = 0 on the left of the origin (see Figure 2 from [4]).

Proof of the theorem. The �rst assertion is equivalent to Propositions 3.3 and 3.5. To prove

the second part, we �rst suppose that

(3:7) s := lim sup
y&0

u(y)

y
> �1 :

Let (yk)k with yk & 0 be a corresponding sequence, choose any s0 < s, and let v be the

linear solution in the Comparison Lemma 2.1 with slope s0 and x̂ = 0. We consider the

rectangle

Rk :=]0; yk[�]� L; u(yk)[

where the height �L corresponds to the bottom of the translated domain V . By the choice

of s0 and property (i) we have that w � v on @Rk for k large enough. The Comparison

Lemma then gives

w = 0 ;  = 1 in Sk := f(y; z); 0 < y < yk and z < ys0g ;
and thus

u(y)

y
� s0 for small 0 < y < yk.

Letting s0 ! s, we therefore obtain from (3.7) that

s = lim inf
y&0

u(y)

y
:

Next assume that

(3:8) s <1
This means that for given " > 0 there exists � > 0 such that

(s� ")y < u(y) < (s+ ")y for 0 < y < �

and consequently

�w = 0

 = 0

9=
; in f(y; z) : z > (s+ ")y ; 0 < y < �g

and
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w = 0

 = 1

9=
; in f(y; z) : z < (s� ")y ; 0 < y < �g.

Then the same holds for the scaled functions

wk(x) :=
1

rk
w(rkx) and k(x) := (rkx)

but now with �k =
�
rk

instead of �. We obtain for all su�ciently large k the situation from

Figure 7. Then we apply Proposition 2.6 and obtain that
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Fig. 7. Situation after scaling for all (wk; k).

sup
R

jwkj � c > 0 for all k su�ciently large.

However this contradicts the o-property of w and rules out the possibility (3.8). The

remaining case is

lim sup
y&0

u(y)

y
= �1 :

Similar results can be obtained for the left side. Finally, assume that both limits are +1:

i.e.

lim
y#0

u(y)

y
= +1 = lim

y#0
u(�y)
y

:

Set yk =
1
k
and

uk := minfu(yk); u(�yk)g :
and consider the rectangle
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Rk :=]� yk; yk[�]� L; uk[

with L > 0. Since jwj � "kuk on the top of Rk by Theorem 3.6(i) with "k ! 0 as k !1,

we can apply the Comparison Lemma with s0 = 0 and obtain that

w = 0 ;  = 1 in f(y; z) : jyj < yk and z < uk � "ukg.

This means that k = 1 for large k in a full neighborhood of the origin, contradicting the

fact that this is a free boundary point. This completes the proof of the theorem. ut

4. Topological properties

In this section we study the properties of local anf global connected components of fw 6= 0g.
Let x0 = (y0; z0) 2 V nW with

(4:1) w(x0) = 0 and z0 � u(y0) :

Then x0 lies on the boundary of fw 6= 0g. The following statements will be relative to an

open set U � V nW with x0 2 U . Consider an open set D with

D � U \ fw 6= 0g ; w = 0 on U \ @D ;(4:2)

x0 2 @D :(4:3)

Then the following holds.

4.1 Proposition. Let D satisfy (4.2) and (4.3). Then the number of sets G satisfying

G is a connected component of D,(4:4)

x0 2 @G(4:5)

is positive and �nite. Moreover, for each G satisfying (4.4) the closure G contains points

of fw 6= 0g \ @U .

Proof. The last statement follows, since otherwise w = 0 on @G. Since w is harmonic in G,

it would follow that w = 0 in G.

The assertion follows easily if z0 > u(y0) in (4.1). For, in a neighbourhood of x0

w(x) = Re h(x)

with a nontrivial holomorphic function h satisfying h(x0) = 0. In other words,

h(x) = a(x� x0)
m(1 + ~h(x))

with a 2 C n f0g, m � 1, and a holomorphic function ~h satisfying ~h(x0) = 0. Therefore

h(�(x)) = a(x� x0)
m for a unique local conformal transformation � given by

�(x) = x0 + (x� x0)(1 + ~h(�(x)))�
1
m :
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Then near x0 the set fw � � = 0g consists of 2m ray, therefore there are at most 2m

domains G.

Now let x0 be on the free boundary. For convenience, let x0 = 0. For "; � > 0 small

enough consider the rectangle

R :=]� �; �[�]� "; "[ ;

similarly, R0 with �0 = �
2
and "0 = "

2
. Since u is continuous we can choose � so that

(4:6) R \ graph(u) �
n
jzj < "

4

o
:

Let G be any set satisfying (4.4) and

(4:7) G \R0 6= ; :

Since G touches @U there exists a curve  : [0; 1] ! G with (0) 2 @R0 and (1) 2 @R.

Assume there are in�nite many domains Gi, i 2 IN, with corresponding curves i. We

claim that

(4:8) sup
t
dist(i(t); graph(u))! 0 as i!1.

If not, there are points �i = i(ti) converging, for a subsequence i!1, to a point � 2 R

above graph(u). Since �i belong to di�erent components Gi we must have w(�) = 0. But

then it follows as in the �rst part of the proof, that only �nitely many domains Gi can

enter a small neighbourhood of �. This proves (4.8).

Then it follows from (4.6) that i([0; 1]) � fjzj < "
2
g for large i. Therefore i(1) 2 @R

has horizontal coordinate +� or��. For de�niteness consider the �rst case and the rectangle

R00 :=]�0; �[�]� "; "[ :

Since i and i+1 belong to di�erent connected components of D, there must be, at

least for a subsequence i ! 1, curves. �i between i and i+1 going through R00 from
left to right and having the property of Proposition 2.7. Consequently there are points

xi 2 R00 between �i and graph(u) with jw(xi)j � c > 0, where c is independent of i. But

(4.8) together with the continuity of w gives w(xi)! 0 as i!1. This proves that there

are only �nitely many domains Gi, i = 1; : : : ; n, satisfying (4.4) and (4.7). Since

n[
i=1

(Gi \ R0) = D \ R0

it follows from (4.3) that some Gi0 has to satisfy (4.5). ut

4.2 Proposition. If D satis�es (4.2) and (4.3) then there exists a continuous curve in D

with x0 as continuous limit.
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Fig. 8. The curves i.

Proof. Choose a sequence of balls Uk := Brk(x0), k � 1, r1 su�ciently small, and rk & 0

as k !1. De�ne D0 := D. Using Proposition 4.1 choose inductively Dk, k � 1, so that

(4:9) Dk is a connected component of Dk�1 \ Uk

with x0 2 @Dk. Since Dk touches @Uk there are points xk 2 Dk \ @Uk+1. Fix such a

sequence (xk)k�1. By construction xk+1 2 Dk+1 � Dk. Therefore there are curves

 :
h 1

k + 1
;
1

k

i
! Dk � Uk with 

� 1

k + 1

�
= xk+1 ; 

� 1
k

�
= xk :

Then (t)! x0 as t! 0. ut
As a consequence we obtain that locally the number phases is well de�ned.

4.3 Proposition. Let x0 as in (4.1) and U0 := Br0(x0) � V nW . Moreover let U be an

open set with x0 2 U � U0. Then the following holds:

(i) There exists an m � 1 so that there are exactly m connected components Gi, i =

1; : : : ;m, of fw 6= 0g \ U with x0 2 @Gi.

(ii) The number m in (i) is independent of U .

(iii) There exists an r1 > 0 with

Br1(x0) �
m[
i=1

Gi :

Proof. The �rst assertion is Proposition 4.1 for D = fw 6= 0g \ U . To prove (iii) consider

the open set
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Fig. 9. The domains Dk.

D := U n
m[
i=1

Gi ;

which satis�es (4.2). If D would satisfy (4.3) then by Proposition 4.1 there is a connected

component G of D with x0 2 @G. This contradicts the de�nition of m. Therefore x0 =2 D,

i.e., Br1(x0) \D = ; for some r1 > 0.

To prove (ii) let x0 2 ~U � U and denote by ~m the corresponding number from (i). By

Proposition 4.2 there are curves i :]0; 1]! Gi with i(0) = 0.

Choose ti > 0 so that i(t) 2 ~U for 0 � t � ti and denote by ~Gi the connected

component of fw 6= 0g \ ~U containing i(ti). Then x0 2 @ ~Gi and ~m � m is proved. Now

assume that ~m > m. Then there are connected components ~G1, ~G2 of fw 6= 0g \ ~U with

x0 2 @ ~Gi belonging to the same Gi0 . Using Proposition 4.2 there are curves i connecting

x0 within ~Gi to some point ~xi 2 ~Gi, and ~x1 and ~x2 are connected within Gi0 by a curve

0. Denote by K the compact set enclosed by 0, 1, 2. By the maximum principle (note

that U0 is a ball not touching W ) w has the same sign in K as in Gi0 . But then 0 can be

contracted within fw 6= 0g to a curve inside ~U , so that ~G1 and ~G2 are connected. ut
We now give some consequenses of the above considerations.

4.4 Corollary. Let m and Gi as in 4.3 (i). Then wi := �
Gi

w belong to H1;2(U0) and

w =

mX
i=1

wi in Br1(x0).

Therefore m coincides with the number of phases in De�nition 2.3.
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4.5 Remark. The number of (global) connected components of fw 6= 0g is �nite.

Proof. Since �w = 0 above the free boundary and away from the wells we �nd, by the

maximum principle, that each such component either contains a well, or as part of its

boundary a segment faig�]u0; H] where w > 0, or touches the top of V . But there w can

have only �nitely many sign changes for, the free boundary stays away from the top hence

there w is real analytic. ut

4.6 Proposition. Let D � V be a connected component of fw < 0g. Then D can contain

at most one free boundary point.

Proof. Suppose x0; x1 2 @D\V are two district free boundary points. By Proposition 4.2,

there exists a Jordan arc � � D connecting x0 and x1, see Figure 10 (left).

Fig. 10. Consequence of two free boundary points in @D.

Applying the maximum principle gives w < 0 in the domain bounded by � and the free

boundary between x0 and x1, see Figure 10 (right). Then for a ball B as indicated in

the �gure, we have w < 0 above the free boundary and w = 0 below it. This contradicts

�w � 0 in B. ut

4.7 Theorem. The number of cusps is less or equal the number of wells.

Proof. Each cusp belongs to the closure of fw < 0g. By Proposition 4.1 the cusp is in

the closure of a connected component D of fw < 0g. But D has to contain a well, since

otherwise w is harmonic in D with w = 0 on @D outside the top on V and @w
@�

= 1 on the

top of V . The maximum principle then gives w � 0 in D, a contradiction. The assertion

then follows using Proposition 4.6. ut

4.8 Proposition. (i) Near a cusp the free boundary is smooth and w > 0 in an upper

neighbourhood.
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(ii) At a cusp the number m in 4.3 satis�es m � 3.

Proof. By Theorem 4.7 and the de�nition of a cusp we know that w > 0 in an upper

neighborhood of the free boundary near a cusp, except at the cusp. Then (i) follows af-

ter applying the regularity theory for the dam problem in suitably chosen left and right

neighborhoods of the cusps, and (ii) follows since the cusp lies in the closure of fw < 0g
as in the proof of the previous theorem. ut
Next we consider some local properties of w at a cusp, which again, for convenience, has

been translated to the origin O. We �rst make an assumption about the decay of the free

boundary near the cusp. Suppose

(A) : There exist constants C;� > 0 such that for small jyj
jyj � Cju(y)j1+� :

This assumption implies

4.9 Lemma. Let (A) be satis�ed. Then in a neighborhood of O there exists a conformal

transformation � satisfying

(i) �(0) = 0,

(ii) � and ��1 are continuous up to the boundary,

(iii) on every cone C above the free boundary with vertex at O

1

jxj j�(x)� xj+ jr(�(x)� x)j ! 0 for x 2 C, jxj ! 0

Proof. The proof of this technical lemma is given in Appendix B.
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As a consequence we have the following. The function w � ��1 is harmonic and non-

trivial in the transformed (shaded) regions and vanishes along the boundary. This means

that for

(4:10) k = 1 in the cusp case, k = 2 in the vertical case,

there is a real number a 6= 0 and some integer m � 1 with

(4:11) w � ��1(�) = Re(�ia~�m(1 + ~h(~�))) with ~� = ik(�i�)k=2 :
Here ~h is a holomorhic function satisfying Im~h(~�) = 0 if Im ~� = 0. Since m is the number

of components of fw � ��1 6= 0g near O, it has to coincide with the number m in 4.3. It

follows from 4.4 and 4.8 that

m is odd and m � 3.

The properties of � imply that the m phases are separated by smooth curves which have

a tangent at O. For instance, if m = 3 the two possibilities are sketched in Figure 11.

Fig. 11. Distribution of phases with m = 3.

Further we obtain for any phase ~w of w the non-degeneracy result: there exist a constant

c > 0 such that for small r > 0

(4:12)

Z
BrnBr=2

jr ~wj2 � crkm :
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5. Blow up.

In this section we investigate the H�older exponent of the free boundary at a cusp, which

again is situated at the origin O. As in De�nition 2.3 (see also 4.4) we decompose w

according to

w =

mX
i=1

wi in Br0 � V nW (r0 small),

where m denotes the number of phases at O. For each phase wi we de�ne a corresponding

exponent �i :]0; r0]! IR by

�Z
�
Br

jrwij2
�1=2

= r�i(r) for 0 < r � r0.

Using Proposition 2.5 and the sublinear decay of w at O, see Theorem 3.6 (i), we see that

for each phase r�i(r) ! 0 along any sequence r & 0. Hence all �i(r) > 0 for 0 < r � r0
with r0 su�ciently small.

5.1 Remark. Let us phrase the Monotonicity Formula 2.8 into terms of �i(r). It follows

from Theorem 3.6 (ii) (for the vertical case) that for 0 < r1 < r0 we can choose "(r1) with

"(r1)& 0 as r1 & 0 such that (2.4) is satis�ed for 0 < r < r1 with �(r) = 0 and

(5:1) � = �(r1) =

�
1 for k = 1,

2� "(r1) for k = 2.

Here k is de�ned as in (4.10). Then (2.5) becomes

mY
i=1

r�i(r) =

�
r�2m

mY
i=1

Z
Br

jrwij2
�1=2

=

�
r�m

2�2m'(r)
�1=2

� C rm
�m�2

2

for 0 < r < r1 with C =
p
'(r1). Hence

(5:2)
1

m

mX
i=1

�i(r) � �m� 2

2
� 1

m

logC

log(1=r)
for 0 < r < r1.

Later we show that this estimate is sharp in the cusp case (i.e. k = 1 in (4.10)).

Next de�ne the smallest exponent

�(r) := min
i=1;:::;m

�i(r) for 0 < r � r0

and consider the blow-up, for x 2 B1 and 0 < � � r0,

w�(x) := w(�x)=�1+�(�) ; �(x) := (�x) :
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The pair (w�; �) satis�es

(5:3)

Z
B1

r� � (rw� + �

��(�)
ez) = 0 for all � 2 C10 (B1)

and

(5:4)
1

�

Z
B1

jrw�j2 = ��2�(�)
Z
�
B�

jrwj2 =
mX
i=1

�2(�i(�)��(�)) 2 [1;m]

This means that we have scaled so that w� in B1 carries the phase with the biggest Dirichlet

integral in B�. However other phases might become very small for w� if � is small. The

reason is that at this point we do not know that the phases, in other words the values �i,

are balanced towards each other. The �rst result relates the values �i(r) to Assumption

(A) in Section 4.

5.2 Proposition. There exists a constant C > 0 such that for points (y; z) 2 Br on the

free boundary of (w; ) we have

jzj � r

2
implies jyj � C r1+�(r) ;

for all r > 0 su�ciently small.

Proof. To prove this result we �rst scale and show that for points (~y; ~z) 2 B1 on the free

boundary, i.e. graph(ur), of (wr; r) we have

(5:5) j~zj � 1

2
implies j~yj � C r�(r) for all r > 0 small enough.

Let � 2 C10 (B1) be a �xed cut-o� function satisfying 0 � � � 1 and � = 1 on B7=8.

Substitution into (5.3) and using (5.4) yields

1

r�(r)

Z
B1

r@z� = �
Z
B1

r� � rwr � C

or
+1Z
�1

�(y; ur(y)) dy � C r�(r) for 0 < r < r0.

The integral in this inequality can be bounded from below by

L1(fy : jyj � 1
4
and jur(y)j � 3

4
g).

By Theorem 3.6 (ii), the free boundary u is vertical at O, from both sides. Hence for points

(~y; ~z) 2 B1 on the free boundary of wr we have that j~yj=j~zj is small, if r is small. Therefore,

for small r, if j~zj � 1
2
then j~yj � 1

4
.

For de�niteness let us consider 0 � ~y � 1
4
. If we now can show that
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jur(y)j �
3

4
for all 0 < y � ~y

then assertion (5.5) follows from the above inequalities and the proof of the proposition is

complete.

We distinguish two situations.

Fig. 12. Possible con�gurations near O

Case 1: ~z < 0 (see Figure 12 (left)). Then

~y � "rj~zj with "r ! 0 as r ! 0,

ur(y) � 0 for 0 � y � ~y and small r,

both as a consequence of Theorem 3.6 (ii). Applying the Comparison Lemma 2.1 with

s0 = 0 to the scaled equation gives

ur(y) � ~z � C~y for 0 � y � ~y

or

ur(y) � ~z(1 + C"r) � �3

4
for r small enough.
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Case 2: ~z > 0 (see Figure 12 (right)). Then

~y � "r

2
with "r ! 0 as r ! 0,

ur(y) � 0 for 0 � y � ~y and small r.

Now we argue as follows. Let z1 := 3
4
> ~z and assume that for some y1 2]0; ~y[ we have

ur(y1) � z1 (in Figure 12 (right) we have chosen ur(y1) = z1). Further, let

y2 := supfy > ~y : ur(y) < z1g :
If y is as in this de�nition then (ry; rz1) lies above the free boundary of w with 0 < rz1 < r.

The vertical shape of the free boundary at O, see Theorem 3.6 (ii), then implies that y2
exists and

y2 � "rz1 with "r ! 0 as r ! 0.

We apply the Comparison Lemma 2.1 with s0 = 0 in the rectangle ]y1; y2[� ]�1; z1[ and

obtain that

ur(y) � z1 � C(y2 � y1) for y1 � y � y2.

In particular at y = ~y:
~z � z1 � Cy2 � z1(1� C"r)

for small r a contradiction to ~z � 1
2
. ut

If � would stay strictly positive as r ! 0, then by Proposition 5.2 we could apply the

conformal transformation of Lemma 4.6 which would tell us that in a sense the phases of

w are balanced. If this is not the case then �(r) ! 0 for a subsequence r ! 0. We then

still have the possibility to study the blow-up limit of wr. For the usual linear blow-up

sequence the blow-up limit is globally de�ned since w is Lipschitz continuous. Here the

values of w are stretched more in order to obtain wr with a Dirichlet integral satisfying

(5.4). The purpose of this stretching is to have the chance to pick up a non-trivial blow-up

limit. By (5.4) the blow-up limit will exist in B1, but it needs not to exist outside B1.

Moreover, the problem which could arise is that the blow-up limit might vanish in any ball

B� with � < 1, having a gradient concentrated near @B1, despite of property (5.4). On

the other hand, such a degeneracy of wr is in favour of high values of �(�r). The following

proposition takes care of this situation in a precise way.

5.3 Proposition. Let rk := 2�kr0. Assume that there exist constants �;  > 0 so that for

r = rk

(5:6)

� Z
�

Br=2

jrwj2
�1=2

� 2�
�Z
�
Br

jrwj2
�1=2

or that �(r) � �.

Then

lim inf
s&0

�(s) � minf�; g :

Proof. De�ne for given M > 0 the function
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	(r) := max

��Z
�
Br

jrwj2
� 1

2

; Mr�
�
; 0 < r < r0 :

Let k 2 IN. If the �rst inequality in (5.6) is satis�ed then it follows from r
�
k+1 = 2��r�k

that

	(rk+1) � 2��0	(rk) with �0 := minf�; g :
If the second inequality in (5.6) holds, thenZ

�
Brk

jrwj2 =
mX
i=1

r
2�i(rk)
k � mr

2�(rk)
k � mr

2�
k ;

implying Z
�

Br
k
+1

jrwj2 � 4

Z
�
Bkk

jrwj2 � 4mr
2�
k � �2�M r

�
k

�2

if M was chosen such that M � 2+1
p
m. Hence

	(rk+1) � max
�
2�M r

�
k ; M r

�
k+1

	 � 2��0	(rk) :

Thus in either case we have the iterative estimate

	(rk+1) � �	(rk) with � = 2��0 < 1,

resulting in

	(rk) � �k	(r0) for k 2 IN.

Now let 0 < r � r0 and choose k 2 IN such that rk+1 < r � rk. Then�Z
�
Br

jrwj2
� 1

2

� 2

�Z
�Brk jrwj2

� 1
2

� 2�k	(r0) :

Using that

r > rk+1 = 2�k�1r0 ) k > �
log 2r

r0

log 2
) �k �

�2r
r0

��0
;

we conclude that �Z
�
Br

jrwj2
� 1

2

� C r�0

for some C > 0. On the other hand�Z
�
Br

jrwj2
� 1

2

=

� mX
i=1

r2�i(r)
� 1

2

� r�(r) ;

implying the assertion of the proposition. ut
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If (5.6) holds along the sequence (rk)k, then according to Proposition 5.2 the free bound-

ary is H�older continuous at the cusp. This implies Assumption (A) in Section 7 and its

consequences. Therefore we consider an arbitrary sequence � & 0 along which (5.6) does

not hold: i.e. for which there exist constants �0; �0 > 0 such that

(5:7)

Z
B�=2

jrwj2 � �0

Z
B�

jrwj2 and �(�) � �0

as � & 0. Then for the blow up sequence (w�; �), satisfying (5.3), we obtain using (5.4)

the nondegeneracy

(5:8)

Z
B1=2

jrw�j2 � �0

Z
B1

jrw�j2 � ��0 ;

i.e. w� will have a nontrivial blow-up limit. To this end we �rst transform the functions �
into, see also Figure 13,

(5:9) ~�(y; z) :=

8>>><
>>>:

�(y; z) in cusp case,

�(y; z) in fy > 0g )
in vertical case,

1� �(y; z)� 1 in fy < 0g
where in the vertical case we assume for de�niteness the ow domain to be on the right-

hand side.

Fig. 13. De�nition of ~�.
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Clearly Z
B1

r� �
�
rw� + ~�

��(�)
ez

�
= 0 for all � 2 C10 (B1).

Moreover, it follows from Proposition 5.2 (see (5.5)) that for jzj � 1
2
and � su�ciently

small

(5:10) ~�(x; z) = 0 for jyj > C � ��(�),
and thus

+ 1
2Z

� 1
2

j~�(y; z)j
��(�)

dy � C :

Further de�ne functions l�� : [�1
2
;+1

2
]! IR by

l�� (z) :=
Z

f0��y� 1
2
g

~�(y; z)

��(�)
dy for jzj � 1

2
.

They satisfy 0 � z l�� (z) � Cjzj and they are monotone non-increasing (since @z � 0).

It is now possible to choose a subsequence �& 0 along which

w� ! w� weakly in H1;2(B1) (see (5.2)) and a.e. in B1,

l�� ! l�� weakly star in L1(]� 1
2
;+1

2
[),

�(�)! �� 2 [0; �0] :

Replacing the test functions in the weak equation for (w�; ~�) as was done in the Separation

Lemma (thus with ��(z) := �(0�; z) having di�erent values on � 1
2
< z < 0, but the same

values for z > 0) we obtain

0 =

Z
B1

rw� � r� +
Z

B1\fy>0g

~�

��(�)
@z� +

Z
B1\fy<0g

~�

��(�)
@z� :

Then � ! 0 gives

(5:11) 0 =

Z
B1

r� � rw� +
Z

fy=0g

l+� @z�
+ +

Z
fy=0g

l�� @z�
�

for all such test functions �. From this limit equation and the convergence properties of

w� and the free boundaries we conclude that w� satis�es the properties from Figure 14.

To exclude the possibility of a vanishing blow up limit w� observe that Proposition 2.5

and inequality (5.8) imply the existence of a positive constant c such thatZ
B1nB1=2

jw�j2 � c

Z
B1=2

jrw�j2 � c�0 :
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Fig. 14. Properties of blow up limit w�

Since w� ! w� strongly in L2(B1) we have indeed

w� 6� 0 in the shaded regions from Figure 14.

As an immediate consequence we have

5.4 Lemma. There exist m� � 1 odd and c� > 0 such that the following expansion holds:

w�(x) = c� Re(�i~xm�(1 + ~h(~x)))

for small jxj with Im ~x > 0, where ~x = ik(�ix)k=2 and ~h is a holomorphic function with

Im ~h(~x) = 0 for Im ~x = 0.

Proof. The asymptotic behaviour of the blow up limit at the orgin, with m� 2 IN and

c� 2 IR n f0g, follows from the properties shown in Figure 14. Moreover, it follows from

(5.11) that in the cusp case (k = 1)

�@yw�(0�; z) = �@zl�� (z) � 0 for �1 < z < 0,

where the monotonicity of l�� is a consequence of the approximation process. In the vertical

case (k = 2)

@yw�(0+; z) = �@zl�� (z) � 0 �1 < �z < 0.

Checking the sign of w� from the above expansion with these inequalities it follows that

c� > 0 and that m� is odd. ut
We emphasize once again that the limit function w� results here from a particular blow

up, i.e., for a particular subsequence � & 0 along which the blow up is non-degenerate.

Next we show that the number of phases is conserved in this blow up process. We do this

in two steps and show �rst

5.5 Lemma. m� � m.
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Proof. Let � > 0 be �xed and su�ciently small so that in the ball B� the distribution

of the m� phases of w� at 0 over the domains D1; : : : ; Dm�
is as in Figure 15 (a). In the

�gures we show only the cusp case with m� = 3. We select points xi 2 Di such that

jw�(xi)j � c ; for some c > 0.

Fig. 15. (a) Distribution of m� phases of w� in B�; (b) Construction of the subsets D"
i

In the arguments below we need that w� becomes uniformly small on circles close to the

origin. Using the uniform boundedness of the Dirichlet's integral for w�, we can use Courant

[6, Lemma 3.1] to obtain that for any pair 0 < r1 < r2 < 1, there exists r� 2 [r1; r2] such

that

!2(r�) � 2�m

log r2=r1
;

where !(r�) denotes the oscillation of w� on @Br� . Since w� vanishes below O, this implies

(5:12) sup
@Br�

jw�j �
s

2�m

log r2=r1
for all � > 0.

We use this result as follows. Consider a ball B", with " (
p
" << �) chosen such that

Bp"\fxig = ; for all i = 1; : : : ;m�. Further we select subsets D"
i , satisfying xi 2 D"

i � Di,

which touch the circle @B", see Figure 15 (b). By the convergence of w� we have for �

su�ciently small,

(5:13) w�(x) 6= 0 for x 2 D"
i and jw�(xi)j > c=2.

Choose � such that (5.13) holds. Then by (5.12) and the choice of ", there exists � := r� 2
[";
p
"] such that

37



sup
@B�

jw�j �
s

4�m

log 1
"

< c=4 ;

provided " is chosen small enough. Finally choose points ai 2 @B� \D"
i for i = 1; : : : ;m�.

Now suppose m� > m. Then at least two domains D"
i1
and D"

i2
must belong to the same

component of fw� 6= 0g and within this component the sets D"
i1
and D"

i2
can be connected

by a curve �� on which w� has a �xed sign (for de�niteness, say positive). The sets D"
i1

and D"
i2
are separated by a third set, say D"

i0
, on which w� < 0. We can choose �� so that

it starts at ai1 and stops at ai2 . Now there are two possibilities.

Fig. 16. (a) The curve �� encloses region where w� has opposite sign; (b) The curve �� passes
throug the small ball B"

The curve �� encloses the set D
"
i0
where w� has opposite sign, see Figure 16 (a). Since

w� > �c=4 on @B� and w� > 0 on ��, the maximum principle gives that w� > �c=4 in

D"
i0
and in particular w�(xi0) > �c=4, a contraction.

The other possibility is that �� passes through the small ball B" when connecting ai1 and

ai2 , see Figure 20 b. Then we argue as follows. Choose 0 < "� < " such that B"� \ �� = ;.
In the ball B"� we select a point b, with w�(b) < 0, which belongs to the same component

of fw� < 0g as the set D"
i0
. Then the only possible connection between ai0 and b in that
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component, is by a curve �� which encloses either Di1 or Di2 . As before we apply the

maximum principle to reach a contradiction. ut
Next we show

5.6 Lemma. m� � m.

Proof. If m > m�, then between two adjacent domains D"
i and D"

i+1, or between the free

boundary and, say, D"
1 there must be remaining components of fw� 6= 0g.

Fig. 17. Additional phases of w� between D"
i and D"

i+1

The �rst possibility leads to the situation depicted in Figure 17. which holds for all � su�-

ciently small (at least those �& 0, along which the sequence w� converges). Consequently,

in each transversal cross-section along the strip between D"
i and D

"
i+1 (we selected " small),

there are points at which w� has a zero di�erence-quotient. By the C1-convergence of w�
we now conclude that rw� = 0 along the curve separating Di and Di+1, see the picture

on the right in Figure 17. This clearly contradicts the behaviour of w� in Lemma 5.4.

Next we consider the second possibility. Then the additional phases of w� enter along

the free boundary. The argument used above does not apply here because of the missing

C1-convergence. We therefore proceed as follows.

Near the free boundary the distribution of components of fw� 6= 0g must be similar to the

situation shown in Figure 18 (a).

Then for � su�ciently small we can choose a domain D � B1 and a function ~w� : D ! IR,

having properties as described in Figure 18 (b). Clearly ~w� is superharmonic in D. Because

it vanishes near fy = 0g we have
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Fig. 18. (a) Sign-changes of w� near free boundary; (b) De�nition of the function ~w� on D � B1

Z
D

r� � r ~w� � 0

for all � 2 C10 (D [ fy = 0g), � � 0. Since w� is bounded in H1;2(B1), see (5.4), we also

have ~w� bounded in H1;2(D). Hence along an appropriate subsequence � & 0, ~w� ! ~w�
as well as w� ! w� weakly in H1;2(D). Since the domain where ~w� 6= w� collapses to the

vertical line fy = 0g as �& 0 we have ~w� = w� in D. Hence for test functions � as above

0 �
Z
D

r� � rw� =
Z

@D\fy=0g

�@�w� ;

a contraction to Lemma 5.4. ut

5.7 Corollary. m� � 3.

Proof. By Lemma 5.6 and Proposition 4.8 we have m� � m � 3. ut
Having established that w� has the same number of phases as w, we prove next that

�� � km�2
2

, independent of the choice of the sequence �& 0 satisfying (5.7).

5.8 Lemma. �� � km�2
2

.

Proof. We decompose w� and w� into their phases at 0:

w� =

mX
i=1

w�i and w� =
mX
i=1

w�i in B� (� small).
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Here we used that m� = m by 5.5 and 5.6, and the numbering is so that w�i ! w�i weakly
in H1;2(B1). Therefore

lim inf
�&0

Z
B1

jrw�ij2 �
Z
B1

jrw�ij2 � c > 0 :

Since, see (5.4),
1

�

Z
B1

jrw�ij2 = �2(�i(�)��(�)) ;

we �nd that

lim inf
�&0

�2(�i(�)��(�)) � c

�
:

Thus for small �

�i(�)� �(�) � C

log 1
�

:

Summing over i and using (5.2) we get

�(�) � �m� 2

2
� C

log 1
�

with � as in (5.1). Letting �rst �& 0 and then r1 & 0 we obtain the desired inequality. ut
So far we have controlled �(r) from below only for certain subsequences for which (5.7)

holds. Using Proposition 5.3 we now show that �(r) remains positive for all small r.

5.9 Lemma. lim infr!0 �(r) � km�2
2

.

Proof. Take any 0 < �0 <
km�2

2
and  = �0. Let us assume that (5.6) does not hold for

some small r0. Then there exists a sequence �& 0 for which (5.7) holds with

�0 = 2�2�2 and �0 = �0 :

Following the above blow up argument, Lemma 5.8 implies that

�0 � lim inf
�&0

�(�) = �� � km� 2

2
;

a contradicition. Hence (5.6) holds for some small r0. Consequently, by Proposition 5.3,

lim inf
r&0

�(r) � �0 :

Since �0 <
km�2

2
was chosen arbitrarily the proof is complete. ut

Using this result we are able to prove that on small balls Br the phases wi are balanced

towards each other.

5.10 Lemma. There exist constants c > 0, C > 0 such that for small r and i = 1; : : : ;m
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(5:14) c rkm �
Z
Br

jrwij2 � C rkm :

Proof. By Lemma 5.9 we have �(r) � �0 > 0 for small r (�0 as in the proof of 5.9.). Then

Proposition 5.2 implies that the free boundary becomes vertical at 0 in a H�older sense,

that is, Assumption (A) in Section 4 (with � = �0) is satis�ed. Thus Lemma 4.9 can be

applied and therefore (4.12) holds, i.e.

(5:15)

Z
Br

jrwij2 � c rkm :

Now let us look at the Monotonicity Formula 2.8. It follows from Assumption (A) (in the

vertical case) that (2.3) is satis�ed with � = k and

�(r) =
n
0 cusp case,

C r�0 vertical case.

Thus ' is bounded and in Remark 5.1 we obtain instead of (5.2)

1

m

mX
i=1

�i(r) � km� 2

2
� C

log 1
r

:

Using (5.15) we �nd

�i(r) �
km� 2

2
+

C

log 1
r

for i = 1; : : : ;m.

Consequently

(5:16)

�����i(r)� km� 2

2

���� � C

log 1
r

;

which is equivalent to the assertion. ut
Now we are able to consider the blow-up with respect to the exponent km

2
� 2 instead

of �(r):

(5:16) wr(x) := w(rx)=r� ; r(x) = (rx) ;

where

(5:17) � :=
km

2
:

Moreover with ~r as in (5.9) we de�ne now

(5:18) l�r (z) := r1��
Z

f0��y� 1
2
g

~r(y; z) dy :

We now show

42



5.11 Theorem. Let wr and l
�
r be as in (5.16), (5.18). Then wr ! w� weakly in H

1;2
loc (IR

n)

and l�r ! l�� uniformly in C0
loc(IR) as r! 0. The limits w�, l�� satisfy (5.11) and for some

c� > 0 they are given by

(5:19) w�(x) = c� Re(�i~xm) with ~x = ik(�ix)k=2 ;

and for z � 0

(5:20)
l�� (�z) = c�z� and l�� (z) = 0 in cusp case,

l�� (�z) = �c�z� and l�� (�z) = 0 in vertical case.

Proof. Let R > 0. It follows from (5.14) that the phases wri of wr are bounded in H1;2(BR)

for small r. Moreover, by (5.10) and (5.16), the functions l�r are bounded in C0([�R;R])
for small r. Thus there exist w�, l�� such that for certain subsequences wr ! w� weakly in

H1;2(BR) and l�r ! l�� weakly star in L1(]�R;R[).

Since Assumption (A) in Section 4 is satis�ed we can apply Lemma 4.9. It follows from

(4.11) that

wr(x)! aRe(�i~xm)
uniformly in x, locally in every cone as in 4.9 (iii), which gives (5.19) with c� := a. The

identity (5.11) follows as before and repeating the proof of Lemma 5.4 gives c� > 0.

Moreover, it follows from (5.19) that with ~x = ~y + i~z

@yw�j~z=0 = c��~ym�
2
k :

Thus the identities in the proof of Lemma 5.4 give

(5:21) �@zl�� (z) = c��jzj��1

for �1 < z < 0 in the cusp case and �1 < �z < 0 in the vertical case. Now, by (5.16), we

have in Proposition 5.2

jzj � r

2
implies jyj � C r�

for free boundary points (y; z) 2 Br, or

(5:22) jyj � C jzj� :

Then ~r(y; z) = 0 for jyj � C r��1jzj� and we infer that

jl�r (z)j � C jzj� :

This also holds for l�� so that (5.20) follows from (5.21). The uniform convergence of l�r
follows from the monotonicity of these functions and the continuity of the limit l�� .

Finally, since c� = a is independent of the chosen subsequence it follows that the whole

sequence converges. ut

5.12 Remark. The free boundary becomes vertical at 0 in the H�older sense (5.22), where

the exponent � � 3
2
is given by (5.17). For the standard cusp case (k = 1, m = 3) we have
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� = 3
2
. The result (5.22) does not imply that the free boundary is a C1 curve from the left

or right at the cusp. This will be proved in Section 6.

6. Regularity of free boundary at cusp

In a number of steps we show here that at the cusp the free boundary becomes vertical in

a C1-manner. We are able to prove this for the cusp case and partially for the vertical case

(that is, for the part of the free boundary which lies below the critical point). For the proof

we need to estimate the gradient of a harmonic function, de�ned in an open, bounded and

connected domain, in terms of its value at the boundary. The following proposition gives

the precise statement. It is a generalization of a result of Alt & Gilardi [5, Lemma 7.5].

6.1 Proposition. Let D � IR2 be open, bounded and connected, and let h : D ! IR be

harmonic. Further let K � IR2 be compact such that IR2 nK is connected. Then

jrhj � C ; for some C > 0.(6:1)

dist(rh(x); K)! 0 as dist(x; @D)! 0 :(6:2)

implies
rh(x) 2 K for all x 2 D.

Proof. If rh = constant in D then rh 2 K by (6.2). If rh 6= constant in D it follows

that rh is an open mapping (since D is connected and h : D ! C holomorphic). We

argue by contraction. Thus suppose rh(x0) =2 K for some x0 2 D. Then consider a curve

� : [0;1[! IR2 nK with �(0) = rh(x0) satisfying
j�(s)j ! 1 as s!1,(6:3)

dist(�([0;1[); K)� d > 0 :(6:4)

Related to �, consider the interval

I = ft � 0 : �(s) 2 frh(x) : x 2 Dg for 0 � s � tg :
I is non empty since 0 2 I. Because rh is an open mapping I is open, and by (6.1), (6.3) it

is bounded. Therefore t0 := sup I <1 does not belong to I. Choose tm % t0 and xm 2 D

with �(tm) = rh(xm). Since t0 =2 I the sequence (xm)m has no accumulation point in D,

therefore dist(xm; @D)! 0 as m!1. Then dist(�(tm); K)! 0 by (6.2), a contradiction

to (6.4). ut
We consider the free boundary near the origin 0 where the singularity is situated. It

su�cies to consider a right neighbourhood. We want to show that u is monotone there.

For this let
0 � ' <

�

2
and e = e(') := exp(�i')

and consider the ray

R :=

�
r exp

�
�i�

2
+ i�

�
: r > 0

�
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with 0 < � < �
2
(see Figure 19). By Theorem 5.11 we have for x 2 R

rw�(x) � e = c��jxj��1 cos((� � 1)� + ') > 0

provided

(6:5) (� � 1)� <
�

2
� ' :

Since the blow up sequence wr converges to w�, with smooth convergence in the set

where w� is harmonic, we also have for a �xed x0 2 R

rwr(x0) � e > 0 for all small r,

hence

(6:6) rw(x) � e > 0 for x 2 R, jxj small.

From now on we assume that (6.5) is satis�ed. Let us choose a ball B� around 0 so that

(6.6) holds for x 2 R\B� and so that in B� the free boundary to the right of the cusp lies

below R. We then denote by 
 the domain enclosed by R, @B�, and the free boundary

graph(u).

We show

6.2 Lemma. There exists a neighbourhood of O in 
 in which

rw � e � 0 :

Proof. Since the free boundary becomes vertical at O (Theorem 3.6 (ii)), there are points

xi 2 @
 on the free boundary with xi ! 0 as i ! 1 so that �(xi) � e > 0. Here � is the

normal towards the ow domain. On the free boundary we have

(rw � ez) � � = 0 and w = 0 ;

therefore

(6:7) rw = ez � �� :

This implies that

rw(xi) � e = ez � �(xi)�(xi) � e > 0 :

Let Di denote the connected component of 
 \ frw � e > 0g containing xi as boundary

point. Let us �rst make the following assumption:

(6:8)

There exists a subsequence, again denoted by (xi)i,

with the property that Di \R 6= ;.
We shall show that from this assumption the lemma follows. Note that if such a sequence

exists, then by (6.6) all the corresponding Di's coincide and contain part of the ray R up to

0. On R we select points ~xi with ~xi ! 0 as i!1, and we consider curves in the connected

component, connecting the points xi and ~xi and the points xj and ~xj for a suitable pair
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Fig. 19. Construction of the set D.

j > i, as in Figure 19. Let D be the region enclosed by the free boundary, R and these two

curves.

By construction,

rw(x) � e > 0 for all x 2 @D n graph(u).

On the free boundary we have by (6.7)

jrw � 1

2
ezj = 1

2
:

Moreover, since the free boundary does not become vertical on @D we have there � � ez �
c > 0, hence

rw � ez � c2 > 0 on @D \ graph(u).

Consequently rw has values on @D in the set K from Figure 20.

Then Proposition 6.1 implies

rw(D) � K :

Since rw is an open mapping, any neighborhood of a free boundary point is mapped into

a neighborhood of a point on the circle in Figure 20. Hence, the part of K outside the

halfspace fz 2 C ; z � e > 0g cannot be attained. Therefore

rw � e � 0 in D
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Fig. 20. rw(@D) � K.

from which the lemma follows after letting i; j ! 1. To complete the proof we have to

show that assumption (6.8) is the only possibility. We argue by contradicition. If (6.8) does

not hold then the following three cases need to be checked.

(i) Di does not touch R, the origin, and @B�.

The properties of Di imply that rw � e = 0 on @D n graph(u). Arguing as before with

D := Di we obtain rw � e = 0 on Di contradicting the de�nition of Di.

(ii) In�nitely many Di's reach O.

This implies a situation as in Figure 21. Consider some frw �e < 0g component D enclosed

by two of the Di's and the free boundary. We want to apply the argument used in (i) to

the set D. This is straight forward if D does not extend to the origin. If, however, as in

Figure 22 the origin belongs to @D, we need to estimate rw(x) � e, x 2 D, as x! 0. Since

D is contained in the cone bounded by the vertical and R, and since rw � e is harmonic

and bounded in D and vanishes on @D n (graph(u) [ O), we conclude that

jrw(x) � ej ! 0 for x 2 D, x! 0.

This allows us to apply the argument from (i) to reach a contradiction.

(iii) In�nitely many sets Di touch @B�.

If two domains Di1 and Di2 enclose a set D as in (ii) we proceed as there. Otherwise this

leads to a situation as shown in Figure 22, where sign changes of rw � e accumulate in
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Fig. 21. Di's reaching 0.

the domain where rw � e is harmonic. This yields a contradiction as in the �rst part of

Proposition 4.1.

We are now in a position to prove

6.3 Theorem. The free boundary becomes vertical at O in a C1-manner.

Proof. Taking ' = 0 in Lemma 6.2 it follows that @yw � 0 in a neighborhood of O below

R. This implies that the free boundary to the right of the cusp is non-increasing in y, i.e.

near O it has the form

(6:9) f(y; z) : ��0 < z < 0 ; y > 0 ; y = f(z)g :
for some �0 > 0. Since u is analytic away from the cusp it follows that f is analytic and

f 0(z) < 0. Now choose any 0 � ' < �
2
in Lemma 6.2. This implies that � � e � 0 on the

free boundary in a neighborhood of O below R. Therefore there exists �' > 0 so that

(1;�f 0(z)) � e � 0

for ��' < z < 0, i.e. jf 0(z)j � cot'. ut
Beside this we can show

6.4 Theorem. The function f in (6.9) satis�es
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Fig. 22. Accumulation of sign changes of rw � e.

lim
z%0

f(z)

jzj� = c� :

Proof. Since the free boundary has a representation as in (6.9) it follows that in (5.18)

l+r (z) = r1��
f(rz)

r
:

Set z = 1 and use Theorem 5.11. ut

6.5 Note. Next we consider, in the vertical case, the part of the free boundary above O.

For de�niteness we again assume that the ow domain lies to the right. We now take

0 � ' <
�

2
; e = e(') = exp(i') ;

R :=

�
r exp

�
i
�

2
� i�

�
: r > 0

�

with 0 < � < �
2
. Then, with � as in (6.5), we �nd the same formula for rw� � e along R.

Proceeding as before, we obtain (for ' = 0) the existence of f (as in (6.9)) with

lim
z%0

f(z)

jzj� = �c� :
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However, for ' > 0 we do not get any additional information. Therefore with this method

Theorem 6.3 cannot be proven.

7. Concluding remarks.

In this paper we develop the local analysis concerning the behaviour of the reduced po-

tential and the interface near such singular points, provided they belong to the interior of

the ow domain and provided N = 2. That singular points are in the interior seems to be

clear by physical intuition. In fact, for our rectangular domain the interface is expected to

be below the position of the highest well, provided all wells withdraw uid. However we

were not able to prove this. The restriction to two space dimensions was imposed to apply

typical two dimensional free boundary methods.

As a result of the local analysis we obtain that at a singular free boundary point

the free boundary either forms a cusp or becomes vertical. Which of the two will arise is

determined by global arguments. For instance, we conjecture that a well con�guration as

in Figure 23, with one well pumping uid in and one well pumping uid out, may lead to

vertical interfaces.

Fig. 23. Well con�guration leading to vertical singularities.

With respect to the local behaviour, we observe that we have no regularity results for

the function f, see Section 6, related to the branch above the singularity (vertical case).
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Also an expansion for the derivative of f , i.e. f 0(z)=z��1 ! ��c� as z ! 0, is left as an

open problem.

Finally we mention that the proofs in this paper do not carry over to the three dimen-

sional case, in which a di�erent, not polynomial asymptotic expansion, is expected.

Appendix A: Monotonicity formula.

Consider a continous function w : Br0 ! IR, r0 > 0, which is harmonic outside its zero

set. Assume w has a decomposition

w =

mX
i=1

wi

where wi 2 H1;2(Br0)\C0(Br0) are the phases of w at the center O of Br0 (see De�nition

2.3). Then 'i de�ned as in (2.1) are absolutely continuous positive functions on ]0; r0[. We

want to show that

(A:1) (log')0(r) � ��m2 �(r)

r

where ' is de�ned as in (2.2) and the function � is chosen so that (2.3) holds.

We have for almost all 0 < r < r0

(A:2) (log')0(r) =
mX
i=1

'0i(r)
'i(r)

= ��m
2

r
+

mX
i=1

si(r)

r

with

si(r) :=

r
R
Sr

jrwij2R
Br

jrwij2
;

where Sr is the sphere @Br. The monotonicity and the harmonicity of w implies that for

� 2 C10 (Br0)

0 =

Z
Br0

r(�wi) � rwi =
Z
Br0

�jrwij2 +
Z
Br0

wir� � rwi :

Therefore for almost all r

(A:3)

Z
Br

jrwij2 =
Z
Sr

wi
@wi

@r
�
 Z
Sr

w2
i

!1=2 Z
Sr

�
@wi

@r

�2
!1=2

:

On the other hand
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Z
Sr

jrwij2 =
Z
Sr

��
@wi

@r

�2

+

�
1

r

@wi

@�

�2�
(A:4)

� 2

 Z
Sr

�
@wi

@r

�2
!1=2 Z

Sr

�
1

r

@wi

@�

�2
!1=2

De�ning vi(x) := wi(rx) for x 2 S1 it follows from (A.3) and (A.4) that

si(r) � 2

0
BB@
R
S1

�
@vi
@�

�2
R
S1

v2i

1
CCA

1=2

� 2
p
�i ;

if �i is the smallest eigenvalue of @2=@�2 with homogeneous Dirichlet data on S1\fvi 6= 0g.
Denoting by li the relative length of this set with respect to S1 we have �i � (2li)

�2 and
therefore

(A:5)

mX
i=1

si(r) �
mX
i=1

1

li
:

Moreover, by (2.3),
mX
i=1

li � 1

�(1� �(r))
:

With this constraint the right-hand side in (A.5) becomes minimal for li = (m�(1 �
�(r)))�1, thus

mX
i=1

si(r) � m2�(1� �(r)) ;

and together with (A.2) the assertion (A.1) follows.

Appendix B: Proof of Lemma 4.9

Let Condition (A) be satis�ed. In complex coordinates � = (�ix)k=2 = �1 + i�2 the

transformed free boundary � lies, near the origin, between the curves �� = f�(it) : t 2
IRg. Here �(�) := � � (1�M��) are conformal transformations near the origin, M large.

Let r0 > 0 (small) and D the domain bounded by parts of f�1 = r0g, f�2 = �r0g, and
� . If � intersects the lines f�2 = �r0g more than once, we take the points where � coming

from the origin hits this lines for the �rst time, see Figure 24. Now consider the harmonic

function h on D and continuous in D such that h = r0 on the upper boundary, h linear on

the sides, and h = 0 on the part �0 of @D belonging to � . Similar de�ne D� with respect

to �� and harmonic functions h�. (Note: We do not know that @D is a Lipschitz graph

near the origin, but the atness at the origin implies the existence of h.)

Then (extending functions by 0 beyond �0, ��)
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Fig. 24. Construction of domains D, D+ and D�.

(B:1) h� � h � h+ :

Moreover, using regularity theory and Hopf principle for the harmonic functions h� � �
it follows that h� are C1;� up to the boundaries �� and that

(B:2) h�(�) � c dist(�; ��)

for some c > 0. Now consider the blow-up sequence

hr(�) :=
1

r
h(r�) ;

and similarly h�r. We claim:

B.1 Proposition. For some constant c� > 0

h�(�) := lim
r!0

hr(�) = c��1

locally unifomly in f�1 > 0g.

Proof. For small r > 0 let sr be the smallest number such that h � srh+ in Br. Clearly sr
decreases when r decreases and by (B.1) and (B.2)

s� := lim
r!0

sr > 0 :
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Since

0 � hr � srh+r in B1,

hr are bounded harmonic functions locally in B1 \ f�1 > 0g. Therefore there exists a

harmonic function h� in B1 \ f�1 > 0g so that for a subsequence r! 0

hr ! h� in C0
loc(B1 \ f�1 > 0g).

Since

h+r(�)! @1h+(0)max(�1; 0) =: ~h(�)

it follows that

0 � h� � s�~h :

Assume that h�(�0) < s�~h(�0) for some �0. Then

h� � s�~h� �0 in B"0(�0)

for some "0 > 0 and �0 > 0. Then for small r

fr := srh+r � hr � �0

2
in B"0(�0).

Moreover fr is superharmonic in D+r \ B1, non-negative on the boundary. Therefore, by

Hopf principle, there is a constant c0 > 0 independent of r such that for � 2 D+r \ B1=2

fr(�) � c0 dist(�; �+r) � ch+r

with c > 0 independent of r. Thus

hr � (sr � c)h+r in B1=2,

which says that sr=2 � sr � c. Letting r ! 0 this is a contradiction. ut
It follows from the Proposition that on each cone frei' : r > 0 and j'j � �

2
� �g and

for each multiindex � = (�1; �2) � 0

(B:3) @�(h(�)� c��1) = o(j�j1�j�j) as � ! 0.

Now de�ne the conjugate harmonic function k : D ! IR of h by

k(�) :=

1Z
0

rh(��(t)) � (�i�0�(t)) dt

where �� :]0; 1[! D with ��(0) = 0, ��(1) = �, and Re�0�(0) > 0.

B.2 Proposition. The holomorphic function

�(x) :=
1

c�
(h(�) + ik(�)) for � = (�ix)k=2

has the properties stated in Lemma 4.9.
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Proof. It follows from (B.3) that k is well de�ned, and on each cone as above k(�) =

c��2+ o(j�j) as � ! 0. For 0 < " < r0 there are exactly to points �
�
" 2 @D with h(��" ) = ".

Therefore D \ fh < "g and D \ fh > "g are connected sets so that �" := @fh > "g has

to be a smooth curve from ��" to �+" on which rh 6= 0. This implies that k is strictly

increasing on �". Also k is continuous up to �0 n f0g and strictly increasing on the two

parts of �0 n f0g. Therefore ~� := h+ ik is one-to-one if we can show that rh is integrable

on �0 n f0g and

(B:4)

Z
�"

@��h dH1 !
Z
�0

@��h dH1 as "! 0

(� is chosen so that @��h > 0). Now, as "! 0,Z
D\fh>"g

jrhj2 =
Z
D

r(h� ")+rh =

Z
@D

(h� ")+@�h dH1

!
Z

@Dn�0

h@�h dH1 <1 ;

thus rh 2 L2(D). Then with the cut-o� function �r(�) := min(1; 1
r
dist(�; @Br))

�";r :=

Z
@(D\fh<"g)

�r@�h dH1 =

Z
D\fh<"g

r�rrh = O(kr�kL2(B2r))! 0

as r ! 0. Since for small r

�";r =

Z
�"

@��h dH1 +

Z
fh<"g\@D

@�h dH1 �
Z

�0nf0g

�r@��h dH1

(B.4) follows by letting �rst r ! 0 and then "! 0. ut
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