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The M/G/1 Fluid Model with Heavy-tailed

Message Length Distributions

J.W. Cohen

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

For the M=G=1 
uid model the stationary distribution of the bu�er content is investigated for the case that

the message length distribution B(t) has a Pareto-type tail, i.e. behaves as 1 � O(t��) for t ! 1 with

1 < � < 2. This bu�er content distribution is closely related to the stationary waiting time distributionW (t) of

a stableM=G=1 model with service time distribution B(t), in particular when the input rate 
 of the messages

into the bu�er is not less than its output rate c = 1. The actual waiting process of this M=G=1-model has an

imbedded un-process which for 
 � 1 has the same probabilistic structure as the !!n-process, the latter one

being an imbedded process of the bu�er content process. The relations between the stationary distributions

U(t) and W (t) are investigated, in particular between their tail probabilities. The results obtained are quite

explicit in particular for � = 1
1

2
. Further heavy tra�c results are obtained. These results lead to a heavy tra�c

result for the stationary distribution of the !!n-process and to an asymptotic for the tail probabilities of this

distribution.

1991 Mathematics Subject Classi�cation: 90B22, 60K25
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1. Introduction

The arrival process for the M=G=1-
uid model is de�ned as follows. Denote by tn, n = 1; 2; : : :, the
epochs at which successive messages arrive,

0 < t1 < t2 < : : : ; (1.1)

The sequence tn; n = 1; 2; : : :, is a Poisson process with rate �. The message arriving at tn has

a duration �n. The �n, n = 1; 2; : : :, are assumed to be a sequence of i.i.d. nonnegative stochastic

variables with distribution B(�) of which the �rst moment � is �nite

� =

1Z
0

tdB(t): (1.2)

Denote by xt the number of messages simultaneously present. Obviously fxt; t � 0g is the well

known M=G=1 process. It is assumed that the xt-process is stationary so that

Prfxt = kg = ak

k!
e�a; k = 0; 1; 2; : : : ; t � 0; (1.3)

where

a := ��: (1.4)
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Figure 1

Suppose xt > 0, then the shortest interval (tl; tr) covering point t such that

xs > 0 for s 2 (tl; tr);

= 0 for s = tl�;

= 0 for s = tr+;

will be called an in
ow period. So in Fig. 1 �1 and �2 are in
ow periods. The intervals between

succesive in
ow periods are indicated by �n, n = 0; 1; 2; : : :; it is assumed that x0 = 0. The �n,

n = 1; 2; : : :,are i.i.d. stochastic variables, similarly for �n, n = 0; 1; 2; : : :; moreover these sequences
are independent, and �n is negative exponentially distributed with

Ef�ng = ��1: (1.5)

Each message generates with rate 
 a workload, i.e. a message of duration � generates a total workload

�, 
 > 0. So the total workload generated during �1, see Fig. 1, is (�1 + �2 + �3 + �4)
. By bn will

be denoted the total workload generated in the n-th in
ow period �n. Obviously the bn, n = 1; 2; : : :,
are i.i.d. stochastic variables.

Denote by ht the total workload generated in the interval [0; t]. As in [1], it is shown that: for

Re � � 0, t > 0,

Efe��ht(xt = 0)jx0 = 0g = e�H(�;t): (1.6)

H(�; t) :=
�

2�i

i1+"Z
�i1+"

eut

u2
f1� �(
�+ u)gdu with " > 0;

�(�) := Efe���g;
the integral being a principal value integral, and � is a stochastic variable with distribution B(�).
Denote by (b;�) a pair of stochastic variables with the same joint distribution as the pair (bn;�n).

As in [1] it it shown that: for Re � � 0, Re s > 0,

[s+ �[1� Efe��b�s�g]]�1 =
1Z
0

e�ste�H(�;t)dt: (1.7)

It is readily shown that, cf. [1],

H(0; t) = a

tZ
0

f1�B(�)gd�
�
; (1.8)

1

�
H(�; t) = tf1� �(
�)g+Ef�e��
�g � Ef(�� t)e�
��(� � t)g; Re � � 0:
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Ef�g =
ea � 1

a
�; (1.9)

Efbg = 
�ea:

From (1.9) we obtain

Efbg � Ef�g () 1� (1� a
)ea � 0: (1.10)

Next we describe the service process of the M=G=1 
uid model. Each message of the arrival process

described above produces a tra�c load 
� which is fed into the bu�er with rate 
. The bu�er has an
in�nite capacity for storing the tra�c produced by the arrival process. The output rate of the bu�er

is assumed to be equal to one. Consider the n-th in
ow period of the arrival process and let !n be

the content of the bu�er at the start of the n-th in
ow period, see Fig. 2.

Figure 2
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Figure 2 has been drawn for the case that 
 > 1. Hence, since the output rate of the bu�er is one,

its contents increases at the start of �n with rate 
 � 1, and if at some point t covered by �n the

number of messages simultaneously present is xt then 
xt � 1 is the net input rate of tra�c fed into

the bu�er. Evidently at the end of the in
ow period �n the bu�er content has increased by bn ��n.
Obviously, we have for the case 
 � 1 that

!n+1 = [!n + bn � �n � �n]
+: (1.11)

Since bn � �n and �n are independent and �n has a negative exponential distribution it is seen that

the !n-process is the actual waiting process of the M=G=1 queueing model.
If however 
 < 1 and xt as just de�ned then the net input rate at time t is equal to max(
xt� 1; 0)

and so may be zero. Obviously, for the case 
 < 1 the relation (1.11) does not apply for the bu�er

content at the start of an in
ow period.

The case 
 � 1 can be completely analysed by studying the imbedded M=G=1 model, see (1.11).

For a discussion of the case 
 = 1 see [1].

It is readily shown that the process !n, n = 1; 2; : : :, which is a Markovian process is ergodic if and

only if

Efbg � Ef�g < Ef�g;

which is equivalent with, cf. (1.9),

a
 < 1: (1.12)

It will always be assumed in the present study that (1.12) holds.

The average increase of the bu�er content process at the end of an in
ow period is Efbg�Ef�g for

 � 1. For 
 < 1 this is also the average increase whenever !n > �n. For a
 close to one it is evident

that the probability of the event !n > �n with n large will be close to one. Consequently, for a

close to one and 
 < 1, the !n-process resembles the actual waiting process of an M=G=1 queue with
arrival rate � and service time distribution that of b � �. For the approximation of the !n-process

by the actual waiting process of this M=G=1 queue it is a necessary condition that Efbg > Ef�g.
Hence consider (1.10). Denote by ac the unique zero of 1� (1� a
)ea in a > 0 for the case 0 < 
 < 1.

It is readily seen that

ac <
1



: (1.13)

and

Efbg � Ef�g < 0 for a < ac; (1.14)

= 0 for a = ac;

> 0 for a > ac:

Hence for the average net in
ow into the bu�er at the end of an in
ow period to be positive for 
 < 1

it is necessary that a > ac. Therefore for 
 < 1 the case with a restricted by

ac < a < 1=
; 
 < 1; (1.15)

is the more interesting one for the analysis of the bu�er content process.

It should be noted that b� 
� � 0 with probability one. The event b = 
� is equivalent with the

event that the in
ow period consists of a single message and therefore

Prfb = 
�g = Efe���g = �(�): (1.16)
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In our analysis we shall consider two stochastic sequences, viz. fwn; n = 1; 2; : : :g and un; n = 1; 2; : : :.
They are recursively de�ned by

wn+1 = [wn + 
�n � �n]
+; n = 1; 2; : : : ; (1.17)

un+1 = [un + bn � �n � �n]
+; n = 1; 2; : : : : (1.18)

Obviously, the wn-process is the actual waiting time process of an M=G=1 queue with arrival rate �

and service time distribution that of 
�. The un-process resembles the actual waiting time process of
a GI=G=1-queue, but it di�ers from this because bn and �n+�n are not independent. The un-process

is also not the actual waiting process of an M=G=1 queue since for 
 < 1 the variable bn � �n can

be negative with positive probability. However, the un-process can be completely analysed, since the

analysis of the stochastic sequence

un+1 = [un + �n]
+; n = 1; 2; : : : :

with �n; n = 1; 2; : : :, a sequence of i.i.d. stochastic variables is a classical one-dimensional random

walk, cf. [7], [8], [9].

For a
 < 1 the wn-process posesses a stationary distribution W (t); say, and also the un-process

has a stationary distribution U(t), say. The main goal of our study is the relation between these

stationary distributions for the case that the distribution B(t) has a heavy tail of Pareto type, i.e.

1�B(t) = O(1=t�) for t!1 and 1 < � < 2; (1.19)

with the �rst moment

� :=

Z 1

0

f1�B(�)gd� <1: (1.20)

Next, we review the several sections of the present study, which is based on the results obtained in

[1] and [2].

The distribution W (t) stands for the stationary distributions of the wn-process and U(t) for that
of the un-process, cf. (1.17) and (1.18); w and u will be stochastic variables with distributions W (t)
and U(t), respectively.
Starting from the results obtained in [1], a relation between the L.S-transforms Efe��wg and

Efe��ug for Re � = 0 is derived, cf. (2.18), for the case 
 > 0. For 
 � 1 this relation simpli�es to,

see Sections 6 and 9,

Efe��ug
Efe��wg = [1� aG(�;��)]ea ; Re � = 0; (1.21)

here G(�;��) depends also on 
. For 
 � 1 the righthand side is regular for Re � > 0. Because

Efe��wg;Re � � 0, is known, note that it is the L.S.-transform of the stationary actual waiting time

distribution of an M/G/1 queue, it is seen that Efe��ug is known for Re � � 0. However, G(�;��) is
a quite intricate function of �. For 
 < 1 the function G(�;��) is in general not regular for Re � > 0,

this point is discussed in Section 3. For the case 
 < 1 the determination of Efe��ug from (2.18)

leads to a Riemann Boundary Value Problem, see end of Section 2.

In Section 4 we introduce a class of message length distributions B(t), which have a heavy tail of

the type (1.19),

B(t) = 1� �2��

�(2� �)
�

1Z
0

e���
�

(� + t)�
d� ; t � 0;

0 < � � 1; 1 < � < 2 ; � :=
2� �

� � 1

�

�
; � = 1�B(0+):

(1.22)
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This class of distributions with support [0;1) has been studied in [2]. The L.S.-transform �(�) of
B(t) is explicitly known and in particular very simple for � = 1 1

2
, viz.

1� �(�)

��
= [1 +

p
��=�]�2 ; Re � � 0: (1.23)

For the applications of the M/G/1-
uid model knowledge concerning the tail probabilities is important.

In [2] expressions for the tail probabilities 1 �W (t); t ! 1, have been derived for the case that the

service time distribution of the M/G/1 model with arrival rate � is given by (1.22). The asymptotic

expression for 1 � W (t); t ! 1 has been derived from the asymptotic expression for Ee��wg for

j�j ! 0;Re � � 0. In this derivation the algebraic singularity of Efe��wg at � = 0 plays an essential

role. In Section 5 the �rst term of the asymptotic series for G(�;��); j�j ! 0;Re � � 0 is obtained

for the case 
 = 1; 1 < � < 2. This asymptotic result together with that for Efe��wg yields by

using (1.21) an asymptotic result for Efe��ug. This result then leads to an asymptotic relation for

1� U(t); t!1. The case 
 = 1; � = 1 1
2
is a fair example to illustrate the relation between 1� U(t)

and 1�W (t). From (5.15) and (5.23) it results that: for t!1 and �xed a 2 (0; 1); � = 1 1
2
,

1� U(t)� f1�W (t)g = � 2ap
�
[a

1
2 + 1

1

2
(1� e�a)(1 + a

1
2 )](

�

t
)
1
2 f1 + O(

�

t
)g; (1.24)

with, cf. (5.24), for t!1; a 2 (0; 1),

1�W (t) =
1p
��

2a

1� a
(
�

t
)
1
2 f1 + O(

�

t
)g: (1.25)

Note that for 1� a << 1, the righthand side of (1.24) is in absolute value small compared to that in

the righthand side of (1.25). For further comments concerning this point see end of Section 5.

Section 6 concerns the case 
 = 1; � = 1 1
2
, and the main results of this section are:

(1.26)
i. the variable (1�pa)2�w converges in distribution for a " 1;
ii. lim

a"1
Prf(1�pa)2�w � tg = 2p

�
et=�Erfc(

p
t=�); t > 0;

iii. for t!1; H 2 f0; 1; 2; : : : ; g:

lim
a"1

Prf(1�pa)2�w � tg = 1

�

HX
n=0

(�1)n �(n+
1

2
)

(t=�)n+
1
2

+O((
t

�
)�H�1

1
2 );

iv. (1 � pa)2�u converges in distribution for a " 1 and has the same limiting distribution as (1 �p
a)2�w for a " 1.

It should be noted that (1.26)ii is a heavy tra�c result for the actual waiting time of an M/G/1 queue

with tra�c load a and service time distribution B(t) given by (4.1) with � = 1 1
2
. Similarly (1.26)iv is

a heavy tra�c result for the u-process, cf. (1.18). Analogous results are derived in Sections 7, 8 and

9. They may be summarized as follows.

With

~� = [
1� 
a


a
(2� �)]

1
��1

2� �

� � 1

�

�
; 
 > 0; 1 < � < 2; 0 < � � 1; a
 < 1; (1.27)

holds:

(1.28)
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i. ~�w and ~�u both converge in distribution for a
 " 1 to the same limiting distribution,

ii. lim
a
"1

Efe�r ~�wg = lim
a
"1

Efe�r ~�ug = 1

1 + r��1
; Re r � 0,

iii. for t!1; H 2 f1; 2; : : :g,

lim
a
"1

Prf ~�w � tg = lim
a
"1

Prf ~�u � tg =
HX
n=1

(�1)n�1�(n(� � 1)) sin�n(� � 1)

tn(��1)
+O(t�(H+1)(��1)):

The relations (1.24) ; : : : ; (1.28) are the main results of the present study.

The function [1 + r��1]�1; 1 < � < 2;Re r � 0, is the L.S.-transform of a probability distribution

with support [0;1) For the �rst time it has appeared in reliability studies of Kovalenko, see for further

details [9].

Finally, we make the following comments. The essential feature of the M/G/1-
uid model is the

gradual input into the bu�er of the tra�c generated by the arrival process. Consider the M/G/1

model with arrival � and service time 
� with B(t) the distribution of � and a 
 < 1. Then the

wn-process, cf. (1.17), is the actual waiting process of this M/G/1 model. It is readily veri�ed that

the un=process, cf. (1.18), is an imbedded process of this wn-process. For 
 > 1 this un-process may

be also interpreted as the bu�er content process, just before the start of the n-th in
ow period �n,

with instantaneous input 
� instead of gradual input as for the 
uid model. Because for the case with

instantaneous input the potential output rate of the bu�er is timely more e�ciently used than with

gradual input it follows that un � wn with probability one if u0 = w0; here wn is the bu�er content

at the start of the n-th in
ow period, see Figure 2. With ! a stochastic variable with distribution the

stationary distribution of the !n-process with a
 < 1 it follows that

u � ! with probability one : (1.29)

Hence

Prf! � tg � Prfu � tg ; t � 0: (1.30)

Note that in (1.30) the equality sign holds for all t � 0 if 
 � 1. It has been shown in Section 9 that
~�u converges in distribution for a
 " 1. Consequently, we have from (1.30) for 
 < 1,

lim sup
a
"1

Prf ~�! � tg � lim
a
"1

Prf ~�u � tg = lim
a
"1

Prf ~�w � tg: (1.31)

Because Prf ~�w � tg is monotone in a
 we have from (1.31) for 
 < 1,

lim
a
"1

Prf ~�! � tg � lim
a
"1

Prf ~�w � tg: (1.32)

For a 2 (ac; 1=
) we have Efbg > Ef�g, cf. (1.14), and the !n-process becomes instable for a 
 ! 1,

i.e. !n !1 with probability one for a
 ! 1. For all n for which !n is large the relation (1.11) applies
also for 
 < 1, and consequently the !n-process behaves as the un-process with 
 < 1. This leads to

the conclusion that in (1.32) \�" may be replaced by \=". Further for 
 � 1 the un-process and the

!n-process have the same stochastic structure and so the same have tra�c distribution for a
 " 1,

since it has above been argumented that this also holds for 
 < 1 we conclude: for a
 ! 1; 
 > 0,

~�!; ~�w and ~�u all converge in distribution to the same probability distribution. (1.33)
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2. On the relation between Efe��wg and Efe��ug
Let w be a stochastic variable with distribution the stationary distribution of the wn-process; analo-

gously u is de�ned for the un-sequence, cf. (1.17) and (1.18). So

Prfw < wg =W (w); Prfu < ug = U(u): (2.1)

In this section we derive a relation between the Laplace-Stieltjes transforms Efe��wg and Efe��ug
of the distributions W (w) and U(u).
From (1.7) we have: for Re � � 0; Re s > 0,

s+�[1� Efe��b�s�g]�1 =

1Z
0

e�ste�H(�;t)dt (2.2)

=

1Z
0

e�[s+�(1��(
�))]te�[H(�;t)��t(1��(
�))]dt:

Partial integration of the righthand side of (2.2) yields: for Re � � 0; Re s > 0,

s+�[1� �(
�)]

s+�[1� Efe��b�s�g]
= [�e�H(�;t)�st]1t=0 (2.3)

�
1Z
0

�Efe�
��(� � t)ge�H(�;t)dt:

Note that, cf. (1.8),

1

�

d

dt
[H(�; t)� f1� �(
�)gt] =

1

�

d

dt

1Z
�=t

(� � t)e�
��dB(�) (2.4)

= � 1

�

1Z
�=t

e�
��dB(�) = � 1

�
Efe�
��(� � t)g:

From (1.8) it is readily seen that

H(�; 0) = 0 for Re � � 0;

jH(�; t)j ! 1 for t!1; Re � > 0;
(2.5)

and so from (2.4) and (2.5): for Re � � 0; Re s � 0,

s+�[1� �(
�)]

s+�[1� Efe��b�s�g]
= 1� a

1Z
0

e�s�Efe�
��(� � t)ge�H(�;t) dt

�
: (2.6)

For the proof that this relation holds for Re s � 0, see Appendix A.

Put for Re � � 0; Re s � 0,

G(�; s) :=

1Z
0

e�(s+
�)tEfe�
�(��t)(� � t)ge�H(�;t) dt

�
: (2.7)

A simple calculation shows by using (a.3) of Appendix A that
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G(0; 0) =
1

a
(1� e�a): (2.8)

Let � be a stochastic variable with the same distribution as �n, so that

Efe���g = �

s+�
;

and such that � and � are independent and similarly � is independent of b and �, then we may rewrite

(2.6) as: for Re � � 0; Re s � 0,

1� Efe�
���s�g
1� Efe��b�s(�+�)g

= 1� aG(�; s): (2.9)

In particular it follows from (2.9) by taking � = �s, with Re � = 0, that: for Re � = 0,

1� Efe�
��+��g
1� Efe��(b����)g

= 1� aG(�;��): (2.10)

Denote for the M/G/1 queue with actual waiting time process given by (3.6) by ~i the idle time and

by ~n the number of customers served in a busy period. From [3] p.21 or [4] we then have, note that

a
 < 1: for Re � = 0,

Efe��wg = 1

Ef~ng
1� Efe�~ig

1� Efe�
��+��g
: (2.11)

For the un-process de�ned in (3.7) de�ne

n := minfn : un+1 = 0; n = 1; 2; : : : ju1 = 0g; (2.12)

i := �[un + bn � �n � �n]
�;

then, cf. [3], p.21 or [4] : for Re � = 0,

Efe��ug = 1

Efng
1� Efe�ig

1� Efe��(b����)g
: (2.13)

Note that a
 < 1 so that by taking � = 0 in (2.11) and (2.13),

Ef~ig
Ef�g � 
�

= Ef~ng ; Efig
Ef�g � Efb� �g = Efng: (2.14)

Because

Ef~ig = Ef�g = 1

�
;

we obtain

Ef~ng = 1

1� a

; (2.15)

and from (1.9) and (2.14) it is seen that

�Efig = Efng(1� a
)ea: (2.16)

From (2.11) and (2.13) we have: for Re � = 0,
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Efe��ug
Efe��wg =

1� Efe�ig
1� Efe�~ig

Ef~ng
Efng

1� Efe�
��+��g
1� Efe��(b����g)

=
1� Efe�ig
1� Efe�~ig

Ef~ng
Efng [1� aG(�;��)]:

(2.17)

From (2.15), (2.16) and (2.17) it is seen that: for Re � = 0,

Efe��ug
Efe��wg =

[1� Efe�ig]=Efig
1� Efe�~ig=Ef~ig

f1� aG(�;��)gea: (2.18)

Obviously Efe��ug and Efe��wg are both regular for Re � > 0, continuous for Re � > 0; moreover it

is wellknown that Efe��wg has no zeros in Re � � 0, a property which follows immediately from the

Pollaczek-Khintchine formula. Hence the lefthand side of (2.18) is regular for Re � > 0, continuous

for Re � � 0. Further i and ~i are both nonnegative variables with

Efe�~ig = �=(�� �) ; Re � � 0;

and so

[1� Efe�ig]=[1� Efe�~i] (2.19)

is regular for Re � < 0, continuous for Re � � 0. Consequently the relation (2.18) together with the

regularity properties of the two quotients formulates a Riemann Boundary Value Problem, cf. [7].

Although this boundary value problem is a fairly standard one we shall not investigate it here because

for the case that B(�) has a heavy tail, cf. (1.19), its analusis is quite intricate.

3. On G(�;��)
From the expression (2.7) for G(�; s) and from that for H(�; t), cf. (1.8), we obtain by taking s = ��
with Re � = 0: for Re � = 0,

G(�;��) =

1Z
0

e(
�1)�tEfe�
�(��t)(� � t)ge�H(�;t) dt

�
(3.1)

= e
a

�
�(1)(
�)

1Z
0

e�[�1+
+a

1��(
�)

��

]�tEfe�
�(��t)(� � t)geaEf��t� e
�
��

(��t)g dt
�
:

Consider the function

f(�; 
) := �1 + 
 + a 

1� �(
�)


��
for Re � � 0; 
 < 1: (3.2)

From �gure 3 it is readily seen that f(�; 
) has
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Figure 3

a zero �0(
) in � > 0 if and only if


 >
1

a+ 1
: (3.3)

It is seen that

�0(
)!1 for 
 ! 1: (3.4)

Rewrite (3.1) as follows: for Re � = 0,

G(�;��) = e
a

�
�(1)(
�)

1Z
0

e�[�1+
+a

1��(
�)

��

]�te

a

1R
t

1�B(�)

�
d�

� (3.5)

[1�B(t)� Ef(1� e�
�(��t))(� � t)g]e�aEf��t� (1�e�
��)(��t)g dt
�
:

From f(�; 
) > 0 for 0 � � < �0(
) it is seen that the integral in the righthand side exists for

0 � Re � < �0(
): (3.6)

4. The message length distribution B(�)
In this section we describe a class of message length distributions B(�) which have a heavy tail as

characterised in (1.19).

The distribution B(t) to be considered is de�ned by, cf. [2], form. (1.3),

1�B(t) =
�2��

�(2� �)
�

1Z
0

e���
�

(� + t)�
d�; t � 0; (4.1)

with the parameters �; �; � satisfying

0 < � � 1; � :=
2� �

� � 1

�

�
; 1 < � < 2; (4.2)

and �(x) being the Gamma function. Note that
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� =

1Z
0

tdB(t) <1; 1�B(0+) = �: (4.3)

From [2], form. (4.7) we have: for t � 0,

1�B(t) =
2� �

� � 1
�[� (�t)2��

�(3� �)
+
� � 1 + st

�(3� �)
e�t�(2� �; �t)]; (4.4)

and, cf. [2], form. (4.11): for t!1 and every H 2 f1; 2 : : :g,

1�B(t) =
2� �

� � 1
�[

� � 1

�(3� �)
(�t)1��+

� � 1 + �t

�(3� �)
f
HX
m=1

(�1)m�(� � 1 +m)

�(� � 1)

1

(�t)m+��1 +O((�t)�H��g];
(4.5)

with

�(�; x) :=

1Z
x

e�uu��1du: (4.6)

Further with: for Re � � 0,

�(�) :=

1Z
0�

e��tdB(t);
1� �(�)

��
=

1Z
0

e��t
1�B(t)

�
dt; (4.7)

we have, cf. [2], form. (2.20): for Re � � 0,

1� �(�)

��
=

�

� � �
+

1

2� �

��

(� � �)2
� 1

2� �

��

(� � �)2
(
�

�
)��2: (4.8)

The case with � = 1 1
2
is of special interest, because of its simplicity.

For � = 1 1
2
we have, cf. [2], form. (3.7), (3.9),

1�B(t) =
2�p
�
[��t+ (1 + 2�t)e�tErfc(

p
�t)]; t � 0; (4.9)

=
2�

�

HX
n=1

(�1)n�1n�(n+ 1=2)

(�t)n+1=2
+O((�t)�H+1=2) for t!1;

1� �(�)

��
=

1

[1 +
p
��=�]2

; Re � � 0;

with H 2 f1; 2; : : :g and the complementary error function de�ned by

Erfc(x) :=

1Z
x

e�u
2

du:

From (4.5) it is readily seen that the distribution B(t) introduced above, cf. (4.1), has a heavy tail of

the type (1.19).

Remark 4.1. The power �� occurring in the relations above is de�ned by their principal values, i.e.

it is positive for � > 0. 2
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5. The case 
 = 1

In this section we consider the case with


 = 1 and a < 1: (5.1)

For 
 = 1 the stochastic variable b� � is nonnegative with probability one and, cf. (1.16),

0 < Prfb� � = 0g = �(�) < 1: (5.2)

Hence it is seen that for the case 
 = 1 the un-processes is the actual waiting time process of an

M/G/1 queue with service time distribution that of b � � and arrival rate �. For such a queueing

model the stationary distribution of the idle time i has the same distribution as the interarrival time,

and so, cf. (2.18), by noting that i and ~i have the same distribution, we have from (2.18) and (3.5):

for Re � � 0,

Efe��ug
Efe��wg = f1� aG(�;��)gea; (5.3)

G(�;��) = e
a

�
�(1)(�)

1Z
0

e�a
1��(�)
��

�te

a

1R
t

1�B(�)

�
d�

� (5.4)

[1�B(t)� Ef(1� e��(��t))(� � t)g]e�aEf��t� (1�e���)(��t)g dt
�
:

It remains to show that (5.3) and (5.4) hold for Re � > 0, because (2.18), (3.5) and (5.1) imply only

that they hold for Re � = 0. However the integral of (5.4) exists for Re � � 0 and is regular in

Re � > 0, continuous for Re � � 0. Since both sides of (5.3) are regular in Re � > 0, continuous in

Re � � 0 and (5.3) holds for Re � = 0 it follows by analytic continuation that (5.3) holds for Re � � 0.

The relation (5.3) will be the starting point for the derivation of the expression for the tail prob-

abilities of the stationary distribution U(t) of u. Essential in our analysis is the application of the

Theorem of Doetsch, cf. [6], vol. II p. 159 or appendix A of [2]. In [2] it has been shown that

[1� Efe��wg]=� is regular in the domain D�, see Figure 4, for the case that B(t) is given by (4.1).

Figure 4
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Here D� is the domain in the �-plane to the right of the open contour D, which is formed by the

circular arcf� : � = r0e
�i g with 0 < r0 << 1; 1

2
� <  < �, and the half lines f� : � = re�i ; r � r0g.

In this domain D� with 0 < r0 << 1 the L.S-transform [1� Efe�wg]=� of 1�W (t) has for j�j # 0
a series expansion in powers of �. Application of the Theorem of Doetsch to this series expansion

leads to the asymptotic expansion of 1 �W (t) for t ! 1, see Sections 3 and 6 of [2]. An essential

characteristic of this approach is that the terms with integer powers of � in the series expansion do

not contribute to the asymptotic series of 1�W (t).
From (5.3) we �rst derive a series expansion in powers of � for � 2 D� and j�j # 0, and then apply

the just mentioned theorem of Doetsch. Herefore we have to show that f1� aG(�;��)gea has such a

series expansion.

To investigate G(�;��) for j�j # 0; Re � � 0, we �rst consider the integral I(�), cf. (5.4),

I(�) :=

1Z
0

e��t(1�B(t))e
a
R
1

t

1�B(�)

�
d� dt

�
; Re � � 0: (5.5)

In appendix C, cf. (c.14) and below, it is shown that for �! 0; Re � � 0,

I(�) =
1

a
(ea � 1) +

1

2� �
(�=�)��1f1 + O(j �

�
j)g+O(j �

�
j): (5.6)

In appendix B it has been shown, cf. (b.4) that: for Re � � 0,

Ef[1� e��(��t)](� � t)g =

�

�(2� �)

�
���2��e�t

(� � �)2
�(1� �; �t)� ��e�t

(� � �)2
�(1� �; �t)

� �e�t

� � �
�(2� �; �t) +

��te�t

� � �
�(1� �; �t)

�
;

(5.7)

and. cf. (b.7); for 0 � t < T <1; j�j ! 0; Re � � 0,

Ef[1� e��(��t)](� � t)g = �

1� �
(�=�)�f1 + O(�=�)g+O(�=�)); (5.8)

and, cf. (b.8), for t >> T; j�j ! 0; Re � � 0,

Ef[1� e��(��t)](� � t)g = �

1� �
[(
�

�
)�f1 + O(�=�)g+O(�=�)][1 +

1

(�t)�
(1 + O(

1

�t
)]: (5.9)

Next consider the integral: for Re � � 0,

I1(�) :=

1Z
0

e��tEf[1� e��(��t)](� � t)gea
R1
t

1�B(�)

�
d� dt

�
: (5.10)

Because

0 < e
a
R1
t

1�B(�)

�
d�
< ea; (5.11)

it is readily veri�ed by using (5.8) and (5.9) that: for j�j ! 0; Re � � 0,

I1(�) =
�

1� �
(�=�)�f1 + O(�=�)g+O(�=�): (5.12)

Observe that: for Re � � 0,
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Ef(�� t)e��(��t)(� � t)g = d

d�
Ef[1� e��(��t)](� � t)g; (5.13)

and so the asymptotic behaviour of Ef(�� t)[1� e���](� � t)g for j�j ! 0, Re � � 0 may be obtained

from (5.7) and (5.13), it has been derived in Appendix B, see (b.11).

From the results above we can derive an asymptotic expression for G(�;��) for j�j ! 0, Re � � 0.

First note that the last factor in (5.4) goes to one for j�j ! 0; Re � � 0. From (5.6) and (5.8) it is

seen that the contribution of the term Ef[1�e��(��t)](� � t)g of the integrand to the integral in (5.4)

is of O(j�=�j) compared to the contribution of the term 1�B(t).
From (5.4), (5.6), (5.8), (b.11) and (b.14), we obtain for j�j ! 0; Re � � 0,

G(�;��) = e�af1 + �a

2� �
(
�

�
)��1g[ 1

a
(ea � 1) +

1

2� �
(a
1� �(�)

��
)��1]� (5.14)

[1 +
��

� � 1
a
1� �(�)

��
)��1]f1 + O(j �

�
j)g+O(j �

�
j)

=
1

a
(1� e�a) + C(

�

�
j)��1f1 + O(j �

�
j)g+O(j �

�
j);

with, cf. (4.2) and (4.8),

C :=
1

2� �
[a��1 + �(1� e�a)(1 + a��1)]: (5.15)

Remark 5.1. Note that C > 0 and �nite for 0 < a � 1. Actually, for a = 1; Re � � 0,

jG(�;��)j <1; 2 (5.16)

From (5.3), (5.14) and (5.15) we obtain: for Re � � 0; j�j ! 0,

Efe��ug
Efe��wg = 1� a(��)��1Cf1 + O(j��j)g+O(j��j): (5.17)

We rewrite (5.17) as: for j�j ! 0, Re � � 0,

1� Efe��ug
�

=
1� Efe��wg

�
� a(��)��2Efe��wgCf1 + O(j��j)g+ (5.18)

+
1

�
Efe��wgO(j��j):

Next we show that the relation (5.18) also holds for � 2 D�. To do so it is �rstly observed

that the function f1 � �(�)g=�� and �(1)(�) can be continued analytically into D�, see herefor the
relation (4.8) and (b.12) of appendix B. From (b.4) and (b.9) it is seen that the other functions of

� occuring in the righthand side of (5.3) can also be continued analytically into D�. Consequently

the function G(�;��), cf. (5.4), has an analytic continuation into D�, because its integrand has such

a continuation. From the derivations which have led to (5.18) and by noting that Efe��wg has an

analytic continuation into D�, cf. [2], form. (3.15) and (5.28), it follows from (5.3) that Efe��ug
has an analytic continuation in D�. Consequently, we have from (5.18) that: for jr0j << 1; j�j ! 0,

� 2 D�,
1� Efe��ug

�
=

1� Efe��wg
�

= a(��)��1
1� Efe��wg

�
Cf1 + O(j��j)g (5.19)

+
1

�
Efe��wgO(j��j)� a(��)��2�Cf1 + O(j��j)g:
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We consider from now on the case v = 1 1
2
, see also Remark 5.1 below. In [2], cf. form (3.15), it has

been shown that: for j�j ! 0, � 2 D� and � = 1 1
2
,

1� Efe��wg
�

=
1

2�
(1� a)�

p
a

HX
n=0

(�1)n
�

1

(1�pa)n+2 �
1

(1 +
p
a)n+2

�
(��=�)

1
2
n� 1

2 (5.20)

+ O(j��=�j 12H+
1
2 );

for every Hf0; 1; 2; : : :g, so for H = 1:

1� Efe��wg
�

=
2

�

a�

1� a

�
�

��

� 1
2

� 1� a

2�
�
p
a

�
1

(1�pa)3 �
1

(1 +
p
a)3

��
��

�

� 1
2

(5.21)

+
1� a

(1�pa)5 �O(j
��

�
j1 12 ):

We next substitute (5.21) into the righthand side of (5.19). This leads to: for j�j ! 0, � 2 D�,

1� Efe��ug
�

� 1� Efe��wg
�

= �a(��)� 1
2 �Cf1 + O(j��j)g+ (5.22)

[
2p
�

a2�

1� a
� �

1� a

2�1
1
2

a
p
a+ a

1� a

(1�pa)5O(j��j)]Cf1 + O(j��jg+

+
O(j��j)

�
f1� 2

�
�
a�

1
2

1� a
(j��j) 12 [1 + O(j��j)]g:

To the relation (5.22) we apply the theorem of Doetsch [6], vol. II, p. 159, see also appendix A of

[2]. As in appendix A of [2], it is shown that this theorem can be applied. Its application yields: for

t!1,

1� U(t)� f1�W (t)g = � a

�( 1
2
)
C

�
�

t

� 1
2

� 2p
�

a

1� a

1

�(�1 1
2
)

�
�

t

�1
1
2

Df1 + O

�
�

t

�
g (5.23)

for t!1, here D is a constant.

To prove (5.23) note that

1� Efe��ug
�

=

1Z
0

e��tf1� U(t)gdt; 1� Efe��wg
�

=

1Z
0

e��tf1�W (t)gdt:

Further, the theorem of Doetsch applies, so that the general term in the righthand side of (5.22) yields

a contribution to the asymptotic series in the righthand side of (5.23) according to

cn�
�n =) cn

t��n�1

�(��n) ;

for arbitrary �0 < �1 < �2; : : :, and with

[�(��n)]�1 := 0 for �n = 0; 1; 2; : : : :

Since j 1
�
O(��)j = O(1) for � # 0 it is readily seen that (5.22) eads to (5.23), and so (5.23) has been

proved. 2
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From [2], form. (3.16), we have: for t!1.

1�W (t) =
1

2
(1� a)

p
2

�

HX
m=0

(�1)m
�

1

(1�pa)2m+2
� 1

(1 +
p
a)2m+2

�
�(m+ 1

2
)

(t�)=�)m+
1
2

(5.24)

+ O
�
(t�=�)�H�1

1
2

�

=
2a

(1� a)

1p
��

�
�

t

� 1
2

� (1� a)
p
a

4
p
��3

f 1

(1�pa)4 � 1

(1 +
p
a)4

g
�
�

t

�1
1
2

+ O(

�
�

t

�2
1
2

):

From (5.23) and (5.24) it is seen that the coe�cients of the terms in the symptotic series for 1�U(t)
di�er from the corresponding coe�cients in the asymptotic series of 1�W (t).

In so far it concerns the terms with the factor (�=t)
1
2 it is seen that 1�U(t) and 1�W (t) di�er by

� ap
�
C

�
�

t

� 1
2

: (5.25)

Concerning the terms with the factor (�
t
)1

1
2 , 1� U(t) and 1�W (t) di�er by

� 2p
�

a

1� a

1

�(�1 1
2
)

�
�

t

�1
1
2

D: (5.26)

The term in (5.25) should be compared with the �rst term in the righthand side of (5.24) and it is

then seen that for �xed a � 1 the term (5.25) can be neglected, with respect to that in (5.24).

Futher it is seen that the ratio of the second term in the righthand side of (5.24) and the term in

(5.26) behaves as (1 �pa)�2 for a ! 1. Note that C and D are �nite for all a < 1. This follows

from the fact that G(�;��), Re � � 0 is �nite for all �nite a which implies that the coe�cients in the

series expansion of G(�;��) in powers of �
1
2 are all �nite, note that G(�;��) is regular for Re � � 0,

� 6= 0.

The relation (5.23) is for �xed a 2 (0; 1) an asymptotic relation between the tail probabilities

1 � U(t) and 1 �W (t) and since C > 0 it is seen that 1� U(t) < 1�W (t) for t ! 1. This result

is plausible because the distribution W (t) concerns a bu�er model with instantaneous input of tra�c

into the bu�er whereas U(t) relates to the model with gradual input, note that 
 = 1.

Remark 5.1. By using the asymptotic expression for 1�W (t), t!1 for the case 1 < � < 2, cf. [2],

form. (5.29), the analysis above can be repeated for 1 < � < 2, it is, however, quite intricate and

therefore omitted. In the derivation of the asymptotic expression for Efe��ug=Efe��wg the analysis
has been restricted to the determination of the �rst term of the asymptotic series. The determination

of further terms, although possible, requires very much algebra. 2

6. Heavy traffic analysis for the case 
 = 1; � = 1 1
2

In this section we shall consider the behaviour of u for the case that


 = 1; 0 < a < 1; a � 1; � = 1
1

2
: (6.1)

From [2], form. (3.13), we have for t � 0,

1�W (t) = Prfw � tg = (1 +
p
a)( a

�
)
1
2 e(1�

p
a)2�t=�Erfc((1�pa)

p
�t=�)

�(1�pa)(a
�
)
1
2 e(1+

p
a)2�t=�Erfc((1 +

p
a)
p
�t=�):

(6.2)
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Put

� := (1�pa)2�; (6.3)

It follows from (6.2) that: for t � 0,

Prf(1�pa)2�w � tg = (1 +
p
a)(

a

�
)
1
2 et=�Erfc(

p
t=�)

�(1�pa)(a
�
)
1
2 e

(
1+
p
a

1�
p
a
)
2 t
�Erfc(

1 +
p
a

1�pa
p
t=�):

(6.4)

Consider the relation (6.4) for the case a � 1, cf. (6.1). From [7], vol.2, p. 147, we have for:

Re x > 0; jxj ! 1,

Erfc(x) =

1Z
x

e�u
2

du =
1

2
p
�
e�x

2

[

HX
n=0

(�1)n�(
1

2
+ n)

x2n+1
+O(jxj�2H�3); (6.5)

for every H 2 f0; 1; 2; : : :g. Hence for a " 1 and �xed t 2 (0;1),

(1�pa)(a
�
)
1
2 e

(
1+
p
a

1�
p
a
)
2 t
�Erfc(

1 +
p
a

1�pa

r
t

�
) =

1

4
p
�
(1�pa)2(�

t
)
1
2 f1 + O((1�pa)2 �

t
)g:

(6.6)

Consequently we obtain from (6.4) and (6.6) that: for �xed t 2 (0;1),

lim
a"1

Prf(1�pa)2�w � tg = 2p
�
et=�Erfc(

r
t

�
);

Prf(1�pa)2�w � tg = 2p
�
et=�Erfc(

r
t

�
)+

1

4
p
�
(1�pa)2(�

t
)
1
2 f1 + O((1�pa)2 �

t
)g for a " 1:

(6.7)

The relation (6.7) shows that the stochastic variable (1�pa)2�w converges in distribution for a " 1.
The relation (6.7) formulates the heavy tra�c distribution for the actual waiting time distribution of

the M/G/1 queueing model with service time distribution B(t) as given by (4.1) with � = 1 1
2
.

From (5.24) we have for t!1 and �xed a 2 (0; 1),

Prf(1�pa)2�w � tg =
1

2
(1 +

p
a)[

p
a

�

HX
m=0

(�1)m[1� [
1�pa
1 +

p
a
]2m+2]

�(m+ 1

2
)

(t=�)m+
1
2

+f1� (
1�pa
1 +

p
a
)2H+4gO(( t

�
)�H�1

1
2 )];

(6.8)

with H 2 f0; 1; 2 : : :g.
Consequently: for �xed a 2 (0; 1); a � 1 and t!1,

Prf(1�pa)2�w � tg = 1

�

HX
m=0

(�1)m �(m+ 1

2
)

(t=�)m+
1
2

+O((
t

�
)�H�1

1
2 ): (6.9)

Note that (6.7) implies by using the asymptotic series for the error function, cf. [7], p. 147, that: for

t!1 and H 2 f0; 1; 2; : : :g,

lim
a"1

Prf(1�pa)2�w � tg = 1

�

HX
n=0

(�1)n �(n+
1

2
)

(t=�)n+
1
2

+O((
t

�
)�H�1

1
2 ): (6.10)
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Next, we turn our attention to the limiting distribution U(t) of the un-process, cf. (1.18).
From (2.18) and (6.3) we have for Re r � 0,

Efe�r�ug
Efe�r�wg = [1� aG(r�;�r�)]ea: (6.11)

Because � # 0 for a " 1 and G(r�;�r�) ! 1� e�1, cf. (2.8), for r 6= 0; a " 1, we obtain from (6.11)

that: for Re r � 0,

lim
a"1

Efe�r�ug
Efe�r�wg = 1: (6.12)

From (6.7) and Feller's continuity theorem, cf. [8] vol II. p. 431, it follows that the L.S.-transform

Efe�r�wg of the distribution of �w has a limit for a " 1;Re r � 0. Consequently, (6.12) implies that

Ee�r�ug;Re r � 0, has a limit for a " 1. By applying again Feller's continuity theorem it follows that

�u converges in distribution for a " 1, i.e.
�u has the same limiting distribution as �w: (6.13)

the latter distribution is given by (6.7).

Concerning the tail of the distributions of �u and �w we obtain from (5.23) for �xed a; a � 1 and

t!1,

Prf(1�pa)2�u � tg � Pr(1�pa)2�w � tg =

= � 1p
�
(1�pa)�C(�

t
)
1
2 +O((1�pa)2� �

t
);

(6.14)

with C given by (5.14) and the tail of the distribution of (1�pa)2�w given by (6.9). Note that C > 0

for a = 1; � = 1; � = 1 1
2
, and that the �rst term in the righthand side of (6.9) is positive. Hence

the �rst term in the asymptotic expression for Prf(1 � pa)2�u � tg is somewhat smaller than the

coresponding one in the asymptotic series for Prf(1 � pa)2�w � tg. This is plausible because for

the un-process the tra�c is fed gradually into the bu�er, whereas for the wn-process the tra�c of a

message is instantaneously fed into the bu�er, note that the case 
 = 1 is considered in this section.

7. Heavy traffic analysis for the case 
 = 1; 1 < � < 2

In this section we consider the case


 = 1; 0 < a < 1; a " 1; 1 < � < 2: (7.1)

In [2], section 6, the stationary waiting time distribution W (t) of the M/G/1 queue with tra�c load

a and service time distribution B(t) as given by (4.1) with 1 < � < 2 has been analyzed. In that

section we have not derived an explicit expression for W (t), however, the L.S.-transform Efe��wg is
explicitly available, cf. [2], form. (2.20) and (5.7). Therefore we use here a slightly di�erent approach

from that in the preceding section.

Put

� := 2� �; (7.2)

and suppose that � is rational, say,

� =
M

N
with M < N and g.c.d. (M;N) = 1: (7.3)

As in [2], cf. (5.10), (5.11), (5.12) and (5.13), it is shown that: for Re � � 0,

Efe��wg = (1� yN )2

A(y)
; (7.4)
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with

y = (
�

�
)1=N ;

A(y) = (1� yN )2 +
a

1� a
yN+M [yN+M � M +N

M
yM +

N

M
];

(7.5)

with the principal value of (�=�)1=N so de�ned that y > 0 for � > 0.

In [2] appendix B it has been shown that y = 1 is a double zero of A(y), of the 2N � 2 other zeros

yn(a) of A(y) there are exactly N �M for which holds

yn(a) = (
1� a

a

M

N
)

1
N�M e

2n+1
N�M �i; n = 1; : : : ; N �M; (7.6)

all the other zeros yn(a); n = N �M; : : : ; 2N , are bounded away from zero for a " 1.
Put

� = r� ; Re r � 0; � > 0; (7.7)

then we show below that a � � �(a) exists such that Efe�r�wg has a limit for a " 1.
With, cf. (7.5),

y = (
r�

�
)1=N ; (7.8)

we have from (7.5),

A(y) = [1� (
r�

�
)N ]2 +

a

1� a

N

M
(
r�

�
)
N�M
N [1� M +N

N
(
r�

�
)
M

N +
M

N
(
r�

�
)
N+M
N ]: (7.9)

Take � > 0 such that

a

1� a

N

M
(
�

�
)
N�M
N = 1:

i.e.

� = [
1� a

a
�]

1
1���: (7.10)

It then follows from (7.8) that: for a " 1,

A((
r�

�
)1=N ) = 1 + r

N�M
N ; (7.11)

and hence from (7.4), (7.8), (7.9), (7.10) and (7.11),

lim
a"1

Efe�r�wg = 1

1 + r
N�M
N

;Re r � 0: (7.12)

As in [2] remark 6.1, it is shown that the assumption of rationality of �, cf. (7.3), is not essential
and so we have with

� = [
1� a

a
(2� �)]

1
��1

2� �

� � 1

�

�
; (7.13)

that: for 1 < � < 2;Re r � 0,

lim
a"1

Efe�r�wg = 1

1 + r��1
: (7.14)

From (7.14) we have: for Re r � 0; jrj < 1,
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[1�
1
lim
a"1

Efe�r�wg] =r =
X
n=1

(�1)n�1rn(��1)�1: (7.15)

To the relation (7.15) we may apply the theorem of Doetsch, [6] vol. II, p. 159, see appendix A of

[2]. We obtain: for t!1; H 2 f1; 2; : : :g,

lim
a"1

Prf�w � tg =
HX
n=1

(�1)n�1 t�n(��1)

�(1� n(� � 1))
+ O(t�(H+1)(��1)); (7.16)

note that in the righthand of (7.16) all those terms with n(� � 1) a nonnegative integer should be

deleted.

By using

�(�[n(� � 1)� 1]) =
�

�(n(� � 1)) sin�n(� � 1)
; (7.17)

we obtain: for t!1; H 2 f1; 2; : : :g,

lim
a"1

Prf�w � tg = 1

�

HX
n=1

(�1)n�1�(n(� � 1)) sin�n(� � 1)

tn(��1)
+O(t�(H+1)(��1)): (7.18)

As in section 6, cf. (6.13), it is shown that: for a " 1,
�u and �w have the same limiting distribution: (7.19)

8. Heavy traffic analysis for the case 
 < 1; 1 < � < 2.

In this section we derive a heavy tra�c result for the stationary distribution U(t) of the un-process,
cf. (1.18), for the case

0 < 
 < 1; 0 < a < 1; a " 1; 1 < � < 2; a
 < 1: (8.1)

Again we start from the relation, i.e. for Re r = 0,

Efe�r ~�ug
Efe�r ~�wg =

[1� Efer ~�ig])=Ef~�ig
[1� Efer ~�~ig])=Ef~�~ig

f1�G(r�;�r�)gea; (8.2)

with G(�;��) given by (2.7) and, cf. (7.13),

~� := [
1� 
a


a
(2� �)]

1
��1

2� �

� � 1

�


�
: (8.3)

Because i has a negative exponential distribution with mean ��1 it follows that: for Re r = 0,

lim
a"1

1� Efer ~�ig
Ef ~�ig = 1: (8.4)

The joint distribution of (bn;�n), cf. (1.8), is a true probability distribution for every �nite a > 1

similarly for that of �n. Consequently, since un � 0 with probability one we have from (2.12),

lim
a"1

~�i = lim
a"1

�[ ~�un + ~�bn � ~��n � ~��n]
�

= lim
a"1
f�[ ~�un]�g = 0:

(8.5)

Hence from (2.8), (8.2), (8.4) and (8.8) we have: for Re r � 0,

lim
a"1

Efe�r ~�ug
Efe�r ~�wg = 1: (8.6)
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In (8.6) w is a stochastic variable with distribution W (t), which is the stationary distribution of the

actual waiting time of an M/G/1 queue with arrival rate � and service time 
� and B(t); as given
by (4.1) for 1 < � < 2, the distribution of �. Hence Efe�
��g is given by (4.8) with � replaced by 
�.
Section 7 concerns the case 
 = 1, and so far the present case, cf. (8.1), we have to replace in (7.5) �
by 
� in the derivation of the expression of Efe��wg. Hence for the present case (7.8) becomes

y = (
r
�

�
)1=N : (8.7)

For the present M/G/1 model the tra�c load is

a
 = ��
; (8.8)

and so in (7.9),

a as to be replaced by a
;

� as to be replaced by �
:

As in section 7 we obtain that: for Re � � 0,

lim
a
"1

Efe�r ~�ug = lim
a
"1

gEfe�r ~�wg = 1

1 + r��1
; (8.9)

with ~� given by (8.3). Actually, it remains to show that (8.9) applies for Re � > 0. But this follows

easily by analytic continuation since the principal value of r��1 is de�ned to be positive for r > 0 and

because ~�u and ~�w are nonnegative with probability one.

Hence as in section 6 it follows from (8.9) by using Feller's continuity theorem that: for a
 " 1; 
 < 1

~�u and ~�w have the same limiting distribution: (8.10)

and hence they have the same tail probabilities. These are given by the righthand side of (7.16).

Remark 8.1. Note that (7.12) and (8.3) show that

� = ~� for 
 = 1. 2

9. Heavy traffic analysis for the case 
 > 1; 1 < � < 2.

In this section we consider the case


 > 1; a
 < 1; 1 < � < 2: (9.1)

For this case we have that b � � � 0 with probability one since b � 
� with probability one, cf.

(1.16). Hence the un-process, cf. (1.18), is for the case 
 > 1 again the actual waiting process of an

M/G/1 queue with arrival rate ��1 and service time distribution the distribution of b��. By using
the same argumentation as in section 7 but with � replaced by ~�, cf. (7.10) and (8.3), we obtain

again that: for a
 " 1
~�u and ~�w have the same limiting distribution; (9.2)

and the tail probabilities, i.e. for t!1,

lim
a
"1

Prf ~�w � tg

are given by the righthand side of (7.16).
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Appendix A

In this appendix we show that the relation (2.6) holds for Re � � 0;Re s > 0. The validity of (2.6)

for Re � � 0; Re s > 0, follows immediately from its derivation from (2.4) via the partial integration.

From (1.6) it is seen that: for Re � � 0; t � 0,

H(0; t) =
�

2�i

i1+"Z
�i1+"

eut

u2
f1� �(u)gdu = �

tZ
0

f1�B(�)gd�; (a.1)

because

1Z
0

e�u�f1�B(�)gd� = 1� �(u)

u
; Re u � 0: (a.2)

Hence from (1.6) and (a.1) for Re � � 0,

0 � jEfe�
��(� � t)ge�H(�;t)j � f1�B(t)ge
��

tR
0

f1�B(�)gd�
:

Because

1Z
0

f1�B(t)ge
��

tR
0

f1�B(�)gd�
dt = [� 1

�
e
��
R
t

0
f1�B(�)gd�

]1
0

=
1

�
f1� e���g = 1

�
f1� e�ag;

(a.3)

it follows that the integral in the righthand side of (2.6) exsists for Re � � 0 and s = 0, and since

this integral is a Laplace transform it exists also for Re s � 0. The lefthand side of (2.6) exist for

Re � � 0;Re s � 0 and so continuity implies that (2.6) holds for Re � � 0;Re s � 0.

Appendix B

We consider here: for Re � � 0,

Ef[1� e��(��t))(� � t)g =
1Z
t

f1� e��(��t)gdB(�) = �

1Z
t

e��(��t)f1�B(�)gd�:
(b.1)

By using (4.1) we have: for Re � � 0,

�

Z 1

t

e��(��t)f1�B(�)gd� = ���2��

�(2� �)

1Z
0

�e���
1Z
0

e��u(� + u+ t)��dud�: (b.2)

we have with � > � > 0,
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1Z
0

�e���
1Z
0

e��u(� + u+ t)��dud� = e�t
1Z
t

(v� t)e�(���)v
1Z

w=v

e��ww��dwdv =

e�t[� v� t

� � �
]e�(���)v

Z 1

v

e��ww��dwj1v=t]+

e�t
1Z
t

[�e�(���)vdv
� � �

1Z
v

e��ww��dw � v� t

� � �
e�(���)ve��vv�� ]dt =

e�t

� � �

1Z
t

e�(���)v
1Z
v

e��ww��dwdv � e�t

� � �

1Z
t

(v � t)e��vv��dv =

� e�t

� � �

1Z
t

(v� t)e��vdv +
e�t

� � �
[�e�(���)v

� � �

1Z
v

e��ww��dwj1t

� e�t

(� � �)2

1Z
t

e���v��dv =

e�t

(� � �)2

1Z
t

e��ww��dw� e�t

(� � �)2

1Z
t

e��vv��dv � e�t

� � �

1Z
t

(v � t)e��vv��dv =

(b.3)

���1e�t

(� � �)2

1Z
�t

e�uu��du� e�t���1

(� � �)2

1Z
�t

e�uu��du� e�t���1

(� � �)2

1Z
�t

(
u

�
� t)e�uu��du =

���1e�t

(� � �)2
�(1� �; �t)� ���1e�t

(� � �)2
�(1� �; �t)

��
��2e�t

� � �
�(2� �; �t) +

���1te�t

� � �
�(1� �; �t):

The lefthand side of (b.2) is regular for Re � � 0. It is readily seen from the last member of (b.3)

that � = � is not a pole and hence by analytic continuation the relation (b.3) holds for all � with

Re � � 0.

From (b.1) and (b.3) we obtain for Re � � 0,

Ef[1� e��(��t)](� � t)g =
�

�(2� �)
[
���2��e�t

(� � �)2
�(1� �; �t)� ��e�t

(� � �)2
�(1� �; �t)

� �e�t

� � �
�(2� �; �t) +

��te�t

� � �
�(1� �; �t)]:

(b.4)

From [6], vol 2, p. 135, we have

�(�; �t) = �(�)�
1X
n=0

(�1)n
n!

(�t)�+n

�+ n
; t > 0; (b.5)

and for t!1 and every H 2 f1; 2; : : :g,

�(�; �t) = (�t)���1e��t[
HX
m=0

(�1)m�(1� �+m)

�(1� �)
f(�t)�m +O((�t)�H�1)g]: (b.6)

From (b.4) and (b.5) it is seen that: for 0 � t < T <1,
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Ef[1� e��(��t)](� � t)g =
�

�(2� �)
[�(1� �)(�=�)�f1 + O(j �

�
j)g+O(j �

�
j)];

(b.7)

with j�j ! 0; Re � � 0,

and: for t >> T ,

Ef[1� e��(��t)](� � t)g = �

1� �
(
�

�
)�f1 + O(j �

�
j)g+O(j �

�
j)f1 + 1

(�t)��1
(1 + O(

1

�t
))g; (b.8)

for j�j ! 0;Re � � 0.

To calculate the behaviour of

Ef(�� t)[1� e���](� � t)g; Re � � 0;

note that we have from (5.7) or (b.4): for Re � � 0,

Ef(�� t)e��(��t)(� � t)g = d

d�
Ef(1� e��(��t))(� � t)g =

�

�(2� �)
[f��

��1�2��

(� � �)2
� 2���2��

(� � �)3
+
��t�2��

(� � �)2
ge�t

1Z
�t

e�uu��du� �2��t��

(� � �)2

� �e�t

(� � �)2
�(1� �; �t)� e�t

� � �
�(2� �; �t) +

�t

� � �
�(1� �; �t)

+
2��e�t

(� � �)3
�(1� �; �t) +

�e�t

(� � �)2
�(2� �; �t)� ��t

(� � �)2
�(1� �; �t)]:

(b.9)

From (b.9) we obtain: for Re � � 0,

Ef(�� t)[1� e���](� � t)g =

��e��t
�(2� �)

[f��
��1�2��

(� � �)2
� 2���2��

(� � �)3
+
��t�2��

(� � �)2
ge�t

1Z
�t

e�uu��du+

2��e�t

(� � �)3
�(1� �; �t) +

�e�t

(� � �)2
�(2� �; �t)� ��t

(� � �)2
�(1� �; �t)]:

(b.10)

From (b.10) we obtain: for j�j ! 0; Re � � 0,

Ef(�� t)[1� e���](� � t)g =

� �

�(2� �)
[����1����(1� �)f1 + O(j�

�
)g+O(j �

�
j)] =

= � ��

� � 1
[
1

�
(
�

�
)��1f1 + O(j �

�
j)g+O(j �

�
j)]:

(b.11)

Next we derive an asymptotic expression for �(1)(�) for �! 0. From (4.8) we have: for Re � � 0,

�(1)(�) =
d

d�
�(�) =

d

d�
f1� ���

� � �
� 1

2� �

���2

(� � �)2
+

1

2� �

���2

(� � �)2
(
�

�
)��2g =

=
���
� � �

+
���

(� � �)2
� 2

2� �

���

(� � �)2
+

2

2� �

���2

(� � �)3

+
2

2� �

���

(� � �)2
(
�

�
)��2 � 2

2� �

���2

(� � �)3
(
�

�
)��2 � ���2

(� � �)2
�2�����3:

(b.12)
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Hence: for j�j ! 0;Re � � 0,

�(1)(�) = �� + ��

2� �
(
�

�
)��1f1 + O(j �

�
j)g+O(j �

�
j): (b.13)

Consequently: for j�j ! 0; Re � � 0,

e
a

�
�(1)(�) = e�af1 + �a

2� �
(
�

�
)��1(1 + O(j �

�
j)) + O(j �

�
j)g: (b.14)

Appendix C

On the integral
R1
0

e��t 1�B(t)
�

e

�a
tR
0

1�B(�)

�
d�

dt.

The integral

I(�) :=

1Z
0

e��t
1�B(t)

�
e

a

1R
t

1�B(t)

�
d�

dt (c.1)

converges absolutely for Re � � 0. It follows that

I(0) =
1

a
(ea � 1);

I(�) =
1

a
ea � �

a

1Z
0

e

��t+a
1R
t

1�B(�)

�
d�

dt; Re � > 0:

(c.2)

For B(t) given by (4.1) the relation (4.5) describes the asymptotic series for 1�B(t), which we write

as: for t!1,

1�B(t) =

HX
n=0

bn(�t)
�(n+�) +O((�t)�(H+1+�))); (c.3)

for every H 2 f0; 1; 2; : : : ; g, the coe�cients bn follow from (4.5).

Obviously we have for every t > 0,

e

a

1R
t

1�B(�)

�
d�

=

1X
n=0

an

n!
[

1Z
t

1�B(�)

�
d� ]n; (c.4)

and this series converges absolutely. Hence the lefthand side of (c.4) possesses an asymptotic expansion

for t!1. From (c.2) and (c.4) we have: for Re � > 0,

I(�) =
1

a
e�a � �

a

1Z
0

e��tdt� �

1Z
0

e�tf
1Z
t

1�B(�)

�
d�gdt

��
1X
n=2

an�1

n!

1Z
0

e��tf
1Z
t

1�B(�)

�
d�gndt:

(c.5)

From (4.5) we have: for t!1,

1�B(t) =
2� �

� � 1
�

�1
�(3� �)

�(�)

�(� � 1)

1

(�t)�
f1 + O(

1

�t
)g

=
��

�(2� �)

1

(�t)�
g1 + O(

1

�t
)g:

(c.6)
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Hence: for t!1,

1Z
t

1�B(�)

�
d� =

�

(� � 1)�(2� �)

1

��

1

(�t)��1
f1 + O(

1

�t
)g: (c.7)

Hence for Re � � 0 and T su�ciently large,

I(�) =
1

a
(ea � 1)� �

TZ
0

e��tf
1Z
t

1�B(�)

�
d�gdt

��
1X
n=2

an�1

n!

TZ
0

e��tf
1Z
t

1�B(�)

�
d�gndt+

+�
�

(� � 1)�(2� �)

1

��

1Z
T

e��t
dt

(�t)��1
f1 + O(

1

�t
)g+

+�

1X
n=2

[
��

(� � 1)�(2� �)

1

��
]n
an�1

n!

1Z
T

e��t
dt

(�t)n(��1)
f1 + O(

1

(�t)n
)g:

(c.8)

For our asymptotic analysis in Section 5 we need the asymptotic behaviour of I(�) for � # 0. Note

that the �rst two integrals in the righthand side of (c.8) are regular functions of � for all �nite �.
Consider therefore, with �xed T > 0,

J(�; �) :=

1Z
T

e��tt�dt: (c.9)

As in [6] vol. I, p. 467, it is shown that for � < 0 with � not a negative integer that

J(�; �) =
�(�+ 1)

��+1
+ g(�); (c.10)

with g(�) an entire function of �, for every �nite T . So we have

1Z
T

e��t
dt

(�t)��1
=

1

���1
�(2� �)

�2��
+ g(�): (c.11)

Hence it is seen that for �nite but large T; I(�) for Re � � 0 may be written as

I(�) =
1

a
(ea � 1) + h(�)

+
1

��

�

(� � 1)�(2� �)

�(2� �)

(�=�)1��
f1 + O(j�=�j)g

=
1

a
(ea � 1) + h(�) +

1

2� �
(
�

�
)��1f1 + O(j�=�j)g;

(c.12)

with h(�) an entire function of �. Because 1 < � < 2 we obtain from (c.2) that

h(0) = 0: (c.13)

Hence: for j�j # 0; j arg �j � 1

2
�,

I(�) =
1

a
(ea � 1)� 1

2� �
(�=�)��1f1 + O(j�=�j)g+O(j�=�j): (c.14)
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because h(�) is an entire function.

From (c.3) and (c.5) it is seen that I(�) for Re � � 0 is the sum of an entire function of � and a

function of �n�1.
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