
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

L. AMMERAAL

IW 85/77

FORMULA SIMeLtFICATION IN RELATION TO PROGRAM
VERIFICATION

~
MC

AUGUSTUS

2e boerhaavestraat 49 amsterdam

PJU..nted at .the Mathema.:ti.c.a£ Cen.tn.e, 49, 2e BoeAhaa.ve-6:bLail:t, Am.6.teAdam.

The Mathema.:ti.c..a.l Cen.tn.e, 6ou.nded .the 11-th 06 FebJr..uaJLy 1946, .l6 a. n.on­
pJto 6U .in6.tl:tt.LUO Yl lU.JYl.in.g at .the pJr..omo.ti.o Yl O 6 pWte mathema.:ti.C6 a.nd U6
a.ppUc.a..ti.on6. I.t .l6 .6pon60ll.ed by .the Ne.thw.a.nd6 GoveAn.ment .thJr..ough :the
Ne.thw.a.nd6 0Jr..ga.n..iza.:ti.on 6oJr.. .the Adva.n.c.ement 06 PWte Re6ea.Jr..c.h (Z.W.0).

AMS(MOS) subject classification scheme (1970): 68Al5, 68Al0

ACM-Computing Reviews-category 5.24, 5.7.

Formula simplification in relation to program verification

by

L. Amm.eraal

ABSTRACT

Predicate transformers associated with assignment statements and con­

ditional statements are straightforward and can easily be mechanized. Except

for some simple cases, it is a non-trivial task to simplify the resulting

predicates automatically. It appears that formula simplification is the heart

of automatic aids for program verification. This paper shows how predicate

transformations and formula simplifications can be expressed in ALGOL 68,

a high-level programming language which has appropriate facilities for data

structuring.

KEYWORDS & PHRASES: sirrrpZifiaation, forrrru.Za manipulation, program

verification.

CONTENTS

1.

2.

3.

4.

5.

Generalized rational simplification

Description of the language •••

Formulas, binary trees, and ALGOL 68

Tidying up formulas ••

Simplification and predicate transformatipn.

References

Appendix A

Appendix B

The simplifying prog:e:am

Examples • • • • • • • •

3

7

15

22

27

29

41

1. GENERALIZED RATIONAL SIMPLIFICATION

In this paper, rational expressions are arithmetical expressions com­

posed of integer constants, variables, parentheses and the arithmetical

operators+,-, *, /, grouped together in the usual way. Thus

is a rational expression and in this special case it is most likely that a

simplification to the equivalent expression

is desired. The study of efficient algorithms to simplify rational expres­

sions is an interesting field of research [I], [2], [3]. It is, however, not

our only subject. Along with rational expressions, there are relational ex­

pressions which we would ilillllediately simplify by hand before presenting them.

For example

(-x) * X + 3 * X > - 2 * X * X + 5

is preferably simplified to

X * X + 3 * X - 5 > 0.

We therefore add the relational operators>,<, ~, ~,=,I to our language,

and represent them by>, < 9 >=, <=,=,#,respectively. We also introduce

the logical operators "and" and 11 or 11 ; which we represent by & and!, and the

logical constants 't' (true) and 'f' (false). We can now replace obvious

tautologies such as O = 0 and 5 > 0 by 't' and obvious contradictions such

as 1 = 0 and 5 < 0 by 'f'.

The following simplifications are easily performed:

<P & 't'
qi I t I

is simplified to

is simplified to

<P,

It I ,

2

cp ·& 'f'
cp 'f'

is simplified to

is simplified to

'f', and

cp •

We now introduce a less conventional extension of our language. If a is

a sequence of program statements (which we shall define syntactically in the

next section) and cp is a boolean expression, we regard

a $ cp

as a new logical formula. In Dijkstra's terminology [4], it is the weakest

precondition that corresponds with a and cp, or:

def a$ cp ==== wp(a,cp).

In the backward direction, predicate cp is transformed by statement a to

a$ cp. We may also define a$ cp as a necessary and sufficient condition im­

posed on all program variables before the execution of a, to ensure that

condition cp is satisfied after this execution. An example is.

X := X +} $ X > 5. (1)

We have extended our formal language in such a way that (1) is a formula

in this language, which happens to be equivalent to

X > 4. (2)

We obtain (2) from x + 1 > 5, which is found by substituting x + 1 for

x in x > 5. This substitution is usually referred to as Hoare's axiom for

the assignment statement [5]. Thus notations ass; QI (used by Church [6]),

s;(Q) (used by Floyd [7]), Qx[f] (used by Schoenfield [8]), and Q[f/x] (used

by Apt & De Bakker [9]) are written as

X := f; Q (3)

in our formal language.

It will now be clear that the notion of "rational simplification" can

be generalized in such'a way that it includes "predicate transformation"

and "substitution" as special cases.

2. DESCRIPTION OF THE LANGUAGE FORM

3

Simplifications like those outlined in the previous section are actually

performed by an automatic simplifier. This simplifier is an ALGOL 68 program

which we shall discuss in more detail. First, however, the set of all formu­

las that are candidates for simplification needs to be defined. We denote

this set by FORM. Thus FORM is the language of all input strings that are

processed succesfully by our simplification program. The following is a

context-free grammer for FORM in BNF; <formula> is the start symbol of

this granm.ar:

<formula> ::=<boolean formula> I < arithmetic expression>

< boolean formula>::=< boolean expression>

< statement sequence>$< boolean expression>

< statement sequence> ::=<statement> I
< statement sequence>;< statement>

<statement> ::=<assignment statement> I
< conditional statement>

< assignment statement> ::=<variable> :=<arithmetic expression>

< conditional statement> ::=<boolean expression> •<alternation>

<alternation> ::=(<statement sequence>@< statement sequence>)

< boolean expression> ::=<conjunction> I
< boolean expression>! <conjunction>

<conjunction> ::=<boolean primary>

<conjunction> & < boolean primary>

< boolean primary> ::= < 't' >

< 'f' >

4

< arithmetic expression>< relation symbol>

< arithmetic expression> I
(< boolean formula>)

< relation symbol> ::= = I # I > I <= I >= I <

< arithmetic expression> ::=<term>

< adding symbol>::=+ I -
<term>::= <factor> I

< arithmetic expression>< adding symbol>

<term>

<term>< multiplying symbol>< factor>

< multiplying symbol>::=* I /
<factor> ::=<variable>

<constant>

(< arithmetic expression>)

<variable>

<constant>

: := a b I C

p q I r

: := <digit>

I d

I s

I

e

t

f

u

<constant>< digit>

g

V

h

w

i

X

j I k I 1 I m I n I o I

y I z

<digit> : := 0 I I I 2 I 3 I 4 I 5 I 6 j 7 I 8 I 9

This syntax is such that a unique binary tree is associated with every

sentence of the language. The unconventional syntax chosen for conditional

statements is a consequence of this idea. Consider, for example, the formula

, a< b • (x:=a; y:=b@ x:=b; y:=a); y := y - x $ y + I > 0.

(In more conventional terms, this formula denotes the weakest precondition

that corresponds to the statement sequence if a< b then x := a; y := b else

x := b; y := a fi; y := y - x and the postcondition y + I > O).

According to our syntax, the following binary tree is associated with

this formula:

5

6

It will be clear from this example that parentheses do not occur ex­

plicitly in the tree; they may, however, influence the structure of the tree.

In general, each leaf of the tree can be a variable, a constant, or a truth

value ('t' or 'f'). The other nodes of the tree are operators. The following

table lists all operators of FORM, in increasing order of precedence:

priorit

2

3

4

5

6

7

8

9

operator

@

$

:=

&

= # < > <= >=

+ -

* I

The choice of the operator representations was based on the availability

of a conventional character set. Therefore# was taken instead off, and !

rather than I or v. Notice that all operators in our language are dyadic and

infix, i.e. they occur in the context:

left operand, operator, right operand.

This means that O must not be omitted in O - x, just like 1 must not be

omitted in 1/x.

Another consequence of having only dyadic operators is the absence of

a special operator for negation. We do not need it; for example, in FORM we

express the negation of

(a<b & c#d) ! e = f

by

(a>=b ! c=d) & e # f.

7

It goes without saying that a fdrmula such as a+ b + c is an abbre­

viated notation for (a+b) + c, and thus has the following associated binary

tree

It might look strange that a formula in FORM may be of either arithmetic

or boolean type. This somewhat liberal point of view was adopted for practi­

cal reasons. Our simplifier has to simplify both types of formulas anyhow,

and we felt it convenient if not only boolean but also arithmetic formulas

are accepted as input strings.

3. FORMULAS; BINARY TREES AND ALGOL 68

Algorithms are best expressed in high-level programming languages. We

have chosen ALGOL 68, and, among the numerous facilities of this language,

some concepts that we need will now be explained. Let us begin with a very

simple example. With the formula 9-2 we associate the binary tree:

We could write the following mode declaration for this simple type of

formulae:

mode simpform = struct (int left, char c, int right).

After the variable declaration

simpform f; ,

8

it would make sense to write the assignment statement

f:= (9,"-",2).

We now wish to implement formulas whose operands are in turn (non-atomic)

formulas. An example is 9-2-4, which corresponds to the tree

Obviously, our first attempt is too restrictive, since the mode

simpform allows only integers as operands. We want operands to be either

integers or non-atomic formulas. Since all non-atomic formulas in FORM have

the structure

operand.I, operator, operand 2,

we shall call them triples. We shall see that all atomic formulas in FORM

can be represented by integers. Thus a formula is either an (atomic) integer

or a (non-atomic) triple. In this terminology a triple has the structure

formula, operator, formula.

In ALGOL 68 we define the modes formula and triple by the mode

declarations:

mode formula = union (int, ref triple);

mode triple = struct (formula left, char c, formula right);

If we now declare

formula f, g, h;

we can assign 3 to f, 3+4 tog, and 8-2-3 to h by

f := 3; g:= heap triple:= (3,"+",4);

h := heap triple:=

(heap triple := (8,"-",2),

"-" ,
3) ; •

9

Up to now we have used integer constants and no variables in the exam­

ples. Our language is such that these integer constants are non-negative.

This offers the possibility to use negative integers to encode variables and

truth values. In ALGOL 68 we have standard operators abs and repr which

provides the desired one-to-one mapping, and its inverse, as follows:

letter

JI,

integer

- abs JI,

i

Note that in FORM a variable consists of a single letter. As to the encoding

of truth values, we declare

int true= - 1000, false= - 1001.

Assuming that variable f is declared as before, we can assign the for­

mula a< 13 & 't' to f by the assignment statement

f := (heap triple := (- abs "a", "<", 13),

II&",

true);

Since a given formula f can be either an integer or a (reference to a)

triple, we need a mechanism to find this out. In ALGOL 68 this is done as

follows:

case f

in (inti)= cr 1,

(ref triplet): cr 2

es:ac

If formula f happens to be an integer1 cr 1 is elaborated, in which we can

use f through i. In the alternative case, cr 2 is elaborated, in which the

current ref triple value off is accessed through t. We illustrate this

mechanism by a procedure to print a formula. A special provision will be

needed to insert parentheses in cases like

and

which, if no simplifications were performed, must be printed as (a-b) * (c+d)

and w - x -(y-z). Printing a (sub-) formula, we need information about the con­

text to decide whether or not parentheses are to be inserted. Roughly speak­

ing, they are to be inserted if a left(right) son operator binds looser (not

tighter) than its father. The procedure 11 pr 11 below shows this more precisely,

To avoid uninteresting complications, we ignore the fact that some operators

(viz. :=,>=and<=) are composed of two characters. The standard procedure

11whole11 decomposes an integer in its decimal digits. The following procedure

does the job of printing any formula f if it is called as pr(f,l):

proc pr = (formula f, int prio) void:

case f

in (int leaf): -
if leaf = true or leaf = false

then print (if_ leaf = true then " 't' " else " 'f' 11)

elif leaf< 0

then print (repr - leaf)

else print (whole (leaf,O))

fi ,

(ref triplet):

(char c = c oft; int p = priority (c);
',

if p < prio then print("(") fi;

pr (left of t,p);

print (c) ;

pr (right oft, p+I);

if p < prio then print(")") fi

)

11

Procedure "pr" shows how a tree representation of a formula is trans­

formed to a string representation. We shall now deal with the inverse

process, i.e. how to obtain the binary tree that is associated with a given

formula. In other words, "pr" is for output, and the following procedures

are for input. As before, we shall omit details that might distract our

attention from essential points. We shall, in particular, not worry about

diagnostic messages etc., but assume that only correct formulas, i.e. ele­

ments of FORM, are offered as input. (This attitude needs not necessarily be

unrealistic, since one could imagine that the formulas have already passed

some program for lexical and syntactic analyses, e.g. a compiler). As before,

we employ procedure "priority", which yields the priority number for any

operator, as given in the preceding section. To inspect the next character

to be read, we have a one-character buffer, declared and initialized by:

char buf; read (buf);

and the boolean procedure

proc inp = (char x) bool:

if buf = x then read {buf); true else false fi.

12

The variable "buf" is inspected.also by the following procedure "opera­

tor", which tests the next character for being an operator with a given

priority number "prio"; if it is, it is passed by the output parameter "op":

proc operator= (int prio, ref char op) bool:

if priority(buf) = prio

then op:= buf; read(buf); true

else false

fi.

We shall process a complete formula of FORM, no matter how complex, or

how simple, by the call

formproc (I).

Before dealing with this procedure "formproc", we introduce procedure

"primary", which reads boolean primaries, variables, constants and expres-

sions in parentheses; when "primary" is called, a correct formula must be

present. The procedure yields a formula, just like a boolean procedure yields

a boolean value. (Notice that "true" and "false" on the fourth and @.ixth

line are not underlined: they are integer variables in ALGOL 68, but encoded

truth values and hence formulas in FORM):

proc primary = formula:

if inp (" ' ") -
then if inp ("t") ---

then if -, inp (" I II) then

elif inp (" f")

then if -, inp (" ' "') then

else error

fi

elif inp (" (")

then formula f

if 7 (") ")

:= formproc (I);

then error fi;

f

error fi; true

error fi; false

else char buf0 = bu£;

if bu£ ~ "a" A bu£ ::;· 11 z11

then read(buf); - abs buf0

else inti:= 0, d;

fi

whiled:= abs bu£ - abs "0"; d ~ 0 Ad :s; 9

do i:= 10 * i + d; read (bu£)

13

We shall now show the procedure "formproc" (It was called "formproc"

rather than "formula" to avoid confusion with the mode formula that we: have

already). We could say that "formproc" does most of the work in reading and

analyzing the input formula and in building the associated binary tree. The

reader should not be mis.led by its compactness. It is in fact a generaliza­

tion of the idea of having separate syntactic procedures for "expression",

"term", "factor", etc., as is often used in recursive-descent parsing

methods; so in spite of its compactness, it performs almost the whole task

of syntactic analysis:

proc formproc = (int prio) formula:

if prio = 10

then primary

else formula f := formproc (prio+I);

char op;

fi.

while operator (prio,op)

do f := heap triple:= (f,op,formproc(prio+I))

od;

f

The reader will have noticed that the concept of recursion is often

employed in these procedures. This is not surprising, since our parsing

method is recursive by definition. Furthermore, we are manipulating binary

14

trees, which are most conveniently defined with the aid of recursion. For

readers who are unfamiliar with either recursion, ALGOL 68, or manipulating

trees, we proceed with showing three not too difficult procedures which are

useful for our purposes.

The first of these is "identical". It determines whether or not two

formulas f and g, stored in binary trees as usual, are identical:

proc identical= (formula f,g) bool:

case f

in (int flea£):

case g

in (int gleaf): £leaf= gleaf,

(ref triple gt): false

~,
(ref triple ft) :

~g

in (int gleaf): false,

(ref triple gt) :

if c of ft= c of gt

then if identical (left of ft, left of gt)

then identical (right of ft, right of gt)

else false

fi

else false

fi

esac

esac.

In contrast to "identical", whose only task is to construct an approp­

riate boolean value, the next procedure constructs a complete new tree,

which is an exact copy of the one that is passed as a parameter. The newly

generated tree does not share any nodes with the original one:

proc copytree = (formula f) formula:

case f

in (int leaf): leaf,

(ref triple t): heap triple :=

(copytree (left oft),

C of t,

copytree (right oft)

)

esac,

15

The next procedure contains a call of "copytree". It copies a given

formula f but, in the meantime, it replaces (in the copy) all occurrences of

a given variable v by a given formula g. Here too, the new tree is completely

distinct from the original one:

pro,~ subst = (char v, formula g,f) formula:

cas,~ f

in (int leaf):

if leaf= - abs v then copytree (g) else leaf fi,

(ref triplet): heap triple:=

(subst (v,g, left oft),

C oft,

subst (v,g, right oft)

)

esac.

4. TIDYING UP FORMULAS

Formulas are usually written down in a more or less canonical form. A

trivial examplt:! is the formula a + b which most of us would prefer to b + a.

In automatic simplification it makes sense to strive after obtaining canoni­

cal forms, for various reasons.

One of thi:!m is that identical subformulae are easier detected this way.

Suppose for example that we are given the formula

b *a* c + d - c *a* b.

16

Step-by-step simplification of this formula proceeds as follows:

Step I : Rearranging the factors of each term. This yields:

Step 2

Step 3

Step 4

a * b * c + d - a * b * c

(In fact this is a rather big step which consists of several more

elementary steps).

Rearranging the terms. This yields:

a * b * c - a * b * c + d

Canceling adjacent identical term with different signs. This yields:

0 + d

Deleting zero terms. This yields

d.

Rearranging factors and terms as in steps I and 2 above is similar to

sorting a sequence of numbers. For numbers we have a total ordering ("<"),

so it is natural to define a total ordering for formulas as well. Let us

call this ordering "less". A slight complication, to be mentioned later on,

will be ignored at this moment.

We express the ordering "less" on FORM by the following ALGOL 68 pro­

cedure:

proc less= (formula f,g) bool:

case f

in (int f):

~g

in (int g):

if f < 0 Ag< 0 then f > g else f < g fi,

(ref triple g): false

esac,

(ref triple f):

~g

1.n (int g): true

(ref triple g):

(int pf= priority (c off), pg= priority (c of g);

if pf f: pg then pf> pg

elif less (right off, right of g) then true ----
elif less (right of g, right of f) then fal~e

elif less (left of f, left of g) then true ----
elif less (left of g, left of f) then false

else C of f < C of g

fi

esac

17

Important properties of "less" are:

(i) If less (f,g) and less (g,h), then less (f,h) (Transitivity).

(ii) If less (f' g) then not less (g,f) (Asymmetry).

(iii) For all f E FORM: not less (f,f) (Irreflexivity).

(iv) For all f, g E FORM: either less (f ,g)'

or less (g,f),

or identical (f ,g) (less 1.S a total ordering).

These properties are important because we are aiming at obtaining

canonical forms. [For this purpose, it is essential that the ordering is

total. Supposie for instance that the ordering"<" for numbers were not de-·

fined for some pair of numbers, e.g • .for 5 and 7. Then sorting the sequence

IO, 5, 7, 3 could yield 3, 5, 7, IO, or alternatively, 3, 7, 5, 10; in other

words the sorted sequence would not be uniquely determined].

The complication mentioned previously has to do with a curious conven­

tional distinction 1.n ordering terms and ordering factors. Most of us proba­

bly prefer x + y + 2 to 2 + x + y as a canonical form, but at the same time

we write 2 * x * y rather than x * y * 2. Thus in connection with"+" we

appreciate the truth of "less (variable, constant)", whereas "less (constant,

18

variable)" ought to be true in a multiplicative context. We have solved this

little problem by supplying the procedure "less" with a third parameter

"prio" which tells which of both cases applies. We shall not dwell on this

detail. We shall now present a procedure to rearrange terms on the basis of

th~ procedure "less". To keep it readable we only deal with the connnutative

operators*,+,=, #, & and in this version. (In our implementation we did

not ignore the complication of non-connnutativ~ operators, but at this stage

we prefer readability to completeness. We hope that the simplified versions

of some procedures shown here are easily understood; it will then be not too

difficult to complement them with details which are not taken into consi­

deration here. Moreover, the source listing of the complete program is given

in Appendix A) •

To exchange two branches of a binary tree, we have the following proce­

dure:

proc exchange= (ref formula f,g) void:

(formula h := f; f := g; g := h).

Now consider the formula d + c + b + a whose binary tree is

We want to transform this tree into a similar tree corresponding to the

formula a+ b + c + d, by exchanging branches. There are two kinds of ex­

changes to be made. At the lowest level the left branch d and the right

branch care to exchanged. We call it a connnutative exchange, since it is

justified by the connnutative law. Another type of exchange is applied to,

e.g., band a. To justify this exchange we need not only the connnutative law,

but also the associative law. We therefore call it an associative exchange.

Reasoning inductively, we assume that we know how to rearrange the subtree

ford+ c + b, and we show how to rearrange the tree ford+ c + b + a:

19

induction
assumption

associative

- induction

assumption

exchange

We express this in ALGOL 68 by

proc rearrange= (ref formula£) void:

case f

in (ref triplet):

(ref forDn1la fl= left oft,

r = right oft;

char op= c oft;

if less (r, fl)

then exchange (Jl,r) # commutative exchange#

else case fl

in (ref triple t le£ t):

(ref formula fl left= left oft left,

r left= right oft left;

char opleft = c of tleft;

if opleft = op

then rearrange (fl) # induction assumption #;

if less (r, rleft)

then exchange (rleft,r)

20

)

fi

)

esac.

fi

fi

associative exchange#;

rearrange (2)

induction assumption#

We call a formula like a+ b + c + d (and its associated binary tree)

left-associative, because it is an abbreviated notation of ((a+b)+c) + d.

When a formula like a+ b + (c+d) is offered as input to our program it is

initially stored in the binary tree

0
As we have seen, the parentheses enclosing c +dare re-inserted when

this tree is offered to the procedure pr (given in section 3) for output.

However, what we actually want is to transform the tree above to its left­

associative equivalent:

Restricting ourselves to connnutative operators, we can perform this

transformation by the following procedure:

proc leftassoc = (ref formula f) void:

case f

in (ref triplet):

(leftassoc (left oft); leftassoc (right oft);

~ right oft

. in (ref triple tright):

if c of tright = c oft

then right oft:= left of tright;

left of tright := t;

f := tright; leftassoc(f)

fi

esac

)

esac.

21

Here again, we can verify the correctness of this procedure by induc­

tion on the complexity of the tree. We shall net give a formal proof, but

rather explain how it works by means of an example. Suppose that a+ (b+(c+d))

is to be transformed to its leftassociative equivalent a+ b + c + d. By the

call "leftassoc (right oft)" on the fourth line of the procedure, the tree

is (by our induction assumption) transformed to
(i)

Nodes (i) and (ii) correspond with "c oft" and "c of tright", respec­

tively. The assignment statement "right oft := left of tright" transforms

this tree to:

~muoTHLf:K }1Ai•H'h<\.t',1l'.,CH (.i.Nlt'll!M
AMSiLflDt1i\,l

22

The missing part is now attached at the right on

top of this tree by "left := t", yielding

The statement "f := tright" reflects the fact that a new node (ii) now

becomes the root of the tree, instead of the old one (i). The new tree cor­

responds to the formula a+ (b+c) + d which is less complex (with respect to

left-associativity) than the original one. Therefore, by induction, the only

step to complete the job is to apply "leftassoc" recursively to this tree.

5. SIMPLIFICATION AND PREDICATE TRANSFORMATION

Transforming b + a to a+ band other things that we did in the pre­

vious section might be considered too trivial to be called "simplification".

We shall now mention some more substantial simplifications, and, to be con­

crete, mention a number of procedures· of which our program is composed. It

should be emphasized, however, that knowledge of these procedures is by no

means needed for using our program. We are discussing techniques and we

sometimes talk about procedures and about a program to stress that these

techniques have been implemented and are not just loose ideas. Theim­

plementation is such that a formula of FORM followed by the closing symbol

"\" are the only input data. The user does not have to specify special op­

tions or other control information depending on the nature of the input

formula.

23

Let us start with some rather obvious simplications which have to do

with occurrences of zeroes and ones. ,The following· reductions are performed

by the procedure "zerone":

0 + f --+ f

f ± 0 -+- f

* f -+- f

f * --+ f

0 * f --+ 0

f * 0 --+ 0

f I -+- f

0 I f --+ 0

f I 0 --+ ?

The last two of these lines deserve an explanation. One could argue

that the information f # 0 is lost by reducing 0/f to 0. Some might consider

the possibility of defining 0/f equal to 1 if f happens to vanish. We prefer

the point of view that any denominator must not vanish, even if the numera­

tor does. On the other hand, whenever 0/f has a meaning, it is of arithmetic

type and, for our purpose, it would be most inconvenient if it had to be

transformed to something like

"O, provided f # O"

which has arithmetic as well as boolean aspects. For the same reason, we

shall simplify (x-2) / (x-2) to 1. Brown [2] does the same, and, as a justi­

fication, observes that the transformation conforms to the rules of the

field Z(x) of rational expressions in x over the ,domain Z, of integers. The

transformation "f/0--+ ?" is easier to explain. Whenever an explicit zero

occurs as a denominator, the question mark"?" is introduced. It should

simply be interpreted as an error code.

The procedure "distr" applies the distributive law with respect to

multiplication and addition (or subtraction). Thus

f * (g±h) --+ f * g ± f * h

(f±g) * h -+- f * h ± g * h.

24

It is well-known that it depends on the context whether multiplying out

or factoring leads to simpler formulas. Finding this out is too difficult a

job for our simplifier. Therefore we have chosen for multiplying out, so

(x-1) * (x+I) + I is nicely reduced to x * x. However, care has been taken

to postpone the call of "distr" until reductions like

(x+2) * (x-2) / ((x+2) * (x-3)) _. (x-2) / (x-3)

have been performed. For reductions like this, the procedures "rearrange"

and "leftassoc" are vital. These procedures transform

(x+2) * (x-2) / ((x+2) * (x-3))

to

(x+2) / (x+2) * (x-2) / (x-3).

(Recall that "*" and "/" have the same priority number). Thus identical

factors become neighbours, which are easily tested for identity (if they

occur on either side of"/") by the procedure "identical", introduced in

section 3. These tests and canceling of numerators and denominators are in­

corporated in the actual version of the procedure "rearrange" as listed in

appendix A. Special attention is required for a case like

(x+2) * (x-2) / ((x+3) * (2-x)).

Since variable terms precede constant terms and since we have no monadic

formulas, 2 - xis first transformed to O - x + 2. (We consider this as a

special notation for - x + 2 and accept Oas the only constant term that

can precede a variable term. There is no danger that f + 0 - g will survive,

because of our reduction f + 0 _. f). Now O - x + 2 is hardly an improvement

of 2 - x, and is far from being identical to x - 2. We therefore have a pro­

cedure called "negfac", which does away with "negative factors" like O - x + 2.

In fact, the "nomadic minus", here written as "O-" is transported to an

outer environment. For example

(O-x+3) * (0-y+z) I (O-p+l) / (0-q) * (O-r-1)

is transformed to

0 - ((x-3) * (y-z) / (p-1) / q * (r+l)).

Thus factors are brought into a canonical form, after which they can

effectively be tested for identity. Our sample formula

(x+Z) * (x-2) / ((x+3) * (2-x))

is indeed eventually reduced to

0 - (x+Z) / (x + 3).

A substantial simplification is performed by the procedure "add". It

reduces, e.g.

3 *a* (b+c) - 2 *a* (b+c) + 8 *a* (b+c)

to

9 *a* (b+c).

25

Here too, the procedure "identical" appears to be most useful. A compli­

cation is involved in terms whose coefficient are I, since "I*" is usually

omitted, or even removed by our own procedure "zerone". For addition,

l *a* (b+c) + 3 *a* (b+~) is simpler than a* (b+c) + 3 *a* (b+c). We

therefore have a procedure called "factone" which writes "I*" in front of

products which begin with variables. Later on, superfluous occurrences of

"I*" are removed by "zerone".

We are now going to deal with simplifications which are more often

found in papers on program verification than in publications on formula mani­

pulation. For the assignment statement and the conditional statement, sym-

26

bolically written as

X := E

if B then S else T fi,

it is well-known that with a given postcondition Q the corresponding weakest

precondition can be expressed by

wp(x:=E,Q) = the result of substituting E for x in Q,

wp(if B then S else T fi, Q) =(BA wp(S,Q)) V (7 BA wp(T,Q)).

For the substitution result above, we can use our procedure "subst"

listed at the end of section 3. As mentioned earlier, we write 11 &11 for "A",
II I II . for "v", and "B•(S@T)" for "if B then S else T fi" •

We also observed (in section 2) that we need no monadic not (7) opera­

tor, because, e.g., 7 (a<b) can be expressed by a>= b. Symbolically we shall

indicate such an elimination of "-," by writing B instead of -, B. In a ter-

minology introduced by Dijkstra [4], wp(S,Q) is the result of transforming

predicate Q by statement S. In [13] an explanation of predicate transformers

is given in terms of elementary set theory. We have adopted the formula

notation S $ Q for wp(S,Q). All formulas of the type S $ Q can be "simpli­

fied" according to the rules given above, which are in our notation:

x :=. E $ Q subst (x,E,Q)

B• (S@T) $ Q B & (S$Q) B & (T$Q).

,BY repeated application of these rules, all operators$ disappear, al­

though, in the beginning, their number may increase. In our program these

rules are implemented in the procedure 11wp11 • This procedure is called by the

procedure "reduce". The relation between both procedures is as follows. Let

"wp" perform the redaction S $ Q -r Q'; then 11reduce11 performs the reduc-
n

tion s1; .•• ;Sn-I; Sn $ Q -r s1; •.. ;Sn-I $ Q' if n > I and "reduce" simply

calls "wp" if n = I.

REFERENCES

[l] MOSES, J., Algebraic Simplification: A Guide for the Perplexed, Comm.

ACM~ (1971) 527-537.

[2] BROWN, w.s., On Computing with Factored Rational E:x:pressions, SIGSAM

Bull.~ (1974) 27-34.

[3] HALL, A.D., Factored Rational E:x:pressions in ALTRAN, SIGSAM Bull. 8

(1974) 35-45.

[4] DIJKSTRA, E.W., A Simple Axiomatic Basis for Programming Language

Constructs, Proc. Kon. Ned. Akad., Ser. A, 77 (or Indagationes

Math., 36), (1974) 1-15.

[5] HOARE, C.A.R., An Axiomatic Basis for Computer Programming, Comm. ACM

Q (1969) 576-·580.

[6] CHURCH, A., The Calculi of Lambda-conversion, Princeton University

Press (1941).

27

[7] FLOYD, R.W., Assigning Meanings to Programs, Proc. Symp. Appl. Math. 19,

American Math. Soc. (1967) 19-32.

[8] SHOENFIELD, J.R., Mathematical Logia, Addison-Wesley Publishing Company

(1967).

[9] APT, K.R. & J.W. DE BAKKER, Exercises in Denotational Semantics, in:

Proc. 5th Symposium on Mathematical Foundations of Computer

Science, Lecture Notes in Computer Science, Springer-Verlag, 45

(1976) 1-11.

[10] KING, J.C., A Program Verifier, Dept. of Computer Science, Carnegie­

Mellon University (1969).

[11] GOOD, D.I., R.L. LONDON & W.W. BLEDSOE, An Interactive Program Verifi­

cation System, Transactions on Software Engineering..!_ (1975)

59-67.

[12] CAVINESS, B.F., On Canonical Forms and Simplification, Dept. of Com­

puter Science, Carnegie-Mellon University (1968).

28

[13] AMMERAAL, L., How Program Statements Transform Predicates, in:

Informatik-Fachberichte, Springer-Verlag, 1_ (1976) 109-120.

APP~NDIX Al THE SIM~LlFYING P~QGRAM~

······················-·-···-·······
(# SIMPLIFICATION OF FORMULAS, L~ AMMtRAAL, 1 JULY 1q77 #

tINTi TRUE••lOOO, FALSE••1001J 1CHARf CCJ
ON LlNE ENDCSTANO IN,

C •REF'' iFILE I F) •BOOL' I
(NEWLIN!CF)t PRINT(NEWLINE)J 1 TRUE 1)

) '

29

'MODE' ffORMULA'•*UNIONf(fINTi,•REFf 'TRIPLE•>,
tMODE' ;TRlPLEi••STRUCTt(iFORMULA 1 LEFT,iCHAR' C1 1 FORMULA' RIGHT)r

iPROC 1 INP•(•CHAR 1 X)iaoo1.•icBUF;X&READP(BUF), 1 TRUE'£'FALSE')r

•CHARi BUFJ

fPROC• READP•C'REF• •CHARI C) 1VOID'i
(fWHILEi REAOCC)t PRINTCClr C • " " iDOt iSK?P• •ODf)J

iPROC' M■ (fBOOL 1 B) 1VOlD'i(iNOT 1 B&ERRO~)s

iPROCi ERROR••VOID•i(PRINT("ERROR")s STOP)s

tPROCt OIGITs(iCHARi C)iBOOL•i C 1 GE• "O" iANOi C •LEi "9"J

1PROCi LETTER•C'CHARi C)iBOOL'i C •GE• "A" 1 ANO• C 'L.Ei "Z"r

iP~OCi ~ESSs(iFORMULAi X,Y, •INTf PRlO)iBOOLf1
(•CHAR' CHXwNODE(X), CHY•NODECY)s

iBOOLi OX•OIGtTCCHX), OV•OIGIT(CHV), LX•LETTERCCHX), LY•LETTER(CHY)s
iBOOLi OX ■ iNQTf(DX iOR 1 LX), OY ■ fNOT•COV •oRt LY), P9:(PRIQ:9),

>,

Lli CHXCCHYs
COX iANDi OY
& •tNTi PX1PRIORITYCCHX>, PY•PRIORITYCCHY)f

(PX iNE 1 PV I PX>PV
& C X

.)

' (
C

'

)
)

" ox ')

iREF' ITRIPLE' BX)&
y
C
(

)

tREF'i iTRIPLE' BY)&
iREFi irORMULA' lX• LEFT •a,, BX, IY= LEFT 1 0F 1 av,

JX•RIGHT iQFi BX, JY•R?GHT •Ofi BYr
C LESS(JX,JV,PRIO) & •TRUE' 11 LESS(JY,JX,PRIO) l 1 FALSE 1

&iLESS(IX,lY,PRIO) l 1 TRUEi &i LESSCIV,IX,PRIO) & fFALSE 1

& L.
)

'NOT•

30

•PROCi NODE■ (iFORMULAi E)fCHARia
C E
l C iINT• C)J . . .

) ,
C C•o1•0 11 11Ce11"1"llC~1&"2"11C~TRUEl"T"&aCsFALSEl"F"&'REPR 1 C•C)),
C iREF'i •TRIPLE' 8)i C iQFt B

fPROC 1 EXCHANGECm.(fREFf •CHAR• X,Y)fVOIDfi
(iCHAR• z1x, xi=v, Yi•Z>,

iPROC• EXCHANGEI~(iREFf •FORMULA' X,Y>•voro•~
c•rORMULA' Z•XJ Xacv, Yi•Z>,

1PRoci PRIMARY•'FORMULA'I
C tNPC"•") 1 •HEAP• 1 TRIPLE 1s•CO,"•",PRIMARY)
&iINPC"+") I PRIMARY
liINPc•in) I CINPC"T")&MCINP("'"))JTRUE

1 M(INP("F"))JM(INP("i"))JFALSE
)

& i ; NP (" C") . .
& •FORMULA' l1~FORMPROCC1)J MClNP(")"))J I
' •CHAR• c,euF,

) '

C C iGE 9 "A" 1 AN0 1 C 'LE' nzn J READPCBUF')J •'ABS' C
£ 'INT• li ■ o, Dr 1BOOL• ABSENTp1iTRUEi1

•WHILE• Di ■ 1 ABS 1 BUF•fABSi "O"J O ;GE• 0 'ANO• D iLE' 9
'Doi Ia•10•I+OJ REAOP(BUF)J ABSENTa•iFALSEf
100 1,
(ABSENT I PRINT("LETTER OR DIGIT EXPEXTE0")1 STOP)J I

)

iPROCi OPERATOR•C'INTi PRIO,•REF• •CHAR• OP>•BOOLfg
C ~~IORITYCBUF)aPRIO
i OP:•SUFr READP(BUF)g

C BUF•"="
1 (OP•"<"&OP~~"t"l&OP■ ","IOP~•"J"lMCOP="a"))f

REAt,PCBUF)
~ ' . tTRUE 9

' tF'ALSEi
) '

•PROCi PRIORITY•C'CHARf ce~ .. ,.,1.1
,;c ■ "r" ,2
£ ,t•"S" &l
,,cc"."13
£iCa;"i"l4
,;c ■ "L"1S
&aC•"&"l~
&aC•""" iQRi

& aC•"t-"
&eC•"*"
&O
) .

iOR•
iOR 1
iORi

C1111"#" •OR• C"">"
Cir:ttt" # iLE' #

C•"•" 18
C•"l"&q

•OR' C11"<"
'oR• C•"l"

iPROCi FORMPROC•C'INTi PRIO)iFORMULA•~
CPRIOll10£PRIMARV
&irORMULA' Ei~FORMPROCCP~IO+i)B 1 CHAR 1 O?;

fWHILE' OPERATOR(~RIO,OP)
too' Ei~'HEAPi fTRIPLE•,~cE,OP,FORMPROC(PRI0+1))
I 00 I J
E

) ,
fPROC 1 LE,TASSOC•C'REF~ ,,oRMULAf E) 1BOOL 1 ;

(i600L.• MOOIF'ii 1 F'AL.SE 1; •FORMULA' CE)
& (fREFi 'TRIPLEf B);

(1CHARi C•C 90F 9 B1 iINT• P•PRIORITV(C)s
(RIGHT •OFi B
& (~RE'' iTRI?LEt BR)~

(1 CHAR 1 C~ ; C 'OF'' BR; 1INT' PR11PRIORITVCCR)1
(PR11P
& RIGHT fOf' B a= 1 FORHULA 1 CLEFT 'OF• BR)J

LEFT 1QF't BR a• 1 REFi iTRif'LE'CB)B
E:;BRr

)
)

) f
MOOIF'

)
I 1 FAI..SE f
) ,

C~~"•"I C iqr 1 BR;: CCR="+"l"•"&"t")
tzC:"/"l C 10F• BR;s CCR="*"1"/"l"*")
) ,
MOOIFa:: 1 TRUEi

31

32

tFROCi CONST~C•FORMULA• E)•BOOL•i
C iFORMUL,A@(E)
I C iINTi Ill I •GEf o,

C iREFi ffRIPLE' B)s
CONST(L.EFT 10F'' 8) •ANO'

) u

cc ioF• B ; "+ 11 •OR• C •OF 1 13 31 "•''> *ANO'
CONST(RIGHT fOF' S)

i PROC i !..EFT~ (i REF t i FORMULA i E) flUJH f FORMULA ta
('PORMULA'CfllC'REFi ffRI?LE• B)iLEFT 1 0rf a l ERROR; E)J

I PROC I R IGHT11; (i REF t i FORMULA i E) H~EF' 1 FORMULA ti
(iFORMULAi(E)S(iREri iTR!~L,E 1 B)aRIGHT iQFI B ! ERROR, E)r

fPRDC• REARRANG!~(iRfFI •FORMULAi E)~BOOL 1 a
(eeoot,.i MODlFg;iFALSEif

iWHU.Ei L.EFTAISOC(E) 1 00t MOOIF'n;fTRUf 1 t00 9 ;

(•,ORMUl.,A i Cl~)
I (iREF 1 •TRlPL!f B)i

(i~EF' iCHAR 9 e ~ C 10Fi Br •INT• PC.!J:PRIORlTV(C)B
iREFt 'FORMULA~ L = LEFT 10,• a, R = RIGHT 'OF' BJ
HODIFi~REARRANGECLJ tQRi REARRANGEC~lt
C iCHARi CL,111NOOE'.(L)B LESS(R,L.,PC) iAN0 1 PC>4 'ANDI PC:<10 3ANDi

PRtORITY(CL,) fNE 1 PC iAND• PC 1NEi 7 'ANO'
!NOTf 1CCl,.11; 11 p 1 iANO• C11 11 /" iORf CL.i="O" iANO• C="•")

l (CJ w1n & E ~m fHEAPf fTRIPLE• ~~ Cf,"*",L)J L~•l
&iC ~ "~ 11 & E 31 iHEAP 1 1T~IPLE; i= CE,"+",L)s Li~o
& EXCHJ,NGEICL,R)
H
HOOIFi;1'TRUE t

) $
(L.
I C'REr 1 1TRIPLE 1 BL)i

) '

C fREFf 'FORMULA' LBL g LEFT lQFI BL, RBL = RIGHT IQFt BL;
iREFi H:HAR' CBL =i C 10F t BLs
PRIORITV(e •oF• BL) = PC

l C I~ENTICALCRBL. 9R~ 'ANDi CBL fNE' C 1 ANOt (PC116 IQfP PC=<n
I Es~LBL; MODIF1; 1 TRUE'
&:LESS(R,RBL,PC) iAND' PC>4 9AND 1 PC<10
& EXCHANGEC(CBL,C):EXCHANGEICRBL,RJrMODIFt~ 1 TRUE'
)

(tNQTi HODIF •ANDI FC~1
I ltHAR' NODli~NODECL)J

C 'Ntni CONST(R)
'L~•'HEAPi. 1 TRIPLE';~(L,"~",R)i R;~o, MODIFa~tTRUE 1

,~NDDL•P+tt 1 QRI NODL="~"

33

)

34

fPROCi PRBUF1tiCHARi C)fVOtQ 1i
C C •NOTfCSUF••o• fANOl C•"•")

) '

& PRINT(

) ' . au,,,e

(BUF•"&" & " & "
,;euF•"&" , " & "
I tBUF•" E" & "c••
&iBUF•"l" & "~•"
& 8UF
))

fPRoct PR$(iFORMULA' E,tINTi PRIO)fVOID*s
C E
& C 'INTI V>i

) '

C V•TRUE lQRi V•FALSE
& PRBUF(fft 1)J PR8UF((VaTRUE1 1 T1 1"F"))r ,RBUFC"'")
' ' vco . 1 PRBUFt•REPRf•V)

& tSTRlNGt S•WHOL!CV,O)r
fFOR• l •To• •UPB 1 s •ooi PRBUF(StlJ) iOD'

)

~·~REFI fTRIPLE• B)~(•CHARI c~ CfOF•e, itNT(P•PRIORlTY(C)J
(PcPRIO&~RBUF("("))J
PR(LEFT •OFf 8, P)t

)

PRBUF(C)p PR(RtGHT iOF 9 B, P+l)J
(PcPRIO&PRBUF(")"))

fPROC 9 IOENTlCAL•C•FORMULA' E,F)iBOOL's
C E
1 C'lNTi CE)S

C F

) .

I (11NT 9 CF)g CE•CF
I 1F'ALSE 1

) (• • a •

('REF• 1 TRIP1..E 1 BE)a
C F
& C'R!F' •TRIPLE• BF)a

C C iOFi BE;; C •OFi SF
I C IOENTICALCLEFT •OF 1 8E, LEFT 1 0Ff BF)

i IOENTICALCRIGHT •OFi Bf, RIGHT fQFi BF)
& iF4LSE i
)

l •FAL.SE 9
)

& ''ALSE 1
)

fPROC' ZE~QNEBC 1REFf •FORMULA' !) 9800L 1 S
C fFORMUL,A' CE)
4 (iREFi •TRlPLEf BJ~ _

(iCHAR' C ~ C •OF• St fBOOL' PLUS• c ■ w+", MIN• C ■"•",
TIM•~•"~"(0IV• C~"l"J fBOO~~ ~OOIF~siFALSEfs
1PROC' H~C•FORHULA 1 I) 9VOtO•acEs~?, MOOIFi1tTRUEf)g
(RIGHT •OF' B -.
I C iINT• BRl a

35

C 1800L' ZERO~ BRso, ONE• BR,11
((PLUS tQRt MIN) iAN()i ZERO •ORf (TIM iOR• DIV) iANOt ONE
I M <L.EFT 'OF 1 Bl

)

)
) ,

&&TIM fAN0 1 ZERO 1 MCO)
,iDIV •ANOi ZERO l M(wiABS'"?")
)

(i NOT i MOO IF
1 C I.EFT 9 OF t B

I (1 INT 1 81.)i
C 1 BOOL• ZERO I BL ■O, ONE~ 8L=11

C Z~RO 1 ANO• PLUS 90R 1 ONE 14~0• TIM
I MCRIGHT •OF' 8)
£~ZERO iANOf CTIM ~ORi DIV) l M(Ol
J

)
) ,
C iNQTt MOOIF & HOOIFi=ZERONECLEFT 10Fi B))J
(9NOT 1 MOOIF & MODIFisZERONECRIGHT'OF 1 B))f
MOO!F

l 1FALSEf

) '
iPRoc• NEGATIVE•('REF' •cHAR• C)fVOIDi~ C~=CC="+"l"•"l"+")J

IPROC' CHSlGN;(fREF• 1F0R~ULA' E)•BOOLic
('FORMULA I CE)
! C iREFi •TRIPLE' B)i

C •REF 1 tCHARf C II C •OF• B,
•~EFi •FORMULA• L ~ LEFT iQFi B, R = RIGHT 1 0Ff a,
t:"•" 9 0R* C:i;"+"

& (Cmttlllltt •ANDf NOOECL);tto 19 I Ea;Rs 1 TRIJE 1
& CCH!lGN(L)ANEGATlVECC)itTRUE•J 1 FALSEt)
)

& •FALSE'
)

t iF'ALSEi
) ,

36

fPROC' CHSGN~C•R~Ff fFORMVLAf E, X)fBOOLf~
(iREF• iFOIU1lJL.A' 1i~x, Js,E; ltHAR' C:Hs. 'INT 1 N1110,

~WHILE~ CHi~N9DECI)r CH1w~ff fORj CH~ff~tt

) '

eooi J;~I, N+a~1,
la~(iFORMULAI (l)l('REF' *TRIPLE' 8)~ LEFT 1 0,, B)

roof, . .
C CH~jon fAND~ NODE<Jl~"•"
& I~~,, E ~~ 1HEAPf fTRIPLtf i~ CO,"••,Elt

Tro 1 N•1
4t,Qi

C iFORMlJLA 9 CI)
£ C'REFI 1TRIPLEf B)atNEGATIYECC •a,, e,, l~gLEFT 10,, B)
) .

:~~;, •FORHULA 1 (l)i=(fFORMULAjCil&(IREF•fTRIPLEf B)~RIGHT •OFi B)J
•TRUE'

& 'F'ALSE 1
)

i PROC t NEGF AC;~ C 'REF i i FORMULA i E) 'BOOL' 8
(iBOOLI ~00%Fa,fFALSEfs

(fFORMULA*(El .
I C fREFf. 'TRIPLE' SJ~

(•CHARI c: t11 C 10F"i BJ

)

IRE'' fFORMULA' L = LEFT 'OF• 8, Rs RlGHT fQFf BB
C C'"*" 90FP C'1! 11 /"

I MODIFi~CCHSGNCE,LJ&iTRUEf&CHSGNCE,Rl)
) ,
C hJOT' MODIF
& MOOIF~J(NEGFACCL)& 9 TRUE*&NEGFACCRJJ
)

) s
MOOIF

) ,
fPRDC 1 CDFYTR!Em('FORMULA' !)'FORMULA'~
C E
& C ttNTf C)sC:,

C «Rf;Fi iTRl(PLEf B) a iHEAPi •TRIPLE' ii
(COPVTRE!CL!FT fQFi e,, C IOF 9 a, CDPYT~EE(RIGHT 1 0FI B))

) 9

fPROCi sue 1111'.'CHAR' v, ,,oRMUL,.Ai E, iFORMULA' F) 1FORMUL.Alg
SUBSTITUTE E FOR VIN r I
C F
& (~INT! ~J~(C~•~ABS 1 _y I CO~YTREEC~) I CJ,

C1 R!F 1 'TRIPLE' B)stHEAP 1 •TRIPLE•;~
(SUBSTCV,f,LEFT ,a,, 6), C 'DP 1 e, SUBSTCV,E,RIGHT tQFi B)J

37

-
iPROCf
C E
! C

C
(

iINTfJg(fCHARt CC,NODECE)t CC•"T" I FALSE 1 M(CC="F")JTRUE),
iREFf •TRIPLE' B)i
•RtFi •CHAR' C llll C iopre B,
'REF' 'FORMULA' LI LEFT iOFi B, R ~ ~IGHT •oF• a, c~•
(C•"I" fQRf C~"&"
& Li,NEGATECL)r R~1NEGATECR); CC~"l" l "&" I "l")
&iC• 111 c" 1 "l"
&iC• 1">" & "t"
liC• 1"t" 1 ">"
'JC• IIIJ" ' "<"
'SCII IIIIJ!t £ "#"
I M(C 1'-"#")J "•"
)J E

J
h

iPROCf WP~CfFORMULAf S1 Q)IFORMULA 1 1
(s
l C IREFI •TRIPLE' B)~

) ,

(•REF• •CHAR' C II C fQF 1 B,
iREF• •FORMULAi I,, I LEFT tOF 1 B, R := RIGHT 'OF' Br
C 1 "i"

& SUBIT(NODECLl,R,Q)
&~C, ••" # CONDITIONAL STATEMENT*
l C R

I C il~EF• •TRIPLEi BR>a

)

C iREFf. IFORMULAf SI LEFT iOFf BR, T • RIGHT fOFt BRJ
IHEAPi ffRIPLEi~•
C'HEAPi ITRIPLE't=CCOPYTREEtL>,"&",WPCS,Q)), "&",

1 HEAPi 1 TR!PLE 11•CNEGATECCOPVTREE(L)),"&",WPCT,Q))
)

1 ERRORt •St<IP•
)

iPROC 1 REl)UCE;(IREF• iFORMULA• E) 1 BOOL'i
(i FqRMU~1l f CE) ,
1 (IREFt 'TRIPLE' 8)8

C 1REFi 1 FORMUL4' LI LEFT 'OFi B, Rm R!GHT 1 0F• 6,
i'C:HAR 1 C as C 'OF' 9 Bt
C , 1t:91t

I C L
& C iREFI •TRIPLE' BL)&

C i~EFf fFQRMULAf LBL a LEFT fOF 1 BL, RBL: RIGHT fOF 1 BL,
iCHARi CBL; C fOF' BLJ
Eh=c ca1.. , "1''

38

& 1 HEA~' iTR?PLE•s=CLBL, 11 !", WF(RB~,R))
! WPCL.,R)
) ,

i TRUIE i
) -

' 1FA1..S£f
)

i 9FALSE 1

)
& @FALSE•

) '
iFijOC' OiSTR-C 9REF 9 9FORMULA' El 9VO!O'J
(tFORMUl,.At(t)
' (fREFf •TRIPLE' B)i

(•~EFi 1 FORHU1..A' L. • !..EFT •OF 1 B, R ;= RIGHT '0Ft Eh
DISTRC~J; DISTRCR)s
C C iOFi B ,1111r1t
£ C (tFORMUL.A'CR)

£ (iREF• iTRIPLEf BR)i
C iCHAR' CBR ~ C iOFf BRJ

iCCBFh•"t" iOR 9 CBR11"•") 'A"!Ot NODECL.') 'NE 1 11 1"
' i~ i; f Hll!AFH i TR H"LE q II

(iHEAP* iTRIPLEi, ■ CL,"*",LEFT ior• BR), CBR,
iHEAPi 9TRIPL.Eism(COPYTREECL.l, 11 t 11 ,RIGHT 'Ofi BR) JJ

DlSTR(E); 1 TRUE 1
& 'FALSE: 9
J

£ IFALSE:t
) .

& •SKIP 1

I C •FORMULA'(!..)
1 C iREFi fTRIPLEf BL)~

C iCHAR' CBL; C iQFf BL;
rtBLl"ttt 10R 1 CBL=="•") iAND 1 "IODECR) 1 NEt 1t/1t
I " • - ,., • •

'Eze•HEAP' 1 TfUPLE'P=
CiHEAP• iTRIPLEi;a(LEFT •or1 B~,"*",R),CBL,

)

IHEAPi fTRIPLE'~•CRIGHT IQFf BL,"-",CO~YTREECR)))g
OISTR(E)

•PROC 1 CONSFAC•CfREF• iFORMULAf E) 1 BOOL 1i
(•FORMULA'CE)
I ('INT' t)i

< tco .
1 Ei•IH!APf fTRIPLEfi ■ Cl,"*",I)t fTRUE• 1 fF4LSEi

39

:,REFi 'TR1PLEf 8)1(C 1 0Fi 8 • •t•&CONSFAC(LEFT •OF 1 B)&fFAL$Ef)
) '

) ,
)

!)IBOOL'I

fREFi iTRIPLE' B)~
iREF• ~FORMULA* L • LEFT •oF• 8, R • RIGHT 'OF' e,
•CHARI C I C tQfl'I 8s
(C~'~" iORf Cw••"
& MODIFi1 CONSFACCL) foRf CONSFAC(R)

!JNOTi MODIF&MODl,~1CFACTONE(L)£'TRUEi&FACTONE(R)))

) ' MODIF

iPROCj ALMOSTIOENT~C•FORMULAl E,F)fBOOLfs
C E . •
& (fINTf E:I)I

>,

C ~ I ('INT• Fl)a El~O fANOi FI,o & •FALSEf),
(•RtF• 1TRIPLE' Ea) I

' F' I C tRt;F 1 •TRlPLEi F8)1
(C •OFi ES 3 C 10F 1 ,e •AND• 1DENTICALCRIGHTIOF 1EB,RIGHT•or•FB)
& ALMOSTIDENT(L!FT tOF 1 EB, LEFT iQFf PB)
& iFALSt•
)

l 'fPALSE 1

'
fPROCf SUM1(iINTi SlGNE,SIGNF,iFORMULA• E.F,iREF 1 tzNTi PLM>•FORMULA'i
(1HEAPi fFORMULA' S i, COPVTREECE)t

) '

i1NT 1 FACTORtSIGNE•LEFTLEAFCE)+SlGNF•LEFTLEAFCF)J
CHANGEL.EFT CS, f ABS t FACTOR) t
PLMi-.CFACTOR•Ol•lliFACTOR•O&Ol1)J
s

tPROC' ~EFT~EAF■(1 FORMULAf !)•INT'& .
C E & (1 PIT• I)al, C'~EF' 1 TRIPLE' B)ILEFTL.EAF(LEFT iOft B))J

•PROC 1 CHANGELEFT•C'REFf fFORMULA' E, •INTf c,,voto•a
C'F0RMULA'CE)&(iINT 1)iEi ■ C,C 1 REF 1 tTRIPLti B)tCHANGELEFTCLEFT'OFiB,C))f

)

40

fPROCI ADO~(fREFf IFORMULAt ElfBOOLfJ
(fSOOli,i MQC1IF311JdrAL$E•s 'INT' PL.Mt 1FORMUL.Af Els

(tFORMU!i,j1tCE) . .
& C IREFt 'TRIPLE' B)a

(tfff;Fi. iFORMUL.Af I.~ LEFT •OF' a, R II RIGHT •o,, a,
•eHARi C 'C fOFf Ba
C C~"+·" iOR 9 Cfi9"•"
I C A~MOSTlDENTCL,R) ·.

)
) 9
MOOIF

) B

l Ea,SUHC1,CC~"+"l1A•1l,L,R,PLM)J
C PLM<O & E~1fHEAPi fTRtPLE•~~CO,"•",E)Jg MOOIPa~1TRUEf

& C fFORMUI..AiCL)
& C fRgFt 'TRI~LEi BL)~

(!REF• .•FORMULA• .LB~~ 1..EF'T•OF 9 81.., REH .. 111 RIGHT 1 0F''BLJ
*CHAR' C8L, C 10Ft BL1
CBLa"+" fOR 9 CBL~"•"

i C ALMOSTIOENTCR61..,R>

l

! E1i,SUHC(CB~i"+"&li•1),CC~"+"111•1),RBL,R,PLM);
CPL.MIO 1 EamLBL
i Ei1 1HEAP' 1 TRIPLE'&ffl

CL6L,CPLM~Ol"+"l"•"l,E1)
) , .
MOOIF'ur•TRUE•

J

iPROCi RRR1ivo1o•a REARRANGECROOT)g

PRINTC(•INPUT ;•,NEWLINEJ)J REAOPCBUF)J
IFORHULA' RDDTs~FDRMPROC(lJ; RRR:
'WHILE' REOUCE(ROOT) too• •SKIP' 100,, RRRJ
iWHIL.E t N! AC(ROOT) ioo• RRR too•'
OISTR(ROOT)i RRRJ
iwHtLE' A00(ROOT) too' RRR •oor,
iWHIL.Ef FACTONECROOTl f[:,of 1SK1Pi 'OOi: RRRt
t~HUL,Ei AOOCROOT) •oo• RRR '00' f
iWHIL,!f Z:ERON!CROOT) 100 1 tSIUFH 1001, RRR;
PRl~TCCNEWLINE, N!WLINE,•DUTPUTi",NEWLl~E))t
au,,~~ NI PRCROOT,l)s PRBU'C" "J;
tfOi 5 0001 PRINT(NEWLINE) tooi

INPUT:
A+ CB•C>ICDID+C•8~1) • ~ ♦ 1 \

OUTPUT:
0

INPUT a
CX+1)•(X+Z>•CX+3l•CX+4) \

OUTPUTa
x~x*X•X+10•XnX*X+lS•X•X+50•Xt24

INPUT I
(3)4 1 AtA•B•B~CA+B)*CA•BJ 1 2>S J &
C 2~3•4ulO 1 8=2•2 1 AaB) &
C<D \

OUTPUTi
C•O<O

INPUT 8
Xg~X+lB Vg~Vt2 S X>S & V<20 \

OUTFUT:
X>Q & Y<18

41

42

INPUT a
Qa•Q+11 Ra•R•B $ A•QtB ♦ R \

OUTPUTI
B•Q•A+R•O

INPUT I
X>5 • (X~•O I X8~1) S XII\

OUTPUTI
X<;S

INPUT a
X<50
ill

()(<40 • C)Caa3 -)($11114)

' X<60 11 cx;as ' xiso)
)

I XC4
\

OUTPUTi
X<SO & X>llQO

ONTVANGEN 8 SEP. 1977

