
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

H.B.M. JONKERS

IW 148/80 OKTOBER

DESIGNING A MACHINE INDEPENDENT STORAGE MANAGEMENT SYSTEM

Preprint

~
MC

kruislaan 413 1098 SJ amsterdam

PJunted a:t :the Ma:the.ma.tlc.at Centll.e., 413 K.!U.l..<.f.,laan, Am6:tvulam.

The Mathe.ma.tic.at Centll.e. , oounde.d :the. 11-:th oo Fe.bll.Ua/1..y 1946, ,u., a non
pnoo,i:t in6.,t,Uu;Uon ahning a:t :the. pnomotion oo pune ma:the.ma.tlc..6 and m
appUc.a.:ti.cml.i. 1:t ,u., .6pon6ane.d by :the Ne.:the,Jr,land-6 Gove,1r,nme.nt :thnou.gh :the.
Ne:thwana'-6 Onganiza.tlo n 6 on :the. Advanc.e.me.nt a 6 PMe Ru e.Mc.h (Z. W. 0.) •

1980 Mathematics subject classification: 68B20

ACM-Conputing Reviews category: 4.12, 4.49

Designing a machine independent storage management system*)

by

H."8.M. Jonkers

ABSTRACT

A systematic method of designing a storage management system for a

machine independent language implementation is described. It is based on

constructing an abstract model, which contains exactly the information

relevant to storage management and no more than that. The model allows

the problem to be approached in a rigorous and transparent way, up to a

level of formality where proofs of correctness are possible. The

effectivenE!SS of the method is demonstrated in the design of a storage

·management system for a machine independent ALGOL 68 implementation.

KEY WORDS 6, PHRASES: storage management, machine independence,

abstract machine, abstract model, invariant

*)This report will be submitted for publication elsewhere.

1 • INTRODUCTION

A usual way to obtain a portable implementation of a programming

language Lis to construct a compiler C, which translates programs in L

into code for an "abstract machine" M [3]. The latter is a hypothetical

machine, which is designed in such a way that it is easily implementable on

a large class E of existing machines. Given the compiler C, the job of an

implementer is then, apart from installing C, to implement Mon his

* * particular machine M. If M EE, this involves only a minor overhead. The

price to be paid for portability is thus kept to a minimum.

In each implementation of a programming language the problem of

storage management must be solved. Let us consider this problem in the

context of the above approach to programming language implementation. A

first way to "solve" the problem is to shift it off to the implementer of

the abstract machine M. This implies that the operations which have to do

with storage management are kept abstract in M, much like the way they are

kept abstract in the programming language L. The advantage of this approach

is twofold. First, the problems of code generation and storage management

are separated entirely. The designer of the code generator need not engage

•in the details and intricacies of a storage management system. This greatly

simplifies the design of the code generator. Second, each implementer can

design a storage management system of his own. Since he can tune this

storage management system to his particular machine, it will probably be

quite efficient. On the other hand the design and implementation of a

storage management system·may involve a considerable overhead in the

implementation of the abstract machine M. This, of course, is in

contradiction with the requirement that M should be easily implementable.

The way out is not to change the abstract machine M, but instead

provide it with a standard storage management system written in a subset of

the instruction code of M. Such a storage management system can be viewed

as an implementation of those instructions of M, which relate to storage

management, in terms of simpler instructions of M. The two advantages

mentioned above are retained this way. Code generation and storage

management remain separated, and each implementer is still free to design

his own storage management system. If the overhead of designing and

2

implementing a storage management system is considered to be too large,

however, the standard storage management system can be used. The only

remaining disadvantage is that, because the standard storage management

system is machine independent, it is probably not optimally efficient on

each existing machine. A careful design of the system may remove a great

deal of this objection.

This paper addresses the problem of designing a (standard) storage

management system as described above. It will be demonstrated by means of

an example how this problem can be tackled in a systematic way. The example

is not artificial. It is taken from the construction of the ALGOL 68 [11]

compiler which is currently being developed at the Mathematical Centre. In

this compiler the above approach is pursued. The abstract machine used in

this compiler is called the "MIAM" ("Machine Independent Abstract Machine")

[9]. The treatment will be such that no knowledge of either ALGOL 68 or the

MIAM is required.

Let us first discuss the problem in general terms. The nature of a

storage management system to be designed for an abstract machine depends to

a large extent on the operations which are performed by the abstract

·machine. The first thing to do therefore is to investigate which

requirements are imposed by the abstract machine on a storage management

system and also which properties of the abstract machine can be used to

make the storage management system more efficient. For any but simple

abstract machines this is a complicated job. The point is that one easily

gets mixed up in all kinds of details of the abstract machine, which are

completely irrelevant to the storage management problem. The only way to

avoid this is to bring about a "separation of concerns". That is, an

abstraction of the abstract machine should be made, which contains only

those details of the abstract machine which are or may be relevant to the

storage management problem. In such a (usually rather rudimentary) model of

the abstract machine the problem of storage management can be studied in

isolation, which makes the problem much more transparent.

Apart from the latter, there are a number of additional advantages.

First of all a storage management system designed this way is in a sense

generally applicable. It cannot only be used with the abstract machine it

3

was designed for, it can be used with any other machine that "fits" the

model. So it is machine independent in a double sense. The second advantage

is that it aids to a modularization of the process of compiler

construction. Through the model the storage management problem can be

presented to someone (e.g. ·a specialist in designing storage management

systems), who need not know anything of the programming language or

abstract machine in question. Finally it allows a nontrivial storage

management system to be discussed as in this paper, without perishing in a

host of implementation details.

As mentioned before the method will be demonstrated through the design

of a machine independent storage management system for the abstract machine

MIAM, which is used in a machine independent ALGOL 68 implementation. In

the next section the model of the MIAM will be described (after which one

can forget about the MIAM completely). Then the storage management problem

will be formulated in section 3. Finally the design of an efficient machine

independent storage management system will be described in section 4.

2. MODEL

Let us first look at the data structures which MIAM programs operate

upon. Considered at the lowest level these data structures are merely

pieces of storage. Here a. more abstract look will be taken at them. They

will be considered as abstract objects, which are called areas. Different

areas correspond to disjoint pieces of storage. There are two kinds of

areas, called locales and blocks:

An area is either a locale or a block.

Speaking in technical terms a locale corresponds to an "activation record"

and a block corresponds to a "data area". That is, if during the execution

of an ALGOL 68 program the range S showed in Fig. 1 is entered, a locale L

will be created in the MIAM, after which we say that "control resides in

4

L". At arrival at the declaration of the array A a block B (for the

elements of A) will be created. We shall say that Bis "created in L".

s

I
I
I
I

begin

[1:n]intA;
I
I
I
I
I
I
I
I

end

Fig. 1

Areas have a number of entities associated to them. First consider

locales:

Each locale L has:

status(L): variable status,

- type(L): constant type,

scope(L): constant integer,

- establisher(L): constant locale.

Here the "status" of L indicates whether Lis "alive" or "dead":

A status is an element from the set {alive, dead}.

Intuitively speaking a locale is alive if control resides in it or if

control will ever return in it. Otherwise the locale is dead. The "type" of

Lis a value, the exact nature of which is completely irrelevant here. The

only thing we need to know is that the (machine independent) type of L

determines the (machine dependent) size of the piece of storage

corresponding to L. The "scope" of Lis the ALGOL 68 scope of the range

5

corresponding to L. The latter is an integer which indicates the lifetime

of the locale (the larger the scope, the shorter the locale will live). The

"establisher" of L corresponds,to what is usually called a "dynamic link".

It is the locale where control resided immediately before control was

transferred to L. For instance, if in Fig. 1 prior to entering the range S

control resides in the locale Mand entry of the range S results in the

creation of a locale L, then establisher(L) = M.

Next consider blocks:

Each block B has:

- status(B): variable status,

- type(B): constant type,

- scope(B): variable integer,

- generator(B): variable locale.

Here the "status", "type" and "scope" of Bare analogous to the

corresponding entities associated to locales. The "generator" of Bis the

locale in which B was created. For instance, if in Fig. 1 entry of the

range Sand execution of the declaration of A would result in the creation

-of a locale Land a block B respectively, then after that generator(B) = L.

The reason why the scope and generator of a block are variable and not

constant entities will be discussed later.

The above covers the discussion of areas. However, areas are not the

only data structures which are of interest to the storage management

problem. One of the more exotic features of ALGOL 68 is the possibility to

specify that certain parts of a program should be executed in parallel,

where synchronization can be done through "semaphores" [2]. Programs using

this feature will be called "parallel programs". The other "normal"

programs will be called "sequential programs". In order to model

parallellism neatly the concept of a process must be introduced. As opposed

to areas, processes do not correspond to separate pieces of storage. They

are "embedded" in locales.

Let us first discuss processes informally. In general a number of

processes may simultaneously be active during the execution of a program on

the MIAM, where each process has its own control. Only when executing a

6

sequential program there is only one active process. Suppose control of the

active process Presides in the locale L corresponding to the range Sin

Fig. 2. When control arrives at the parallel clause "par(Sl, S2, S3)",

which specifies that Sl, S2 and S3 should be executed in parallel, three

new active processes Pl, P2 and P3 (corresponding to Sl, S2 and S3) will be

created, while P becomes inactive until Pl, P2 and P3 are completed. That

is, P "ramifies" over Pl, P2 and P3. We shall say that Pl, P2 and P3 are

"created by Pin L".

I
I
I
I

b..wn
I
I
I
I
I
I
I
I

S i;ra,r IS1, S2, S3);
I
I
I
I
I
I
I
I

~

Fig.2

The concept of a process will now be defined more precisely:

Each process P has:

- mode(P): variable mode,

- origin(P): constant locale,

- environ(P): variable locale,

- spawner(P): constant process.

Here the "mode" of P indicates whether Pis "active", "spawned"(= ramified

over a number of processes) or "completed":

A mode is an element from the set {active, spawned, completed}.

7

The "origin" of Pis the locale in which P was created and the "environ" of

Pis the locale in which control of P currently resides. The "spawner" of P

is the process which created P. For instance, in the example discussed in

the previous paragraph spawner(Pl) = spawner(P2) = spawner(P3) = P.

From the data structure point of view the model of the MIAM can now be

regarded as a collection of four variables:

The model consists of:

- L: variable set of locales,

- B: variable set of blocks,

P: variable set of processes,

- R: variable process.

The variables L, Band P represent the set of all locales, blocks and

processes respectively which have so far been created during the execution

of a program. The variable R has to do with the fact that the MIAM is a

sequential machine. Only one process at a time can be executed on the MIAM,

which implies that parallellism must be "serialized". The variable R

indicates which (active) process is currently being executed. R will be

called the "running process" and the environ of R will be called the

"current environ".

Prior to the execution of a program the following holds:

8

Initially

- L = {L0 },

- B = 0,

- p = {PO},

- R = P0 ,

where L0 is a locale such that

- status(L0) = alive,

- type (L0) = "',
- scope(L0) = O,

- establisher(L0) = L0 ,

and P0 is a process such that

- mode(P0) = active,

- origin(P0) = L0 ,

- environ(P0) = L0 ,

- spawner(P0) = P0 •

The locale L0 , which will stay alive during the entire execution of a

program, will be called the "initial locale". Among other things it

contains the constant table. The process P0 will be called the "initial

.process".

This completes the data structure part of the MIAM model. A thing one

can argue about is whether the data structures described capture all

information relevant to the storage management problem. An important

concept that seems to be missing is that of a "reference" between areas, or

more abstractly the concept of "reachability". This is an important concept

because of the occurrence of "heap objects" in ALGOL 68, which correspond

to areas with "infinite" lifetimes (their scope is zero). The only

effective way to cope with the storage management problems caused by these

objects is the use of a "garbage collector". The design of a garbage

collector is a problem in its own right, which will not be discussed in

this paper. Hence the concept of reachability need not be introduced in the

model. Instead a garbage collection operation will be introduced as a

primitive operation in the problem definition.

Let us now look at the operations performed by the MIAM. They can be

modelled in terms of operations on the data structures described in the

9

foregoing. Before doing so a few definitions will be introduced.

Definition "' " and "< " , ---=---------~A A-
"<" and"<" are relations on the set A of all locales, defined as
~ A .

follows:

L < M O 3 n > 0 [L = establishern(M)] -A
L <A M O L ~ M A L ,/: M

(L, M E A)

(L, M E A)

Definition"'" and"<" ----------------~-n----IT-
"<" and"<" are relations on the set IT of all processes, defined as -IT IT
follows:

P ~IT Q O 3 n ~ 0 [P = spawnern(Q)]

p <IT Q op ~IT QA p 'F Q

(P, Q E TI)

(P, Q E IT)

Here "establishern(M)" and "spawnern(Q)" denote the result of applying

"establisher" and "spawner" n times to Mand Q respectively. So in other

words, "<A" and "<rr" are the reflexive and transitive closures of the

relations "L = establisher(M)" and "P = spawner{Q)" respectively, while

"<A" and "<IT" are the antireflexive contractions of "<A" and "<IT"

-respectively. Note that all four relations are constant. Restricted to the

sets Land P they are variable, however (because Land Pare variable). To

illustrate these relations, consider Fig. 3 which shows a possible state of

the machine. That is, it shows the locales, blocks and processes in L, B
and P respectively at a certain point of the execution of a program. In

this figure among other things the following holds:

LO <A L, LO <A E, --,(L ~A E V E ~A L),

Po <IT P, PO <IT R, -.(p ~IT R V R ~IT P).

As can be seen from this figure the locales in

each constitute a tree. If Lis a locale in L,
Land the processes in P

the set of all locales Min

L with M ~AL constitutes a list, which is usually called the "dynamic

chain" emanating from L. The dynamic chain emanating from the current

environ will be called the "current dynamic chain".

lO

I

establisher generator spawner

block

origin environ

Fig.3

11

The first operation which will be introduced corresponds to entering a

range in ALGOL 68. It reads as follows:

ESTABLISH(t):

Precondition:

tis a type.

Action:

Let E = environ(R).

Let L be a locale such that

- Lt. L,
- status(L) = alive,

- type(L) = t,

- scope(L) = scope(E) + 1,

- establisher(L) = E.

L := L U {L}.

environ(R) := L.

It amounts to creating a fresh, living locale L of type t. Hence L f L,
status(L) = alive and type(L) = t. The scope of this locale must be one

· larger than the scope of the current environ E (it is "newer" than E).

Since control will be transferred from E to L, establisher(L) should be

equal to E. L must then be added to Land control must be transferred to L

(by making L the new current environ).

The second operation corresponds to leaving a range in ALGOL 68 (the

range corresponding to the current environ):

FINISH:

Precondition:

environ(R) I origin(R).

Action:

Let E = environ(R).

environ(R) := establisher(E).

status(E) := dead.

For each BE B with generator(B) = E

I status(B) := dead.

1 2

Control of the running process R cannot be transferred beyond the locale in

which R was created, which explains the precondition environ(R) I
origin(R). When leaving the range corresponding to the current environ E,

control must be transferred from E to the "old" current environ. That is,

environ(R) must be changed into establisher(E). This turns E into a dead

area, but also all blocks created in E (the blocks B with generator(B) =

E). The status of all these areas should therefore be changed into "dead".

The third operation to be discussed is concerned with the creation of

blocks:

GENERATE(t, L):

Precondition:

tis a type,

L IE L, L ~ environ(R).

Action:

Let B be a block such that

- B fl. B,

- status(B) = alive,

- type(B) = t,

- scope(B) = scope(L),

- generator(B) = L.

B := B U {B}.

It describes the creation of a fresh, living block B of type tin the

locale L, which should be in the current dynamic chain (the precondition L

~ environ(R)). During this operation control can be thought to be

temporarily transferred from the current environ to L. The block B will

live as long as L, and hence the scope of B should be equal to the scope of

L. Because Bis created in L, the generator of B should be equal to L. The

actual creation of Bis accomplished by adding B to B. A thing to be noted

here is that blocks corresponding to ALGOL 68 heap objects are created in

the initial locale LO (through "GENERATE(t, LO)"). Consequently these

blocks have scope zero.

The fourth operation is somewhat trickier than the ones met before in

the sense that it does not correspond directly to any ALGOL 68 operation.

13

It is an operation which is concerned with efficiency. The point is that it

is sometimes useful to be able to extend the lifetime of a (large) block,

e.g. to prevent an expensive copy operation. A typical example is found in

passing procedure values. This lifetime extension is exactly what the

following operation accomplishes:

KEEP(B, L):

Precondition:

BE B, generator(B) = environ(R),

LE L, L ~ L0 , L)'l environ(R).

Action:

generator(B) := L.

scope(B) := scope(L).

It extends the lifetime of the block B to that of the locale L, with the

restriction that B must have been created in the current environ and L must

belong to the current dynamic chain. This amounts to changing generator(B)

to L. Since the scope of an area indicates its lifetime, in addition to

this the scope of B must be changed to the scope of L. This explains why

. the scope and the generator of a block are variable.

The fifth operation corresponds to entering an ALGOL 68 parallel

clause:

14

SPAWN(n):

Precondition:

n > o.
Action:

Let Q be a set of n processes such that for each PE Q
-PflP,

- mode(P) = active,

- origin(P) = environ(R),

- environ(P) = environ(R),

- spawner(P) = R.

p := p u Q.

mode(R) := spawned.

Let PEP with mode(P) = active.

R := P.

Through this operation n fresh, active processes are created. Each process

Pin the set Q of these new processes is created in the current environ,

with control of P initially residing in the current environ. The creator of

each Pis the running process R. Hence origin(P) = environ(P) = environ(R)

.and spawner(P) = R. The set of new processes Q is then added to P. After

that the running process is made to be "spawned" and an arbitrary active

process P (e.g. from Q) is made to be the new running process.

The sixth operation relates somehow to the operation SPAWN(n) as

FINISH relates to ESTABLISH(t). It corresponds to leaving a constituent

statement of an ALGOL 68 parallel clause:

COMPLETE:

Precondition:

emviron(R) = origin~R), Rf,. PO•

Action:

mode(R) := completed.

Let S = spawner(R).

Let Q = {PE P I spawner(P) = S}.

If V P E Q [mode(P) = completed]

I mode(S) := active.

Let PEP with mode(P) = active.

R := p.

15

This operation "completes" the current running process R. The precondition

is that control of R has returned in the locale in which R was created and

that R is not the initial process. After having changed the mode of R to

"completed",, the process S which created R is determined. This is a spawned

process, which should be made active if all processes created by it (all

processes in the set Q) are completed. Then, an arbitrary active process P

must be sele!cted and made to be the new running process.

The seventh operation is concerned with the situation that the running

process runs into an impassable semaphore:

SWITCH:

Precondition:

:I P E P [P f,. R, mode(P) = active].

Action:

Let PEP with Pf,. Rand mode(P) = active.

R := P.

If the running process is halted by an impassable semaphore, R must be

changed to an active process which is not. The operation SWITCH models this

change of running process by selecting an arbitrary active process Pf,. R

and assigning P to R. The precondition of SWITCH takes care that the choice

of Pis always well-defined. Of course, even if the precondition of SWITCH

is satisfied, there may in reality not exist an active process P which is

16

not waiting for an impassable semaphore ("deadlock"). Instead of the

operation SWITCH the program is then supposed to be aborted.

The ALGOL 68 equivalent of the eighth and final operation is a jump to

some global label. Its definition reveals the disruptive nature of the

"goto":

JUMP(L, P):

Precondition:

LE L, L ~ environ(R),

P E P, P ~ R,

origin(P) ~ L ~ environ(P).

Action:

R := P.

mode(R) := active.

environ(R) := L.

For each MEL with L <AM

I status(M) := dead.

For each BE B with L <A generator(B)

I status(B) := dead.

For each Q E P with P <rr Q

I mode(Q) := completed.

Lis the locale corresponding to the range where the label jumped to

occurs.Pis the process which takes over control by jumping to the label.

The fact that the label jumped to must be "visible" implies that L ~A

environ(R) and P ~IT R. Furthermore, L should be a locale to which control

of P has access: origin(P) ~AL ~A environ(P). The jump is accomplished by

making P the running process, changing the mode of R (= P) to "active" and

then transferring control to L. Through this jump to the locale L of

process P the lifes of all locales and blocks which were created "after" L

(the locales M with L <AM and blocks B with L <A generator(B)) are

aborted. The status of these areas must therefore be changed into "dead".

Also all processes which were started "after" P (the processes Q with P <rr

Q) are aborted, which amounts to changing their mode into "completed".

The entire model of the MIAM has now been introduced. From a storage

t 7

management point of view the execution of any program on the MIAM can be

modelled by a sequence of the operations described above. Not bothered by

irrelevant details, the job is,to design a storage management system for

this model. In doing so it should be assumed that any sequence of the above

operations not violating the preconditions is allowed.

Before going deeper into the problem of storage management it is

worthwhile to take a closer look at the model. The model satisfies a number

of invariants, which are listed below. They can be proved by showing that

they hold initially and by checking that each operation, assuming its

precondition holds, does not affect them. This is a simple job, which is

left to the reader.

Invariants for L0

Kl. L0 E L •

K2. status(L0) = alive.

K3. scope(L0) = o.

K4. establisher(L0) = L0 •

Invariants for Po
0 t • P0 E P.

02. mode(P0) 'F completed.

03. or:lgin(P 0) = La•

04. spawner(P 0) = Pa•

Invariants for R

Rt. RE: p.

R2. mode(R) = active.

18

Invariants for locales LE L

Ll. establisher(L) EL.

L2. LO~ L.

L3. If_ status (L) = alive

I status(establisher(L)) =

L4. If status(L) = alive

alive.

There is a PEP such that

mode(P) = active,

L <11. environ(P).

LS. If L ,,f, LO

I scope(L) = scope(establisher(L)) + 1.

Invariants for blocks BE B

Bl. generator(B) EL.

B2. status(B) = status(generator(B)).

B3. scope(B) = scope(generator(B)).

Invariants for processes PEP

Pl. origin(P) EL.

P2. environ(P) EL.

P3. spawner(P) E P.

P4. PO ~TIP.

PS. origin(P) ~A environ(P).

P6. If mode(P) = active

I status(environ(P)) = alive.

P7. If P ,,f, P0 , mode(P) ,,f, completed

mode(spawner(P)) = spawned,

origin(P) = environ(spawner(P)).

PS. If mode(P) = spawned

There is a Q E P such that

spawner(Q) = P,

mode(Q) 'F completed.

From these invariants can be inferred that indeed the relations 11.5..A"

and "<n" impose a tree structure on L and P with treetops Lo and P0

19

respectively, as was indicated in Fig. 3. The set of all living locales in

L constitutes a subtree with treetop LO of the tree imposed by "<A" on L.
The leaves of this subtree are, formed by the environs of the active

processes. Analogously the set of all not yet completed processes in P

constitutes a subtree with treetop PO of the tree imposed by"<" on P. The
-TI

leaves of this subtree are the active processes. Notice that the invariants

imply that the operation "Let P € P with mode(P) = active" in COMPLETE is

well-defined. Notice also that dead areas and completed processes are

really "garbage" in the model: they are not referenced or used in any other

way any more.

An important special case is that of sequential programs. In

sequential programs the operations SPAWN(n), COMPLETE and SWITCH will not

occur. It is easy to see that no processes will be created then, which

amounts to the following invariant:

Invariants for sequential programs

s1. P = {P0}.

Together with invariant L4 this invariant implies that the living locales

· in L constitute a single linear list (the "dynamic chain") as indicated in

Fig. 4. The locales in Las a whole, however, need not constitute a linear

list (but a tree).

20

Fig. 4

21

3. PROBLEM

In this section the storage management problem is supposed to be

defined. However, in the model as we described it there is no storage

management problem. Areas which are created in the model simply fall out of

the blue. The question where they come from is completely irrelevant. The

storage management problem is a problem which arises only in the

implementation of the abstract machine. When implementing the abstract

machine on a real machine the creation of an area must be modelled by

"allocating" a piece of storage to it. In contrast with the number of areas

the amount of storage is limited, however. It is here where the storage

management problem arises. In order to arrive at the point where the

storage management problem can be formulated, we will therefore start

implementing (the model of) the abstract machine described before. The

method of "adding and removing variables" [6] will be used for that

purpose. In a nutshell this method amounts to the following. An algorithm

(or a machine) is implemented by adding extra variables and assignments to

these variables to the algorithm. This creates a redundancy in the

algorithm which enables certain expressions containing the "old" variables

. of the algorithm to be replaced by equivalent expressions containing the

"new" variables. When applied in a systematic way the old variables of the

algorithm can be turned into "ghost variables" this way, which may be

removed from the algorithm. Thus an implementation of the algorithm in

terms of the new variables is obtained. The method will be applied here by

augmenting the model with an extra variable (the "allocation function").

Moreover, an abstract operation on this variable will be introduced. This

operation is supposed to model or "implement" the creation of an area,

which is expressed in its specification. The operation is inserted in the

model at those points where areas are created. The storage management

problem can then be defined as implementing this operation as efficiently

as possible. In doing so a number of primitive operations on the allocation

function are allowed, which may be inserted throughout the model. In

particular an attempt should be made to "remove" as much abstract variables

(such as e.g. the "status" of areas) from the implementation. Thus the

overhead caused by the storage management system is kept to a minimum.

22

The first thing that needs to be done is the introduction of some

model of a "store". This model should conform as closely to the store of

the MIAM and the stores of existing machines as possible. We will assume

the store t.o be a row of "cells" labelled by "addresses", which are

integers O, , N-1. Here N is some (large) machine dependent integer. A

set of consecutive cells in the store will be called a "field" and the

number of cells in a field F will be denoted as "size(F)". See Fig. 5.

Though this E~odel of a store does not cover segmented memories, it is

sufficiently general to call it machine independent.

field

~

cells 111111111~1111111
' t addresses 0 N-1

Fig.5

In an implementation of the abstract machine on a real machine the

creation of an area A must be modelled by "allocating" a field in the store

to it, which the area is from then on said to "occupy". This will be made

more precise by introducing a new variable F, called the "allocation

function", in the model:

The modE?l is augmented with:

F: variable mapping from areas on fields.

The domain of F (which is also variable) will be denoted as "domain(F)". It

contains thoEJe areas which are "located" (= occupy a field) in the store.

The value of F can be changed by a number of primitive operations only,

which will bE? discussed in the sequel. Note that the domain of F contains

only locales and blocks, and no processes. Processes, as mentioned before,

are "embedded" in areas. This means that the storage occupied by a process

...

23

Pis part of the storage occupied by an area, to wit the origin of P.

The allocation function F must satisfy two obvious invariants. First

of all, fields occupied by different areas may not overlap. Second, areas

must occupy_ a field of the "proper" size. The size of the field occupied by

an area will usually depend on the type of the area. The dependency need

not be unique, however. It may be useful to implement certain areas of a

given type different from other areas of that type. Hence areas of the same

type may occupy fields of different sizes. We will therefore add an

additional entity to each area A, the "size" of A, which indicates the size

of the field that A should occupy. We shall assume here that the size of

the field occupied by an area will not change during the execution of the

program. So the size of an area is constant:

Each locale Lis augmented with

- size(L): constant integer •

Each block Bis augmented with.

- size(B): constant integer.

-The two invariants which F must satisfy can now be formulated as follows:

Invariants for F

Fl. For each area A, BE domain(F)

I A~ B ~ F<A> n F(B) = 0.
F2. For each area A E domain(F)

I size(F(A)) = size(A).

These are global invariants for F, not to be violated by any operation on

F. In the initial situation the following should hold:

Initially

domain(F) = {L0},

size(F(L0)) = size(L0).

In other words, at the beginning of the execution of a program the initial

24

locale should be the only area located in the store and occupy a field of

the proper size (see the initial state of the model). The invariants for F

are thus trivially satisfied in the initial situation.

The next thing to do is to introduce an abstract operation on F, which

models the creation of an area. It should allocate a field in the store to

a (new) area A and will be denoted as "ALLOCATE(A)". It should do so,

however, by means of the primitive operations (to be) defined on F

exclusively. This is specified below:

ALLOCATE:(A):

Precondition:

A is an area, A(/_ L 1J B.
Action:

Establish the truth of the assertion A E domain(F) by means of

the primitive operations defined on F.

The operation ALLOCATE(A) should be inserted at those points in the

model where areas are created. It should therefore be added to the

operations ESTABLISH(t) and GENERATE(t, L). At the same time this gives us

· an opportunity to associate the proper size to an area being created:

ESTABLISH(t):

Precondition:

tis a type.

Act;i.on:

Let E = environ(R).

Let L be a locale such that

- L f L,

- status(L) = alive,

- type(L) = t,
- scope(L) = scope(E) + 1,

- establisher(L) = E,

- size(L) = 'v.

ALLOCATE(L).

L := L U {L}.

environ(R) := L.

GENERATE(t, L):

Precondition:

tis a type,

LE L, L <h environ(R).

Action:

Let B be a block such that

- Bf B,
- status(B) = alive,

- type(B) = t,
- scope(B) = scope(L),

- generator(B) = L,

- size(B) = 'v.

ALLOCATE(B).

B :=BU {B}.

Here "'v" is some implementation dependent integer, which depends on the

type t.

Before formulating the problem there remains only one thing to be

discussed: the set of primitive operations allowed on f. We shall discuss

25

26

these operations by investigating how ALLOCATE(A) can be implemented. The

effect of ALLOCATE(A) should be that A is added to the domain of F. So the

first operation we need is an ,operation to extend the domain of F with an

area. Due ~o the invariants for F and the finiteness of the store this may

be impossible, however. First of all, it may be impossible to find a field

F of "free cells"(= cells not occupied by areas) such that size(F) =

size(A), even though the total number of free cells is more than

sufficient. This is due to a phenomenon known as "fragmentation". Second,

the total number of free cells may simply be insufficient ("storage

overflow").

The first problem (fragmentation) can be coped with by introducing an

operation to "move" areas in the store from one field to an other, i.e.

change the value of F(A) for certain A E domain(F). Thus small fields of

free cells can be united into larger fields. A thing to be borne in mind

with this is that in practice moving areas is an expensive operation,

because all "pointers" to or into a moved area must be "updated". The

second problem (storage overflow) can only be dealt with by allowing areas

to be "deallocated" too, i.e. to be removed from the domain of F. Of course

only areas which are no longer used by the program should be deallocated.

What are "no longer used" areas? One thing we know for sure is that

dead areas are not used any more. So dead areas can be deallocated with

impunity. Yet even the deallocation of all dead areas may not help. The

only escape is then to deallocate no longer used living areas too. The

latter areas are considerably harder to detect than dead areas, however.

The use of a "garbage collector" is required for that. The design of a

garbage collector will not be discussed in this paper (but see [7]). Hence

an unspecified primitive operation "COLLECT GARBAGE" on Fis introduced.

This operation is supposed to deallocate all no longer used areas

(including all dead areas), while it may also move areas. It is a very

expensive operation which should only be used as a last resort. As far as

certain properties of COLLECT GARBAGE are important or even essential to

the storage management system to be designed, these properties will be

postulated in the form of "Requirements for COLLECT GARBAGE". If even a

garbage collection does not help, the only way out is to abort the program.

The above accounts for the following list of primitive operations

allowed on F :

Primitive operations on F,

1. Adding an area to domain(F).

2. Changing the value of F(A) for a number of A E domain(F).

3. Removing a number of A E domain(F) with status(A) = dead from

domain(F).

4. COLLECT GARBAGE.

27

In all this it is implicitly assumed that the operations do not violate the

Invariants for F.
The storage management problem now boils down to:

Problem

Implement ALLOCATE(A) efficiently.

The word "implement" must be taken in a broad sense here. This implies not

only that ALLOCATE(A) must be expressed in terms of the primitive

operations on F, but also that operations on F may be inserted anywhere in

the model in order to make the implementation more efficient. The

collection of all operations on F thus added to the model constitutes the

"storage management system".

We require that efficiency of the storage management system to be

designed should primarily be achieved for sequential programs. The

rationale behind this is that ALGOL 68 was not specifically designed as a

language for writing parallel programs. The majority of programs written in

ALGOL 68 will be purely sequential. Hence it is reasonable if the use of

parallellism costs a little extra.

The design of an efficient storage management system will be started

in the next section.

28

4. DESIGN

A general approach to the, design of a storage management system is to

divide the areas in a number of classes dependent upon certain properties.

For each class a special storage management strategy is used, which

exploits the properties of the areas in that class. Let us assume n classes

C1, ••• , Cn of areas are distinguished. Then the allocation function F can

correspondingly be written as F = F 1 U ••• U F n' where domain(F i) c Ci (i =

1, ••• , n). Let us call the set of all cells occupied by the areas in

domain(Fi) the "region" of Fi. The job is to implement the operation

"ALLOCATE(A)" efficiently in terms of operations on the Fi. These

operations may freely be chosen from the set of primitive operations

defined on F. If the operations are applied arbitrarily, however, a

comprehensive bookkeeping is necessary in order to ensure the Invariants

for the allocation function are satisfied. This bookkeeping can be

simplified greatly if the regions of the Fi are kept "compact"(=

constituting a field). In that case.only operations may be performed on the

Fi, which do not disturb the compactness of the regions.

We shall comply with the above by abstractly modelling each Fi as a

"pile" Ui. A pile is a stack of areas which (apart from "push" and "pop")

has a number of additional operations defined on it (to be discussed

later). If a pile U contains the areas A1, ••• ,Amin the order from bottom

to top, this will be denoted as U = <A1, ••• , Am>• A pile U = <A1, ••• , Am>

can be "located" in the store in two different ways as indicated in Fig. 6.

Here the areas Ai occupy contiguous fields of size(Ai) cells.

29

u
-

bottom top

u

top bottom

Fig. 6

It is useful to dwell briefly on what we did in the above. We

representeid the allocation function F as a (yet to be fixed) number of

piles u1, ••• , Lin• On the one hand this can be viewed as a matter of

abstraction: we abstracted from the store. This has the advantage that it

makes lifei a lot easier. We do not need to talk in such "low level" terms

as "cells", "addresses", "fields", etc. any more. A minor drawback is the

fact that everything we said about F must now be translated in terms of the

piles u1, ••• , Un. Since the correspondence between F and u1, ••• , Un is

obvious, this will be omitted. Note that F can only be reconstructed from

the u1, , Un after locating the latter in the store. On the other hand

the things we did in the above can be viewed as a matter of concretion (the

inverse of abstraction): we made a certain choice as to the structure of

the allocation function. This was a design decision in order to reduce the

problems caused by the Invariants for the allocation function. It also

reduces the freedom of design, of course.

Up to two piles can efficiently be accommodated in the store (in the

case of two piles: one at each end of the store). Though storage management

systems with a larger number of piles are certainly conceivable, we will

30

therefore limit the number of piles to two. The following are plausible

choices:

1. One pile for all areas.

2. Two piles, for locales and blocks.

3. Two piles, for areas with scope> 0 and for areas with scope= Q.

The first choice does not exploit the different properties of areas. Hence

it may not be expected to result in an efficient storage management system.

The second choice exploits the differences between locales and blocks. This

may lead to an efficient storage management scheme for locales (in the

absence of parallellism locales have nested lifetimes), but for blocks

(which may occupy the majority of the storage) it is just as bad as the

first choice. The third choice seems the most appropriate here. It closely

(but not entirely) fits in with the difference between ALGOL 68 stack and

heap objects. This alternative will therefore be chosen.

The above implies that we have-two piles Sand Hin our storage

management system. S contains the areas with scope> 0 and H those with

scope= O. We assume they are located in the store as indicated in Fig. 7.

s H
-----~,...------------.

~
----~"---------

~
scope > 0 scope= 0

Fig. 7

As with the allocation function F the piles Sand H must satisfy a

number of invariants. First, the fact that Sand H correspond to (the

domain of) a mapping (F) implies that no area may occur twice in S and H.

Second, the Invariants for F must be translated into invariants for Sand

H. Invariant Fl amounts to the fact that the sum of the sizes of the areas

in Sand H must be less or equal to the size N of the store. Invariant F2

31

need nor can be expressed any more. (This invariant is incorporated in the

correspondence between F and the piles Sand H.) Third, Sand H should

contain only areas with scope> 0 and scope= 0 respectively. So we have:

Invariants for Sand H
Ul. If S = <A1, ••• , Am>,

H = <Am+l, ... , A>

I
n

i 1' j => Ai :/: Aj

u2. 2 : size(A) < N.
AES UH

U3. For each AES

I scope(A) > o.
U4. For each A EH

I scope(A) = o.

(i, j = 1 , • • •, n).

For notational convenience the piles Sand Hare considered here

occasionally as the sets of their elements. The translation of the initial

situation for Finto the initial situation for Sand H leads to:

Initially

S = 0,

H = <L0>.

In this situation the Invariants for Sand Hare trivially satisfied.

During the further design of the storage management system care must

be taken that Invariants Ul through U4 are not violated. These invariants

could be violated in two ways. First of all the operations of the abstract

machine might violate Invariants U3 and U4. Invariants U3 and U4 use the

scope of areas, which is variable for blocks. However, the only operation

that may affect the scope of an area is KEEP(B, L) and this operation will

never change the scope of an area from> 0 into= 0 or vice versa (use

Invariants L2 and LS and the fact that L :/: L0). The Invariants for Sand H

can therefore never be violated by any operation of the abstract machine.

The second way the invariants could be violated is because of some

operation on Sor H that we insert in the model. It should be checked in

32

each individual case that such an operation does not violate the Invariants

for S and H.

An operation that could particularly violate the Invariants for Sand

His COLLECT GARBAGE. The informal "definition" of COLLECT GARBAGE states

that it removes all no longer used areas (including all dead areas) from

the domain of the allocation function f. Speaking in terms of the piles S

and H this implies that COLLECT GARBAGE removes all no longer used areas

from SUH. In this process the remaining areas in Sand H could in

principle be shuffled arbitrarily. They could even be transferred from S to

Hor vice versa (thus violating Invariant U3 or U4). This wiLl be prevented

by the following requirements:

Requirements for COLLECT GARBAGE

1. No areas are added to S.

2. No areas are added to H.

It is easy to see that these two requirements are sufftcient to let COLLECT

GARBAGE "respect" the Invariants for Sand H. Apart from these two

requirements a third will be imposed which is not strictly necessary:

Requirements for COLLECT GARBAGE

3. The order of the remaining areas in Sand His not affected.

It says that the garbage collector must be "genetic order preserving",

which is a deisirable property of garbage collectors [,10]. Why this is so

will turn out: soon. Notice that the removal of a number of areas from Sand

H may affect the compactness of the regions of Sand H. Consequently the

garbage colleictor must perform a "compaction" in order to restore the

situation of Fig. 7. This need not be expressed in the Requirements for

COLLECT GARBAGE because COLLECT GARBAGE is considered as an operation on

the "abstract:" piles Sand H here. It follows directly from the

correspondence between Sand Hand the allocation function f.

Let us now attempt to design a first storage management system.

33

4.1 The initial system

The obvious way to obtain,a usable storage management system is as

follows. Storage can only be allocated to an area A if there is enough room

between the piles Sand Hin the store. The room between Sand H (measured

in cells) will be denoted as "FREE":

FREE = N - _) ___ ___, size(A)
AES UH

If FREE< size(A) there is not enough room and a garbage collection is used

to make room. If after a garbage collection there is still not enough room,

the program is aborted. Otherwise storage can be allocated on Sor H (using

a "push" operation), dependent on the scope of A. This leads to:

System 1

ALLOCATE(A):

Lets= size(A).

If FREE< s

COLLECT GARBAGE.

If FREE< s

I ABORT.

Case

1 • scope(A) > 0

I PusHs<A>.

2. scope(A) = 0

I PUSHH(A).

Notice that all operations performed on Sand H correspond to legal

(primitive) operations on the allocation function F. Notice also that the

Invariants for Sand Hare not violated.

The above storage management system is not very satisfactory for a

number of reasons. One of them is the following. Suppose during the

execution of a program the situation is reached that a garbage collection

delivers only a small amount of free storage (just about sufficient to

34

proceed). Then it will probably be necessary to perform a garbage

collection very soon again, which may once more deliver only a small amount

of free storage, etc •• Since a, garbage collection is a time consuming

operation, this may lead to the situation that the majority of the

execution time of a program is spent collecting garbage before the program

is finally aborted. This will be remedied in the next subsection.

4.2 Avoiding frequent garbage collections

The problem of frequent garbage collections can be solved by requiring

that the garbage collector delivers a minimum number of free cells, which

will be denoted as "minfree". This number should be large enough to let the

program proceed undisturbedly for some time after a garbage collection.

Thus we obtain:

System 2

ALLOCATE(A):

Lets= size(A).

If FREE< s

COLLECT GARBAGE.

If FREE< max(s, minfree)

I ABORT.

Case

1. scope(A) > 0

I PusHsCA).

2. scope(A) = 0

I PUS~(A).

This removes one objection to System 1. There is another severe objection

to both Systems 1 and 2, however. For the deallocation of areas both

systems rely entirely on garbage collection, which does not make them very

efficient. We will do something about that below.

35

4.3 Restraining the use of the garbage collector

Checking the list of primitive operations defined on the allocation

function F we see that the only way to deallocate areas other than through

a garbage collection, is the deallocation of dead areas. Dead areas may

freely be removed from the piles Sand H. As far as the pile His concerned

this does not bring us any further, because in H no dead areas occur (this

follows from Invariants U4, K2, L2, LS, B2, B3 and the fact that H c LU
B). So all dead areas in SUH occur in S. It would not be very wise,

however, to allow dead areas to be deallocated arbitrarily inside S,

because that would require an expensive 11compaction" in order to restore

the compactness of the region of S. Dead areas can be popped from the top

of S with impunity, however. This gives us a cheap mechanism to deallocate

areas over the head of the garbage collector.

The question is where in the model the operation to pop dead areas

from S should be inserted. The most natural places to do so seem to be

those places where areas are "killed". If a killed area happens to reside

at the top of S, A and all dead areas "below" it can immediately be popped

from S. An operation "RELEASE", which does just that, will therefore be

introduced. It will be inserted in the operations FINISH and JUMP(L, P),

which are the only machine operations that kill areas:

FINISH:

Precondition:

environ(R) # origin(R).

Action:

Let E = environ(R).

environ(R) := establisher(E).

status(E) := dead.

For each BE B with generator(B) = E

I status(B) := dead.

RELEASE.

36

JUMP(L, P):

Precondition:

LE L, L ~ environ(R),

PE P, P ~ R,

origin(P) ~ L ~ environ(P).

Action:

R := p.

mode(R) := active.

environ(R) := L.

For each MEL with L <AM

I status(M) := dead.

For each BE B with L <A generator(B)

I status(B) := dead.

For each Q E P with P <rr Q

I mode(Q) := completed.

RELEASE.

Notice that at all places where ALLOCATE(A) and RELEASE occur all system

invariants hold (the invariants need only hold between two machine

-operations).

Storage management system 3 now looks as follows:

System 3

ALLOCATE(A):

Lets= size(A).

If FREE < s

COLLECT GARBAGE.

If FREE< max(s, minfree)

I ABORT.

Case

1. scope(A) > 0

I PusHs<A>.

2. scope(A) = 0

I PUSHH(A).

RELEASE:

While DEADTOP

I POPS.

The predicate "DEADTOP" in this system is defined as follows:

DEADTOP = S + 0 and status(top(S)) = dead.

37

Here the "and" is used as a "McCarthy operator" and "top(S)" is the area at

the top of S. If all areas which appear in Shave nested lifetimes, this

scheme will keep S free from dead areas. It may therefore be expected to

work rather efficiently for say ALGOL 60 type ALGOL 68 programs. The only

operations which may (temporarily) impede the effectiveness of this scheme

are GENERATE(t, L), where L + LO and L + environ(R), KEEP(B, L) and SWITCH.

The latter will occur in parallel programs only, while the other two may be

expected not to be used too frequently (by a good code generator). Whatever

operations are performed, however, the above scheme will always work

correctly. Notice that Requirement 3 for COLLECT GARBAGE is essential to

the effectiveness of the scheme.

Though System 3 is a major improvement over System 2, it still rather

heavily depends on garbage collection as a deallocation tool (especially in

parallel programs). The role of the garbage collector can further be

38

diminished, as we will demonstrate.

4.4 Restraining the use of the garbage collector further

Suppose in ALLOCATE(A) we run out of storage (i.e. FREE< s). It may

very well turn out (especially if few areas with scope= 0 are used) that

the number of dead cells in Sis large compared with the size of the store.

The number of dead cells in Swill be denoted as "DEAD":

DEAD =) _____ ___,: size(A).
AES

status(A) = dead

It is profitable then not to perform a full garbage collection, but simply

to remove all dead areas from S (which implies compacting the region of S).

An operation "COMPACTS" which accomplishes this will therefore be

introduced:

COMPACTQ:
->

Remove all AES with status(A) = dead from S while preserving the

order of the remaining areas in S.

Notice that the operation on the allocation function F corresponding to

COMPACTS is e~xpressible in the primitive operations defined on F. Notice

also that CO~~ACTS does not violate the Invariants for Sand Hand that it

is "genetic order preserving".

The operation COMPACTS is considerably cheaper than COLLECT GARBAGE.

The reason is that an expensive "marking phase", such as in the garbage

collector, is not necessary in COMPACTS. Moreover, the compaction (as

opposed to a garbage collection) is strictly local to the pile S: Due to

the "scope rules" of ALGOL 68 the fact that area A contains a pointer to

area B implies that scope(A) ~ scope(B). Consequently areas in H do not

contain pointers to areas in S, which implies that areas in Smay be moved

without having to update any pointers in areas in H.
If "mindead" denotes the (possibly dynamically determined) minimum

39

number of dead cells in S for which a compaction is more profitable than a

garbage collection, then the new storage management system looks as

follows:

System 4

ALLOCATE(A):

Lets= size(A).

If FREE< s

If DEAD> max(s, mindead)

I COMPACTS.

else

Case

COLLECT GARBAGE.

If FREE< max(s, minfree)

I ABORT.

1. scope(A) > 0

I PusHsCA>.
2. scope(A) = 0

I PUSfftt{A).

RELEASE:

While DEADTOP

I POPS.

The number DEAD in this system can be determined by traversing S once. In

traversing Sit must be determined for each area A€ S whether A is dead or

not. The assumption in all this is, as it is in COMPACTS and DEADTOP, that

in a real implementation it is possible to determine the status of an area

in S. What are the consequences of this assumption?

Areas as we described them have a number of entities associated to

them (such as "status", "type", "scope", etc.). Except for the "size" these

are abstract entities which are used in the definition of the abstract

machine. Each implementer of the abstract machine will try to implement

these entities as efficiently as possible, and if possible he will even

avoid to implement certain entities. A number of the entities must be

40

implemented anyway: the type and size of an area (for the garbage collector

and the compaction routine), the scope of an area (for scope checks) and

the establisher of a locale (iu order to return to the proper locale after

leaving a range). Other than for reasons of storage management the status

of an area and the generator of a block need not be implemented.

In System 4, however, the status of an area is apparently supposed to

be implemented. For locales this could be done by letting FINISH and

JUMP(L, P), which are the only two operations that kill areas, mark dead

locales as such. For blocks this is not so simple. The best way to

determine whether a block Bis dead seems to use Invariant B2 and check

whether generator(B) is marked as dead or not. Yet this implies that the

generator of a block must also be implemented. This overhead deprives

System 4 of some of its attractiveness. It would be nice if the overhead

could be eliminated, and indeed for sequential programs it can. We can use

the redundancy caused by the introduction of the allocation function (in

the shape of the piles Sand H) to turn the status of an area and the

generator of a block into "redundant variables" of the storage management

system. This will be shown and proved in the next subsection. After that we

will consider the general case of both sequential and parallel programs.

Before continuing two more requirements on the garbage collector will

be imposed. From the requirements introduced so far absolutely nothing can

be inferred as to which areas are or are not deallocated by the garbage

collector. There are certain areas from which it is easy to see that they

are (or should be) or are not (or should not be) deallocated by the garbage

collector. In particular all dead areas will be deallocated by the garbage

collector. (This was already stated informally.) Furthermore, the living

locales will not be deallocated in a garbage collection. (They are

"reachable" because control will, or should be able to ever return to

them.) The following additional requirements, which allow us to use that

information, will therefore be imposed on the garbage collector:

Requirements for COLLECT GARBAGE

4. All dead areas are deallocated.

5. No living locales are deallocated.

41

A number of additional invariants (which hold between two operations

of the abstract machine) can now be proved for System 4. In order to

formulate them more easily the,following relation on the set of areas in S

will be introduced:

Definition "<s:_
"<s" is a relation on the set of areas in S, defined as follows:

Ilf S = <A1, ••• , An>

A. <s A. <c> i < j
1 . J

(i, j = 1, ••• , n)

Due to Invariant U1 this relation is well-defined. The fact that A <s B

implies that A is "below" Bin S. The following invariants hold:

Invariants for Sand H

us. s u H CL u B.
U6. For each LE L with status(L) = alive

I LE s u H.
U7.

us.

For each LES n L with

establisher(L) ES,

establisher(L) <s
For each BES n B

generator(B) ES,

generator(B) <s B.

L.

U9. If S ,f: 0

establisher (L)

I status(top(S)) = alive.

,f: LO

Invariant US is based on Requirements 1 and 2 for COLLECT GARBAGE. It

allows us to use all Invariants for Land B for areas in Sand H. Invariant

U6 is based on Requirement S for COLLECT GARBAGE. Notice that it implies

that L0 EH and LES for each LE L with L :f: L0 and status(L) = alive.

Invariants U7 and US are based on Requirements 1, 3 and 4 for COLLECT

GARBAGE. The informal argument for their truth is simple. The establisher

of a locale Lis created before the locale itself. Hence establisher(L)

will occur below Lin S. The same applies to the generator of a block Band

the block itself. The only operation that might violate the relation

42

generator(B) <s Bis KEEP(B, L). However, prior to KEEP(B, L) the following

holds for the new generator L of B: L0 ~ L <A environ(R) = generator(B).

With Invariant U7 this implies that L <s generator(B) <s B. Finally,

Invariant U9 is based on Requirements 1 and 4 for COLLECT GARBAGE and the

fact that dead areas are immediately popped from S. The (simple) formal

proof of Invariants U5 through U9 is left to the reader.

4.5 Removing overhead in the sequential case

In this subsection we shall assume that only sequential programs are

executed on the abstract machine. So the operations SPAWN(n), COMPLETE and

SWITCH will not occur and Invariant Sl will hold, i.e. P = {P0}. The living

locales in L then constitute a single dynamic chain, which emanates from

environ(P0) (see Fig. 4). Together with the Invariants for Sand H this

implies that the store looks as in Fig. 8. In this figure the circles

represent the locales in the dynamic chain. Notice that if S ~ 0 there is

always a living locale at the bottom of S, which amounts to the following

invariant:

Invariants for sequential programs

S2. If S = <A1, ••• ,A> with n > 0

I A1 EL and statu:(A1) = alive.

This invariant cannot be derived from the invariants formulated so far, but

must be proved independently. It critically depends on the fact that dead

areas are popped from Sas soon as they occur on the top of S.

43

s H

I
I

environ(~}

Fig.8

The locales indicated in Fig. 8 are all alive. But what can we say

about the "liveliness" of the other areas in S? We know there is a relation

between the scope of an area and its lifetime. This relation is somewhat

obscured by the operations GENERATE(t, L) and KEEP(B, L). Can the scope of

an area be used anyway in order to determine whether the area is dead or

not? In order to answer this question the genetic order relation"<" must s
be examined more closely.

Consider a living locale Lin Sand an other locale M "above" Lin S,

-i.e. L <s M. At the moment M was created L was already in Sand alive. So

just after the creation of M both Land M belonged to the dynamic chain of

which M was the beginning. This implies that at that moment L <AM. Yet,

since the relation "<A" is constant, the assertion L <AM will hold

forever. This amounts to the following invariant:

Invariants for sequential programs

S3. For each LES n L with status(L) = alive

and each MES n L

IL <s M,. L <AM.

Next consider a living locale Lin Sand a dead block B above Lins. Let G

= generator(B) and suppose that G <s L. From Invariant B2 we know that G is

dead. At the moment L was created G was already in Sand also dead

(otherwise Invariants S3 and L3 would lead to a contradiction). Since B was

created after L this implies that B was created when G was already dead.

44

From this and Invariant B2 can be concluded that at the moment B was

created apparently generator(B) ~ G. Consequently the operation KEEP(B, G)

must have been applied some time thereafter. The precondition of KEEP(B, G)

says that G <A environ(R), which implies that status(G) = alive, however.

From this contradiction can be concluded that the assertion G <s L can

never hold. Since G ~ L this leads to the conclusion that L <s G, which is

expressed in the following invariant:

Invariants for sequential programs

S4. For each LES n L with status(L) = alive

and each BES n B with status(B) = dead

IL <s B ~ L <s generator(B).

A more formal proof of the above invariants is left to the mistrustful

reader.

Invariants S2, S3 and S4 give us additional information on the

relation "<s" which can be used profitably. Before showing this a

definition is introduced. For each area A in S the "base" of A is defined

to be the first living locale equal to or below A in S:

Definition base(A)

For each AES

I base(A) = max {LES n L IL .S.s A, status(L) = alive}.
<s

Notice that because of Invariant S2 the base of an area in Sis always

well-defined. The following invariant can now be derived from Invariants S3

and S4:

Invariants for sequential programs

S5. For each AES

I status(A) =dead~ scope(A) > scope(base(A)).

Proof:

Let AES and let L = base(A). If A= L the proof is trivial. If A~

L, and hence L <s A, a number of cases must be distinguished. This is

45

done schematically below.

A EL U B. (Inv. US)

If status(A) = dead

If A E L

L <A A.

scope(A) > scope(L).

If A EB

L <s generator(A).

L <11. generator(A).

scope(generator(A)) > scope(L).

scope(A) > scope(L).

scope(A) > scope(L).

If scope(A) > scope(L)

If A E L

If status(A) = alive

L = A.

Contradiction.

status(A) = dead.

If A EB

If status(A) = alive

status(generator(A)) = alive.

generator(A) <SA.

generator(A) ~ L.

generator(A) ~AL.

scope(generator(A)) ~ scope(L).

scope(A) ~ scope(L).

Contradiction.

status(A) = dead.

status(A) = dead.

status(A) =dead~ scope(A) > scope(L).

QED.

(Inv. S3)

(Inv. LS)

(Inv. S4)

(Inv. S3)

(Inv. LS)

(Inv. B3)

(Def. base(A))

(L <s A)

(Inv. B2)

(Inv. US)

(Def. base(A))

(Inv. S3)

(Inv. LS)

(Inv. B3)

(scope(A) > scope(L))

Invariant S5 allows us to turn the status of an area and the generator

46

of a block into redundant variables of the (augmented) model. In the entire

model the generator of a block is only used to keep track of the status of

areas and the status of an area is only really used in the storage

management operations ALLOCATE(A) and RELEASE. It is therefore sufficient

to show that the status of an area can be removed from these operations

(see System 4). First consider RELEASE. In this operation the status of an

area is used in the predicate DEADTOP only, which should be true iff .~ I 0
and status(top(S)) =dead.It is easy to infer from Invariant SS that if S

I 0, the assertion

status(top(S)) = dead

is equivalent to:

scope(top(S)) > scope(environ(R)).

Consequently DEADTOP can be determined as follows:

Determination of DEADTOP

If S = 0
I DEADTOP := false.

else

Let T = top(S).

Let E = environ(R).

DEADTOP := scope(T) > scope(E).

Next consider ALLOCATE(A). In this operation the status of an area is used

in the determination of the number DEAD of dead cells in Sand in COMPACT~

(but not in COLLECT GARBAGE). From Invariants S2 and SS (and a few more

invariants) it can be inferred that the number DEAD can be determined as

follows (see also Fig. 8):

Determ:lnation of DEAD

Let S == <A1 , ••• , An>.

s := Q,,

k := n,.

L := environ(R).

While k > 0

Whih~ 1\ :f, L

If scope(1\) > scope(L)

I s := s + size(1\)•

k::=k-1.

L := establisher(L).

k := k - 1.

DEAD :== s.

47

While traversing S this way, dead areas could at the same time be marked as

such. This would make it simple for COMPACTS to determine whether an area

is dead or not without using the status of the area.

The above shows that neither the status of an area nor the generator

of a block need be implemented, thus avoiding a time and space overhead.

That is, if only sequential programs are executed on the abstract machine.

The latter assumption will be dropped in the next subsection.

4.6 Removing overhead in the general case

In the previous section we showed that in the sequential case we could

do away with the status of an area and the generator of a block entirely in

System 4. But what if the actions SPAWN(n), COMPLETE and SWITCH occur?

Invariant S5 will no longer hold then and the trick used to implement the

status of an area free of charge cannot be applied any more. However, an

invariant analogous to Invariant S5 could be formulated, which relates the

status of areas created by the~ process to their scope. In order to

implement the status of an area through this invariant it must be possible

to determim? for each area in S by which process it has been created. In

the sequent:lal case this is obvious, because there is only on process. In

48

the parallel case it is far from obvious, because there may be many

processes and the areas created by a specific process may be scattered all

over S. This is even aggravated by the fact that after a process P has been

completed areas created by P may be left behind in S• The extra bookkeeping

necessary to apply the generalization of the implementation trick for the

status of an area may thus become rather complicated and may cause a

considerable overhead (which it was supposed to avoid). It is therefore

better to look for an other solution.

In section 3 it was stated that efficiency of the storage management

system to be designed should primarily be achieved for sequential programs.

This implies that it is reasonable if the use of parallellism costs a

little extra. It would not be reasonable, however, if the overhead

connected with parallellism had a negative effect on the efficiency of

sequential programs. The "easy" way to avoid the latter is to have two

storage management systems: one for sequential and one for parallel

programs. Yet, having two different storage management systems is not a

very desirable situation. Let us see how we can avoid it.

Suppose that, instead of being able to determine by which process an

area has been created, it were possible to determine whether the area has

been created by the initial process P0 or not. The latter, of course, is

much easier to implement than the former. Let A0 be the class of areas

created by P0 and A1 the class of areas created by other processes. For all

areas in A0 the implementation trick for the status can be used (through an

invariant analogous to Invariant SS). This implies that in the sequential

case (where A1 = 0) the storage management system is just as efficient as

before. For the areas in A1 something more complicated must be done. The

simplest way to implement the status of the areas in A1 seems to be as

follows. Let FINISH and JUMP(L, P) (which are the only operations that kill

areas) mark dead locales in A1 as such. This makes determination of the

status of a locale in A1 trivial. The status of a block Bin A1 can be

determined by using the fact that status(B) = status(generator(B))

(Invariant B2). This implies that the generator function for blocks in A1
must be implemented.

The scheme sketched above results in a storage management system,

which for sequential programs is just as efficient as before. An overhead

49

is introduced in parallel programs exclusively, and even then only when the

program is really working in "parallel mode" (inside a parallel clause).

The overhead, at first sight, seems to be acceptable. The price to be paid

for all this is an increase of complexity of the system. The question is

whether the increase of complexity outweighs the gain in efficiency or not.

An alternative would be not to use the implementation trick for the status

of areas in AO, but to implement the status of areas in AO just like the

status of areas in A1• This results in a uniform approach, but also

introduces an overhead in sequential programs. E.g., for all blocks the

generator function must now be implemented. This could be compensated by

not implementing the scope function for blocks explicitly. The fact that

scope(B) = scope(generator(B)) for each block B (Invariant B3) can then be

used to determine the scope of a block. The latter, however, makes scope

checks more complicated and less efficient. Though one can certainly argue

about it, we will let efficiency considerations prevail and choose for the

original approach. It will be elaborated below.

The first thing we need is some way to distinguish areas created by PO
from other areas. For that purpose we associate an extra entity to each

locale and block:

Each locale Lis augmented with

- kind(L): constant kind.

Each block Bis augmented with

- kind(B): variable kind.

A kind is an element from the set {simple, extended}.

If an area has been created by PO, its kind will be "simple", which implies

that its status and generator (if it is a block) need not be implemented.

The reverse will not hold, however. There are two reasons for that. First

of all, for areas with scope= O, which need not be created by PO, neither

the status nor the generator need be implemented: Their status is

invariable "alive" and their generator (for blocks) is invariably equal to

LO• The kind of these areas will therefore also be chosen to be "simple".

50

Second, we wish the following invariant to hold (why this invariant is

useful will turn out soon):

Invariants for blocks BE B

B4. kind(B) = kind(generator(B)).

This invariant may be disturbed by the operation KEEP(B, L). So it must be

possible to change the kind of a block, which is the reason that the kind

of a block is variable. The change of kind of a block, as we will see, is

only from "extended" to "simple". If the reverse were also possible, this

would (in vieiw of the constant size of areas) annihilate the advantages of

the distinction between simple and extended areas.

The modeil must be extended according to the above. First, the

following should hold in the initial situation:

Initially

kind(L0) = simple.

Note that it is now absolutely necessary that areas with scope= 0 have

·kind= simplei (see Invariant B4). Next, when areas are created they should

get the propeir kind. A locale should get kind = simple iff R = PO at the

moment of its creation, while a block should assume the kind of its

generator. This amounts to the following additions to the operations

ESTABLISH(t) and GENERATE(t, L):

ESTABLISH(t):

Precondition:

tis a type.

Actilon:

Let E = environ(R).

Let L be a locale such that

-- L ff. L,

- status(L) = alive,

·· type(L) = t,

- scope(L) = scope(E) + 1,

-- establisher(L) = E,

size(L) = I\.,'

If R = PO

I - kind(L) = simple.

E~lse

I - kind(L) = extended.

ALLOCATE(L).

L := L U {L}.

E~nviron(R) := L.

GENERATE(t, L):

Precondition:

tis a type,

LE L, L _:£A environ(R).

Actilon:

Let B be a block such that

-- B ff. B,

-- status (B) = alive,

-- type(B) = t,

- scope(B) = scope(L),

- generator(B) = L,

-- size(B) = I\.,'

kind(B) = kind(L).

ALLOCATE(B).

B := B U {B}.

51

52

Invariant B4 is trivially satisfied initially and is not violated by

GENERATE(t, L). The only operation which might violate Invariant B4 is

KEEP(B, L). This is remedied by the following addition to KEEP(B, L):

KEEP(B, L):

Precondition:

BE B, generator(B) = environ(R),

LE L, L ~ L0 , L <A environ(R).

Action:

generator(B) := L.

scope(B) := scope(L).

kind(B) := kind(L).

Apart from Invariant B4 the following invariants can now be proved:

Invariants for LO

KS. kind(L0) = simple.

Invariants for P0
OS. kind(environ(P0)) = simple.

Invariants for locales LE L

L6. If kind(L) = simple

I kind(establisher(L)) = simple.

Invariants for processes PEP

P9. If P ~ PO

For each LE L with origin(P) <AL

I kind(L) = extended.

Furthermore, if we define the set T as the set of simple areas in S:

Definition T

T ={AES I kind(A) = simple}.

then the following analogues of Invariants S2 through S4 can be proved:

Invariants for S and H

Ul O. If S = <A1 , ••• , A > with n > 0 and T I- 0

I A1 ET n Land s~atus(A1) = alive.

Ul 1. For each L E T n L with status (L) = alive

and each MET n L

I L <s M => L <A M.

U12. For each LET n L with status(L) = alive

and each B E T n B with status(B:i = dead

I L <s B => L <s generator(B).

If we (re)deifine the "base" of an area in T as follows:

Definition base(A)

For each A ET

I base(A) = max {L E T n L I L-~s A, status(L) = alive}.
<s

53

then the following analogue of Invariant S5 can be derived from Invariants

U11 and U12:

Invariants for Sand H

U1 3. For each A E T

J status(A) =dead~ scope(A) > scope(base(A)).

The proofs of Invariants UlO through U13 are (almost) entirely analogous to

the proofs of Invariants S2 through S5, hence they are omitted.

The status of a simple locale, the status of a block and the generator

of a simple block can now be turned into redundant variables. As in the

sequential case it suffices to show this for the determination of DEADTOP

and DEAD. Consider DEADTOP first. Invariant U13 implies that if SI- 0 and

kind(top(S)) = simple, the assertion

status(top(S)) = dead

54

is equivalent to

scope(top(S)) > scope(environ(P0)).

If kind(top(S)) = extended, two cases must be distinguished. First, if

top(S) is a locale its status can be determined directly. Second, if top(S)

is a block, its status is equal to the status of its generator G (Invariant

B2). The status of G, again, can be determined directly, because kind(G) =
extended (Invariant B4). Notice that if Invariant B4 did not hold, it were

much more difficult to determine the states of G. The above implies that

DEADTOP can be implemented as follows:

Determination of DEADTOP

If S = 0
I DEADTOP := false.

else

Let T = top(S).

If kind(T) = simple

Let E = environ(P0).

DEADTOP := scope(T) > scope(E).

else

If TEL

I DEADTOP := status(T) = dead.

else

Let G = generator(T).

DEADTOP := status(G) = dead.

Invariants UlO and U13 imply that the number of dead cells in Scan be

determined as follows:

Determination of DEAD

Let S = <A1, ••• , An>•

s := o.
k := n.

L := environ(P0).

While k > 0

While k > 0 and~,# L

If kind(~)= simple

If scope(~)> scope(L)

I s := s + size(~).

else

If~ EL

If status(~)= dead

I s := s + size(~).

else

Let G = generator(~).

If status(G) = dead

I s := s + size(~).

k := k - 1.

If k > 0

L := establisher(L).

k := k - 1.

DEAD := s.

55

We have shown above, that in order to implement System 4 in the

general case of both sequential and parallel programs neither the status of

a simple area nor the status of a block nor the generator of a simple block

need be implemented. We will formally complete the design by removing these

variables from the model.

4.7 Stripping the model

The removal of redundant variables from the model starts with a

reduction of the entities associated to locales and blocks.

56

Each locale L has

- type(L): constant type,

- scope(L): constant integer,

- establisher(L): constant locale,

- size(L): constant integer,

- kind(L): constant kind,

If kind(L) = extended

I - status(L): variable status.

Each block B has

- type(B): constant type,

- scope(B): variable integer,

- size(B): constant integer,

- kind(B): variable kind,

If kind(B) = extended

I - generator(B): variable locale.

The entities associated to processes remain the same. The initial state of

the model is reduced only as far as the initial conditions for LO are

concerned:

Initially

- type(L0) = ~,

- scope(L0) = O,

- establisher(L0) = L0 ,

- size(L0) = ~,

- kind(L0) = simple.

Next, the redundant variables must be removed from the operations of the

(no longer entirely) abstract machine. For the operations ESTABLISH(t),

FINISH and GENERATE(t, L) this is straightforward. These operations are

given below.

ESTABLISH(t):

Precondition:

tis a type.

Actlon:

Let E = environ(R).

Let L be a locale such that

-- L fl. L,

-- type(L) = t,

- scope(L) = scope(E) + 1,

- establisher(L) = E,

-- size(L) = 'v,

If R = PO

I - kind(L) = simple.

E~lse

kind(L) = extended,

- status(L) = alive.

ALLOCATE(L).

t : = L U {L}.

Emviron(R) := L.

FINISH::

Precondition:

E~nviron(R) :f,. origin(R).

Action:

Let E = environ(R).

E~nviron(R) := establisher(E).

If kind(E) = extended

I status(E) := dead.

RELEASE.

57

58

GENERATE(t, L):

Precondition:

tis a type,

LE L, L ~A environ(R).

Action:

Let B be a block such that

- B fl B,
- type(B) = t,

- scope(B) = scope(L),

- size(B) = '\.,,

- kind(B) = kind(L),

If kind(L) = extended

I - generator(B) = L.

ALLOCATE(B).

B := B U {B}.

In removing the redundant variables.from the operation KEEP(B, L) an

interesting problem arises. The precondition of KEEP(B, L) contains a

condition on the generator of B. However, in the new model the generator of

B need not exist (to wit, if kind(B) = simple). We can do two things now.

First, we can simply do away with the preconditions of operations. They are

not supposed to be implemented (as run-time checks) anyway. They are only

meant for the code generator, who must make sure they are satisfied

whenever an operation is used. Second, we can replace the condition on the

generator of B by an equivalent one which does not use the generator of B

if kind(B) =simple.The latter seems the more elegant solution, which we

will choose for here. It requires the proof of an additional invariant (in

the "old" model):

Invariants for Sand H

U14. For each LET n L with status(L) = alive

and each BET n B

I generator(B) = L ~ L <s Band scope(B) = scope(L).

This invariant can be derived from the invariants already formulated (in

particular from Invariant Ull). The generator of a simple block can now

also be removed from the precondition of KEEP(B, L):

KEEP (B ,t L) :

Precondition:

BE B, LE L, L ,f:: L0 , L <11 environ(R),

If kind(B) = simple

environ(R) <s Band

scope(B) = scope(environ(R)).

,~lse

I generator(B) = environ(R).

Act:lon:

scope(B) := scope(L).

kind(B) := kind(L).

If kind(B) = extended

I generator(B) := L.

59

The operations SPAWN(n), COMPLETE and SWITCH remain entirely the same. This

leaves only the operation JUMP(L, P). Suppose that prior to JUMP(L, P) the

· assertion R = P0 holds (i.e. the program is in "sequential mode"). From the

fact that P ~IT P0 (see the precondition of JUMP(L, P)) and P0 ~IT P

(Invariant P4) we know that P = P0 • Hence the actions:

R := p,,

mode(R) := active.

in the definition of JUMP(L, P) reduce to dummy actions. Though this is not

so for the action:

environ(R) := L.

it also applies to the rest of the actions in the definition of JUMP(L, P)

except to RELEASE of course. First consider

60

For each M E L with L ~ M

I status(M) := dead.

This action can be removed because the following assertion (which is not

disturbed by "environ(R) := L") holds prior to JUMP(L, P):

For each M E L with L <A M

I status(M) =alive=> kind(M) = simple.

Next, the action

For each BE B with L <A generator(B)

I status(B) := dead.

can be removed because the status of a block is a redundant variable.

Finally, the action

For each Q E P with P <rr Q

I mode(Q) := completed.

can be removed because P (= P0) is the only process in P which is not yet

completed. If R # P0 prior to JUMP(L, P) the required changes in JUMP(L, P)

are obvious. All in all we get:

JUMP(L, P):

Precondition:

lL EL, L <fl environ(R),

JP E P, P ~IT R,

origin(P) ~AL <11. ertviron(P).

Act:ion:

If R = PO

I environ(R) := L.

,else

R := p.

mode(R) := active.

environ(R) := L.

For each MEL with L <AM and kind(M) = extended

I status(M) := dead.

For each Q E P with P <IT Q

I mode(Q) := completed.

RELEASE.

The only thing that remains to be done is the rewriting of the

61

invariants. That is, the redundant variables must also be removed from the

invariants. This is a straightforward matter which will be omitted. The

"stripping" of the model is herewith completed. Yet, the system is still in

a rather abstract form. The final implementation of the system in "hard

code", which is a purely technical matter, will be discussed in the next

subsection.

4.8 Final implementation

In the introduction we stated that the storage management system

should be written in a subset of the code of the abstract machine. Up till

now we only have a description in terms of algorithms which operate on the

abstract variables of the (enhanced) machine model. In order to obtain a

storage management system written in abstract machine code the entire model

must be mapped back to the abstract machine. There are two aspects to this

62

mapping.

First of all there is the data structure aspect. A layout for the data

structures of the model must designed. This layout specifies how the

entities associated to locales, blocks and processes are implemented as

subfields of the fields occupied by these data structures in the store of

the abstract machine. Note that in reality there are more entities

associated to locales, blocks and processes than we discussed here. We

discussed only those entities which were of interest to the storage

management problem. The design of such a layout is not difficult.

Optimizations are often possible by com~ining different entities in the

same subfield. Having defined a layout, the referencing or changing of an

entity associated to a locale, block or process can directly be translated

into an instruction of the abstract machine which accesses the

corresponding subfield (using a "pointer" and an "offset").

Second, there is the control structure aspect. Most of the control

structures used in the algorithms (such as while-loops) can directly be

translated into abstract machine code. The only two control structures the

translation of which is not enttrely trivial are the two for-loops in

JUMP(L, P). Using the (rewritten) invariants one can transform the

definition of JUMP(L, P) into the following more readily translatable form,

however:

JUMP(L, P):

Preicondi t ion:

L € L, L ~ environ,(R),

p € p' p ~II R,

origin(P) ~AL ~A environ(P).

Action:

If R = PO

I environ(R) := L.

else

Let E = environ(P).

R := P.

mode(R) := active.

environ(R) := L.

If P.,,. Po

M := E.

While M :/= L

status(M) := dead. -

M := establisher(M).

Q := {S €PI spawner(S) = P, mode(S) # completed}.

While Q # 0
Let Q € Q..

Q := Q \ {Q}.

mode(Q) := completed.

M := environ(Q).

While M # origin(Q)

status(M) := dead.

M := establisher(M).

Q := Q U {S €PI spawner(S) = Q, mode(S) # completed}.

RELEASE.

In the oth,er algorithms several optimizations are possible too.

63

The translation of the algorithms into abstract machine code will thus

not pose any serious problems. The only operations which cannot directly be

translated are COLLECT GARBAGE and COMPACTS. The design of efficient

algorithms for these operations (based on the specifications given in the

64

foregoing) will be treated in a separate paper [7].

S. CONCLUSION

The implementation of a programming language is a highly complex

process. In order to keep this process under control a "divide and rule"

approach is absolutely mandatory. The job should be divided in clearly

interfaced sub-tasks, which should be as independent from each other as

possible. The division should be done with great care in order to keep the

implementation as efficient as possible. One of the sub-tasks is the

construction of a storage management system. In this paper it was

demonstrated through an example that indeed the design of a storage

management system can be viewed as a relatively independent part of the

language impl1ementation effort. The interface with the other parts of the

implementation consisted of an abstract model, which contained exactly the

information relevant to the storage management problem and no more than

that. It allowed us to approach the problem in a systematic and rigorous

· way, up to a level of formality which allowed proofs of correctness. Since

all irrelevan1t details were discarded, the design process remained

transparent and things could be kept relatively simple. The final result of

the design process was an efficient storage management system. The majority

of the techniques used in this system are certainly not novel. The primary

goal of this paper was not to demonstrate some fancy storage management

technique. Its main purpose was to demonstrate a technique to design a

storage management system in a systematic way.

Apart from a number of advantages already mentioned in the

introduction, the major advantage of the method demonstrated in this paper

over the more usual ("classical") approach to the design of storage

management systems (such as described in e.g. [l, 4, 5, 8]) is considered

to be the fact that it forces one to a separation of concerns. In the

process of designing a storage management system for an implementation of a

programming language Lon a machine Ma number of concerns can be

distinguished, which were clearly separated in the foregoing:

65

1. ThE~ programming language L.

2. ThE~ machine M.

3. ThE~ definition of the ,problem.

4. ThE~ design of the algorithms.

5. ThE~ implementation of the system.

Concerns 1 and 2 are often not well separated. In any but a purely

interpretive implementation a storage management system should not be

designed for (the machine corresponding to) the programming language L, but

for the machine Minto code of which programs in Lare translated. The

operation KEEP(B, L), which does not correspond to any ALGOL 68 construct,

demonstrate~s this clearly. Of course, if the abstract machine approach is

pursued, there will usually be a certain correspondence between Land M

(the more abstract the machine is, the closer this correspondence will

generally be). Good abstract machines (or better, their definitions) should

be such that they can be implemented without using information on the

programming language Lor the way programs in Lare translated into code

for M, howE~ver. Admittedly with the MIAM [9] we were in a rather fortunate

position in this respect. During the design process we only seldom needed a

reference to ALGOL 68.

The third concern, the definition of the problem, is usually either

omitted or taken for granted. Lacking a simple model free of irrelevant

detail it ts indeed not easy to define precisely what the storage

management problem amounts to. Yet an unambiguous statement of the problem

is essential to the reliability of the system to be developed. E.g., should

we not havE~ clearly defined what operations on the allocation function were

allowed, WE~ might have erroneously deallocated living areas.

Concerns 4 and 5 are most often confused. It is generally accepted

that in designing an algorithm (or a program) one should keep the algorithm

(or the program) free from implementation detail as long as possible. It

enables onE~ to keep a clear view at the algorithm under development. Thus

possible improvements of the algorithm are more easily discovered. An

example of this was the discovery of Invariant S5, which enabled a

substantial improvement of the efficiency of the storage management system.

It is questionable whether this invariant would ever have been discovered

66

(let alone that it could have been proved) if we had not kept the system as

abstract as we did. The separation of concerns 4 and 5 also helps in

keeping the presentation of the algorithms digestible. Interspersing an

algorithm with implementation details can make the algorithm utterly

unreadable.

A sixth concern could be added to the above list of separated

concerns: the design of the garbage collector. This concern was separated

because it constitutes a problem so different from the rest of the design

that it justifies a separate treatment. The fact that this concern could be

separated shows the power of the tec~nique.

REFERENCES

[1] BRANQUART, P. & J. LEWI, A scheme of storage allocation and garbage

collection for ALGOL 68, In: ALGOL 68 Implementation, Ed. J.E.L.

Peck, North Holland Publishing Company, Amsterdam (1971).

[2] DIJKSTRA, E.W., Cooperating sequential processes, In: Programming

Languages, Ed. F. Genuys, Academic Press, London (1968).

[3] ELSWORTH, E.F., Compilation via an intermediate language, Computer

Journal 22 (1979), 226-233.

[41 GRIES, D., Compiler Construction for Digital Computers, John Wiley &

Sons, New York (1971).

[5] HILL, u., Special run-time organization techniques for ALGOL 68, In:

Compiler Construction, Ed. F.L. Bauer & J. Eickel, Springer

Verlag, New York (1974).

[6] JONKERS, H.B.M., Deriving algorithms by adding and removing variables,

Mathematical Centre Report IW 134/80, Amsterdam (1980).

[7] JONKERS, H.B.M., Designing a garbage collector, To appear,

Mathematical Centre, Amsterdam.

[8] KNUTH, D.E., The Art of Computer Programming, Vol. 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass. (1968).

[9] MEERTENS, L.G.L.T., Definition of an abstract ALGOL 68 machine,

Working document, Mathematical Centre, Amsterdam.

[10] TERASHIMA, M. & E. GOTO, Genetic order and compactifying garbage

collectors, Information Processing Letters 7 (1978), 27-32.

[11] WIJNGAARDEN, A. VAN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER, M.

SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER (Eds.),

Revised Report on the Algorithmic Language ALGOL 68, Springer

Verlag, New York (1976).

67

2

