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Formula simplification in relation to program verification 

by 

L. Amm.eraal 

ABSTRACT 

Predicate transformers associated with assignment statements and con­

ditional statements are straightforward and can easily be mechanized. Except 

for some simple cases, it is a non-trivial task to simplify the resulting 

predicates automatically. It appears that formula simplification is the heart 

of automatic aids for program verification. This paper shows how predicate 

transformations and formula simplifications can be expressed in ALGOL 68, 

a high-level programming language which has appropriate facilities for data 

structuring. 

KEYWORDS & PHRASES: sirrrpZifiaation, forrrru.Za manipulation, program 

verification. 
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1. GENERALIZED RATIONAL SIMPLIFICATION 

In this paper, rational expressions are arithmetical expressions com­

posed of integer constants, variables, parentheses and the arithmetical 

operators+,-, *, /, grouped together in the usual way. Thus 

is a rational expression and in this special case it is most likely that a 

simplification to the equivalent expression 

is desired. The study of efficient algorithms to simplify rational expres­

sions is an interesting field of research [I], [2], [3]. It is, however, not 

our only subject. Along with rational expressions, there are relational ex­

pressions which we would ilillllediately simplify by hand before presenting them. 

For example 

(-x) * X + 3 * X > - 2 * X * X + 5 

is preferably simplified to 

X * X + 3 * X - 5 > 0. 

We therefore add the relational operators>,<, ~, ~,=,I to our language, 

and represent them by>, < 9 >=, <=,=,#,respectively. We also introduce 

the logical operators "and" and 11 or 11 ; which we represent by & and!, and the 

logical constants 't' (true) and 'f' (false). We can now replace obvious 

tautologies such as O = 0 and 5 > 0 by 't' and obvious contradictions such 

as 1 = 0 and 5 < 0 by 'f'. 

The following simplifications are easily performed: 

<P & 't' 
qi I t I 

is simplified to 

is simplified to 

<P, 

It I , 
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cp ·& 'f' 
cp 'f' 

is simplified to 

is simplified to 

'f', and 

cp • 

We now introduce a less conventional extension of our language. If a is 

a sequence of program statements (which we shall define syntactically in the 

next section) and cp is a boolean expression, we regard 

a $ cp 

as a new logical formula. In Dijkstra's terminology [4], it is the weakest 

precondition that corresponds with a and cp, or: 

def a$ cp ==== wp(a,cp). 

In the backward direction, predicate cp is transformed by statement a to 

a$ cp. We may also define a$ cp as a necessary and sufficient condition im­

posed on all program variables before the execution of a, to ensure that 

condition cp is satisfied after this execution. An example is. 

X := X +} $ X > 5. (1) 

We have extended our formal language in such a way that (1) is a formula 

in this language, which happens to be equivalent to 

X > 4. (2) 

We obtain (2) from x + 1 > 5, which is found by substituting x + 1 for 

x in x > 5. This substitution is usually referred to as Hoare's axiom for 

the assignment statement [5]. Thus notations ass; QI (used by Church [6]), 

s;(Q) (used by Floyd [7]), Qx[f] (used by Schoenfield [8]), and Q[f/x] (used 

by Apt & De Bakker [9]) are written as 

X := f; Q (3) 

in our formal language. 



It will now be clear that the notion of "rational simplification" can 

be generalized in such'a way that it includes "predicate transformation" 

and "substitution" as special cases. 

2. DESCRIPTION OF THE LANGUAGE FORM 
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Simplifications like those outlined in the previous section are actually 

performed by an automatic simplifier. This simplifier is an ALGOL 68 program 

which we shall discuss in more detail. First, however, the set of all formu­

las that are candidates for simplification needs to be defined. We denote 

this set by FORM. Thus FORM is the language of all input strings that are 

processed succesfully by our simplification program. The following is a 

context-free grammer for FORM in BNF; <formula> is the start symbol of 

this granm.ar: 

<formula> ::=<boolean formula> I < arithmetic expression> 

< boolean formula>::=< boolean expression> 

< statement sequence>$< boolean expression> 

< statement sequence> ::=<statement> I 
< statement sequence>;< statement> 

<statement> ::=<assignment statement> I 
< conditional statement> 

< assignment statement> ::=<variable> :=<arithmetic expression> 

< conditional statement> ::=<boolean expression> •<alternation> 

<alternation> ::=(<statement sequence>@< statement sequence>) 

< boolean expression> ::=<conjunction> I 
< boolean expression>! <conjunction> 

<conjunction> ::=<boolean primary> 

<conjunction> & < boolean primary> 

< boolean primary> ::= < 't' > 

< 'f' > 
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< arithmetic expression>< relation symbol> 

< arithmetic expression> I 
(< boolean formula>) 

< relation symbol> ::= = I # I > I <= I >= I < 

< arithmetic expression> ::=<term> 

< adding symbol>::=+ I -
<term>::= <factor> I 

< arithmetic expression>< adding symbol> 

<term> 

<term>< multiplying symbol>< factor> 

< multiplying symbol>::=* I / 
<factor> ::=<variable> 

<constant> 

(< arithmetic expression>) 

<variable> 

<constant> 

: := a b I C 

p q I r 

: := <digit> 

I d 

I s 

I 

e 

t 

f 

u 

<constant>< digit> 

g 

V 

h 

w 

i 

X 

j I k I 1 I m I n I o I 

y I z 

<digit> : := 0 I I I 2 I 3 I 4 I 5 I 6 j 7 I 8 I 9 

This syntax is such that a unique binary tree is associated with every 

sentence of the language. The unconventional syntax chosen for conditional 

statements is a consequence of this idea. Consider, for example, the formula 

, a< b • (x:=a; y:=b@ x:=b; y:=a); y := y - x $ y + I > 0. 

(In more conventional terms, this formula denotes the weakest precondition 

that corresponds to the statement sequence if a< b then x := a; y := b else 

x := b; y := a fi; y := y - x and the postcondition y + I > O). 

According to our syntax, the following binary tree is associated with 

this formula: 
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It will be clear from this example that parentheses do not occur ex­

plicitly in the tree; they may, however, influence the structure of the tree. 

In general, each leaf of the tree can be a variable, a constant, or a truth 

value ('t' or 'f'). The other nodes of the tree are operators. The following 

table lists all operators of FORM, in increasing order of precedence: 

priorit 

2 

3 

4 

5 

6 

7 

8 

9 

operator 

@ 

$ 

:= 

& 

= # < > <= >= 

+ -

* I 

The choice of the operator representations was based on the availability 

of a conventional character set. Therefore# was taken instead off, and ! 

rather than I or v. Notice that all operators in our language are dyadic and 

infix, i.e. they occur in the context: 

left operand, operator, right operand. 

This means that O must not be omitted in O - x, just like 1 must not be 

omitted in 1/x. 

Another consequence of having only dyadic operators is the absence of 

a special operator for negation. We do not need it; for example, in FORM we 

express the negation of 

(a<b & c#d) ! e = f 

by 

(a>=b ! c=d) & e # f. 
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It goes without saying that a fdrmula such as a+ b + c is an abbre­

viated notation for (a+b) + c, and thus has the following associated binary 

tree 

It might look strange that a formula in FORM may be of either arithmetic 

or boolean type. This somewhat liberal point of view was adopted for practi­

cal reasons. Our simplifier has to simplify both types of formulas anyhow, 

and we felt it convenient if not only boolean but also arithmetic formulas 

are accepted as input strings. 

3. FORMULAS; BINARY TREES AND ALGOL 68 

Algorithms are best expressed in high-level programming languages. We 

have chosen ALGOL 68, and, among the numerous facilities of this language, 

some concepts that we need will now be explained. Let us begin with a very 

simple example. With the formula 9-2 we associate the binary tree: 

We could write the following mode declaration for this simple type of 

formulae: 

mode simpform = struct (int left, char c, int right). 

After the variable declaration 

simpform f; , 
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it would make sense to write the assignment statement 

f:= (9,"-",2). 

We now wish to implement formulas whose operands are in turn (non-atomic) 

formulas. An example is 9-2-4, which corresponds to the tree 

Obviously, our first attempt is too restrictive, since the mode 

simpform allows only integers as operands. We want operands to be either 

integers or non-atomic formulas. Since all non-atomic formulas in FORM have 

the structure 

operand.I, operator, operand 2, 

we shall call them triples. We shall see that all atomic formulas in FORM 

can be represented by integers. Thus a formula is either an (atomic) integer 

or a (non-atomic) triple. In this terminology a triple has the structure 

formula, operator, formula. 

In ALGOL 68 we define the modes formula and triple by the mode 

declarations: 

mode formula = union (int, ref triple); 

mode triple = struct (formula left, char c, formula right); 

If we now declare 



formula f, g, h; 

we can assign 3 to f, 3+4 tog, and 8-2-3 to h by 

f := 3; g:= heap triple:= (3,"+",4); 

h := heap triple:= 

(heap triple := (8,"-",2), 

"-" , 
3) ; • 
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Up to now we have used integer constants and no variables in the exam­

ples. Our language is such that these integer constants are non-negative. 

This offers the possibility to use negative integers to encode variables and 

truth values. In ALGOL 68 we have standard operators abs and repr which 

provides the desired one-to-one mapping, and its inverse, as follows: 

letter 

JI, 

integer 

- abs JI, 

i 

Note that in FORM a variable consists of a single letter. As to the encoding 

of truth values, we declare 

int true= - 1000, false= - 1001. 

Assuming that variable f is declared as before, we can assign the for­

mula a< 13 & 't' to f by the assignment statement 

f := (heap triple := (- abs "a", "<", 13), 

II&", 

true); 

Since a given formula f can be either an integer or a (reference to a) 

triple, we need a mechanism to find this out. In ALGOL 68 this is done as 

follows: 



case f 

in (inti)= cr 1, 

(ref triplet): cr 2 

es:ac 

If formula f happens to be an integer1 cr 1 is elaborated, in which we can 

use f through i. In the alternative case, cr 2 is elaborated, in which the 

current ref triple value off is accessed through t. We illustrate this 

mechanism by a procedure to print a formula. A special provision will be 

needed to insert parentheses in cases like 

and 

which, if no simplifications were performed, must be printed as (a-b) * (c+d) 

and w - x -(y-z). Printing a (sub-) formula, we need information about the con­

text to decide whether or not parentheses are to be inserted. Roughly speak­

ing, they are to be inserted if a left(right) son operator binds looser (not 

tighter) than its father. The procedure 11 pr 11 below shows this more precisely, 

To avoid uninteresting complications, we ignore the fact that some operators 

(viz. :=,>=and<=) are composed of two characters. The standard procedure 

11whole11 decomposes an integer in its decimal digits. The following procedure 

does the job of printing any formula f if it is called as pr(f,l): 

proc pr = (formula f, int prio) void: 

case f 

in (int leaf): -
if leaf = true or leaf = false 



then print ( if_ leaf = true then " 't' " else " 'f' 11 ) 

elif leaf< 0 

then print (repr - leaf) 

else print (whole (leaf,O)) 

fi , 

(ref triplet): 

(char c = c oft; int p = priority (c); 
', 

if p < prio then print("(") fi; 

pr (left of t,p); 

print (c) ; 

pr (right oft, p+I); 

if p < prio then print(")") fi 

) 
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Procedure "pr" shows how a tree representation of a formula is trans­

formed to a string representation. We shall now deal with the inverse 

process, i.e. how to obtain the binary tree that is associated with a given 

formula. In other words, "pr" is for output, and the following procedures 

are for input. As before, we shall omit details that might distract our 

attention from essential points. We shall, in particular, not worry about 

diagnostic messages etc., but assume that only correct formulas, i.e. ele­

ments of FORM, are offered as input. (This attitude needs not necessarily be 

unrealistic, since one could imagine that the formulas have already passed 

some program for lexical and syntactic analyses, e.g. a compiler). As before, 

we employ procedure "priority", which yields the priority number for any 

operator, as given in the preceding section. To inspect the next character 

to be read, we have a one-character buffer, declared and initialized by: 

char buf; read (buf); 

and the boolean procedure 

proc inp = (char x) bool: 

if buf = x then read {buf); true else false fi. 
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The variable "buf" is inspected.also by the following procedure "opera­

tor", which tests the next character for being an operator with a given 

priority number "prio"; if it is, it is passed by the output parameter "op": 

proc operator= (int prio, ref char op) bool: 

if priority(buf) = prio 

then op:= buf; read(buf); true 

else false 

fi. 

We shall process a complete formula of FORM, no matter how complex, or 

how simple, by the call 

formproc (I). 

Before dealing with this procedure "formproc", we introduce procedure 

"primary", which reads boolean primaries, variables, constants and expres-

sions in parentheses; when "primary" is called, a correct formula must be 

present. The procedure yields a formula, just like a boolean procedure yields 

a boolean value. (Notice that "true" and "false" on the fourth and @.ixth 

line are not underlined: they are integer variables in ALGOL 68, but encoded 

truth values and hence formulas in FORM): 

proc primary = formula: 

if inp (" ' ") -
then if inp ("t") ---

then if -, inp (" I II) then 

elif inp (" f") 

then if -, inp (" ' "') then 

else error 

fi 

elif inp (" (") 

then formula f 

if 7 (") ") 

:= formproc (I); 

then error fi; 

f 

error fi; true 

error fi; false 



else char buf0 = bu£; 

if bu£ ~ "a" A bu£ ::;· 11 z11 

then read(buf); - abs buf0 

else inti:= 0, d; 

fi 

whiled:= abs bu£ - abs "0"; d ~ 0 Ad :s; 9 

do i:= 10 * i + d; read (bu£) 
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We shall now show the procedure "formproc" (It was called "formproc" 

rather than "formula" to avoid confusion with the mode formula that we: have 

already). We could say that "formproc" does most of the work in reading and 

analyzing the input formula and in building the associated binary tree. The 

reader should not be mis.led by its compactness. It is in fact a generaliza­

tion of the idea of having separate syntactic procedures for "expression", 

"term", "factor", etc., as is often used in recursive-descent parsing 

methods; so in spite of its compactness, it performs almost the whole task 

of syntactic analysis: 

proc formproc = (int prio) formula: 

if prio = 10 

then primary 

else formula f := formproc (prio+I); 

char op; 

fi. 

while operator (prio,op) 

do f := heap triple:= (f,op,formproc(prio+I)) 

od; 

f 

The reader will have noticed that the concept of recursion is often 

employed in these procedures. This is not surprising, since our parsing 

method is recursive by definition. Furthermore, we are manipulating binary 
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trees, which are most conveniently defined with the aid of recursion. For 

readers who are unfamiliar with either recursion, ALGOL 68, or manipulating 

trees, we proceed with showing three not too difficult procedures which are 

useful for our purposes. 

The first of these is "identical". It determines whether or not two 

formulas f and g, stored in binary trees as usual, are identical: 

proc identical= (formula f,g) bool: 

case f 

in (int flea£): 

case g 

in (int gleaf): £leaf= gleaf, 

(ref triple gt): false 

~, 
(ref triple ft) : 

~g 

in (int gleaf): false, 

(ref triple gt) : 

if c of ft= c of gt 

then if identical (left of ft, left of gt) 

then identical (right of ft, right of gt) 

else false 

fi 

else false 

fi 

esac 

esac. 

In contrast to "identical", whose only task is to construct an approp­

riate boolean value, the next procedure constructs a complete new tree, 

which is an exact copy of the one that is passed as a parameter. The newly 

generated tree does not share any nodes with the original one: 

proc copytree = (formula f) formula: 

case f 



in (int leaf): leaf, 

(ref triple t): heap triple := 

(copytree (left oft), 

C of t, 

copytree (right oft) 

) 

esac, 
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The next procedure contains a call of "copytree". It copies a given 

formula f but, in the meantime, it replaces (in the copy) all occurrences of 

a given variable v by a given formula g. Here too, the new tree is completely 

distinct from the original one: 

pro,~ subst = (char v, formula g,f) formula: 

cas,~ f 

in (int leaf): 

if leaf= - abs v then copytree (g) else leaf fi, 

(ref triplet): heap triple:= 

(subst (v,g, left oft), 

C oft, 

subst (v,g, right oft) 

) 

esac. 

4. TIDYING UP FORMULAS 

Formulas are usually written down in a more or less canonical form. A 

trivial examplt:! is the formula a + b which most of us would prefer to b + a. 

In automatic simplification it makes sense to strive after obtaining canoni­

cal forms, for various reasons. 

One of thi:!m is that identical subformulae are easier detected this way. 

Suppose for example that we are given the formula 

b *a* c + d - c *a* b. 
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Step-by-step simplification of this formula proceeds as follows: 

Step I : Rearranging the factors of each term. This yields: 

Step 2 

Step 3 

Step 4 

a * b * c + d - a * b * c 

(In fact this is a rather big step which consists of several more 

elementary steps). 

Rearranging the terms. This yields: 

a * b * c - a * b * c + d 

Canceling adjacent identical term with different signs. This yields: 

0 + d 

Deleting zero terms. This yields 

d. 

Rearranging factors and terms as in steps I and 2 above is similar to 

sorting a sequence of numbers. For numbers we have a total ordering ("<"), 

so it is natural to define a total ordering for formulas as well. Let us 

call this ordering "less". A slight complication, to be mentioned later on, 

will be ignored at this moment. 

We express the ordering "less" on FORM by the following ALGOL 68 pro­

cedure: 

proc less= (formula f,g) bool: 

case f 

in (int f): 

~g 

in (int g): 

if f < 0 Ag< 0 then f > g else f < g fi, 

(ref triple g): false 



esac, 

(ref triple f): 

~g 

1.n (int g): true 

(ref triple g): 

(int pf= priority (c off), pg= priority (c of g); 

if pf f: pg then pf> pg 

elif less (right off, right of g) then true ----
elif less (right of g, right of f) then fal~e 

elif less (left of f, left of g) then true ----
elif less (left of g, left of f) then false 

else C of f < C of g 

fi 

esac 
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Important properties of "less" are: 

(i) If less (f,g) and less (g,h), then less (f,h) (Transitivity). 

(ii) If less (f' g) then not less (g,f) (Asymmetry). 

(iii) For all f E FORM: not less (f,f) (Irreflexivity). 

(iv) For all f, g E FORM: either less (f ,g)' 

or less (g,f), 

or identical (f ,g) (less 1.S a total ordering). 

These properties are important because we are aiming at obtaining 

canonical forms. [For this purpose, it is essential that the ordering is 

total. Supposie for instance that the ordering"<" for numbers were not de-· 

fined for some pair of numbers, e.g • .for 5 and 7. Then sorting the sequence 

IO, 5, 7, 3 could yield 3, 5, 7, IO, or alternatively, 3, 7, 5, 10; in other 

words the sorted sequence would not be uniquely determined]. 

The complication mentioned previously has to do with a curious conven­

tional distinction 1.n ordering terms and ordering factors. Most of us proba­

bly prefer x + y + 2 to 2 + x + y as a canonical form, but at the same time 

we write 2 * x * y rather than x * y * 2. Thus in connection with"+" we 

appreciate the truth of "less (variable, constant)", whereas "less (constant, 
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variable)" ought to be true in a multiplicative context. We have solved this 

little problem by supplying the procedure "less" with a third parameter 

"prio" which tells which of both cases applies. We shall not dwell on this 

detail. We shall now present a procedure to rearrange terms on the basis of 

th~ procedure "less". To keep it readable we only deal with the connnutative 

operators*,+,=, #, & and in this version. (In our implementation we did 

not ignore the complication of non-connnutativ~ operators, but at this stage 

we prefer readability to completeness. We hope that the simplified versions 

of some procedures shown here are easily understood; it will then be not too 

difficult to complement them with details which are not taken into consi­

deration here. Moreover, the source listing of the complete program is given 

in Appendix A) • 

To exchange two branches of a binary tree, we have the following proce­

dure: 

proc exchange= (ref formula f,g) void: 

(formula h := f; f := g; g := h). 

Now consider the formula d + c + b + a whose binary tree is 

We want to transform this tree into a similar tree corresponding to the 

formula a+ b + c + d, by exchanging branches. There are two kinds of ex­

changes to be made. At the lowest level the left branch d and the right 

branch care to exchanged. We call it a connnutative exchange, since it is 

justified by the connnutative law. Another type of exchange is applied to, 

e.g., band a. To justify this exchange we need not only the connnutative law, 

but also the associative law. We therefore call it an associative exchange. 



Reasoning inductively, we assume that we know how to rearrange the subtree 

ford+ c + b, and we show how to rearrange the tree ford+ c + b + a: 

19 

induction 
assumption 

associative 

- induction 

assumption 

exchange 

We express this in ALGOL 68 by 

proc rearrange= (ref formula£) void: 

case f 

in (ref triplet): 

(ref forDn1la fl= left oft, 

r = right oft; 

char op= c oft; 

if less (r, fl) 

then exchange (Jl,r) # commutative exchange# 

else case fl 

in (ref triple t le£ t): 

(ref formula fl left= left oft left, 

r left= right oft left; 

char opleft = c of tleft; 

if opleft = op 

then rearrange (fl) # induction assumption #; 

if less (r, rleft) 

then exchange (rleft,r) 
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) 

fi 

) 

esac. 

fi 

fi 

# associative exchange#; 

rearrange (2) 

# induction assumption# 

We call a formula like a+ b + c + d (and its associated binary tree) 

left-associative, because it is an abbreviated notation of ((a+b)+c) + d. 

When a formula like a+ b + (c+d) is offered as input to our program it is 

initially stored in the binary tree 

0 
As we have seen, the parentheses enclosing c +dare re-inserted when 

this tree is offered to the procedure pr (given in section 3) for output. 

However, what we actually want is to transform the tree above to its left­

associative equivalent: 

Restricting ourselves to connnutative operators, we can perform this 

transformation by the following procedure: 



proc leftassoc = (ref formula f) void: 

case f 

in (ref triplet): 

(leftassoc (left oft); leftassoc (right oft); 

~ right oft 

. in (ref triple tright): 

if c of tright = c oft 

then right oft:= left of tright; 

left of tright := t; 

f := tright; leftassoc(f) 

fi 

esac 

) 

esac. 
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Here again, we can verify the correctness of this procedure by induc­

tion on the complexity of the tree. We shall net give a formal proof, but 

rather explain how it works by means of an example. Suppose that a+ (b+(c+d)) 

is to be transformed to its leftassociative equivalent a+ b + c + d. By the 

call "leftassoc (right oft)" on the fourth line of the procedure, the tree 

is (by our induction assumption) transformed to 
(i) 

Nodes (i) and (ii) correspond with "c oft" and "c of tright", respec­

tively. The assignment statement "right oft := left of tright" transforms 

this tree to: 

~muoTHLf:K }1Ai•H'h<\.t',1l'.,CH (.i.Nlt'll!M 
AMSiLflDt1i\,l 
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The missing part is now attached at the right on 

top of this tree by "left := t", yielding 

The statement "f := tright" reflects the fact that a new node (ii) now 

becomes the root of the tree, instead of the old one (i). The new tree cor­

responds to the formula a+ (b+c) + d which is less complex (with respect to 

left-associativity) than the original one. Therefore, by induction, the only 

step to complete the job is to apply "leftassoc" recursively to this tree. 

5. SIMPLIFICATION AND PREDICATE TRANSFORMATION 

Transforming b + a to a+ band other things that we did in the pre­

vious section might be considered too trivial to be called "simplification". 

We shall now mention some more substantial simplifications, and, to be con­

crete, mention a number of procedures· of which our program is composed. It 

should be emphasized, however, that knowledge of these procedures is by no 

means needed for using our program. We are discussing techniques and we 

sometimes talk about procedures and about a program to stress that these 

techniques have been implemented and are not just loose ideas. Theim­

plementation is such that a formula of FORM followed by the closing symbol 

"\" are the only input data. The user does not have to specify special op­

tions or other control information depending on the nature of the input 

formula. 
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Let us start with some rather obvious simplications which have to do 

with occurrences of zeroes and ones. ,The following· reductions are performed 

by the procedure "zerone": 

0 + f --+ f 

f ± 0 -+- f 

* f -+- f 

f * --+ f 

0 * f --+ 0 

f * 0 --+ 0 

f I -+- f 

0 I f --+ 0 

f I 0 --+ ? 

The last two of these lines deserve an explanation. One could argue 

that the information f # 0 is lost by reducing 0/f to 0. Some might consider 

the possibility of defining 0/f equal to 1 if f happens to vanish. We prefer 

the point of view that any denominator must not vanish, even if the numera­

tor does. On the other hand, whenever 0/f has a meaning, it is of arithmetic 

type and, for our purpose, it would be most inconvenient if it had to be 

transformed to something like 

"O, provided f # O" 

which has arithmetic as well as boolean aspects. For the same reason, we 

shall simplify (x-2) / (x-2) to 1. Brown [2] does the same, and, as a justi­

fication, observes that the transformation conforms to the rules of the 

field Z(x) of rational expressions in x over the ,domain Z, of integers. The 

transformation "f/0--+ ?" is easier to explain. Whenever an explicit zero 

occurs as a denominator, the question mark"?" is introduced. It should 

simply be interpreted as an error code. 

The procedure "distr" applies the distributive law with respect to 

multiplication and addition (or subtraction). Thus 

f * (g±h) --+ f * g ± f * h 

(f±g) * h -+- f * h ± g * h. 
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It is well-known that it depends on the context whether multiplying out 

or factoring leads to simpler formulas. Finding this out is too difficult a 

job for our simplifier. Therefore we have chosen for multiplying out, so 

(x-1) * (x+I) + I is nicely reduced to x * x. However, care has been taken 

to postpone the call of "distr" until reductions like 

(x+2) * (x-2) / ((x+2) * (x-3)) _. (x-2) / (x-3) 

have been performed. For reductions like this, the procedures "rearrange" 

and "leftassoc" are vital. These procedures transform 

(x+2) * (x-2) / ( (x+2) * (x-3)) 

to 

(x+2) / (x+2) * (x-2) / (x-3). 

(Recall that "*" and "/" have the same priority number). Thus identical 

factors become neighbours, which are easily tested for identity (if they 

occur on either side of"/") by the procedure "identical", introduced in 

section 3. These tests and canceling of numerators and denominators are in­

corporated in the actual version of the procedure "rearrange" as listed in 

appendix A. Special attention is required for a case like 

(x+2) * (x-2) / ((x+3) * (2-x)). 

Since variable terms precede constant terms and since we have no monadic 

formulas, 2 - xis first transformed to O - x + 2. (We consider this as a 

special notation for - x + 2 and accept Oas the only constant term that 

can precede a variable term. There is no danger that f + 0 - g will survive, 

because of our reduction f + 0 _. f). Now O - x + 2 is hardly an improvement 

of 2 - x, and is far from being identical to x - 2. We therefore have a pro­

cedure called "negfac", which does away with "negative factors" like O - x + 2. 

In fact, the "nomadic minus", here written as "O-" is transported to an 

outer environment. For example 



(O-x+3) * (0-y+z) I (O-p+l) / (0-q) * (O-r-1) 

is transformed to 

0 - ((x-3) * (y-z) / (p-1) / q * (r+l)). 

Thus factors are brought into a canonical form, after which they can 

effectively be tested for identity. Our sample formula 

(x+Z) * (x-2) / ((x+3) * (2-x)) 

is indeed eventually reduced to 

0 - (x+Z) / (x + 3). 

A substantial simplification is performed by the procedure "add". It 

reduces, e.g. 

3 *a* (b+c) - 2 *a* (b+c) + 8 *a* (b+c) 

to 

9 *a* (b+c). 
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Here too, the procedure "identical" appears to be most useful. A compli­

cation is involved in terms whose coefficient are I, since "I*" is usually 

omitted, or even removed by our own procedure "zerone". For addition, 

l *a* (b+c) + 3 *a* (b+~) is simpler than a* (b+c) + 3 *a* (b+c). We 

therefore have a procedure called "factone" which writes "I*" in front of 

products which begin with variables. Later on, superfluous occurrences of 

"I*" are removed by "zerone". 

We are now going to deal with simplifications which are more often 

found in papers on program verification than in publications on formula mani­

pulation. For the assignment statement and the conditional statement, sym-
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bolically written as 

X := E 

if B then S else T fi, 

it is well-known that with a given postcondition Q the corresponding weakest 

precondition can be expressed by 

wp(x:=E,Q) = the result of substituting E for x in Q, 

wp(if B then S else T fi, Q) =(BA wp(S,Q)) V (7 BA wp(T,Q)). 

For the substitution result above, we can use our procedure "subst" 

listed at the end of section 3. As mentioned earlier, we write 11 &11 for "A", 
II I II . for "v", and "B•(S@T)" for "if B then S else T fi" • 

We also observed (in section 2) that we need no monadic not (7) opera­

tor, because, e.g., 7 (a<b) can be expressed by a>= b. Symbolically we shall 

indicate such an elimination of "-," by writing B instead of -, B. In a ter-

minology introduced by Dijkstra [4], wp(S,Q) is the result of transforming 

predicate Q by statement S. In [13] an explanation of predicate transformers 

is given in terms of elementary set theory. We have adopted the formula 

notation S $ Q for wp(S,Q). All formulas of the type S $ Q can be "simpli­

fied" according to the rules given above, which are in our notation: 

x :=. E $ Q subst (x,E,Q) 

B• (S@T) $ Q B & (S$Q) B & (T$Q). 

,BY repeated application of these rules, all operators$ disappear, al­

though, in the beginning, their number may increase. In our program these 

rules are implemented in the procedure 11wp11 • This procedure is called by the 

procedure "reduce". The relation between both procedures is as follows. Let 

"wp" perform the redaction S $ Q -r Q'; then 11reduce11 performs the reduc-
n 

tion s1; .•• ;Sn-I; Sn $ Q -r s1; •.. ;Sn-I $ Q' if n > I and "reduce" simply 

calls "wp" if n = I. 
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APP~NDIX Al THE SIM~LlFYING P~QGRAM~ 

······················-·-···-······· 
(# SIMPLIFICATION OF FORMULAS, L~ AMMtRAAL, 1 JULY 1q77 # 

tINTi TRUE••lOOO, FALSE••1001J 1CHARf CCJ 
ON LlNE ENDCSTANO IN, 

C •REF'' iFILE I F) •BOOL' I 
(NEWLIN!CF)t PRINT(NEWLINE)J 1 TRUE 1 ) 

) ' 
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'MODE' ffORMULA'•*UNIONf(fINTi,•REFf 'TRIPLE•>, 
tMODE' ;TRlPLEi••STRUCTt(iFORMULA 1 LEFT,iCHAR' C1 1 FORMULA' RIGHT)r 

iPROC 1 INP•(•CHAR 1 X)iaoo1.•icBUF;X&READP(BUF), 1 TRUE'£'FALSE')r 

•CHARi BUFJ 

fPROC• READP•C'REF• •CHARI C) 1VOID'i 
( fWHILEi REAOCC)t PRINTCClr C • " " iDOt iSK?P• •ODf)J 

iPROC' M■ (fBOOL 1 B) 1VOlD'i(iNOT 1 B&ERRO~)s 

iPROCi ERROR••VOID•i(PRINT("ERROR")s STOP)s 

tPROCt OIGITs(iCHARi C)iBOOL•i C 1 GE• "O" iANOi C •LEi "9"J 

1PROCi LETTER•C'CHARi C)iBOOL'i C •GE• "A" 1 ANO• C 'L.Ei "Z"r 

iP~OCi ~ESSs(iFORMULAi X,Y, •INTf PRlO)iBOOLf1 
( •CHAR' CHXwNODE(X), CHY•NODECY)s 

iBOOLi OX•OIGtTCCHX), OV•OIGIT(CHV), LX•LETTERCCHX), LY•LETTER(CHY)s 
iBOOLi OX ■ iNQTf(DX iOR 1 LX), OY ■ fNOT•COV •oRt LY), P9:(PRIQ:9), 

>, 

Lli CHXCCHYs 
COX iANDi OY 
& •tNTi PX1PRIORITYCCHX>, PY•PRIORITYCCHY)f 

( PX iNE 1 PV I PX>PV 
& C X 

. ) 

' ( 
C 

' 

) 
) 

" ox ' ) 

iREF' ITRIPLE' BX)& 
y 
C 
( 

) 

tREF'i iTRIPLE' BY)& 
iREFi irORMULA' lX• LEFT •a,, BX, IY= LEFT 1 0F 1 av, 

JX•RIGHT iQFi BX, JY•R?GHT •Ofi BYr 
C LESS(JX,JV,PRIO) & •TRUE' 11 LESS(JY,JX,PRIO) l 1 FALSE 1 

&iLESS(IX,lY,PRIO) l 1 TRUEi &i LESSCIV,IX,PRIO) & fFALSE 1 

& L. 
) 

'NOT• 
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•PROCi NODE■ (iFORMULAi E)fCHARia 
C E 
l C iINT• C)J . . . 

) , 
C C•o1•0 11 11Ce11"1"llC~1&"2"11C~TRUEl"T"&aCsFALSEl"F"&'REPR 1 C•C)), 
C iREF'i •TRIPLE' 8)i C iQFt B 

fPROC 1 EXCHANGECm.(fREFf •CHAR• X,Y)fVOIDfi 
(iCHAR• z1x, xi=v, Yi•Z>, 

iPROC• EXCHANGEI~(iREFf •FORMULA' X,Y>•voro•~ 
c•rORMULA' Z•XJ Xacv, Yi•Z>, 

1PRoci PRIMARY•'FORMULA'I 
C tNPC"•") 1 •HEAP• 1 TRIPLE 1s•CO,"•",PRIMARY) 
&iINPC"+") I PRIMARY 
liINPc•in) I CINPC"T")&MCINP("'"))JTRUE 

1 M(INP("F"))JM(INP("i"))JFALSE 
) 

& i ; NP ( " C" ) . . 
& •FORMULA' l1~FORMPROCC1)J MClNP(")"))J I 
' •CHAR• c,euF, 

) ' 

C C iGE 9 "A" 1 AN0 1 C 'LE' nzn J READPCBUF')J •'ABS' C 
£ 'INT• li ■ o, Dr 1BOOL• ABSENTp1iTRUEi1 

•WHILE• Di ■ 1 ABS 1 BUF•fABSi "O"J O ;GE• 0 'ANO• D iLE' 9 
'Doi Ia•10•I+OJ REAOP(BUF)J ABSENTa•iFALSEf 
100 1, 
( ABSENT I PRINT("LETTER OR DIGIT EXPEXTE0")1 STOP)J I 

) 

iPROCi OPERATOR•C'INTi PRIO,•REF• •CHAR• OP>•BOOLfg 
C ~~IORITYCBUF)aPRIO 
i OP:•SUFr READP(BUF)g 

C BUF•"=" 
1 (OP•"<"&OP~~"t"l&OP■ ","IOP~•"J"lMCOP="a"))f 

REAt,PCBUF) 
~ ' . tTRUE 9 

' tF'ALSEi 
) ' 



•PROCi PRIORITY•C'CHARf ce~ .. ,.,1.1 
,;c ■ "r" ,2 
£ ,t•"S" &l 
,,cc"."13 
£iCa;"i"l4 
,;c ■ "L"1S 
&aC•"&"l~ 
&aC•""" iQRi 

& aC•"t-" 
&eC•"*" 
&O 
) . 

iOR• 
iOR 1 
iORi 

C1111"#" •OR• C"">" 
Cir:ttt" # iLE' # 

C•"•" 18 
C•"l"&q 

•OR' C11"<" 
'oR• C•"l" 

iPROCi FORMPROC•C'INTi PRIO)iFORMULA•~ 
CPRIOll10£PRIMARV 
&irORMULA' Ei~FORMPROCCP~IO+i)B 1 CHAR 1 O?; 

fWHILE' OPERATOR(~RIO,OP) 
too' Ei~'HEAPi fTRIPLE•,~cE,OP,FORMPROC(PRI0+1)) 
I 00 I J 
E 

) , 
fPROC 1 LE,TASSOC•C'REF~ ,,oRMULAf E) 1BOOL 1 ; 

(i600L.• MOOIF'ii 1 F'AL.SE 1; •FORMULA' CE) 
& (fREFi 'TRIPLEf B); 

( 1CHARi C•C 90F 9 B1 iINT• P•PRIORITV(C)s 
(RIGHT •OFi B 
& (~RE'' iTRI?LEt BR)~ 

( 1 CHAR 1 C~ ; C 'OF'' BR; 1INT' PR11PRIORITVCCR)1 
(PR11P 
& RIGHT fOf' B a= 1 FORHULA 1 CLEFT 'OF• BR)J 

LEFT 1QF't BR a• 1 REFi iTRif'LE'CB)B 
E:;BRr 

) 
) 

) f 
MOOIF' 

) 
I 1 FAI..SE f 
) , 

C~~"•"I C iqr 1 BR;: CCR="+"l"•"&"t") 
tzC:"/"l C 10F• BR;s CCR="*"1"/"l"*") 
) , 
MOOIFa:: 1 TRUEi 

31 
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tFROCi CONST~C•FORMULA• E)•BOOL•i 
C iFORMUL,A@(E) 
I C iINTi Ill I •GEf o, 

C iREFi ffRIPLE' B)s 
CONST(L.EFT 10F'' 8) •ANO' 

) u 

cc ioF• B ; "+ 11 •OR• C •OF 1 13 31 "•''> *ANO' 
CONST(RIGHT fOF' S) 

i PROC i !..EFT~ ( i REF t i FORMULA i E) flUJH f FORMULA ta 
('PORMULA'CfllC'REFi ffRI?LE• B)iLEFT 1 0rf a l ERROR; E)J 

I PROC I R IGHT11; ( i REF t i FORMULA i E) H~EF' 1 FORMULA ti 
(iFORMULAi(E)S(iREri iTR!~L,E 1 B)aRIGHT iQFI B ! ERROR, E)r 

fPRDC• REARRANG!~(iRfFI •FORMULAi E)~BOOL 1 a 
( eeoot,.i MODlFg;iFALSEif 

iWHU.Ei L.EFTAISOC(E) 1 00t MOOIF'n;fTRUf 1 t00 9 ; 

( •,ORMUl.,A i Cl~) 
I (iREF 1 •TRlPL!f B)i 

( i~EF' iCHAR 9 e ~ C 10Fi Br •INT• PC.!J:PRIORlTV(C)B 
iREFt 'FORMULA~ L = LEFT 10,• a, R = RIGHT 'OF' BJ 
HODIFi~REARRANGECLJ tQRi REARRANGEC~lt 
C iCHARi CL,111NOOE'.(L)B LESS(R,L.,PC) iAN0 1 PC>4 'ANDI PC:<10 3ANDi 

PRtORITY(CL,) fNE 1 PC iAND• PC 1NEi 7 'ANO' 
!NOTf 1CCl,.11; 11 p 1 iANO• C11 11 /" iORf CL.i="O" iANO• C="•") 

l (CJ w1n & E ~m fHEAPf fTRIPLE• ~~ Cf,"*",L)J L~•l 
&iC ~ "~ 11 & E 31 iHEAP 1 1T~IPLE; i= CE,"+",L)s Li~o 
& EXCHJ,NGEICL,R) 
H 
HOOIFi;1'TRUE t 

) $ 
( L. 
I C'REr 1 1TRIPLE 1 BL)i 

) ' 

C fREFf 'FORMULA' LBL g LEFT lQFI BL, RBL = RIGHT IQFt BL; 
iREFi H:HAR' CBL =i C 10F t BLs 
PRIORITV(e •oF• BL) = PC 

l C I~ENTICALCRBL. 9R~ 'ANDi CBL fNE' C 1 ANOt (PC116 IQfP PC=<n 
I Es~LBL; MODIF1; 1 TRUE' 
&:LESS(R,RBL,PC) iAND' PC>4 9AND 1 PC<10 
& EXCHANGEC(CBL,C):EXCHANGEICRBL,RJrMODIFt~ 1 TRUE' 
) 

( tNQTi HODIF •ANDI FC~1 
I ltHAR' NODli~NODECL)J 

C 'Ntni CONST(R) 
'L~•'HEAPi. 1 TRIPLE';~(L,"~",R)i R;~o, MODIFa~tTRUE 1 

,~NDDL•P+tt 1 QRI NODL="~" 



33 

) 
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fPROCi PRBUF1tiCHARi C)fVOtQ 1i 
C C •NOTfCSUF••o• fANOl C•"•") 

) ' 

& PRINT( 

) ' . au,,,e 

( BUF•"&" & " & " 
,;euF•"&" , " & " 
I tBUF•" E" & "c•• 
&iBUF•"l" & "~•" 
& 8UF 
) ) 

fPRoct PR$(iFORMULA' E,tINTi PRIO)fVOID*s 
C E 
& C 'INTI V>i 

) ' 

C V•TRUE lQRi V•FALSE 
& PRBUF(fft 1 )J PR8UF((VaTRUE1 1 T1 1"F"))r ,RBUFC"'") 
' ' vco . 1 PRBUFt•REPRf•V) 

& tSTRlNGt S•WHOL!CV,O)r 
fFOR• l •To• •UPB 1 s •ooi PRBUF(StlJ) iOD' 

) 

~·~REFI fTRIPLE• B)~( •CHARI c~ CfOF•e, itNT( P•PRIORlTY(C)J 
(PcPRIO&~RBUF("("))J 
PR(LEFT •OFf 8, P)t 

) 

PRBUF(C)p PR(RtGHT iOF 9 B, P+l)J 
(PcPRIO&PRBUF(")")) 

fPROC 9 IOENTlCAL•C•FORMULA' E,F)iBOOL's 
C E 
1 C'lNTi CE)S 

C F 

) . 

I ( 11NT 9 CF)g CE•CF 
I 1F'ALSE 1 

) ( • • a • 

('REF• 1 TRIP1..E 1 BE)a 
C F 
& C'R!F' •TRIPLE• BF)a 

C C iOFi BE;; C •OFi SF 
I C IOENTICALCLEFT •OF 1 8E, LEFT 1 0Ff BF) 

i IOENTICALCRIGHT •OFi Bf, RIGHT fQFi BF) 
& iF4LSE i 
) 

l •FAL.SE 9 
) 

& ''ALSE 1 
) 



fPROC' ZE~QNEBC 1REFf •FORMULA' !) 9800L 1 S 
C fFORMUL,A' CE) 
4 ( iREFi •TRlPLEf BJ~ _ 

( iCHAR' C ~ C •OF• St fBOOL' PLUS• c ■ w+", MIN• C ■"•", 
TIM•~•"~"( 0IV• C~"l"J fBOO~~ ~OOIF~siFALSEfs 
1PROC' H~C•FORHULA 1 I) 9VOtO•acEs~?, MOOIFi1tTRUEf)g 
( RIGHT •OF' B -. 
I C iINT• BRl a 
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C 1800L' ZERO~ BRso, ONE• BR,11 
((PLUS tQRt MIN) iAN()i ZERO •ORf (TIM iOR• DIV) iANOt ONE 
I M <L.EFT 'OF 1 Bl 

) 

) 
) , 

&&TIM fAN0 1 ZERO 1 MCO) 
,iDIV •ANOi ZERO l M(wiABS'"?") 
) 

( i NOT i MOO IF 
1 C I.EFT 9 OF t B 

I ( 1 INT 1 81.)i 
C 1 BOOL• ZERO I BL ■O, ONE~ 8L=11 

C Z~RO 1 ANO• PLUS 90R 1 ONE 14~0• TIM 
I MCRIGHT •OF' 8) 
£~ZERO iANOf CTIM ~ORi DIV) l M(Ol 
J 

) 
) , 
C iNQTt MOOIF & HOOIFi=ZERONECLEFT 10Fi B))J 
( 9NOT 1 MOOIF & MODIFisZERONECRIGHT'OF 1 B))f 
MOO!F 

l 1FALSEf 

) ' 
iPRoc• NEGATIVE•('REF' •cHAR• C)fVOIDi~ C~=CC="+"l"•"l"+")J 

IPROC' CHSlGN;(fREF• 1F0R~ULA' E)•BOOLic 
( 'FORMULA I CE) 
! C iREFi •TRIPLE' B)i 

C •REF 1 tCHARf C II C •OF• B, 
•~EFi •FORMULA• L ~ LEFT iQFi B, R = RIGHT 1 0Ff a, 
t:"•" 9 0R* C:i;"+" 

& ( Cmttlllltt •ANDf NOOECL);tto 19 I Ea;Rs 1 TRIJE 1 
& CCH!lGN(L)ANEGATlVECC)itTRUE•J 1 FALSEt) 
) 

& •FALSE' 
) 

t iF'ALSEi 
) , 
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fPROC' CHSGN~C•R~Ff fFORMVLAf E, X)fBOOLf~ 
( iREF• iFOIU1lJL.A' 1i~x, Js,E; ltHAR' C:Hs. 'INT 1 N1110, 

~WHILE~ CHi~N9DECI)r CH1w~ff fORj CH~ff~tt 

) ' 

eooi J;~I, N+a~1, 
la~(iFORMULAI (l)l('REF' *TRIPLE' 8)~ LEFT 1 0,, B) 

roof, . . 
C CH~jon fAND~ NODE<Jl~"•" 
& I~~,, E ~~ 1HEAPf fTRIPLtf i~ CO,"••,Elt 

Tro 1 N•1 
4t,Qi 

C iFORMlJLA 9 CI) 
£ C'REFI 1TRIPLEf B)atNEGATIYECC •a,, e,, l~gLEFT 10,, B) 
) . 

:~~;, •FORHULA 1 (l)i=(fFORMULAjCil&(IREF•fTRIPLEf B)~RIGHT •OFi B)J 
•TRUE' 

& 'F'ALSE 1 
) 

i PROC t NEGF AC;~ C 'REF i i FORMULA i E) 'BOOL' 8 
( iBOOLI ~00%Fa,fFALSEfs 

( fFORMULA*(El . 
I C fREFf. 'TRIPLE' SJ~ 

( •CHARI c: t11 C 10F"i BJ 

) 

IRE'' fFORMULA' L = LEFT 'OF• 8, Rs RlGHT fQFf BB 
C C'"*" 90FP C'1! 11 /" 

I MODIFi~CCHSGNCE,LJ&iTRUEf&CHSGNCE,Rl) 
) , 
C hJOT' MODIF 
& MOOIF~J(NEGFACCL)& 9 TRUE*&NEGFACCRJJ 
) 

) s 
MOOIF 

) , 
fPRDC 1 CDFYTR!Em('FORMULA' !)'FORMULA'~ 
C E 
& C ttNTf C)sC:, 

C «Rf;Fi iTRl(PLEf B) a iHEAPi •TRIPLE' ii 
(COPVTRE!CL!FT fQFi e,, C IOF 9 a, CDPYT~EE(RIGHT 1 0FI B)) 

) 9 

fPROCi sue 1111'.'CHAR' v, ,,oRMUL,.Ai E, iFORMULA' F) 1FORMUL.Alg 
# SUBSTITUTE E FOR VIN r I 
C F 
& (~INT! ~J~(C~•~ABS 1 _y I CO~YTREEC~) I CJ, 

C1 R!F 1 'TRIPLE' B)stHEAP 1 •TRIPLE•;~ 
(SUBSTCV,f,LEFT ,a,, 6), C 'DP 1 e, SUBSTCV,E,RIGHT tQFi B)J 
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-
iPROCf 
C E 
! C 

C 
( 

iINTfJg(fCHARt CC,NODECE)t CC•"T" I FALSE 1 M(CC="F")JTRUE), 
iREFf •TRIPLE' B)i 
•RtFi •CHAR' C llll C iopre B, 
'REF' 'FORMULA' LI LEFT iOFi B, R ~ ~IGHT •oF• a, c~• 
( C•"I" fQRf C~"&" 
& Li,NEGATECL)r R~1NEGATECR); CC~"l" l "&" I "l") 
&iC• 111 c" 1 "l" 
&iC• 1">" & "t" 
liC• 1"t" 1 ">" 
'JC• IIIJ" ' "<" 
'SCII IIIIJ!t £ "#" 
I M(C 1'-"#")J "•" 
)J E 

J 
h 

iPROCf WP~CfFORMULAf S1 Q)IFORMULA 1 1 
( s 
l C IREFI •TRIPLE' B)~ 

) , 

( •REF• •CHAR' C II C fQF 1 B, 
iREF• •FORMULAi I,, I LEFT tOF 1 B, R := RIGHT 'OF' Br 
C 1 "i" 

& SUBIT(NODECLl,R,Q) 
&~C, ••" # CONDITIONAL STATEMENT* 
l C R 

I C il~EF• •TRIPLEi BR>a 

) 

C iREFf. IFORMULAf SI LEFT iOFf BR, T • RIGHT fOFt BRJ 
IHEAPi ffRIPLEi~• 
C'HEAPi ITRIPLE't=CCOPYTREEtL>,"&",WPCS,Q)), "&", 

1 HEAPi 1 TR!PLE 11•CNEGATECCOPVTREE(L)),"&",WPCT,Q)) 
) 

1 ERRORt •St<IP• 
) 

iPROC 1 REl)UCE;(IREF• iFORMULA• E) 1 BOOL'i 
( i FqRMU~1l f CE) , 
1 ( IREFt 'TRIPLE' 8)8 

C 1REFi 1 FORMUL4' LI LEFT 'OFi B, Rm R!GHT 1 0F• 6, 
i'C:HAR 1 C as C 'OF' 9 Bt 
C , 1t:91t 

I C L 
& C iREFI •TRIPLE' BL)& 

C i~EFf fFQRMULAf LBL a LEFT fOF 1 BL, RBL: RIGHT fOF 1 BL, 
iCHARi CBL; C fOF' BLJ 
Eh=c ca1.. , "1'' 
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& 1 HEA~' iTR?PLE•s=CLBL, 11 !", WF(RB~,R)) 
! WPCL.,R) 
) , 

i TRUIE i 
) -

' 1FA1..S£f 
) 

i 9FALSE 1 

) 
& @FALSE• 

) ' 
iFijOC' OiSTR-C 9REF 9 9FORMULA' El 9VO!O'J 
( tFORMUl,.At(t) 
' ( fREFf •TRIPLE' B)i 

( •~EFi 1 FORHU1..A' L. • !..EFT •OF 1 B, R ;= RIGHT '0Ft Eh 
DISTRC~J; DISTRCR)s 
C C iOFi B ,1111r1t 
£ C ( tFORMUL.A'CR) 

£ ( iREF• iTRIPLEf BR)i 
C iCHAR' CBR ~ C iOFf BRJ 

iCCBFh•"t" iOR 9 CBR11"•") 'A"!Ot NODECL.') 'NE 1 11 1" 
' i~ i; f Hll!AFH i TR H"LE q II 

(iHEAP* iTRIPLEi, ■ CL,"*",LEFT ior• BR), CBR, 
iHEAPi 9TRIPL.Eism(COPYTREECL.l, 11 t 11 ,RIGHT 'Ofi BR) JJ 

DlSTR(E); 1 TRUE 1 
& 'FALSE: 9 
J 

£ IFALSE:t 
) . 

& •SKIP 1 

I C •FORMULA'(!..) 
1 C iREFi fTRIPLEf BL)~ 

C iCHAR' CBL; C iQFf BL; 
rtBLl"ttt 10R 1 CBL=="•") iAND 1 "IODECR) 1 NEt 1t/1t 
I " • - ,., • • 

'Eze•HEAP' 1 TfUPLE'P= 
CiHEAP• iTRIPLEi;a(LEFT •or1 B~,"*",R),CBL, 

) 

IHEAPi fTRIPLE'~•CRIGHT IQFf BL,"-",CO~YTREECR)))g 
OISTR(E) 



•PROC 1 CONSFAC•CfREF• iFORMULAf E) 1 BOOL 1i 
( •FORMULA'CE) 
I ('INT' t)i 

< tco . 
1 Ei•IH!APf fTRIPLEfi ■ Cl,"*",I)t fTRUE• 1 fF4LSEi 
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:,REFi 'TR1PLEf 8)1(C 1 0Fi 8 • •t•&CONSFAC(LEFT •OF 1 B)&fFAL$Ef) 
) ' 

) , 
) 

!)IBOOL'I 

fREFi iTRIPLE' B)~ 
iREF• ~FORMULA* L • LEFT •oF• 8, R • RIGHT 'OF' e, 
•CHARI C I C tQfl'I 8s 
( C~'~" iORf Cw••" 
& MODIFi1 CONSFACCL) foRf CONSFAC(R) 

!JNOTi MODIF&MODl,~1CFACTONE(L)£'TRUEi&FACTONE(R))) 

) ' MODIF 

iPROCj ALMOSTIOENT~C•FORMULAl E,F)fBOOLfs 
C E . • 
& ( fINTf E:I)I 

>, 

C ~ I ('INT• Fl)a El~O fANOi FI,o & •FALSEf), 
( •RtF• 1TRIPLE' Ea) I 

' F' I C tRt;F 1 •TRlPLEi F8)1 
( C •OFi ES 3 C 10F 1 ,e •AND• 1DENTICALCRIGHTIOF 1EB,RIGHT•or•FB) 
& ALMOSTIDENT(L!FT tOF 1 EB, LEFT iQFf PB) 
& iFALSt• 
) 

l 'fPALSE 1 

' 
fPROCf SUM1(iINTi SlGNE,SIGNF,iFORMULA• E.F,iREF 1 tzNTi PLM>•FORMULA'i 
( 1HEAPi fFORMULA' S i, COPVTREECE)t 

) ' 

i1NT 1 FACTORtSIGNE•LEFTLEAFCE)+SlGNF•LEFTLEAFCF)J 
CHANGEL.EFT CS, f ABS t FACTOR) t 
PLMi-.CFACTOR•Ol•lliFACTOR•O&Ol1)J 
s 

tPROC' ~EFT~EAF■( 1 FORMULAf !)•INT'& . 
C E & ( 1 PIT• I)al, C'~EF' 1 TRIPLE' B)ILEFTL.EAF(LEFT iOft B))J 

•PROC 1 CHANGELEFT•C'REFf fFORMULA' E, •INTf c,,voto•a 
C'F0RMULA'CE)&(iINT 1 )iEi ■ C,C 1 REF 1 tTRIPLti B)tCHANGELEFTCLEFT'OFiB,C))f 



) 
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fPROCI ADO~(fREFf IFORMULAt ElfBOOLfJ 
( fSOOli,i MQC1IF311JdrAL$E•s 'INT' PL.Mt 1FORMUL.Af Els 

( tFORMU!i,j1tCE) . . 
& C IREFt 'TRIPLE' B)a 

( tfff;Fi. iFORMUL.Af I.~ LEFT •OF' a, R II RIGHT •o,, a, 
•eHARi C 'C fOFf Ba 
C C~"+·" iOR 9 Cfi9"•" 
I C A~MOSTlDENTCL,R) ·. 

) 
) 9 
MOOIF 

) B 

l Ea,SUHC1,CC~"+"l1A•1l,L,R,PLM)J 
C PLM<O & E~1fHEAPi fTRtPLE•~~CO,"•",E)Jg MOOIPa~1TRUEf 

& C fFORMUI..AiCL) 
& C fRgFt 'TRI~LEi BL)~ 

( !REF• .•FORMULA• .LB~~ 1..EF'T•OF 9 81.., REH .. 111 RIGHT 1 0F''BLJ 
*CHAR' C8L, C 10Ft BL1 
CBLa"+" fOR 9 CBL~"•" 

i C ALMOSTIOENTCR61..,R> 

l 

! E1i,SUHC(CB~i"+"&li•1),CC~"+"111•1),RBL,R,PLM); 
CPL.MIO 1 EamLBL 
i Ei1 1HEAP' 1 TRIPLE'&ffl 

CL6L,CPLM~Ol"+"l"•"l,E1) 
) , . 
MOOIF'ur•TRUE• 

J 

iPROCi RRR1ivo1o•a REARRANGECROOT)g 

PRINTC(•INPUT ;•,NEWLINEJ)J REAOPCBUF)J 
IFORHULA' RDDTs~FDRMPROC(lJ; RRR: 
'WHILE' REOUCE(ROOT) too• •SKIP' 100,, RRRJ 
iWHIL.E t N! AC(ROOT) ioo• RRR too•' 
OISTR(ROOT)i RRRJ 
iwHtLE' A00(ROOT) too' RRR •oor, 
iWHIL.Ef FACTONECROOTl f[:,of 1SK1Pi 'OOi: RRRt 
t~HUL,Ei AOOCROOT) •oo• RRR '00' f 
iWHIL,!f Z:ERON!CROOT) 100 1 tSIUFH 1001, RRR; 
PRl~TCCNEWLINE, N!WLINE,•DUTPUTi",NEWLl~E))t 
au,,~~ NI PRCROOT,l)s PRBU'C" "J; 
tfOi 5 0001 PRINT(NEWLINE) tooi 



INPUT: 
A+ CB•C>ICDID+C•8~1) • ~ ♦ 1 \ 

OUTPUT: 
0 

INPUT a 
CX+1)•(X+Z>•CX+3l•CX+4) \ 

OUTPUTa 
x~x*X•X+10•XnX*X+lS•X•X+50•Xt24 

INPUT I 
( 3)4 1 AtA•B•B~CA+B)*CA•BJ 1 2>S J & 
C 2~3•4ulO 1 8=2•2 1 AaB) & 
C<D \ 

OUTPUTi 
C•O<O 

INPUT 8 
Xg~X+lB Vg~Vt2 S X>S & V<20 \ 

OUTFUT: 
X>Q & Y<18 
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INPUT a 
Qa•Q+11 Ra•R•B $ A•QtB ♦ R \ 

OUTPUTI 
B•Q•A+R•O 

INPUT I 
X>5 • (X~•O I X8~1) S XII\ 

OUTPUTI 
X<;S 

INPUT a 
X<50 
ill 

( )(<40 • C)Caa3 -)($11114) 

' X<60 11 cx;as ' xiso) 
) 

I XC4 
\ 

OUTPUTi 
X<SO & X>llQO 





ONTVANGEN 8 SEP. 1977 


