stichting

mathematisch

centrum - MC
AFDELING INFORMATICA IW 85/77 AUGUSTUS

(DEPARTMENT OF COMPUTER SCIENCE)

L. AMMERAAL

FORMULA SIMPLIFICATION IN RELATION TO PROGRAM
VERIFICATION '

2e bberhaavestraat 49 amsterdam

! e EHUHA

w
w2
=

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, 48 a non-
profit institution aiming at the promotion of pure mathematics and its
applications. 1t is sponsored by the Netherlands Government thiough the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0).

AMS(MOS) subject classification scheme (1970): 68A15, 68A10

ACM-Computing Reviews-category 5.24, 5.7.

‘Formula simplification in relation to program verification

by

L. Ammeraal

ABSTRACT

Predicate transformers associated with assignment statements and con-
ditional statements are straightforward and can easily be mechanized. Except
for some simple cases, it is a non-trivial task to simplify the resulting
predicates automatically. It appears that formula simplification is the heart
of automatic aids for program verification. This paper shows how predicate
transformations and formula simplifications can be expressed in ALGOL 68,

a high-level programming language which has appropriate facilities for data

structuring.

KEYWORDS & PHRASES: simplification, formula manipulation, program

verification.

CONTENTS

e
°

v &~ LN

References
Appendix A
Appendix B

The simplifying program

Examples .

. Formulas, binary trees, and ALGOL 68

Tidying up formulas

0

Generalized rational simplification

Description of the language . . . « « « « .

Simplification and predicate transformation .

1. GENERALIZED RATIONAL SIMPLIFICATION

In this paper, rational expressions are arithmetical expressions com-
posed of integer constants, variables, parentheses and the arithmetical

operators +, —, *, /, grouped together in the usual way. Thus
(y+x*x2+3%xy+0xx) *x 1 * (y-(y-1))

is a rational expression and in this special case it is most likely that a

simplification to the equivalent expression
2*X+4*y

is desired. The study of efficient algorithms to simplify rational expres-—
sions is an interesting field of research [1], [2], [3]. It is, however, not
our only subject. Along with rational expressions, there are relational ex-
pressions which we would immediately simplify by hand before presenting them.

For examplé
(-x) » x+ 3 *xx>-2xx*x+5
is preferably simplified to
x*xx+3*xx-5>0,

We therefore add the relational operators >, <, >, <, =, # to our language,
and represent them by >, <, >=, <=, =, 4, respectively. We also introduce
the logical operators "and" and "or", which we represent by & and !, and the
logical constants 't' (true) and 'f' (false). We can now replace obvious
tantologies such as 0 = 0 and 5 > 0 by 't' and obvious contradictions such
as 1 =0 and 5 < 0 by 'f'.

The following simplifications are easily performed:

¢ & "t is simplified to ¢,

¢+ 't? is simplified to t,

¢ & "f' is simplified to 'f', and
¢ £ is simplified to ¢,

We now introduce a less conventional extension of our language. If o is
a sequence of program statements (which we shall define syntactically in the

next section) and ¢ is a boolean expression, we regard
c$ ¢

as a new logical formula. In Dijkstra's terminology [4], it is the weakest

precondition that corresponds with ¢ and ¢, or:

[N
Hh

e

g$ ¢ wp(o,9).

In the backward direction, predicate ¢ is transformed by statement o to
0 $ ¢. We may also define 0 $§ ¢ as a necessary and sufficient condition im-
posed on all program variables before the execution of o, to ensure that

condition ¢ is satisfied after this execution. An example is:
x:=x+1$x>05, @))

We have extended our formal language in such a way that (1) is a formula

in this language, which happens to be equivalent to
X > 4, (2)

We obtain (2) from x + 1 > 5, which is found by substituting x + 1 for
x in x > 5. This substitution is usuaily referred to as Hoare's axiom for
the assignment statement [5]. Thus notations as S? Q| (used by Church [61]),
S?(Q) (used by Floyd [71), Qx[f] (used by Schoenfield [8]), and Q[f/;j (used
by Apt & De Bakker [9]) are written as

x = £; Q (3

in our formal language.

"rational simplification'" can

It will now be clear that the notion of
be generalized in such a way that it includes "predicate transformation"

and "substitution" as special cases.

2. DESCRIPTION OF THE LANGUAGE FORM

Simplifications like those outlined in the previous section are actually

performed by an automatic simplifier. This simplifier is an ALGOL 68 program

which we shall discuss in more detail. First, however, the set of all formu-

las that are candidates for simplification needs to be defined. We denote
this set by FORM. Thus FORM is the language of all input strings that are
processed succesfully by our simplification program. The following is a
context—-free grammer for FORM in BNF; < formula > is the start symbol of

this grammar:

< formula > ::= < boolean formula > | < arithmetic expression >
< boolean formula > ::= < boolean expression > |
< statement sequence > $ < boolean expression >
< statement sequence > ::= < statement > |
< statement sequence >; < statement >
< statement > ::= < assignment statement > |
< conditional statement >
< assignment statement > ::= < variable > := < arithmetic expression >
< conditional statement > ::= < boolean expression > °* < alternmation >
< alternation > ::= (< statement sequence > @ < statement sequence >)
< boolean expression > ::= < conjunction > I
< boolean expression > : < conjunction >
< conjunction > ::= < boolean primary > |
< conjunction > & < boolean primary >
< boolean primary > ::= < 't' > |

< 'FfY > |

< arithmetic eipression > < relation symbol >
' < arithmetic expression >
(< boolean formula >)
< relation symbol > ::= = l # > <=|>=]c<
< arithmetic expression > ::= < term >
< arithmetic expression > < adding symbol >
< term >
< adding symbol > ::= + | -
< term > ::= < factor > I
< term > < multiplying symbol > < factor >
< multiplying symbol > ::= * | /
< factor > ::= < variable > |
< constant > |

(< arithmetic expression >)

<variable > ::=a |b|c|d]|e|f|g|h|i]i]lk|2|m|n]|o]
plalrls|elulv]v]x]|y]z=

< comstant > ::= < digit > |
< constant > < digit >

o

< digit > :e=0 | 1| 2|3]|4]|5]6]7|8]29

This syntax is such that a unique binary tree is associated with every
sentence of the language. The unconventional syntax chosen for conditional

statements is a consequence of this idea. Consider, for example, the formula
“a <b - (x:=a; y:=b @ x:=b; y:=a); y :i=y-x$y+1>0,

(In more conventional terms, this formula denotes the weakest precondition
that corresponds to the statement sequence if a < b then x := a; y := b else
x :=b; y:i=afij;y:= & - x and the postconditiony + 1 > 0).

According to our syntax, the following binary tree is associated with

this formula:

It will be clear from this examﬁle that parentheses do not occur ex-
plicitly in the tree; they may, however, influence the structure of the tree.
In general, each leaf of the tree can be a variable, a constant, or a truth
value ('t' or '"f'). The other nodes of the tree are operators. The following

table lists all operators of FORM, in increasing order of precedence:

priority operator
1 @
2 3 $
3 .
4 :=
5 :
6 &
7 =# < > <= >=
8 + -
9 * /

The choice of the operator representations was based on the availability
of a conventional character set. Therefore # was taken instead of #, and !
rather than | or VvV, Notice that all operators in our language are dyadic and

infix, i.e. they occur in the context:
left operand, operator, right operand.

This means that O must not be omitted in O - x, just like 1 must not be
omitted in 1/x.

Another consequence of having only dyadic operators is the absence of
a special operator for negation. We do not need it; for example, in FORM we

express the negation of

(a<b & c#d) ! e = f

by

(a>=b [c=d) & e # f.

It goes without saying that a formula such as a + b + ¢ is an abbre-
viated notation for (a+b) + c, and thus has the following associated binary

tree

It might look strange that a formula in FORM may be of either arithmetic
or boolean type. This somewhat liberal point of view was adopted for practi-
cal reasons. Our simplifier has to simplify both types of formulas anyhow,
and we felt it convenient if not only boolean but also arithmetic formulas

are accepted as input strings.

3. FORMULAS, BINARY TREES AND ALGOL 68

Algorithms are best expressed in high-level programming languages. We
have chosen ALGOL 68, and, among the numerous facilities of this language,
some concepts that we need will now be explained. Let us begin with a very

simple example. With the formula 9-2 we associate the binary tree:

We could write the following mode declaration for this simple type of

formulae:

mode simpform = struct (int left, char c, int right).

After the variable declaration

simpform f; ,

it would make sense to write the assignment statement
f:= (9,"-",2).

We now wish to implement formulas whose operands are in turn (non-atomic)

formulas. An example is 9-2-4, which corresponds to the tree

Obviously, our first attempt is too restrictive, since the mode
simpform allows only integers as operands. We want operands to be either
integers or non-atomic formulas. Since all non-atomic formulas in FORM have

the structure

operand .1, operator, operand 2,
we shall call them triples. We shall see that all atomic formulas in FORM
can be represented by integers. Thus a formula is either an (atomic) integer
or a (non-atomic) triple. In this terminology a triple has the structure

formula, operator, formula.

In ALGOL 68 we define the modes formula and triple by the mode

declarations:

mode formula union (int, ref triple);

mode triple struct (formula left, char c, formula right);

If we now declare

formula f, g, h;

we can assign 3 to f, 3+4 to g, and 8-2-3 to h by

f := 3; g:= heap triple := (3,"+",4);
h := heap triple :=
(heap triple := (8,"-",2),

n_un
?

3);

Up to now we have used integer constants and no variables in the exam-
ples. Our language is such that these integer constants are non-negative.
This offers the possibility to use negative integers to encode variables and

truth values. In ALGOL 68 we have standard operators abs and repr which

provides the desired one-to-one mapping, and its inverse, as follows:

letter integer
L - abs %
repr-i i

Note that in FORM a variable consists of a single letter. As to the encoding

of truth values, we declare
int true = - 1000, false = - 1001.

Assuming that variable f is declared as before, we can assign the for-

mula a < 13 & 't' to £ by the assignment statement

f := (heap triple := (- abs "a", "<", 13),
"&" .

true) ;

Since a given formula f can be either an integer or a (reference to a)
triple, we need a mechanism to find this out. In ALGOL 68 this is done as

follows:

10

case f
in (int 1) = s
(ref triple t): o,

esac

If formula f happens to be an integer,o] is elaborated, in which we can
use f through i. In the alternative case, Ty is elaborated, in which the
current ref triple value of f is accessed through t. We illustrate this
mechanism by a procedure to print a formula. A special provision will be

needed to insert parentheses in cases like

which, if no simplifications were performed, must be printed as (a-b) » (c+d)
and w-x-(y=-z). Printing a (sub-) formula, we need information about the con-
text to decide whether or not parentheses are to be inserted. Roughly speak-
ing, they are to be inserted if a left(right) son operator binds looser (mot
tighter) than its father. The procedure "pr' below shows this more precisely.
To avoid uninteresting complications, we ignore the fact that some operators
(viz. :=, >= and <=) are composed of two characters. The standard procedure
"whole" decomposes an integer in its decimal digits. The following procedure

does the job of printing any formula f if it is called as pr(f,1):

proc pr = (formula f, int prio) void:

case f

in (int leaf):

if leaf = true or leaf false

11

then print (if leaf = true then " 't'" else " 'f'")

elif leaf < O

then print (repr - leaf)

else print (whole (leaf,0))
(ref triple t):

(char ¢ = c of t; int p = priority (cj;

if p < prio then print ("k") fi;

pr (left of t,p);

print (c) ;

pr (right of t, p+l);

if p < prio then print (")") fi
)

esac;

Procedure '"pr" shows how a tree representation of a formula is trans-
formed to a string representation. We shall now deal with the inverse
process, i.e. how to obtain the binary tree that is associated with a given
formula. In other words, "pr" is for output, and the following procedures
are for input. As before, we shall omit details that might distract our
attention from essential points. We shall, in particular, not worry about
diagnostic messages etc., but assume that only correct formulas, i.e. ele-
ments of FORM, are offered as input. (This attitude needs not necessarily be
unrealistic, since one could imagine that the formulas have already passed
some program for lexical and syntactic analyses, e.g. a compiler). As before,
we employ procedure "priority', which yields the priority number for any
operator, as given in the preceding section. To inspect the next character

to be read, we have a one-character buffer, declared and initialized by:
char buf; read (buf);

and the boolean procedure

proc inp = (char x) bool:

if buf = x then read (buf); true else false fi.

12

The variable "buf" is inspected also by the following procedure "opera-
tor", which tests the next character for being an operator with a given

priority number "prio"; if it is, it is passed by the output parameter "op":

proc operator = (int prio, ref char op) bool:

if priority(buf) = prio
then op:= buf; read(buf); true

else false

We shall process a complete formula of FORM, no matter how complex, or

how simple, by the call
formproc (1).

Before dealing with this procedure "formproc", we introduce procedure
"primary", which reads boolean primaries, variables, constants and expres-
sions in parentheses; when "primary" is called, a correct formula must be
present. The procedure yields a formula, just like a boolean procedure yields
a boolean value. (Notice that "true" and "false" on the fourth and sixth
line are not underlined: they are integer variables in ALGOL 68, but encoded

truth values and hence formulas in FORM):

proc primary = formula:
-i—f— inp (" L Il)
then if inp ("t")

then if — inp (" '") then error fi; true
elif inp ("£f")
then if — inp (" '"™) then error fi; false

else error

fi
elif inp ("(")

then formula f := formproc (1);

if 54 (")") then error fi;
£

13

else char buf0 = buf;
if buf 2= "a" A buf < M"g"
then read(buf); - abs buf0
else int i:= 0, d;
while d:= abs buf - abs "0"; d 20 A d =<9
do i:= 10 * i + d; read (buf)

od;

i
fi,

We shall now show the procedure "formproc" (It was called "formproc"
rather than "formula" to avoid confusion with the mode formula that we have
already). We could say that "formproc" does most of the work in reading and
analyzing the input formula and in building the associated binary tree. The
reader should not be misled by its compactness. It is in fact a generaliza-
tion of the idea of having separate syntactic procedures for "expression",
"term", "factor", etc., as is often used in recursive-descent parsing
" methods; so in spite of its compactness, it performs almost the whole task

of syntactic analysis:

proc formproc = (int prio) formula:
if prio = 10
then primary

else formula f := formproc (prio+l);

char op;
while operator (prio,op)
do f := heap triple := (f,op,formproc(prio+l))
od;
f
fi.

The reader will have noticed that the concept of recursion is often
employed in these procedures. This is not surprising, since our parsing

method is recursive by definition. Furthermore, we are manipulating binary

14

trees, which are most conveniently defined with the aid of recursion. For
readers who are unfamiliar with either recursion, ALGOL 68, or manipulating
trees, we proceed with showing three not too difficult procedures which are
useful for our purposes.

The first of these is "identical'. It determines whether or not two

formulas f and g, stored in binary trees as usual, are identical:

proc identical = (formula f,g) bool:

case f

in (int fleaf):
ctase g
in (int gleaf): fleaf = gleaf,
(ref triple gt): false
esac,
(ref triple ft):
case g

in (int gleaf): false,

(ref triple gt):
if c of ft = c of gt
then if identical (left of ft, left of gt)

then identical (right of ft, right of gt)

else false

£i
else false
£i

esac

esac.

In contrast to "identical", whose only task is to construct an approp-—
riate boolean value, the next procedure constructs a complete new tree,
which is an exact copy of the one that is passed as a parameter. The newly

generated tree does not share any nodes with the original one:

proc copytree = (formula f) formula:

case f

15

in (int leaf): leaf,
(ref triple t): heap triple :=
(copytree (left of t),
c of ¢,
copytree (right of t)
)

esac.

The next procedure contains a call of "copytree". It copies a given
formula f but, in the meantime, it replaces (in the copy) all occurrences of

a given variable v by a given formula g. Here too, the new tree is completely

distinct from the original one:

proc subst = (char v, formula g,f) formula:
case f

in (int leaf):
if leaf = - abs v then copytree (g) else leaf fi,
(ref triple t): heap triple :=
(subst (v,g, left of t),
c of t,
subst (v,g, right of t)
)

esac.

4. TIDYING UP FORMULAS

Formulas are usually written down in a more or less canonical form. A
trivial example is the formula a + b which most of us would prefer to b + a.
In automatic simplification it makes sense to strive after obtaining canoni-
cal forms, for various reasons.

One of them is that identical subformulae are easier detected this way.

Suppose for example that we are given the formula

bxaxc+d-¢c*xax*b.

16

Step~by~step simplification of this formula proceeds as follows:

Step 1 :

Step 2 :

Step 3 :

Step &4 :

Rearranging the factors of each term. This yields:
axbxc+d-a*xbx*xc

(In fact this is a rather big step which consists of several more

elementary steps).

Rearranging the terms. This yields:
a*bxc-axbxc+d

Canceling adjacent identical term with different signs. This yields:
0+d

Deleting zero terms. This yields

d.

Rearranging factors and terms as in steps | and 2 above is similar to

sorting a sequence of numbers. For numbers we have a total ordering ("<"),

so it 1is

natural to define a total ordering for formulas as well. Let us

call this ordering "less". A siight complication, to be mentioned later on,

will be ignored at this moment.

We express the ordering "less" on FORM by the following ALGOL 68 pro-

cedure:

proc less = (formula f,g)'bool:

case f
in (int £):
case g

in (int g):

if £ <0 A g<0 then £ > g else f < g fi,

(ref triple g): false

esac,

17

(EEE triple f):
case g
in (int g): true
(ref triple g):
(int pf = priority (c of f), pg = priority (c of g);
if pf # pg then pf > pg
elif less (right of f, right of g) then true

elif less (right of g, right of f) then false

elif 1less (left of f, left of g) then true
elif 1less (left of g, left of f) then false
else cof f<cofg

fi

esac

esac.

Important properties of '"less" are:

(i) If less (f,g) and less (g,h), then less (f,h) (Transitivity).
(ii) 1If less (f,g) then not less (g,f) (Asymmetry).
(iii) For all f ¢ FORM: not less (f,f) (Irreflexivity).
(iv) For all f, g € FORM: either less (f,g),
or less (g,f),

or identical (f,g) (less is a total ordering).

These properties are important because we are aiming at obtaining
canonical forms. [For this purpose, it is essential that the ordering is

"<" for numbers were not de-

total. Suppose for instance that the ordering
fined for some pair of numbers, e.g. for 5 and 7. Then sorting the sequence
10, 5, 7, 3 could yield 3, 5, 7, 10, or alternatively, 3, 7, 5, 10; in other

words the sorted sequence would not be uniquely determined].

The complication mentioned previously has to do with a curious conven-
tional distinction in ordering terms and ordering factors. Most of us proba-
bly prefer x+y+ 2to2+x+y as a canonical form, but at the same time
we write 2 * X * y rather than x * y * 2, Thus in connection with "+" we

appreciate the truth of "less (variable, constant)', whereas '"less (constant,

18

variable)" ought to be true in a multiplicative context. We have solved this
little problem by supplying the procedure "less" with a third parameter
"prio" which tells which of both cases applies. We shall not dwell on this
detail. We shall now present a procedure to rearrange terms on the basis of
the procedure "less". To keep it readable we only deal with the commutative
operators x, +, =, #, & and ! in this version. (In our implementation we did
not ignore the complication of non—-commutative operators, but at this stage
we prefer readability to completeness. We hope that the simplified versions
of some procedures shown here are easily understood; it will then be not too
difficult to complement them with details which are not taken into consi-
deration here. Moreover, the source listing of the complete program is given
in Appendix A).

To exchange two branches of a binary tree, we have the following proce-

dure:

proc exchange = (ref formula f,g) void:

(formula h := f; £ := g; g := h).

Now consider the formula d + ¢ + b + a whose binary tree is

We want to transform this tree into a similar tree corresponding to the
formula a + b + ¢ + d, by exchanging branches. There are two kinds of ex-
changes to be made. At the lowest level the left branch d and the right
branch c are to exchanged. We call it a commutative exchange, since it is
justified by the commutative law. Another type of exchange is applied to,
e.g., b and a. To justify this exchange we need not only the commutative law,

but also the associative law. We therefore call it an associative exchange.

19

Reasoning inductively, we assume that we know how to rearrange the subtree

for d + ¢ + b, and we show how to rearrange the tree for d + ¢ + b + a:

E e induction a a associative
—— — 5
assumption °

. exchange
(+)
0 o induction e 0
— —_—
e e assumption e e

We express this in ALGOL 68 by

proc rearrange = (ref formula f) void:

case f

in (ref triple t):

(ref formula & = left of t,

r = right of t;

char op = c of t;

if less (r,%)

then exchange (%,r) # commutative exchange #

else case %

in (ref trigle t left):

(ref formula 2 left left of t left,

r left

right of t left;

char opleft c of tleft;

if opleft = op
then rearrange (%) # induction assumption #;
iﬁ less (r, rleft)

then exchange (rleft,r)

20
associative exchange #;

rearrange (1)

induction assumption

esac.

We call a formula like a + b + ¢ + d (and its associated binary tree)

left—associative, because it is an abbreviated notation of ((a+b)+c) + d.

When a formula like a + b + (c+d) is offered as input to our program it is

initially stored in the binary tree

As we have seen, the parentheses enclosing c + d are re—-inserted when
this tree is offered to the procedure pr (given in section 3) for output.
However, what we actually want is to transform the tree above to its left-

associative equivalent:

Restricting ourselves to commutative operators, we can perform this

transformation by the following procedure:

21

proc leftassoc = (ref formula f) void:

case f

in (ref triple t):
(leftassoc (left of t); leftassoc (right of t);
case right of t
in (ref triple tright):
if c of tright = c of t)
then right of t := left of tright;
left of tright := t;
f := tright; leftassoc(f)
fi
esac
)

esac.

Here again, we can verify the correctness of this procedure by induc-
tion on the complexity of the tree. We shall nct give a formal proof, but
rather explain how it works by means of an example. Suppose that a + (b+(c+d))
is to be transformed to its leftassociative equivalent a + b + ¢ + d. By the

call "leftassoc (right of t)" on the fourth line of the procedure, the tree

is (by our induction assumption) transformed to

1) :

(D @)

& — _1®)
) ©

Nodes (i) and (ii) correspond with "c of t" and "c of tright", respec-
tively. The assignment statement "right of t := left of tright" transforms
this tree to:

FRATIGNH (LN TRUM

BIBLIOTHERK FAAT

o 4
ARAGTERDARM

22

The missing part is now attached at the right on

top of this tree by "left of tright := t", yielding

The statement "f := tright" reflects the fact that a new node (ii) now
becomes the root of the tree, instead of the old one (i). The new tree cor-
responds to the formula a + (b+c) + d which is less complex (with respect to
left—associativity) .than the original one. Therefore, by induction, the only

step to complete the job is to apply "leftassoc" recursively to this tree.

5. SIMPLIFICATION AND PREDICATE TRANSFORMATION

Transforming b + a to a + b and other things that we did in the pre-
vious section might be considered too trivial to be called "simplification".
We shall now mention some more substantial simplifications, and, to be con-
crete, mention a number of procedures of which our program is composed. It
should be emphasized, however, that knowledge of these procedures is by no
means needed for using our program. We are discussing techniques and we
sometimes talk about procedures and about a program to stress that these
techniques have been implemented and are not just loose ideas. The im-
plementation is such that a formula of FORM followed by the closing symbol
"\" are the only input data. The user does not have to specify special op-

tions or other control information depending on the nature of the input

formula.

23

Let us start with some rather obvious simplications which have to do .
with occurrences of zeroes and ones. The following reductions are performed

by the procedure "zerone'":

0+
f =

—
* %

O Fh = Fh O kh

NV O FHh O O rF Fh Fh

Fh O rFh F O Hh
—

[R

N
'—h

The last two of these lines deserve an explanation. One could argue
that the information f # 0 is lost by reducing O/f to O. Some might consider
the possibility of defining O/f equal to 1 if f happens to vanish. We prefer
the point of view that any denominator must not vanish, even if the numera-
tor does. On the other hand, whenever 0/f has a meaning, it is of arithmetic
type and, for our purpose, it would be most inconvenient if it had to be

transformed to something like
"0, provided £ # 0"

which has arithmetic as well as boolean aspects. For the same reason, we
shall simplify (x-2) / (x-2) to 1. Brown [2] does the same, and, as a justi-
fication, observes that the transformation conforms to the rules of the
field Z(x) of rational expressions in x over the domain Z, of integers. The
transformation "f/0 — ?" is easier to explain. Whenever an explicit zero

tomn

occurs as a denominator, the question mark is introduced. It should

simply be interpreted as an error code.

The procedure "distr" applies the distributive law with respect to

multiplication and addition (or subtraction). Thus

f % (gth) — f *x g f xh
(ftg) *h — £ xh * g * h.

1+

24

It is well-known that it depends on the context whether multiplying out
or factoring leads to simpler formulas. Finding this out is too difficult a
job for our simplifier. Therefore we have chosen for multiplying out, so
(x-1) * (x+1) + 1 is nicely reduced to x * x. However, care has been taken

to postpone the call of "distr" until reductions like
(x+2) » (x-2) / ((x+2) * (x=3)) — (x-2) / (x-3)

have been performed. For reductions like this, the procedures '"rearrange'

and "leftassoc" are vital. These procedures transform
(x+2) * (x=2) / ((x+2) * (x-3))

to
(x+2) [(x+2) = (x72) / (x-3).

(Recall that "«x" and "/" have the same priority number). Thus identical
factors become neighbours, which are easily tested for identity (if they
occur on either side of " /") by the procedure "identical", introduced in
section 3. These tests and canceling of numerators and denominators are in-
corporated in the actual version of the procedure "rearrange" as listed in

appendix A. Special attention is required for a case like
(x+2) * (x=2) / ((x+3) * (2-x)).

Since variable terms precede constant terms and since we have no monadic
formulas, 2 - x is first transformed ﬁo 0 - x + 2. (We consider this as a
special notation for - x + 2 and accept 0 as the only constant term that
can precede a variable term. There is no danger that f + 0 - g will survive,
because of our reduction £f + 0 — f). Now 0 - x + 2 is hardly an improvement
of 2 - x, and is far from being identical to x - 2. We therefore have a pro-
cedure called "negfac", which does away with "negative factors" like 0 -x+ 2.
In fact, the "nomadic minus'", here written as "0-" is transported to an

outer environment. For example

25
(0-x+3) * (0-y+z) / (0—p+il‘) / (0-q) * (0-r-1)
is transformed to
0 - ((x=3) * (y-2) / (p=1) / q * (x+1)).

Thus factors are brought into a canonical form, after which they can

effectively be tested for identity. Our sample formula
(x+2) * (x-2) / ((x+3) * (2-%))

is indeed eventually reduced to
0 - (x+t2) / (x+ 3).

A substantial simplification is performed by the procedure '"add". It

reduces, e.g.

3%ax* (btc) — 2 % a * (b+c) + 8 * a * (b+c)
to

9 x a x (b+c).

Here too, the procedure "identical" appears to be most useful. A compli-
cation is involved in terms whose coefficient are 1, since "1%" is usually .
omitted, or even removed by our own procedure '"zerone". For addition,

1 *ax (b+c) + 3 * a * (b+c) is simpler than a * (b+c) + 3 * a x (b+c). We
therefore have a procedure called "factone" which writes "!*" in front of
products which begin with variables. Later on, superfluous occurrences of

"1%" are removed by "zerone".

We are now going to deal with simplifications which are more often
found in papers on program verification than in publications on formula mani-

pulation. For the assignment statement and the conditional statement, sym—

26

bolically written as

= E

™

if B then S else T fi,

it is well-known that with a given postcondition Q the corresponding weakest

precondition can be expressed by

wp(x:=E,Q) = the result of substituting E for x in Q,
wp(if B then S else T fi, Q) = (B A wp(S5,Q)) v (71 B A wp(T,Q)).

For the substitution result above, we can use our procedure "subst®
listed at the end of section 3. As mentioned earlier, we write "&" for "A",
"1 for "v", and "B-(SET)" for "if B then S else T £i".

We also observed (in section 2) that we need no monadic not (1) opera-
tor, because, e.g., 71 (a<b) can be expressed by a > = b. Symbolically we shall
indicate such an elimination of "—" by writing B instead of =t B. In a ter-
minology introduced by Dijkstra [4], wp(S,Q) is the result of transforming
predicate Q by statement S. In [13] an explanation of predicate transformers
is given in terms of elementary set theory. We have adopted the formula
notation S $ Q for wp(S,Q). All formulas of the type S $ Q can be "simpli~-

fied" according to the rules given above, which are in our notation:
x:=E$Q -— subst (x,E,Q)
B-(SET) $ @ — B & (S§Q) ! B & (T$Q).

By repeated application of these rules, all operators $ disappear, al-
though, in the beginning, their number may increase. In our program these
rules are implemented in the procedure "wp". This procedure is called by the
procedure "reduce'. The relation between both procedures is as follows. Let
"wp" perform the redaction Sn $ Q — Q'; then "reduce'" performs the reduc~-

tion SI;...;S Sn $ Q@ — Sl;...;Sn__1 $ Q" if n > | and "reduce" simply

n~1’
1} i

calls "wp" if n = 1.

27

REFERENCES

[1] MOSES, J., Algebraic Simplification: A Guide for the Perplexed, Comm.
ACM 14 (1971) 527-537.

(2] BROWN, W.S., On Computing with Factored Rational Expressions, SIGSAM
Bull. 8 (1974) 27-34.

[3] HALL, A.D., Factored Rational Expressions in ALTRAN, SIGSAM Bull. 8
(1974) 35-45.

(4] DIJKSTRA, E.W., 4 Simple Axiomatic Basis for Programming Language
Constructs, Proc. Kon. Ned. Akad., Ser. A, 77 (or Indagationes
Math., 36), (1974) 1-15.

[5] HOARE, C.A.R., An Axiomatic Basis for Computer Programming, Comm. ACM
12 (1969) 576-580 .

[6] CHURCH, A., The Calculi of Lambda-conversion, Princeton University
Press (1941).

(7] FLOYD, R.W., Assigning Meanings to Programs, Proc. Symp. Appl. Math. 19,
American Math. Soc. (1967) 19-32.

[8] SHOENFIELD, J.R., Mathematical Logic, Addison-Wesley Publishing Company
(1967) .

(9] APT, K.R. & J.W. DE BAKKER, Exercises in Denotational Semantics, in:
Proc. 5th Symposium on Mathematical Foundations of Computer
Science, Lecture Notes in Computer Science, Springer-Verlag, 45
(1976) 1-11.

[10] KING, J.C., 4 Program Verifier, Dept. of Computer Science, Carnegie-
Mellon University (1969).

[11] GooD, D.I., R.L. LONDON & W.W. BLEDSOE, An Interactive Program Verifi-
cation System, Transactions on Software Engineering 1 (1975)
59-67.

[12] CAVINESS, B.F., On Canonical Forms and Simplification, Dept. of Com-

puter Science, Carnegie-Mellon University (1968).

28

[13] AMMERAAL, L., How Program Statements Transform Predicates, in:
Informatik-Fachberichte, Springer-Verlag, 5 (1976) 109-120.

29

APPENDIX Ag THE SIMPLIFYING PROGRAM,

VOPPRORENPRORORPGRFEODGREW RGP DG Py

(# SIMPLIFICATION OF FORMULAS, L, AMMERAAL, 1 JULY 1977 #
'INT! TRUES=1000, FALSE=Z=1001s 'CHAR' CCy
ON LINE END(STAND IN, ,
('REF! YFILE!' F)'BOOL'} |
(NEWLINE(F)s PRINT(NEWLINE)s 'TRUE')
1}

'MODE ! 'FORMULA's'UNION‘(iINT' tREFT fTRIPLE');
IMODE ! 'TRIPLE'l’STRUCT’(‘FORMULA' LEFT, 'CHARY C,'FORMULA! RIGHT);

fPROC!' INPm(ICHAR' X)TBOOL'3(BUFSX|READP(BUF)J!'TRUE!J'FALSE')
fCHAR' BUF;

iPROC' READP=(YREF' {CHARI C)ivoID'} . ;
(fWHILEY READ(C)s PRINT(C)s C = " » IpQt iSKIP' 10D');

fPROC' Me('BOOL' B)PVOID'3('NOT!' BJERROR)}

{PROCY ERROR®IVOIDI3 (PRINT("ERROR")y STOP);

1PROCT DIGIT=(VCHARY C)iBOOL'3 C *GE' "Q" FANDI C 'LE' "g",
iPROCY LETTER=(FCHARY C)TBOOLT; C fGE! "A"™ 'ANDY C TLE! nZny

TPROCY LESS=('FORMULAT X,Y, 'INTV PRIO)'BOOL'S
(TCHAR' CHX®&NODE(X), cnv:nooecv;:
1800L ' DX®DIGIT(CHX), DYsDIGIT(CHY), LXsLETTER(CHX), LYELETTER(CHY)}
1B800L T OX=t'NQTI(DX TOR! LX), OY=INOT'(DY 'OR{ LY), P9=(PRI0=9),
L= CHX<CHY}
(OX TANDY oY
y TINTI PXSPRIORITY(CHX), PYSPRIORITY(CHY);
(Px INE' PY | PX»PY
} (X
} ('REFY VTRIPLE' BX)}
(Y
} (YREFi ITRIPLE' BY):
(fREFT TFORMULA' IXs LEFT fQF! BX, I1Ys LEFT 'OF! BY,
JX2RIGHT 'OFf BX, JY=RIGHT 'OF!' BYy
LESS(JIX,JY,PRIO) | 'TRUE! s LESS(JY,JX,PRIO) | 'FALSE!
tLESS(IX,IY,PRIO) | 'TRUET |13 LESS(IY.IX,PRIO) } YFALSE!
L

B e W P

)
)
:)
1t OX } 'NOTV P9 J: OY | P9 3 DX=DY | L | (POLDXIDY)

)
K]

30

{PROCY NODE=({FORMULAT E)TCHARI

(E

b ¢ VINT GO
(c:oxno";:c::zﬁxﬂx:csxxﬂaﬂzscatnuszﬂrﬂzzc=FALSE;“F"g'Repnatnca),
('REFi 'TRIPLE! B)y C fOF! B

)3

fPROC! EXCHANGECs(TREFT 'CHARY X,Y)/IvOID/!y
(TCHAR' Z=Xy X33Yy Yis2)y

fPROC! EXCHANGEIsS(IREF! 'FORMULA' X,Y)'VOID':
(TFORMULA' 2mX; Xg=Y; Yie2)y

'PROC' PRIMARY=ZIFORMULA'I
(INP("en) | 'HEAPY 'TRIPLE'3=2(0,"=»",PRIMARY)
&tINP("+") | PRIMARY
JRINPCRin) | CINPCOTH) IMCINP("T7)) 3 TRUE
P MCINPCYF ")) pMCINP(" Y ")) 3FALSE
)
JEINP(M (")
| 'FORMULA! I3sSFORMPROC(1)s MCINP("I"))s I
| 'CHART CmBUF;
(C 'GET "A® YANDY C TLEV "Z" | READP(BUF); ='ABS!' ¢
{ 'INTV im0, Dy fBOOL' ABSENT§=!TRUEf; A
TWHILE! Dg='ABS' BUFw=iABST won; D 'GE’ 0 'AND! D TLEY 9
:Dg' I3=10a1+4D; READP(BUF); ABSENTg='FALSET
oD
(ABSENT | PRINT("LETTER OR DIGIT EXPEXTED"); STOP); I
)
)

iPROC! OPERATOR®('INT! PRIO,'REFT ('CHAR! OP)!BOOL'}
(PR;DRITY(BUF):PRIO
{ OP:=BUF; READP(BUF)}
(BUF=ns"
} (0P="<"10P:=ﬂtﬂx;OPsnaﬂxopgaﬂx*xM(OP=n "))
READP (BUF)
18 ‘
' TRUE !
| TFALSEI

{PROCT PRIQRITYS('CHART C)VINTI}

(Cz ren|y

X1 LELINY-

jgCengr 2

1", "13

ST LELRY"

JaCumin|s

L1Cm®&" e

JeCarar 10QRI Cyng® (QRI Cmn>® QR Cmhg")
, - TORY cm®" # PLEf # 1QR! Can)n 4 IGE' #

jgCaten 10R! Ca%e" |B

LiCarar i0RY cgn/nlg

i0

)3

fPROCT FORMPROCE(!INT/ PRIO) IFORMULA'G
(PRIO=10|{PRIMARY , \
JIFORMULA' Es=FQRMPROC(PRIO®1)s 'CHARIT 0Py
IWHILE' OPERATOR(PRIO,O0P)
ipof EtzfHEAP' ITRIPLE'ys(E,OP,FORMPROC(PRIO+L))
CODI
E
Y

‘PROC' LEFTASSOCs(IREF! ’FORMULA{ EY'BOOL';
('BOQL' HODIF!S'PALSE’: TFORMULAY (E)
! ('REF’ TRIPLE' Bl
(fCHARI CsC YOF! By VTINT' P=sPRIORITY(C)}
(RIGHT 'OF' B
} ('REF' iTRIPLEY BR)$)
('C:AR' GR = C YOF! BR; VINT! PRsPRIDRITY(CR)}
(PR3P
{ RIGHT fOF' B i= 'FORMULA'(LEFT 'OF1 BR)j
LEFT '0Ft BR g= 'REF! 'TRIPLE'(B))
E32BR)
(Cz"ea™] C fOFT BR 32 (CR="¢" [Nt |"¢")
jiC=smy/ny € TQF! BR:’ (CRe"xmh/n Hgh)
N
MODIFt='TRUET
)
)
)
MODIF

)
| YFALSET
)

31

32

iPROCT CONSTs(fFORMULAT EY'BOOL';
(TFORMULA'(E)
} ¢ TINTY I)g I YGEY 0,
(TREF' tTRIPLE' B)i _
CONST(LEFT TOFf B) FAND! _
(C iQFt B g nem TORY' € TOFT B s %el) IAND!
CONSTC(RIGHT fOF' B)
)

TPROCT LEFT=(iREF! TFORMULAT E)'REF! TFORMULA';
(TFORMULAT(EYLC(TREFT TTRIPLE! B)SLEFT 10Ff B8 | ERROR; E)j

fPROC' RIGHTS('REFI IFORMULAT E)IREF! TFORMULAT}
(TFORMULAY(EYL (TREFY TTRIPLE' B)3RIGHT fOFi B | ERRORy E)j

fPROC! REARRANGEg('REF{ 'FORMULAT E)'BOOL'g
('BOOLT MODIFg=iFALSET
IWHILE! LEFTASSOC(E) 'DO9 MODIFsmsi{TRUE! 70Dy
("FORMULAT(E)
{ (YREF! TTRIPLES B)3j
(TREF{ iCHAR' € = € fOF' By 'INT/ PCsPRIORITY(C):
iREF! TFORMULAY L = LEFT 'OF! B, R = RIGHT 'QF! By
MODIFt®REARRANGE (L) 'OR' REARRANGE (R)} ‘ A _ ,
('CHARY CL=NODE(L)s LESS(R,L,PC) 'AND' PC>4 TAND' PC<}0 'AND!
PRIORITY(CL) TNE!' PC TAND!' PC TMES 7 'AND!
INOTT (CLs"i® PTAND! Cm®/® QR CLm"O" VTAND! C=Me)
P (Cowow/n | E gs THEAPT TTRIPLE! 3= (E,"#",L)y L=
13C = "e® | E 3® THEAPT TTRIPLE' 3= (E,"+",L)1 L3=0
| EXCHANGEICL,R)
I8
MODIFis{TRUE?
I
(L. o
! (TREF{ 'TRIPLE! BL)
(TREFT 'FORMULAY LBL = LEFT 'OFY BL, RBL = RIGHT 'OF! BLj
iREFI 1CHAR' CBL = € 10F1 BL;
PRIORITY(C 'OF! BL) = PC
} (IDENTICAL(RBL,R) 'AND' CBL tWNE! € 'ANDf' (PC=8 'OR! PCz9)
| Et=lBL; MDDIF!:'TRUE‘ _ _
18 LESS(R,RBL,PC) TAND' PC>4 fANDT PC«i0
} EXCHANGEC(CBL:C):EXEHANGEI(RBL,R;;MDDIFzs'TRUE’
)

)
11
('NOTY MODIF VAND! PCz7
} fCHART NODLESNODE(L)
('NOT! CONST(R)
} Lis'HEAPT TTRIPLET;=(L,"=",R)s Ry=0y MODIFs=!TRUE!
JINODL="+" TORI NODL="w"

1

Y

)

33

} ¢ TFORMULA! RIGHTLuRIGHTCL)ﬁ CONST(RIGHTL)
| NEGATIVE(NODL)) Rym'HEAP! {TRIPLE!'i=(R,NODL,RIGHTL))
LisLEFTCL); MODIFgmiTRUE
LICHSIGN(L)
} Ris'HEAPT ITRIPLEf§=(0,"w",R)}
‘ (td”c"1Cal">"1tca“&"$Cxu"¢"J; MODIFi=!TRUE
)

)

) |

(INOTT MODIF FAND! (Cs"™® (QR! Cmtgn)

! (CCisNODE(R)y CCa"T® VOR! CCe"F*

} Exm(Cone|(CCamT|LIFALSE)J(CC2"TH{TRUEIL))
MODIFiImiTRUE

)

Y
('Nov' Mouxr TAND' PC=7 'ANDT CONST(L) fAND' CONST(R)
| ICHARY CisCy Cimte’y
IWHILET REARRANGE(E); ADD(E) fpO7 {8KIP! 'QDfy MODIF3=!TRUE'}
Ets(ircRMuLA (E)
¢ TINTI 1)
(I»0
| (Clm"»® 1QR! Cign]® fon' Cia"#" | TRUEIFALSE)
| (Cisna® 10RY Cimn(® onr Cim") " | TRUEIFALSE)

)
¢ REFT ITRIPLE!)1 (Cimhe® fQRY Ci="gh | TRUEIFALSE)
)

I

(INOT' MODIF

| (Czren TQR! Cmh/"

{ (IDENTICAL(L,R)) o
| Ets(Ca"a®™ | 0 | §)3 MODIFi=!'TRUET
J

)

§

INOTY MODIF TANDV Cam"a®

INTI IR}t

szf ;Lbi | , . , V
TGEY 0 'ANDY IR TGE' 0 | Es=ILwIR; MODIFt1=!TRUE')

e g, ey

0T
R
(f
(L
L
(1
)

)
)

(MODIF |REARRANGE(E) | fFALSET)

34

{PROGC! PRBUFB(ICHARY c*fvoxpf:
(€ TNOTI(BUF=#0" TANDI Cefet®)
| PRINT(
(BUFm®® |
{$BUFmng® |
L §BUFmn (n |
{sBUF=n]® |
| BUF
)
)1
BUFisC
1

iPROCY PRe(IFORMULAY E,TINTY PRIO)'VOID'

(E
l FINTY V)3
VEaTRUE TORT V=FALSE
PRBUF("in); PRBUF((VETRUEL®TH}"Fn))y PRBUF(M!")
(Ve0
| PRBUF('REPR'=Y)
§ !STRING! SaWHOLE(V,0) ‘
fFQRY T fTOY TUPBY 8§ 1DOY PRBUFC(SIII) foD!
)

B e o

Yo .)) .
('REFI VTRIPLE! B)gs('CHARY Cz CIQF!By TINT! P=PRIORITY(C)

(P<PRIOIPRBUF (" ("))
PR(LEFT 'OFT B, P)j .
PRBUF(C)s PR(RIGHT TOF' B, P+1);
(P«PRIDLIPRBUF(")IM))
)
N]

{PROCY IDENTICALS('FORMULA' E,F)TBOOL!}
(E
L CPINTE CE)

(F ,
(VINT' CF)s CEmCF
'FALSE?!

!
;
(" gs i TTRIPLET BE)3

(
{ (YREF! VTRIPLE! BF)1

(¢ IOFY BE = C VOFT BF

! (IDENTICALCLEFT 'QOFt BE, LEFT (OF BF)
IDENTIGALCRIGHT 'OFf BE, RIGHT fQFi BF)
TFALSE!

| TFALSE

3

¢

'FALSE!

R
¢
(
|
|
)

i
)
3

35

iPROCY ZERQNES('REF! TFORMULAY E)YBOOL!'}
(TFORMULA! (E)
| (YREFY 1TRIPLE' B)%
('CHAR' C3C 'OFf By VBOOL! PLUSE Cm"¢", MINm CalMen,

TIME CPa%, DIVE Ca"/"; (BOOL! MODIFj=iFALSE(;
iPROC! Mm(fFORMULAT 1)'voxo';c5;=x; MODIFfa!TRUE!);
¢ RIGHT IOFf B
| ¢ TINTI BRYE
(iB0OL' ZERO = BR=0, ONE = BRs1j _
((PLUS fORT MIN) PAND' ZERD 'ORY (TIM 1OR' DIV) YTAND! ONE
[MCLEFT 'OFf B)
{iTIM TANDY ZERO | M(0)
}4DIV TANDT ZERO | M(=tABStI"DH)
)

)

)1
(INOTT MOQDIF
! (LEFT 'OFf' B
} ¢ TINTY BL)S
('BOOL' ZERO = BLmO, ONE = BlLwmij
(ZERD 'ANDT PLUS QRS ONE fAND' TIM
| MCRIGHT '0F7 B8)
JIZERO TANDT (TIM TOR' DIV) | M(0)
)
)
)
)8

(TNQT! MODIF | MODIF§sZERONE(LEFT 'QFf B)))
éo‘NOT‘ MODIF | MODIF¢=ZERONE(RIGHTIOFi B))}
f0DIF

b
} 'FALSEI
N

IPROC' NEGATIVEE('REFT TCHAR' C)TVOIDIs Cis(Curenjnenjngny,

iPROCY CHSIGN=(!'REFf fFORMULAT E)'BOOL I}
¢ VFORMULA!(E) ‘
} ¢ YREF! (TRIPLE' B)1
('REFi iCHAR! € = € 'OF! B,
'REFT IFORMULA' L = LEFT fOFi B, R = RIGHT 'QFI By
Cetet 1R cgn¢n
I ¢ Cmre® 1ANDI NQDECL)=“O” | E1 GRx ' TRUE f
} (CHSIGN(L) JNEGATIVE(C); fTRUE!J'FALSE!)

) ,
TFALSE!

)} 'FALSE(
)

e G

36

TPROC! CHSGNa(TREFT TFORMULAY ;. x)isooL 'y
('REF{ IFQRMULA' TisX, JisE; 'CHARY CHy TINT' Ny=0)
th§LE3 CHisNODE(I)y CHa®e® {QR! CHaPe
DOV Jpsly Negsip A , ‘)
o Ti=(TFORMULAY (I)IC'REFT TTRIPLE' B)¢ LEFT 10F! B)
! ! . , ,
(CHE"0"™ TAND' NODE(J)mNMe® |
} %lﬂ!; E sw THEAPY TTRIPLE' i® (0,%s",E)}
70! Ney
ippf
(TPORMULA' (1) B | ,
} C'REFT TTRIPLE! B)s(NEGATIVE(C fOF{ B)y Ii=sLEPTY 0F/ B)

)
fopi, , .)
::ESQ"FDRHULA'CI):'(‘FGRMQLA'(IJ!('REF‘fTRIPLE‘ BYSRIGHT '0Ff B)y
| TFALSE
)
I

{PROC! NEGFAC®('REF! iFORMULAT E)'BOOL'}
('B00LT MODIFsmiFALSE(
({FORMULAT(E) o
{ ¢ TREF! TTRIPLE! B)1
(TCHART ¢ = C 1QF! By ﬂ _
fREF! TFQRMULA' | = LEFT 10F! 8, R = RIGHT fOFf By
(Cmtra® PQR! Cgn/v '
| MODIF3®(CHSEN(E,L)}ITRUET|CHSBNCE,R))
N]
¢ TNOT! MODIF
| MODIFgs(NEGFAC(L)L'TRUE! JNEGFAC(R))
)

)
B |
MODIF

I

ngocf COPYTREE=('FORMULAY E)VFORMULA'}
PCOVINTE Gyse, o ,
(TREFT ITRIPLE! B)31THEAP! TTRIPLE'1s H
(COPYTREECLEFT 1OFi B), C fOF' B, COPYTREE(RIGHT '0Fi B8))
)3

TPROCY SUBSTE('CHAR' V, 'FORMULAT E, TFORMULA' F)TFORMULA'
¥ SUBSTITUTE E FOR V IN F #
(F) , ” ,
LOCTINTY G)e(CewiABS! ¥V | COPYTREE(E) | C),
(TREF7 fTRIPLE' B)3'HEAP' fTRIPLE(;=
(SUBSTCY,E,LEFT tO0Ft B8), C 'OF' B, SUBST(V,E,RIGHT 'OF B))
Y]

37

iPROCT NEGATE=('FORMULA' E) IFORMULA(Y

(E
[¢ ‘INT‘):('CHAR' CCsNODE(E)s CCs"Th" | FALSE | M(CC="F")3 TRUE),
(*REF‘ tTRIPLE! B)1
(TREFi 'CHAR' C = C fOF' B, o a
{REF{ *FQRMULA‘ L 8 LEFT '0F' B, R = RIGHT 'OF! By Ct=
(Cmwj® fOR! Cmng”
{ Ll!NEGATE(L): RIZNEGATEC(R); (Cmmjn | ngn | npw)
13C= ngr | mn

”c. hyn | n;u
"c. ﬂ!tﬂ l ﬂ,ﬂ
‘!c’ m]n i Hgt
J1Cs ngn | ngn
} H(C*”#"): ngh
N
)
Y
{PROCY WPE(IFORMULAT $,Q) 'FORMULA'}
(S

| (TREFi ITRIPLE' B)i
({REFT fCHAR' C = C fOF! B, |
iREF{ (FORMULA' | ® LEFT fOFf B, R = RIGHT 'QF' By

C = "gn
| SUBST(NODE(L),R,Q)
jeC 8 n " # CONDITIONAL STATEMENT #
} (R
} (TREFI{ TTRIPLE' BR)}
(PREFf TFORMULAT & = LEFT '0OFf BR, T = RIGHT fOF' BRy

THEAP! (TRIPLEf1=
(THEAPT TTRIPLE!1=2(COPYTREE(L),"&",WP(S,Q)), "},
IHEAP ITRIPLE'lttNEGATE(COPYTREE(L)):"&" WP(T,Q))
)
)

)
| ERRORy (SKIP!
)
N

iPROC' REDUCE=('REF! TFORMULAT E)'BOOL'
(TFORMULA' (E) ,
{ ¢ TREF! 'TRIPLE' B)3 ‘
(TREFY{ 'FORMULA' L = LEFT fOFf B, R = RIGHT '0OF' B,
fCHARY C = C 'QF' By

C g ngv
O L
} (TREF! 'TRIPLE! BL)S
(TREFf TFORMULAY LBL = LEFT fQF!' BL, RBL = RIGHT fOF!'BL,

’CHAR' CBL = € 'OF! BLj
Ei=¢ CBL = "

38

} 'HEAPY TTRIPLE's=(LBL, "8", WP(RBL,R))
I WP(L,R)
1y

iTRUE!

) i
| 'FALSE!

)
| TFALSE!
)
| TFALSEY

I

iPROC! DISTRm(IREF! TPORMULA' E)TVOID'}
(TFORMULAT(E)
) (TREFI (TRIPLE' B)@ o
(TREFi 'FORMULA' | =5 LEFT OFf B, R & RIGHT '0OF! By
DISTR(L)Ys DISTR(R);
{ G iQF! B mugn
I} (¢ 'FORMULA'(R)
} ¢ 'REFT VTRIPLE! BR)}
("CHAR! CBR 3 € TOF' BRj
(CBREM4P (QR! CBRE"e") TAND! NODECL) 'NE' n/¥
| Ets'HEAP! 'TRIPLE’:a
(VHEAP! TTRIPLE'¢m(L,"s",LEFT fOF' BR), CBR,
iHEAPT YTRIPLE!¢=(COPYTREE(L),"%",RIGHT 'OF! BR))3
DISTR(E)s !'TRUE
IFALSEY

IFORMULAT (L)
IREF! 'TRIPLE' BL)¢
ICHART CB% z C IOFT BL; , _
(CBLe"#" TQR! CBL="e") TAND! NODE(R) !INEF uyw
} EtafHEAPT iTRIPLE(}=
(THEAP! eTRIPLE'::(LEFT 'OF ! BL,"%",R),CBL,
fHEAPT TRIPLETs=m(RIGHT 'OF7 BL,"#",COPYTREE(R)));
DISTR(E)
)
)
)
)

)3

39

IPROCT CONSFACSCIREF' TFORMULAS E)'BOOL (1
('"FORMULAT(E)
}OCTINTY 1)

(1«0) . _

} Et=iHEAPY fTRIPLEfs=2(1,"x",1)s TTRUE' | TFALSE!

)e :) ‘

(TREFT TRIPLET B)3(C 'OF' B = "a" |CONSFAC(LEFT 'OF! B)|!FALSEf)
N] ,

fPROC! EACTONE!(!FORMU%A' E)'BOOL 'S
('BOOLY MODIFg=iFALSE")
(E o
| (TREFT TTRIPLE' B)1 |
('REF! 'FORMULAY | = LEFT 'OF' B, R = RIGHT 'OF' By
TCHAR! € 3 C TOF' By
(Cz"e¢” VOR! Cyle® _
| MODIF3® CONSFAC(L) fORY CONSFAC(R)

) ; _ ,
) (}NOT' MODIF{MODIFsm(FACTONE(L) I 'TRUEYJFACTONE(R)))
)3
MODIF
)
{PROC' ALMOSTIDENT=('FORMULA' E,F)'BOOL '}

(. . .
{ PINTY EX)) . X
F g'§ur* FI)s EI»0 TANDT FI»0 | 'FALSEN),
;REF' TRIPLE' EB)}
('REF! 'TRIPLE' FB)s ‘ ,
(C 'OFf EB = C 'OF' FB 'AND' IDENTICAL(RIGHT'OF'EB,RIGHT'OF IFB)
| ?:ME?EIDENT(LEFT fOF' EB, LEFT fOF' FB)
| TFALSE! -

)
TFALSE!

e et alalas il

}

)
)3
fPROCT SUMS(IINT! SIGNE,SIGNF, TFORMULA! E,F, /REF!VINTY PLM)'FORMULA'}
('HEAPY TFORMULA' 8§ i3 COPYTREE(E)S

PINT! FACTOR=SIGNE*LEFTLEAF(E)+SIGNFaLEFTLEAF(F),

CHANGELEFT(S, fABS! FACTOR)}

PLM3s(FACTOR<O =1} 3FACTORS0]011))

)
Y

{PROC! LEFTLEAF=('FORMULAT E)FINT': .
(E § (VINTY 1381, ('REF' 'TRIPLE' B)ILEFTLEAF(LEFT fOF' B));

TPROC!' CHANGELEFT=('REFf (FORMULA' E, 'INT! C)YVOID'} _
('FORMULAT(E)LCYINTI)RE3=C, ('REFT 'TRIPLE' B)yCHANGELEFT(LEFT'OF'B,C))}

40

{PROCT ADDm(IREF! TFORMULA' E)7BOOL T}
(fBOOLY MODIFgsiFALSETy TINTT PLMy fFORMULAT Ely
(TFOQRMULA'(EY
} ¢ TREFY YTRIPLE! B)@ | o
(TREF! TFORMULAY | = LEFT 'OFf B, R = RIGHT IOF' B)
iCHARY € = C fOFT By
{ Cefie® fORT Cglte®
I ¢ ALMOSTIDENT(L,R) *
P Ess8UM(L, (Crmenitiml), L, RyPLM) |
(PLM<O | Ets/HEAPT TTRIPLE'3=(0,"w",E))s MODIPss!TRUES
I (fFORMULAT(L) ,
| (TREF' (TRIPLEV BL)}
(fREP'”fFORMULA'_LE% 2 LEFTIOF'BL, RBL = RIGMT'OF'BL}
ICHART CBL = € TOFT BL;
CBL="e" TORT CBLE"w"
I (ALMOSTIDENT(RBL,R)
} ELgmSUMC(CBLE" 4" |1]=1),(Cx 4" || wi),RBL,R,PLM);
(PLM20 | EpmlBL N
| Ets'HEAPY 1TRIPLE(;=
(LBL, (PLM»Q [Ren|tat) EY)
)
MODIFts! TRUE!
)
)
)
)

1 , A
(*NOT?® MODIF | MODIFe=(ADDCL)I'TRUE' JADD(R)))

)
I
MODIF
3

fPROCY RRR3IVOID's REARRANGE(ROOT);

PRINTCCPINPUT 3",NEWLINE)); READPCBUF)}
IFORMULAY ROOT3=FORMPROC(1)) RRR;

TWHILE! REDUCE(ROOT) fpO' '8KIP! '0D'; RRR;
IWHILET NEGFAC(ROOT) iDO! RRR fOD';
DISTR(ROOT); RRRy o

TWHILE? ADD(ROOT) fDOf RRR fQDiy
TWHILE! FACTONE(ROQT) DOV ISKIPT t0OD7; RRRj
iWHILET ADD(RDOT) 'DOY RRR QD' &
TWHILE! ZERONE(ROOT) fpOt 18KIP! '0DVy RRR;
PRINT((NEWLINE, NEWLINE,"OUTPUT1",NEWLINE))
BUFi=* "5 PR(ROOT,1); PRBUF(M *);

fTO! S fpOt PRINT(NEWLINE) foDf

APPENDIX Bj EXAMPLES,

(I I 21T R 2 e 2 ¥

INPUT 3 s ,
A ¢+ (BeC)/(D/D+ComBwi) « & ¢ 1 \

QUTPUT
0

INPUT ¢
CXELIREX$2IAEXEIINCK44) N

OUTPUTY
XueXaXuXt]l OnXaXaX435aXaX+S0xX 424

INPUT 13
(324 | AnAeBrBu(A+B)x(A=B) | 2»5) &

(223xUmiQ | B8=2%2 | AmB) &
CgD N

oUTPUTS
CeD<0O

INPUT ¢
XgsXels Yi®Y42 § X>»5 & Y<€20 \

OUTPUT e
X»4 & Y<i8

41

42

INPUT ¢
Bi1sQ¢+is Ry=ReB § A=QxBeR \

OUTPUTS
BuQeA+R20

INPUT ¢
X»5 , (Xtm0 @ Xp=i) 8§ Xazi \

QUTPUTS
Xes8

INPUT 3
X€S0

(X<40 , (X$33 ® X{84)
@ X€b60 , (X:=5 ® Xis6)
)

$ xs4

\

OUTPUTS
X<50 & X»>=40

ONTVANGEN g SEP. 1977

