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Designing a machine independent storage management system*) 

by 

H."8.M. Jonkers 

ABSTRACT 

A systematic method of designing a storage management system for a 

machine independent language implementation is described. It is based on 

constructing an abstract model, which contains exactly the information 

relevant to storage management and no more than that. The model allows 

the problem to be approached in a rigorous and transparent way, up to a 

level of formality where proofs of correctness are possible. The 

effectivenE!SS of the method is demonstrated in the design of a storage 

·management system for a machine independent ALGOL 68 implementation. 

KEY WORDS 6, PHRASES: storage management, machine independence, 

abstract machine, abstract model, invariant 

*)This report will be submitted for publication elsewhere. 





1 • INTRODUCTION 

A usual way to obtain a portable implementation of a programming 

language Lis to construct a compiler C, which translates programs in L 

into code for an "abstract machine" M [3]. The latter is a hypothetical 

machine, which is designed in such a way that it is easily implementable on 

a large class E of existing machines. Given the compiler C, the job of an 

implementer is then, apart from installing C, to implement Mon his 

* * particular machine M. If M EE, this involves only a minor overhead. The 

price to be paid for portability is thus kept to a minimum. 

In each implementation of a programming language the problem of 

storage management must be solved. Let us consider this problem in the 

context of the above approach to programming language implementation. A 

first way to "solve" the problem is to shift it off to the implementer of 

the abstract machine M. This implies that the operations which have to do 

with storage management are kept abstract in M, much like the way they are 

kept abstract in the programming language L. The advantage of this approach 

is twofold. First, the problems of code generation and storage management 

are separated entirely. The designer of the code generator need not engage 

•in the details and intricacies of a storage management system. This greatly 

simplifies the design of the code generator. Second, each implementer can 

design a storage management system of his own. Since he can tune this 

storage management system to his particular machine, it will probably be 

quite efficient. On the other hand the design and implementation of a 

storage management system·may involve a considerable overhead in the 

implementation of the abstract machine M. This, of course, is in 

contradiction with the requirement that M should be easily implementable. 

The way out is not to change the abstract machine M, but instead 

provide it with a standard storage management system written in a subset of 

the instruction code of M. Such a storage management system can be viewed 

as an implementation of those instructions of M, which relate to storage 

management, in terms of simpler instructions of M. The two advantages 

mentioned above are retained this way. Code generation and storage 

management remain separated, and each implementer is still free to design 

his own storage management system. If the overhead of designing and 
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implementing a storage management system is considered to be too large, 

however, the standard storage management system can be used. The only 

remaining disadvantage is that, because the standard storage management 

system is machine independent, it is probably not optimally efficient on 

each existing machine. A careful design of the system may remove a great 

deal of this objection. 

This paper addresses the problem of designing a (standard) storage 

management system as described above. It will be demonstrated by means of 

an example how this problem can be tackled in a systematic way. The example 

is not artificial. It is taken from the construction of the ALGOL 68 [11] 

compiler which is currently being developed at the Mathematical Centre. In 

this compiler the above approach is pursued. The abstract machine used in 

this compiler is called the "MIAM" ("Machine Independent Abstract Machine") 

[9]. The treatment will be such that no knowledge of either ALGOL 68 or the 

MIAM is required. 

Let us first discuss the problem in general terms. The nature of a 

storage management system to be designed for an abstract machine depends to 

a large extent on the operations which are performed by the abstract 

·machine. The first thing to do therefore is to investigate which 

requirements are imposed by the abstract machine on a storage management 

system and also which properties of the abstract machine can be used to 

make the storage management system more efficient. For any but simple 

abstract machines this is a complicated job. The point is that one easily 

gets mixed up in all kinds of details of the abstract machine, which are 

completely irrelevant to the storage management problem. The only way to 

avoid this is to bring about a "separation of concerns". That is, an 

abstraction of the abstract machine should be made, which contains only 

those details of the abstract machine which are or may be relevant to the 

storage management problem. In such a (usually rather rudimentary) model of 

the abstract machine the problem of storage management can be studied in 

isolation, which makes the problem much more transparent. 

Apart from the latter, there are a number of additional advantages. 

First of all a storage management system designed this way is in a sense 

generally applicable. It cannot only be used with the abstract machine it 
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was designed for, it can be used with any other machine that "fits" the 

model. So it is machine independent in a double sense. The second advantage 

is that it aids to a modularization of the process of compiler 

construction. Through the model the storage management problem can be 

presented to someone (e.g. ·a specialist in designing storage management 

systems), who need not know anything of the programming language or 

abstract machine in question. Finally it allows a nontrivial storage 

management system to be discussed as in this paper, without perishing in a 

host of implementation details. 

As mentioned before the method will be demonstrated through the design 

of a machine independent storage management system for the abstract machine 

MIAM, which is used in a machine independent ALGOL 68 implementation. In 

the next section the model of the MIAM will be described (after which one 

can forget about the MIAM completely). Then the storage management problem 

will be formulated in section 3. Finally the design of an efficient machine 

independent storage management system will be described in section 4. 

2. MODEL 

Let us first look at the data structures which MIAM programs operate 

upon. Considered at the lowest level these data structures are merely 

pieces of storage. Here a. more abstract look will be taken at them. They 

will be considered as abstract objects, which are called areas. Different 

areas correspond to disjoint pieces of storage. There are two kinds of 

areas, called locales and blocks: 

An area is either a locale or a block. 

Speaking in technical terms a locale corresponds to an "activation record" 

and a block corresponds to a "data area". That is, if during the execution 

of an ALGOL 68 program the range S showed in Fig. 1 is entered, a locale L 

will be created in the MIAM, after which we say that "control resides in 
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L". At arrival at the declaration of the array A a block B (for the 

elements of A) will be created. We shall say that Bis "created in L". 

s 

I 
I 
I 
I 

begin 

[1:n]intA; 
I 
I 
I 
I 
I 
I 
I 
I 

end 

Fig. 1 

Areas have a number of entities associated to them. First consider 

locales: 

Each locale L has: 

status(L): variable status, 

- type(L): constant type, 

scope(L): constant integer, 

- establisher(L): constant locale. 

Here the "status" of L indicates whether Lis "alive" or "dead": 

A status is an element from the set {alive, dead}. 

Intuitively speaking a locale is alive if control resides in it or if 

control will ever return in it. Otherwise the locale is dead. The "type" of 

Lis a value, the exact nature of which is completely irrelevant here. The 

only thing we need to know is that the (machine independent) type of L 

determines the (machine dependent) size of the piece of storage 

corresponding to L. The "scope" of Lis the ALGOL 68 scope of the range 
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corresponding to L. The latter is an integer which indicates the lifetime 

of the locale (the larger the scope, the shorter the locale will live). The 

"establisher" of L corresponds,to what is usually called a "dynamic link". 

It is the locale where control resided immediately before control was 

transferred to L. For instance, if in Fig. 1 prior to entering the range S 

control resides in the locale Mand entry of the range S results in the 

creation of a locale L, then establisher(L) = M. 

Next consider blocks: 

Each block B has: 

- status(B): variable status, 

- type(B): constant type, 

- scope(B): variable integer, 

- generator(B): variable locale. 

Here the "status", "type" and "scope" of Bare analogous to the 

corresponding entities associated to locales. The "generator" of Bis the 

locale in which B was created. For instance, if in Fig. 1 entry of the 

range Sand execution of the declaration of A would result in the creation 

-of a locale Land a block B respectively, then after that generator(B) = L. 

The reason why the scope and generator of a block are variable and not 

constant entities will be discussed later. 

The above covers the discussion of areas. However, areas are not the 

only data structures which are of interest to the storage management 

problem. One of the more exotic features of ALGOL 68 is the possibility to 

specify that certain parts of a program should be executed in parallel, 

where synchronization can be done through "semaphores" [2]. Programs using 

this feature will be called "parallel programs". The other "normal" 

programs will be called "sequential programs". In order to model 

parallellism neatly the concept of a process must be introduced. As opposed 

to areas, processes do not correspond to separate pieces of storage. They 

are "embedded" in locales. 

Let us first discuss processes informally. In general a number of 

processes may simultaneously be active during the execution of a program on 

the MIAM, where each process has its own control. Only when executing a 
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sequential program there is only one active process. Suppose control of the 

active process Presides in the locale L corresponding to the range Sin 

Fig. 2. When control arrives at the parallel clause "par(Sl, S2, S3)", 

which specifies that Sl, S2 and S3 should be executed in parallel, three 

new active processes Pl, P2 and P3 (corresponding to Sl, S2 and S3) will be 

created, while P becomes inactive until Pl, P2 and P3 are completed. That 

is, P "ramifies" over Pl, P2 and P3. We shall say that Pl, P2 and P3 are 

"created by Pin L". 

I 
I 
I 
I 

b..wn 
I 
I 
I 
I 
I 
I 
I 
I 

S i;ra,r IS1, S2, S3); 
I 
I 
I 
I 
I 
I 
I 
I 

~ 

Fig.2 

The concept of a process will now be defined more precisely: 

Each process P has: 

- mode(P): variable mode, 

- origin(P): constant locale, 

- environ(P): variable locale, 

- spawner(P): constant process. 

Here the "mode" of P indicates whether Pis "active", "spawned"(= ramified 

over a number of processes) or "completed": 

A mode is an element from the set {active, spawned, completed}. 



7 

The "origin" of Pis the locale in which P was created and the "environ" of 

Pis the locale in which control of P currently resides. The "spawner" of P 

is the process which created P. For instance, in the example discussed in 

the previous paragraph spawner(Pl) = spawner(P2) = spawner(P3) = P. 

From the data structure point of view the model of the MIAM can now be 

regarded as a collection of four variables: 

The model consists of: 

- L: variable set of locales, 

- B: variable set of blocks, 

P: variable set of processes, 

- R: variable process. 

The variables L, Band P represent the set of all locales, blocks and 

processes respectively which have so far been created during the execution 

of a program. The variable R has to do with the fact that the MIAM is a 

sequential machine. Only one process at a time can be executed on the MIAM, 

which implies that parallellism must be "serialized". The variable R 

indicates which (active) process is currently being executed. R will be 

called the "running process" and the environ of R will be called the 

"current environ". 

Prior to the execution of a program the following holds: 
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Initially 

- L = {L0 }, 

- B = 0, 

- p = {PO}, 

- R = P0 , 

where L0 is a locale such that 

- status(L0) = alive, 

- type (L0) = "', 
- scope(L0) = O, 

- establisher(L0) = L0 , 

and P0 is a process such that 

- mode(P0) = active, 

- origin(P0) = L0 , 

- environ(P0) = L0 , 

- spawner(P0) = P0 • 

The locale L0 , which will stay alive during the entire execution of a 

program, will be called the "initial locale". Among other things it 

contains the constant table. The process P0 will be called the "initial 

.process". 

This completes the data structure part of the MIAM model. A thing one 

can argue about is whether the data structures described capture all 

information relevant to the storage management problem. An important 

concept that seems to be missing is that of a "reference" between areas, or 

more abstractly the concept of "reachability". This is an important concept 

because of the occurrence of "heap objects" in ALGOL 68, which correspond 

to areas with "infinite" lifetimes (their scope is zero). The only 

effective way to cope with the storage management problems caused by these 

objects is the use of a "garbage collector". The design of a garbage 

collector is a problem in its own right, which will not be discussed in 

this paper. Hence the concept of reachability need not be introduced in the 

model. Instead a garbage collection operation will be introduced as a 

primitive operation in the problem definition. 

Let us now look at the operations performed by the MIAM. They can be 

modelled in terms of operations on the data structures described in the 
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foregoing. Before doing so a few definitions will be introduced. 

Definition "' " and "< " , ---=---------~A A-
"<" and"<" are relations on the set A of all locales, defined as 
~ A . 

follows: 

L < M O 3 n > 0 [L = establishern(M)] -A 
L <A M O L ~ M A L ,/: M 

(L, M E A) 

(L, M E A) 

Definition"'" and"<" ----------------~-n----IT-
"<" and"<" are relations on the set IT of all processes, defined as -IT IT 
follows: 

P ~IT Q O 3 n ~ 0 [P = spawnern(Q)] 

p <IT Q op ~IT QA p 'F Q 

(P, Q E TI) 

(P, Q E IT) 

Here "establishern(M)" and "spawnern(Q)" denote the result of applying 

"establisher" and "spawner" n times to Mand Q respectively. So in other 

words, "<A" and "<rr" are the reflexive and transitive closures of the 

relations "L = establisher(M)" and "P = spawner{Q)" respectively, while 

"<A" and "<IT" are the antireflexive contractions of "<A" and "<IT" 

-respectively. Note that all four relations are constant. Restricted to the 

sets Land P they are variable, however (because Land Pare variable). To 

illustrate these relations, consider Fig. 3 which shows a possible state of 

the machine. That is, it shows the locales, blocks and processes in L, B 
and P respectively at a certain point of the execution of a program. In 

this figure among other things the following holds: 

LO <A L, LO <A E, --,(L ~A E V E ~A L), 

Po <IT P, PO <IT R, -.(p ~IT R V R ~IT P). 

As can be seen from this figure the locales in 

each constitute a tree. If Lis a locale in L, 
Land the processes in P 

the set of all locales Min 

L with M ~AL constitutes a list, which is usually called the "dynamic 

chain" emanating from L. The dynamic chain emanating from the current 

environ will be called the "current dynamic chain". 



lO 

I 

establisher generator spawner 

block 

origin environ 

Fig.3 
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The first operation which will be introduced corresponds to entering a 

range in ALGOL 68. It reads as follows: 

ESTABLISH(t): 

Precondition: 

tis a type. 

Action: 

Let E = environ(R). 

Let L be a locale such that 

- Lt. L, 
- status(L) = alive, 

- type(L) = t, 

- scope(L) = scope(E) + 1, 

- establisher(L) = E. 

L := L U {L}. 

environ(R) := L. 

It amounts to creating a fresh, living locale L of type t. Hence L f L, 
status(L) = alive and type(L) = t. The scope of this locale must be one 

· larger than the scope of the current environ E (it is "newer" than E). 

Since control will be transferred from E to L, establisher(L) should be 

equal to E. L must then be added to Land control must be transferred to L 

(by making L the new current environ). 

The second operation corresponds to leaving a range in ALGOL 68 (the 

range corresponding to the current environ): 

FINISH: 

Precondition: 

environ(R) I origin(R). 

Action: 

Let E = environ(R). 

environ(R) := establisher(E). 

status(E) := dead. 

For each BE B with generator(B) = E 

I status(B) := dead. 
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Control of the running process R cannot be transferred beyond the locale in 

which R was created, which explains the precondition environ(R) I 
origin(R). When leaving the range corresponding to the current environ E, 

control must be transferred from E to the "old" current environ. That is, 

environ(R) must be changed into establisher(E). This turns E into a dead 

area, but also all blocks created in E (the blocks B with generator(B) = 

E). The status of all these areas should therefore be changed into "dead". 

The third operation to be discussed is concerned with the creation of 

blocks: 

GENERATE(t, L): 

Precondition: 

tis a type, 

L IE L, L ~ environ(R). 

Action: 

Let B be a block such that 

- B fl. B, 

- status(B) = alive, 

- type(B) = t, 

- scope(B) = scope(L), 

- generator(B) = L. 

B := B U {B}. 

It describes the creation of a fresh, living block B of type tin the 

locale L, which should be in the current dynamic chain (the precondition L 

~ environ(R)). During this operation control can be thought to be 

temporarily transferred from the current environ to L. The block B will 

live as long as L, and hence the scope of B should be equal to the scope of 

L. Because Bis created in L, the generator of B should be equal to L. The 

actual creation of Bis accomplished by adding B to B. A thing to be noted 

here is that blocks corresponding to ALGOL 68 heap objects are created in 

the initial locale LO (through "GENERATE(t, LO)"). Consequently these 

blocks have scope zero. 

The fourth operation is somewhat trickier than the ones met before in 

the sense that it does not correspond directly to any ALGOL 68 operation. 
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It is an operation which is concerned with efficiency. The point is that it 

is sometimes useful to be able to extend the lifetime of a (large) block, 

e.g. to prevent an expensive copy operation. A typical example is found in 

passing procedure values. This lifetime extension is exactly what the 

following operation accomplishes: 

KEEP(B, L): 

Precondition: 

BE B, generator(B) = environ(R), 

LE L, L ~ L0 , L )'l environ(R). 

Action: 

generator(B) := L. 

scope(B) := scope(L). 

It extends the lifetime of the block B to that of the locale L, with the 

restriction that B must have been created in the current environ and L must 

belong to the current dynamic chain. This amounts to changing generator(B) 

to L. Since the scope of an area indicates its lifetime, in addition to 

this the scope of B must be changed to the scope of L. This explains why 

. the scope and the generator of a block are variable. 

The fifth operation corresponds to entering an ALGOL 68 parallel 

clause: 
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SPAWN(n): 

Precondition: 

n > o. 
Action: 

Let Q be a set of n processes such that for each PE Q 
-PflP, 

- mode(P) = active, 

- origin(P) = environ(R), 

- environ(P) = environ(R), 

- spawner(P) = R. 

p := p u Q. 

mode(R) := spawned. 

Let PEP with mode(P) = active. 

R := P. 

Through this operation n fresh, active processes are created. Each process 

Pin the set Q of these new processes is created in the current environ, 

with control of P initially residing in the current environ. The creator of 

each Pis the running process R. Hence origin(P) = environ(P) = environ(R) 

.and spawner(P) = R. The set of new processes Q is then added to P. After 

that the running process is made to be "spawned" and an arbitrary active 

process P (e.g. from Q) is made to be the new running process. 

The sixth operation relates somehow to the operation SPAWN(n) as 

FINISH relates to ESTABLISH(t). It corresponds to leaving a constituent 

statement of an ALGOL 68 parallel clause: 



COMPLETE: 

Precondition: 

emviron(R) = origin~R), Rf,. PO• 

Action: 

mode(R) := completed. 

Let S = spawner(R). 

Let Q = {PE P I spawner(P) = S}. 

If V P E Q [mode(P) = completed] 

I mode(S) := active. 

Let PEP with mode(P) = active. 

R := p. 

15 

This operation "completes" the current running process R. The precondition 

is that control of R has returned in the locale in which R was created and 

that R is not the initial process. After having changed the mode of R to 

"completed",, the process S which created R is determined. This is a spawned 

process, which should be made active if all processes created by it (all 

processes in the set Q) are completed. Then, an arbitrary active process P 

must be sele!cted and made to be the new running process. 

The seventh operation is concerned with the situation that the running 

process runs into an impassable semaphore: 

SWITCH: 

Precondition: 

:I P E P [P f,. R, mode(P) = active]. 

Action: 

Let PEP with Pf,. Rand mode(P) = active. 

R := P. 

If the running process is halted by an impassable semaphore, R must be 

changed to an active process which is not. The operation SWITCH models this 

change of running process by selecting an arbitrary active process Pf,. R 

and assigning P to R. The precondition of SWITCH takes care that the choice 

of Pis always well-defined. Of course, even if the precondition of SWITCH 

is satisfied, there may in reality not exist an active process P which is 
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not waiting for an impassable semaphore ("deadlock"). Instead of the 

operation SWITCH the program is then supposed to be aborted. 

The ALGOL 68 equivalent of the eighth and final operation is a jump to 

some global label. Its definition reveals the disruptive nature of the 

"goto": 

JUMP(L, P): 

Precondition: 

LE L, L ~ environ(R), 

P E P, P ~ R, 

origin(P) ~ L ~ environ(P). 

Action: 

R := P. 

mode(R) := active. 

environ(R) := L. 

For each MEL with L <AM 

I status(M) := dead. 

For each BE B with L <A generator(B) 

I status(B) := dead. 

For each Q E P with P <rr Q 

I mode(Q) := completed. 

Lis the locale corresponding to the range where the label jumped to 

occurs.Pis the process which takes over control by jumping to the label. 

The fact that the label jumped to must be "visible" implies that L ~A 

environ(R) and P ~IT R. Furthermore, L should be a locale to which control 

of P has access: origin(P) ~AL ~A environ(P). The jump is accomplished by 

making P the running process, changing the mode of R (= P) to "active" and 

then transferring control to L. Through this jump to the locale L of 

process P the lifes of all locales and blocks which were created "after" L 

(the locales M with L <AM and blocks B with L <A generator(B)) are 

aborted. The status of these areas must therefore be changed into "dead". 

Also all processes which were started "after" P (the processes Q with P <rr 

Q) are aborted, which amounts to changing their mode into "completed". 

The entire model of the MIAM has now been introduced. From a storage 
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management point of view the execution of any program on the MIAM can be 

modelled by a sequence of the operations described above. Not bothered by 

irrelevant details, the job is,to design a storage management system for 

this model. In doing so it should be assumed that any sequence of the above 

operations not violating the preconditions is allowed. 

Before going deeper into the problem of storage management it is 

worthwhile to take a closer look at the model. The model satisfies a number 

of invariants, which are listed below. They can be proved by showing that 

they hold initially and by checking that each operation, assuming its 

precondition holds, does not affect them. This is a simple job, which is 

left to the reader. 

Invariants for L0 

Kl. L0 E L • 

K2. status(L0) = alive. 

K3. scope(L0) = o. 

K4. establisher(L0) = L0 • 

Invariants for Po 
0 t • P0 E P. 

02. mode(P0) 'F completed. 

03. or:lgin(P 0) = La• 

04. spawner(P 0) = Pa• 

Invariants for R 

Rt. RE: p. 

R2. mode(R) = active. 
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Invariants for locales LE L 

Ll. establisher(L) EL. 

L2. LO~ L. 

L3. If_ status (L) = alive 

I status(establisher(L)) = 

L4. If status(L) = alive 

alive. 

There is a PEP such that 

mode(P) = active, 

L <11. environ(P). 

LS. If L ,,f, LO 

I scope(L) = scope(establisher(L)) + 1. 

Invariants for blocks BE B 

Bl. generator(B) EL. 

B2. status(B) = status(generator(B)). 

B3. scope(B) = scope(generator(B)). 

Invariants for processes PEP 

Pl. origin(P) EL. 

P2. environ(P) EL. 

P3. spawner(P) E P. 

P4. PO ~TIP. 

PS. origin(P) ~A environ(P). 

P6. If mode(P) = active 

I status(environ(P)) = alive. 

P7. If P ,,f, P0 , mode(P) ,,f, completed 

mode(spawner(P)) = spawned, 

origin(P) = environ(spawner(P)). 

PS. If mode(P) = spawned 

There is a Q E P such that 

spawner(Q) = P, 

mode(Q) 'F completed. 

From these invariants can be inferred that indeed the relations 11.5..A" 

and "<n" impose a tree structure on L and P with treetops Lo and P0 
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respectively, as was indicated in Fig. 3. The set of all living locales in 

L constitutes a subtree with treetop LO of the tree imposed by "<A" on L. 
The leaves of this subtree are, formed by the environs of the active 

processes. Analogously the set of all not yet completed processes in P 

constitutes a subtree with treetop PO of the tree imposed by"<" on P. The 
-TI 

leaves of this subtree are the active processes. Notice that the invariants 

imply that the operation "Let P € P with mode(P) = active" in COMPLETE is 

well-defined. Notice also that dead areas and completed processes are 

really "garbage" in the model: they are not referenced or used in any other 

way any more. 

An important special case is that of sequential programs. In 

sequential programs the operations SPAWN(n), COMPLETE and SWITCH will not 

occur. It is easy to see that no processes will be created then, which 

amounts to the following invariant: 

Invariants for sequential programs 

s1. P = {P0}. 

Together with invariant L4 this invariant implies that the living locales 

· in L constitute a single linear list (the "dynamic chain") as indicated in 

Fig. 4. The locales in Las a whole, however, need not constitute a linear 

list (but a tree). 
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Fig. 4 
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3. PROBLEM 

In this section the storage management problem is supposed to be 

defined. However, in the model as we described it there is no storage 

management problem. Areas which are created in the model simply fall out of 

the blue. The question where they come from is completely irrelevant. The 

storage management problem is a problem which arises only in the 

implementation of the abstract machine. When implementing the abstract 

machine on a real machine the creation of an area must be modelled by 

"allocating" a piece of storage to it. In contrast with the number of areas 

the amount of storage is limited, however. It is here where the storage 

management problem arises. In order to arrive at the point where the 

storage management problem can be formulated, we will therefore start 

implementing (the model of) the abstract machine described before. The 

method of "adding and removing variables" [6] will be used for that 

purpose. In a nutshell this method amounts to the following. An algorithm 

(or a machine) is implemented by adding extra variables and assignments to 

these variables to the algorithm. This creates a redundancy in the 

algorithm which enables certain expressions containing the "old" variables 

. of the algorithm to be replaced by equivalent expressions containing the 

"new" variables. When applied in a systematic way the old variables of the 

algorithm can be turned into "ghost variables" this way, which may be 

removed from the algorithm. Thus an implementation of the algorithm in 

terms of the new variables is obtained. The method will be applied here by 

augmenting the model with an extra variable (the "allocation function"). 

Moreover, an abstract operation on this variable will be introduced. This 

operation is supposed to model or "implement" the creation of an area, 

which is expressed in its specification. The operation is inserted in the 

model at those points where areas are created. The storage management 

problem can then be defined as implementing this operation as efficiently 

as possible. In doing so a number of primitive operations on the allocation 

function are allowed, which may be inserted throughout the model. In 

particular an attempt should be made to "remove" as much abstract variables 

(such as e.g. the "status" of areas) from the implementation. Thus the 

overhead caused by the storage management system is kept to a minimum. 
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The first thing that needs to be done is the introduction of some 

model of a "store". This model should conform as closely to the store of 

the MIAM and the stores of existing machines as possible. We will assume 

the store t.o be a row of "cells" labelled by "addresses", which are 

integers O, .... , N-1. Here N is some (large) machine dependent integer. A 

set of consecutive cells in the store will be called a "field" and the 

number of cells in a field F will be denoted as "size(F)". See Fig. 5. 

Though this E~odel of a store does not cover segmented memories, it is 

sufficiently general to call it machine independent. 

field 

~ 

cells 111111111~1111111 
' t addresses 0 N-1 

Fig.5 

In an implementation of the abstract machine on a real machine the 

creation of an area A must be modelled by "allocating" a field in the store 

to it, which the area is from then on said to "occupy". This will be made 

more precise by introducing a new variable F, called the "allocation 

function", in the model: 

The modE?l is augmented with: 

F: variable mapping from areas on fields. 

The domain of F (which is also variable) will be denoted as "domain(F)". It 

contains thoEJe areas which are "located" (= occupy a field) in the store. 

The value of F can be changed by a number of primitive operations only, 

which will bE? discussed in the sequel. Note that the domain of F contains 

only locales and blocks, and no processes. Processes, as mentioned before, 

are "embedded" in areas. This means that the storage occupied by a process 
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Pis part of the storage occupied by an area, to wit the origin of P. 

The allocation function F must satisfy two obvious invariants. First 

of all, fields occupied by different areas may not overlap. Second, areas 

must occupy_ a field of the "proper" size. The size of the field occupied by 

an area will usually depend on the type of the area. The dependency need 

not be unique, however. It may be useful to implement certain areas of a 

given type different from other areas of that type. Hence areas of the same 

type may occupy fields of different sizes. We will therefore add an 

additional entity to each area A, the "size" of A, which indicates the size 

of the field that A should occupy. We shall assume here that the size of 

the field occupied by an area will not change during the execution of the 

program. So the size of an area is constant: 

Each locale Lis augmented with 

- size(L): constant integer • 

Each block Bis augmented with. 

- size(B): constant integer. 

-The two invariants which F must satisfy can now be formulated as follows: 

Invariants for F 

Fl. For each area A, BE domain(F) 

I A~ B ~ F<A> n F(B) = 0. 
F2. For each area A E domain(F) 

I size(F(A)) = size(A). 

These are global invariants for F, not to be violated by any operation on 

F. In the initial situation the following should hold: 

Initially 

domain(F) = {L0}, 

size(F(L0)) = size(L0). 

In other words, at the beginning of the execution of a program the initial 
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locale should be the only area located in the store and occupy a field of 

the proper size (see the initial state of the model). The invariants for F 

are thus trivially satisfied in the initial situation. 

The next thing to do is to introduce an abstract operation on F, which 

models the creation of an area. It should allocate a field in the store to 

a (new) area A and will be denoted as "ALLOCATE(A)". It should do so, 

however, by means of the primitive operations (to be) defined on F 

exclusively. This is specified below: 

ALLOCATE:(A): 

Precondition: 

A is an area, A(/_ L 1J B. 
Action: 

Establish the truth of the assertion A E domain(F) by means of 

the primitive operations defined on F. 

The operation ALLOCATE(A) should be inserted at those points in the 

model where areas are created. It should therefore be added to the 

operations ESTABLISH(t) and GENERATE(t, L). At the same time this gives us 

· an opportunity to associate the proper size to an area being created: 



ESTABLISH(t): 

Precondition: 

tis a type. 

Act;i.on: 

Let E = environ(R). 

Let L be a locale such that 

- L f L, 

- status(L) = alive, 

- type(L) = t, 
- scope(L) = scope(E) + 1, 

- establisher(L) = E, 

- size(L) = 'v. 

ALLOCATE(L). 

L := L U {L}. 

environ(R) := L. 

GENERATE(t, L): 

Precondition: 

tis a type, 

LE L, L <h environ(R). 

Action: 

Let B be a block such that 

- Bf B, 
- status(B) = alive, 

- type(B) = t, 
- scope(B) = scope(L), 

- generator(B) = L, 

- size(B) = 'v. 

ALLOCATE(B). 

B :=BU {B}. 

Here "'v" is some implementation dependent integer, which depends on the 

type t. 

Before formulating the problem there remains only one thing to be 

discussed: the set of primitive operations allowed on f. We shall discuss 
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these operations by investigating how ALLOCATE(A) can be implemented. The 

effect of ALLOCATE(A) should be that A is added to the domain of F. So the 

first operation we need is an ,operation to extend the domain of F with an 

area. Due ~o the invariants for F and the finiteness of the store this may 

be impossible, however. First of all, it may be impossible to find a field 

F of "free cells"(= cells not occupied by areas) such that size(F) = 

size(A), even though the total number of free cells is more than 

sufficient. This is due to a phenomenon known as "fragmentation". Second, 

the total number of free cells may simply be insufficient ("storage 

overflow"). 

The first problem (fragmentation) can be coped with by introducing an 

operation to "move" areas in the store from one field to an other, i.e. 

change the value of F(A) for certain A E domain(F). Thus small fields of 

free cells can be united into larger fields. A thing to be borne in mind 

with this is that in practice moving areas is an expensive operation, 

because all "pointers" to or into a moved area must be "updated". The 

second problem (storage overflow) can only be dealt with by allowing areas 

to be "deallocated" too, i.e. to be removed from the domain of F. Of course 

only areas which are no longer used by the program should be deallocated. 

What are "no longer used" areas? One thing we know for sure is that 

dead areas are not used any more. So dead areas can be deallocated with 

impunity. Yet even the deallocation of all dead areas may not help. The 

only escape is then to deallocate no longer used living areas too. The 

latter areas are considerably harder to detect than dead areas, however. 

The use of a "garbage collector" is required for that. The design of a 

garbage collector will not be discussed in this paper (but see [7]). Hence 

an unspecified primitive operation "COLLECT GARBAGE" on Fis introduced. 

This operation is supposed to deallocate all no longer used areas 

(including all dead areas), while it may also move areas. It is a very 

expensive operation which should only be used as a last resort. As far as 

certain properties of COLLECT GARBAGE are important or even essential to 

the storage management system to be designed, these properties will be 

postulated in the form of "Requirements for COLLECT GARBAGE". If even a 

garbage collection does not help, the only way out is to abort the program. 

The above accounts for the following list of primitive operations 



allowed on F : 

Primitive operations on F, 

1. Adding an area to domain(F). 

2. Changing the value of F(A) for a number of A E domain(F). 

3. Removing a number of A E domain(F) with status(A) = dead from 

domain(F). 

4. COLLECT GARBAGE. 
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In all this it is implicitly assumed that the operations do not violate the 

Invariants for F. 
The storage management problem now boils down to: 

Problem 

Implement ALLOCATE(A) efficiently. 

The word "implement" must be taken in a broad sense here. This implies not 

only that ALLOCATE(A) must be expressed in terms of the primitive 

operations on F, but also that operations on F may be inserted anywhere in 

the model in order to make the implementation more efficient. The 

collection of all operations on F thus added to the model constitutes the 

"storage management system". 

We require that efficiency of the storage management system to be 

designed should primarily be achieved for sequential programs. The 

rationale behind this is that ALGOL 68 was not specifically designed as a 

language for writing parallel programs. The majority of programs written in 

ALGOL 68 will be purely sequential. Hence it is reasonable if the use of 

parallellism costs a little extra. 

The design of an efficient storage management system will be started 

in the next section. 
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4. DESIGN 

A general approach to the, design of a storage management system is to 

divide the areas in a number of classes dependent upon certain properties. 

For each class a special storage management strategy is used, which 

exploits the properties of the areas in that class. Let us assume n classes 

C1, ••• , Cn of areas are distinguished. Then the allocation function F can 

correspondingly be written as F = F 1 U ••• U F n' where domain(F i) c Ci (i = 

1, ••• , n). Let us call the set of all cells occupied by the areas in 

domain(Fi) the "region" of Fi. The job is to implement the operation 

"ALLOCATE(A)" efficiently in terms of operations on the Fi. These 

operations may freely be chosen from the set of primitive operations 

defined on F. If the operations are applied arbitrarily, however, a 

comprehensive bookkeeping is necessary in order to ensure the Invariants 

for the allocation function are satisfied. This bookkeeping can be 

simplified greatly if the regions of the Fi are kept "compact"(= 

constituting a field). In that case.only operations may be performed on the 

Fi, which do not disturb the compactness of the regions. 

We shall comply with the above by abstractly modelling each Fi as a 

"pile" Ui. A pile is a stack of areas which (apart from "push" and "pop") 

has a number of additional operations defined on it (to be discussed 

later). If a pile U contains the areas A1, ••• ,Amin the order from bottom 

to top, this will be denoted as U = <A1, ••• , Am>• A pile U = <A1, ••• , Am> 

can be "located" in the store in two different ways as indicated in Fig. 6. 

Here the areas Ai occupy contiguous fields of size(Ai) cells. 
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u 
-

bottom top 

u 

top bottom 

Fig. 6 

It is useful to dwell briefly on what we did in the above. We 

representeid the allocation function F as a (yet to be fixed) number of 

piles u1, ••• , Lin• On the one hand this can be viewed as a matter of 

abstraction: we abstracted from the store. This has the advantage that it 

makes lifei a lot easier. We do not need to talk in such "low level" terms 

as "cells", "addresses", "fields", etc. any more. A minor drawback is the 

fact that everything we said about F must now be translated in terms of the 

piles u1, ••• , Un. Since the correspondence between F and u1, ••• , Un is 

obvious, this will be omitted. Note that F can only be reconstructed from 

the u1, .... , Un after locating the latter in the store. On the other hand 

the things we did in the above can be viewed as a matter of concretion (the 

inverse of abstraction): we made a certain choice as to the structure of 

the allocation function. This was a design decision in order to reduce the 

problems caused by the Invariants for the allocation function. It also 

reduces the freedom of design, of course. 

Up to two piles can efficiently be accommodated in the store (in the 

case of two piles: one at each end of the store). Though storage management 

systems with a larger number of piles are certainly conceivable, we will 
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therefore limit the number of piles to two. The following are plausible 

choices: 

1. One pile for all areas. 

2. Two piles, for locales and blocks. 

3. Two piles, for areas with scope> 0 and for areas with scope= Q. 

The first choice does not exploit the different properties of areas. Hence 

it may not be expected to result in an efficient storage management system. 

The second choice exploits the differences between locales and blocks. This 

may lead to an efficient storage management scheme for locales (in the 

absence of parallellism locales have nested lifetimes), but for blocks 

(which may occupy the majority of the storage) it is just as bad as the 

first choice. The third choice seems the most appropriate here. It closely 

(but not entirely) fits in with the difference between ALGOL 68 stack and 

heap objects. This alternative will therefore be chosen. 

The above implies that we have-two piles Sand Hin our storage 

management system. S contains the areas with scope> 0 and H those with 

scope= O. We assume they are located in the store as indicated in Fig. 7. 

s H 
-----~,...------------. 

~ 
----~"---------

~ 
scope > 0 scope= 0 

Fig. 7 

As with the allocation function F the piles Sand H must satisfy a 

number of invariants. First, the fact that Sand H correspond to (the 

domain of) a mapping (F) implies that no area may occur twice in S and H. 

Second, the Invariants for F must be translated into invariants for Sand 

H. Invariant Fl amounts to the fact that the sum of the sizes of the areas 

in Sand H must be less or equal to the size N of the store. Invariant F2 
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need nor can be expressed any more. (This invariant is incorporated in the 

correspondence between F and the piles Sand H.) Third, Sand H should 

contain only areas with scope> 0 and scope= 0 respectively. So we have: 

Invariants for Sand H 
Ul. If S = <A1, ••• , Am>, 

H = <Am+l, ... , A> 

I 
n 

i 1' j => Ai :/: Aj 

u2. 2 : size(A) < N. 
AES UH 

U3. For each AES 

I scope(A) > o. 
U4. For each A EH 

I scope(A) = o. 

(i, j = 1 , • • •, n). 

For notational convenience the piles Sand Hare considered here 

occasionally as the sets of their elements. The translation of the initial 

situation for Finto the initial situation for Sand H leads to: 

Initially 

S = 0, 

H = <L0>. 

In this situation the Invariants for Sand Hare trivially satisfied. 

During the further design of the storage management system care must 

be taken that Invariants Ul through U4 are not violated. These invariants 

could be violated in two ways. First of all the operations of the abstract 

machine might violate Invariants U3 and U4. Invariants U3 and U4 use the 

scope of areas, which is variable for blocks. However, the only operation 

that may affect the scope of an area is KEEP(B, L) and this operation will 

never change the scope of an area from> 0 into= 0 or vice versa (use 

Invariants L2 and LS and the fact that L :/: L0). The Invariants for Sand H 

can therefore never be violated by any operation of the abstract machine. 

The second way the invariants could be violated is because of some 

operation on Sor H that we insert in the model. It should be checked in 
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each individual case that such an operation does not violate the Invariants 

for S and H. 

An operation that could particularly violate the Invariants for Sand 

His COLLECT GARBAGE. The informal "definition" of COLLECT GARBAGE states 

that it removes all no longer used areas (including all dead areas) from 

the domain of the allocation function f. Speaking in terms of the piles S 

and H this implies that COLLECT GARBAGE removes all no longer used areas 

from SUH. In this process the remaining areas in Sand H could in 

principle be shuffled arbitrarily. They could even be transferred from S to 

Hor vice versa (thus violating Invariant U3 or U4). This wiLl be prevented 

by the following requirements: 

Requirements for COLLECT GARBAGE 

1. No areas are added to S. 

2. No areas are added to H. 

It is easy to see that these two requirements are sufftcient to let COLLECT 

GARBAGE "respect" the Invariants for Sand H. Apart from these two 

requirements a third will be imposed which is not strictly necessary: 

Requirements for COLLECT GARBAGE 

3. The order of the remaining areas in Sand His not affected. 

It says that the garbage collector must be "genetic order preserving", 

which is a deisirable property of garbage collectors [,10]. Why this is so 

will turn out: soon. Notice that the removal of a number of areas from Sand 

H may affect the compactness of the regions of Sand H. Consequently the 

garbage colleictor must perform a "compaction" in order to restore the 

situation of Fig. 7. This need not be expressed in the Requirements for 

COLLECT GARBAGE because COLLECT GARBAGE is considered as an operation on 

the "abstract:" piles Sand H here. It follows directly from the 

correspondence between Sand Hand the allocation function f. 

Let us now attempt to design a first storage management system. 
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4.1 The initial system 

The obvious way to obtain,a usable storage management system is as 

follows. Storage can only be allocated to an area A if there is enough room 

between the piles Sand Hin the store. The room between Sand H (measured 

in cells) will be denoted as "FREE": 

FREE = N - _) ___ ___, size(A) 
AES UH 

If FREE< size(A) there is not enough room and a garbage collection is used 

to make room. If after a garbage collection there is still not enough room, 

the program is aborted. Otherwise storage can be allocated on Sor H (using 

a "push" operation), dependent on the scope of A. This leads to: 

System 1 

ALLOCATE(A): 

Lets= size(A). 

If FREE< s 

COLLECT GARBAGE. 

If FREE< s 

I ABORT. 

Case 

1 • scope(A) > 0 

I PusHs<A>. 

2. scope(A) = 0 

I PUSHH(A). 

Notice that all operations performed on Sand H correspond to legal 

(primitive) operations on the allocation function F. Notice also that the 

Invariants for Sand Hare not violated. 

The above storage management system is not very satisfactory for a 

number of reasons. One of them is the following. Suppose during the 

execution of a program the situation is reached that a garbage collection 

delivers only a small amount of free storage (just about sufficient to 
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proceed). Then it will probably be necessary to perform a garbage 

collection very soon again, which may once more deliver only a small amount 

of free storage, etc •• Since a, garbage collection is a time consuming 

operation, this may lead to the situation that the majority of the 

execution time of a program is spent collecting garbage before the program 

is finally aborted. This will be remedied in the next subsection. 

4.2 Avoiding frequent garbage collections 

The problem of frequent garbage collections can be solved by requiring 

that the garbage collector delivers a minimum number of free cells, which 

will be denoted as "minfree". This number should be large enough to let the 

program proceed undisturbedly for some time after a garbage collection. 

Thus we obtain: 

System 2 

ALLOCATE(A): 

Lets= size(A). 

If FREE< s 

COLLECT GARBAGE. 

If FREE< max(s, minfree) 

I ABORT. 

Case 

1. scope(A) > 0 

I PusHsCA). 

2. scope(A) = 0 

I PUS~(A). 

This removes one objection to System 1. There is another severe objection 

to both Systems 1 and 2, however. For the deallocation of areas both 

systems rely entirely on garbage collection, which does not make them very 

efficient. We will do something about that below. 
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4.3 Restraining the use of the garbage collector 

Checking the list of primitive operations defined on the allocation 

function F we see that the only way to deallocate areas other than through 

a garbage collection, is the deallocation of dead areas. Dead areas may 

freely be removed from the piles Sand H. As far as the pile His concerned 

this does not bring us any further, because in H no dead areas occur (this 

follows from Invariants U4, K2, L2, LS, B2, B3 and the fact that H c LU 
B). So all dead areas in SUH occur in S. It would not be very wise, 

however, to allow dead areas to be deallocated arbitrarily inside S, 

because that would require an expensive 11compaction" in order to restore 

the compactness of the region of S. Dead areas can be popped from the top 

of S with impunity, however. This gives us a cheap mechanism to deallocate 

areas over the head of the garbage collector. 

The question is where in the model the operation to pop dead areas 

from S should be inserted. The most natural places to do so seem to be 

those places where areas are "killed". If a killed area happens to reside 

at the top of S, A and all dead areas "below" it can immediately be popped 

from S. An operation "RELEASE", which does just that, will therefore be 

introduced. It will be inserted in the operations FINISH and JUMP(L, P), 

which are the only machine operations that kill areas: 

FINISH: 

Precondition: 

environ(R) # origin(R). 

Action: 

Let E = environ(R). 

environ(R) := establisher(E). 

status(E) := dead. 

For each BE B with generator(B) = E 

I status(B) := dead. 

RELEASE. 
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JUMP(L, P): 

Precondition: 

LE L, L ~ environ(R), 

PE P, P ~ R, 

origin(P) ~ L ~ environ(P). 

Action: 

R := p. 

mode(R) := active. 

environ(R) := L. 

For each MEL with L <AM 

I status(M) := dead. 

For each BE B with L <A generator(B) 

I status(B) := dead. 

For each Q E P with P <rr Q 

I mode(Q) := completed. 

RELEASE. 

Notice that at all places where ALLOCATE(A) and RELEASE occur all system 

invariants hold (the invariants need only hold between two machine 

-operations). 

Storage management system 3 now looks as follows: 



System 3 

ALLOCATE(A): 

Lets= size(A). 

If FREE < s 

COLLECT GARBAGE. 

If FREE< max(s, minfree) 

I ABORT. 

Case 

1. scope(A) > 0 

I PusHs<A>. 

2. scope(A) = 0 

I PUSHH(A). 

RELEASE: 

While DEADTOP 

I POPS. 

The predicate "DEADTOP" in this system is defined as follows: 

DEADTOP = S + 0 and status(top(S)) = dead. 
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Here the "and" is used as a "McCarthy operator" and "top(S)" is the area at 

the top of S. If all areas which appear in Shave nested lifetimes, this 

scheme will keep S free from dead areas. It may therefore be expected to 

work rather efficiently for say ALGOL 60 type ALGOL 68 programs. The only 

operations which may (temporarily) impede the effectiveness of this scheme 

are GENERATE(t, L), where L + LO and L + environ(R), KEEP(B, L) and SWITCH. 

The latter will occur in parallel programs only, while the other two may be 

expected not to be used too frequently (by a good code generator). Whatever 

operations are performed, however, the above scheme will always work 

correctly. Notice that Requirement 3 for COLLECT GARBAGE is essential to 

the effectiveness of the scheme. 

Though System 3 is a major improvement over System 2, it still rather 

heavily depends on garbage collection as a deallocation tool (especially in 

parallel programs). The role of the garbage collector can further be 
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diminished, as we will demonstrate. 

4.4 Restraining the use of the garbage collector further 

Suppose in ALLOCATE(A) we run out of storage (i.e. FREE< s). It may 

very well turn out (especially if few areas with scope= 0 are used) that 

the number of dead cells in Sis large compared with the size of the store. 

The number of dead cells in Swill be denoted as "DEAD": 

DEAD = ) _____ ___,: size(A). 
AES 

status(A) = dead 

It is profitable then not to perform a full garbage collection, but simply 

to remove all dead areas from S (which implies compacting the region of S). 

An operation "COMPACTS" which accomplishes this will therefore be 

introduced: 

COMPACTQ: 
-> 

Remove all AES with status(A) = dead from S while preserving the 

order of the remaining areas in S. 

Notice that the operation on the allocation function F corresponding to 

COMPACTS is e~xpressible in the primitive operations defined on F. Notice 

also that CO~~ACTS does not violate the Invariants for Sand Hand that it 

is "genetic order preserving". 

The operation COMPACTS is considerably cheaper than COLLECT GARBAGE. 

The reason is that an expensive "marking phase", such as in the garbage 

collector, is not necessary in COMPACTS. Moreover, the compaction (as 

opposed to a garbage collection) is strictly local to the pile S: Due to 

the "scope rules" of ALGOL 68 the fact that area A contains a pointer to 

area B implies that scope(A) ~ scope(B). Consequently areas in H do not 

contain pointers to areas in S, which implies that areas in Smay be moved 

without having to update any pointers in areas in H. 
If "mindead" denotes the (possibly dynamically determined) minimum 



39 

number of dead cells in S for which a compaction is more profitable than a 

garbage collection, then the new storage management system looks as 

follows: 

System 4 

ALLOCATE(A): 

Lets= size(A). 

If FREE< s 

If DEAD> max(s, mindead) 

I COMPACTS. 

else 

Case 

COLLECT GARBAGE. 

If FREE< max(s, minfree) 

I ABORT. 

1. scope(A) > 0 

I PusHsCA>. 
2. scope(A) = 0 

I PUSfftt{A). 

RELEASE: 

While DEADTOP 

I POPS. 

The number DEAD in this system can be determined by traversing S once. In 

traversing Sit must be determined for each area A€ S whether A is dead or 

not. The assumption in all this is, as it is in COMPACTS and DEADTOP, that 

in a real implementation it is possible to determine the status of an area 

in S. What are the consequences of this assumption? 

Areas as we described them have a number of entities associated to 

them (such as "status", "type", "scope", etc.). Except for the "size" these 

are abstract entities which are used in the definition of the abstract 

machine. Each implementer of the abstract machine will try to implement 

these entities as efficiently as possible, and if possible he will even 

avoid to implement certain entities. A number of the entities must be 
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implemented anyway: the type and size of an area (for the garbage collector 

and the compaction routine), the scope of an area (for scope checks) and 

the establisher of a locale (iu order to return to the proper locale after 

leaving a range). Other than for reasons of storage management the status 

of an area and the generator of a block need not be implemented. 

In System 4, however, the status of an area is apparently supposed to 

be implemented. For locales this could be done by letting FINISH and 

JUMP(L, P), which are the only two operations that kill areas, mark dead 

locales as such. For blocks this is not so simple. The best way to 

determine whether a block Bis dead seems to use Invariant B2 and check 

whether generator(B) is marked as dead or not. Yet this implies that the 

generator of a block must also be implemented. This overhead deprives 

System 4 of some of its attractiveness. It would be nice if the overhead 

could be eliminated, and indeed for sequential programs it can. We can use 

the redundancy caused by the introduction of the allocation function (in 

the shape of the piles Sand H) to turn the status of an area and the 

generator of a block into "redundant variables" of the storage management 

system. This will be shown and proved in the next subsection. After that we 

will consider the general case of both sequential and parallel programs. 

Before continuing two more requirements on the garbage collector will 

be imposed. From the requirements introduced so far absolutely nothing can 

be inferred as to which areas are or are not deallocated by the garbage 

collector. There are certain areas from which it is easy to see that they 

are (or should be) or are not (or should not be) deallocated by the garbage 

collector. In particular all dead areas will be deallocated by the garbage 

collector. (This was already stated informally.) Furthermore, the living 

locales will not be deallocated in a garbage collection. (They are 

"reachable" because control will, or should be able to ever return to 

them.) The following additional requirements, which allow us to use that 

information, will therefore be imposed on the garbage collector: 

Requirements for COLLECT GARBAGE 

4. All dead areas are deallocated. 

5. No living locales are deallocated. 
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A number of additional invariants (which hold between two operations 

of the abstract machine) can now be proved for System 4. In order to 

formulate them more easily the,following relation on the set of areas in S 

will be introduced: 

Definition "<s:_ 
"<s" is a relation on the set of areas in S, defined as follows: 

Ilf S = <A1, ••• , An> 

A. <s A. <c> i < j 
1 . J 

(i, j = 1, ••• , n) 

Due to Invariant U1 this relation is well-defined. The fact that A <s B 

implies that A is "below" Bin S. The following invariants hold: 

Invariants for Sand H 

us. s u H CL u B. 
U6. For each LE L with status(L) = alive 

I LE s u H. 
U7. 

us. 

For each LES n L with 

establisher(L) ES, 

establisher(L) <s 
For each BES n B 

generator(B) ES, 

generator(B) <s B. 

L. 

U9. If S ,f: 0 

establisher (L) 

I status(top(S)) = alive. 

,f: LO 

Invariant US is based on Requirements 1 and 2 for COLLECT GARBAGE. It 

allows us to use all Invariants for Land B for areas in Sand H. Invariant 

U6 is based on Requirement S for COLLECT GARBAGE. Notice that it implies 

that L0 EH and LES for each LE L with L :f: L0 and status(L) = alive. 

Invariants U7 and US are based on Requirements 1, 3 and 4 for COLLECT 

GARBAGE. The informal argument for their truth is simple. The establisher 

of a locale Lis created before the locale itself. Hence establisher(L) 

will occur below Lin S. The same applies to the generator of a block Band 

the block itself. The only operation that might violate the relation 
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generator(B) <s Bis KEEP(B, L). However, prior to KEEP(B, L) the following 

holds for the new generator L of B: L0 ~ L <A environ(R) = generator(B). 

With Invariant U7 this implies that L <s generator(B) <s B. Finally, 

Invariant U9 is based on Requirements 1 and 4 for COLLECT GARBAGE and the 

fact that dead areas are immediately popped from S. The (simple) formal 

proof of Invariants U5 through U9 is left to the reader. 

4.5 Removing overhead in the sequential case 

In this subsection we shall assume that only sequential programs are 

executed on the abstract machine. So the operations SPAWN(n), COMPLETE and 

SWITCH will not occur and Invariant Sl will hold, i.e. P = {P0}. The living 

locales in L then constitute a single dynamic chain, which emanates from 

environ(P0) (see Fig. 4). Together with the Invariants for Sand H this 

implies that the store looks as in Fig. 8. In this figure the circles 

represent the locales in the dynamic chain. Notice that if S ~ 0 there is 

always a living locale at the bottom of S, which amounts to the following 

invariant: 

Invariants for sequential programs 

S2. If S = <A1, ••• ,A> with n > 0 

I A1 EL and statu:(A1) = alive. 

This invariant cannot be derived from the invariants formulated so far, but 

must be proved independently. It critically depends on the fact that dead 

areas are popped from Sas soon as they occur on the top of S. 
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s H 

I 
I 

environ(~} 

Fig.8 

The locales indicated in Fig. 8 are all alive. But what can we say 

about the "liveliness" of the other areas in S? We know there is a relation 

between the scope of an area and its lifetime. This relation is somewhat 

obscured by the operations GENERATE(t, L) and KEEP(B, L). Can the scope of 

an area be used anyway in order to determine whether the area is dead or 

not? In order to answer this question the genetic order relation"<" must s 
be examined more closely. 

Consider a living locale Lin Sand an other locale M "above" Lin S, 

-i.e. L <s M. At the moment M was created L was already in Sand alive. So 

just after the creation of M both Land M belonged to the dynamic chain of 

which M was the beginning. This implies that at that moment L <AM. Yet, 

since the relation "<A" is constant, the assertion L <AM will hold 

forever. This amounts to the following invariant: 

Invariants for sequential programs 

S3. For each LES n L with status(L) = alive 

and each MES n L 

IL <s M,. L <AM. 

Next consider a living locale Lin Sand a dead block B above Lins. Let G 

= generator(B) and suppose that G <s L. From Invariant B2 we know that G is 

dead. At the moment L was created G was already in Sand also dead 

(otherwise Invariants S3 and L3 would lead to a contradiction). Since B was 

created after L this implies that B was created when G was already dead. 
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From this and Invariant B2 can be concluded that at the moment B was 

created apparently generator(B) ~ G. Consequently the operation KEEP(B, G) 

must have been applied some time thereafter. The precondition of KEEP(B, G) 

says that G <A environ(R), which implies that status(G) = alive, however. 

From this contradiction can be concluded that the assertion G <s L can 

never hold. Since G ~ L this leads to the conclusion that L <s G, which is 

expressed in the following invariant: 

Invariants for sequential programs 

S4. For each LES n L with status(L) = alive 

and each BES n B with status(B) = dead 

IL <s B ~ L <s generator(B). 

A more formal proof of the above invariants is left to the mistrustful 

reader. 

Invariants S2, S3 and S4 give us additional information on the 

relation "<s" which can be used profitably. Before showing this a 

definition is introduced. For each area A in S the "base" of A is defined 

to be the first living locale equal to or below A in S: 

Definition base(A) 

For each AES 

I base(A) = max {LES n L IL .S.s A, status(L) = alive}. 
<s 

Notice that because of Invariant S2 the base of an area in Sis always 

well-defined. The following invariant can now be derived from Invariants S3 

and S4: 

Invariants for sequential programs 

S5. For each AES 

I status(A) =dead~ scope(A) > scope(base(A)). 

Proof: 

Let AES and let L = base(A). If A= L the proof is trivial. If A~ 

L, and hence L <s A, a number of cases must be distinguished. This is 
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done schematically below. 

A EL U B. (Inv. US) 

If status(A) = dead 

If A E L 

L <A A. 

scope(A) > scope(L). 

If A EB 

L <s generator(A). 

L <11. generator(A). 

scope(generator(A)) > scope(L). 

scope(A) > scope(L). 

scope(A) > scope(L). 

If scope(A) > scope(L) 

If A E L 

If status(A) = alive 

L = A. 

Contradiction. 

status(A) = dead. 

If A EB 

If status(A) = alive 

status(generator(A)) = alive. 

generator(A) <SA. 

generator(A) ~ L. 

generator(A) ~AL. 

scope(generator(A)) ~ scope(L). 

scope(A) ~ scope(L). 

Contradiction. 

status(A) = dead. 

status(A) = dead. 

status(A) =dead~ scope(A) > scope(L). 

QED. 

(Inv. S3) 

(Inv. LS) 

(Inv. S4) 

(Inv. S3) 

(Inv. LS) 

(Inv. B3) 

(Def. base(A)) 

(L <s A) 

(Inv. B2) 

(Inv. US) 

(Def. base(A)) 

(Inv. S3) 

(Inv. LS) 

(Inv. B3) 

(scope(A) > scope(L)) 

Invariant S5 allows us to turn the status of an area and the generator 
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of a block into redundant variables of the (augmented) model. In the entire 

model the generator of a block is only used to keep track of the status of 

areas and the status of an area is only really used in the storage 

management operations ALLOCATE(A) and RELEASE. It is therefore sufficient 

to show that the status of an area can be removed from these operations 

(see System 4). First consider RELEASE. In this operation the status of an 

area is used in the predicate DEADTOP only, which should be true iff .~ I 0 
and status(top(S)) =dead.It is easy to infer from Invariant SS that if S 

I 0, the assertion 

status(top(S)) = dead 

is equivalent to: 

scope(top(S)) > scope(environ(R)). 

Consequently DEADTOP can be determined as follows: 

Determination of DEADTOP 

If S = 0 
I DEADTOP := false. 

else 

Let T = top(S). 

Let E = environ(R). 

DEADTOP := scope(T) > scope(E). 

Next consider ALLOCATE(A). In this operation the status of an area is used 

in the determination of the number DEAD of dead cells in Sand in COMPACT~ 

(but not in COLLECT GARBAGE). From Invariants S2 and SS (and a few more 

invariants) it can be inferred that the number DEAD can be determined as 

follows (see also Fig. 8): 



Determ:lnation of DEAD 

Let S == <A1 , ••• , An>. 

s := Q,, 

k := n,. 

L := environ(R). 

While k > 0 

Whih~ 1\ :f, L 

If scope(1\) > scope(L) 

I s := s + size(1\)• 

k::=k-1. 

L := establisher(L). 

k := k - 1. 

DEAD :== s. 

47 

While traversing S this way, dead areas could at the same time be marked as 

such. This would make it simple for COMPACTS to determine whether an area 

is dead or not without using the status of the area. 

The above shows that neither the status of an area nor the generator 

of a block need be implemented, thus avoiding a time and space overhead. 

That is, if only sequential programs are executed on the abstract machine. 

The latter assumption will be dropped in the next subsection. 

4.6 Removing overhead in the general case 

In the previous section we showed that in the sequential case we could 

do away with the status of an area and the generator of a block entirely in 

System 4. But what if the actions SPAWN(n), COMPLETE and SWITCH occur? 

Invariant S5 will no longer hold then and the trick used to implement the 

status of an area free of charge cannot be applied any more. However, an 

invariant analogous to Invariant S5 could be formulated, which relates the 

status of areas created by the~ process to their scope. In order to 

implement the status of an area through this invariant it must be possible 

to determim? for each area in S by which process it has been created. In 

the sequent:lal case this is obvious, because there is only on process. In 
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the parallel case it is far from obvious, because there may be many 

processes and the areas created by a specific process may be scattered all 

over S. This is even aggravated by the fact that after a process P has been 

completed areas created by P may be left behind in S• The extra bookkeeping 

necessary to apply the generalization of the implementation trick for the 

status of an area may thus become rather complicated and may cause a 

considerable overhead (which it was supposed to avoid). It is therefore 

better to look for an other solution. 

In section 3 it was stated that efficiency of the storage management 

system to be designed should primarily be achieved for sequential programs. 

This implies that it is reasonable if the use of parallellism costs a 

little extra. It would not be reasonable, however, if the overhead 

connected with parallellism had a negative effect on the efficiency of 

sequential programs. The "easy" way to avoid the latter is to have two 

storage management systems: one for sequential and one for parallel 

programs. Yet, having two different storage management systems is not a 

very desirable situation. Let us see how we can avoid it. 

Suppose that, instead of being able to determine by which process an 

area has been created, it were possible to determine whether the area has 

been created by the initial process P0 or not. The latter, of course, is 

much easier to implement than the former. Let A0 be the class of areas 

created by P0 and A1 the class of areas created by other processes. For all 

areas in A0 the implementation trick for the status can be used (through an 

invariant analogous to Invariant SS). This implies that in the sequential 

case (where A1 = 0) the storage management system is just as efficient as 

before. For the areas in A1 something more complicated must be done. The 

simplest way to implement the status of the areas in A1 seems to be as 

follows. Let FINISH and JUMP(L, P) (which are the only operations that kill 

areas) mark dead locales in A1 as such. This makes determination of the 

status of a locale in A1 trivial. The status of a block Bin A1 can be 

determined by using the fact that status(B) = status(generator(B)) 

(Invariant B2). This implies that the generator function for blocks in A1 
must be implemented. 

The scheme sketched above results in a storage management system, 

which for sequential programs is just as efficient as before. An overhead 
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is introduced in parallel programs exclusively, and even then only when the 

program is really working in "parallel mode" (inside a parallel clause). 

The overhead, at first sight, seems to be acceptable. The price to be paid 

for all this is an increase of complexity of the system. The question is 

whether the increase of complexity outweighs the gain in efficiency or not. 

An alternative would be not to use the implementation trick for the status 

of areas in AO, but to implement the status of areas in AO just like the 

status of areas in A1• This results in a uniform approach, but also 

introduces an overhead in sequential programs. E.g., for all blocks the 

generator function must now be implemented. This could be compensated by 

not implementing the scope function for blocks explicitly. The fact that 

scope(B) = scope(generator(B)) for each block B (Invariant B3) can then be 

used to determine the scope of a block. The latter, however, makes scope 

checks more complicated and less efficient. Though one can certainly argue 

about it, we will let efficiency considerations prevail and choose for the 

original approach. It will be elaborated below. 

The first thing we need is some way to distinguish areas created by PO 
from other areas. For that purpose we associate an extra entity to each 

locale and block: 

Each locale Lis augmented with 

- kind(L): constant kind. 

Each block Bis augmented with 

- kind(B): variable kind. 

A kind is an element from the set {simple, extended}. 

If an area has been created by PO, its kind will be "simple", which implies 

that its status and generator (if it is a block) need not be implemented. 

The reverse will not hold, however. There are two reasons for that. First 

of all, for areas with scope= O, which need not be created by PO, neither 

the status nor the generator need be implemented: Their status is 

invariable "alive" and their generator (for blocks) is invariably equal to 

LO• The kind of these areas will therefore also be chosen to be "simple". 
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Second, we wish the following invariant to hold (why this invariant is 

useful will turn out soon): 

Invariants for blocks BE B 

B4. kind(B) = kind(generator(B)). 

This invariant may be disturbed by the operation KEEP(B, L). So it must be 

possible to change the kind of a block, which is the reason that the kind 

of a block is variable. The change of kind of a block, as we will see, is 

only from "extended" to "simple". If the reverse were also possible, this 

would (in vieiw of the constant size of areas) annihilate the advantages of 

the distinction between simple and extended areas. 

The modeil must be extended according to the above. First, the 

following should hold in the initial situation: 

Initially 

kind(L0) = simple. 

Note that it is now absolutely necessary that areas with scope= 0 have 

·kind= simplei (see Invariant B4). Next, when areas are created they should 

get the propeir kind. A locale should get kind = simple iff R = PO at the 

moment of its creation, while a block should assume the kind of its 

generator. This amounts to the following additions to the operations 

ESTABLISH(t) and GENERATE(t, L): 



ESTABLISH(t): 

Precondition: 

tis a type. 

Actilon: 

Let E = environ(R). 

Let L be a locale such that 

-- L ff. L, 

- status(L) = alive, 

·· type(L) = t, 

- scope(L) = scope(E) + 1, 

-- establisher(L) = E, 

size(L) = I\.,' 

If R = PO 

I - kind(L) = simple. 

E~lse 

I - kind(L) = extended. 

ALLOCATE(L). 

L := L U {L}. 

E~nviron(R) := L. 

GENERATE(t, L): 

Precondition: 

tis a type, 

LE L, L _:£A environ(R). 

Actilon: 

Let B be a block such that 

-- B ff. B, 

-- status (B) = alive, 

-- type(B) = t, 

- scope(B) = scope(L), 

- generator(B) = L, 

-- size(B) = I\.,' 

kind(B) = kind(L). 

ALLOCATE(B). 

B := B U {B}. 
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Invariant B4 is trivially satisfied initially and is not violated by 

GENERATE(t, L). The only operation which might violate Invariant B4 is 

KEEP(B, L). This is remedied by the following addition to KEEP(B, L): 

KEEP(B, L): 

Precondition: 

BE B, generator(B) = environ(R), 

LE L, L ~ L0 , L <A environ(R). 

Action: 

generator(B) := L. 

scope(B) := scope(L). 

kind(B) := kind(L). 

Apart from Invariant B4 the following invariants can now be proved: 

Invariants for LO 

KS. kind(L0) = simple. 

Invariants for P0 
OS. kind(environ(P0)) = simple. 

Invariants for locales LE L 

L6. If kind(L) = simple 

I kind(establisher(L)) = simple. 

Invariants for processes PEP 

P9. If P ~ PO 

For each LE L with origin(P) <AL 

I kind(L) = extended. 

Furthermore, if we define the set T as the set of simple areas in S: 

Definition T 

T ={AES I kind(A) = simple}. 



then the following analogues of Invariants S2 through S4 can be proved: 

Invariants for S and H 

Ul O. If S = <A1 , ••• , A > with n > 0 and T I- 0 

I A1 ET n Land s~atus(A1) = alive. 

Ul 1. For each L E T n L with status (L) = alive 

and each MET n L 

I L <s M => L <A M. 

U12. For each LET n L with status(L) = alive 

and each B E T n B with status(B:i = dead 

I L <s B => L <s generator(B). 

If we (re)deifine the "base" of an area in T as follows: 

Definition base(A) 

For each A ET 

I base(A) = max {L E T n L I L-~s A, status(L) = alive}. 
<s 
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then the following analogue of Invariant S5 can be derived from Invariants 

U11 and U12: 

Invariants for Sand H 

U1 3. For each A E T 

J status(A) =dead~ scope(A) > scope(base(A)). 

The proofs of Invariants UlO through U13 are (almost) entirely analogous to 

the proofs of Invariants S2 through S5, hence they are omitted. 

The status of a simple locale, the status of a block and the generator 

of a simple block can now be turned into redundant variables. As in the 

sequential case it suffices to show this for the determination of DEADTOP 

and DEAD. Consider DEADTOP first. Invariant U13 implies that if SI- 0 and 

kind(top(S)) = simple, the assertion 

status(top(S)) = dead 
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is equivalent to 

scope(top(S)) > scope(environ(P0)). 

If kind(top(S)) = extended, two cases must be distinguished. First, if 

top(S) is a locale its status can be determined directly. Second, if top(S) 

is a block, its status is equal to the status of its generator G (Invariant 

B2). The status of G, again, can be determined directly, because kind(G) = 
extended (Invariant B4). Notice that if Invariant B4 did not hold, it were 

much more difficult to determine the states of G. The above implies that 

DEADTOP can be implemented as follows: 

Determination of DEADTOP 

If S = 0 
I DEADTOP := false. 

else 

Let T = top(S). 

If kind(T) = simple 

Let E = environ(P0). 

DEADTOP := scope(T) > scope(E). 

else 

If TEL 

I DEADTOP := status(T) = dead. 

else 

Let G = generator(T). 

DEADTOP := status(G) = dead. 

Invariants UlO and U13 imply that the number of dead cells in Scan be 

determined as follows: 



Determination of DEAD 

Let S = <A1, ••• , An>• 

s := o. 
k := n. 

L := environ(P0). 

While k > 0 

While k > 0 and~,# L 

If kind(~)= simple 

If scope(~)> scope(L) 

I s := s + size(~). 

else 

If~ EL 

If status(~)= dead 

I s := s + size(~). 

else 

Let G = generator(~). 

If status(G) = dead 

I s := s + size(~). 

k := k - 1. 

If k > 0 

L := establisher(L). 

k := k - 1. 

DEAD := s. 
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We have shown above, that in order to implement System 4 in the 

general case of both sequential and parallel programs neither the status of 

a simple area nor the status of a block nor the generator of a simple block 

need be implemented. We will formally complete the design by removing these 

variables from the model. 

4.7 Stripping the model 

The removal of redundant variables from the model starts with a 

reduction of the entities associated to locales and blocks. 
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Each locale L has 

- type(L): constant type, 

- scope(L): constant integer, 

- establisher(L): constant locale, 

- size(L): constant integer, 

- kind(L): constant kind, 

If kind(L) = extended 

I - status(L): variable status. 

Each block B has 

- type(B): constant type, 

- scope(B): variable integer, 

- size(B): constant integer, 

- kind(B): variable kind, 

If kind(B) = extended 

I - generator(B): variable locale. 

The entities associated to processes remain the same. The initial state of 

the model is reduced only as far as the initial conditions for LO are 

concerned: 

Initially 

- type(L0) = ~, 

- scope(L0) = O, 

- establisher(L0) = L0 , 

- size(L0) = ~, 

- kind(L0) = simple. 

Next, the redundant variables must be removed from the operations of the 

(no longer entirely) abstract machine. For the operations ESTABLISH(t), 

FINISH and GENERATE(t, L) this is straightforward. These operations are 

given below. 



ESTABLISH(t): 

Precondition: 

tis a type. 

Actlon: 

Let E = environ(R). 

Let L be a locale such that 

-- L fl. L, 

-- type(L) = t, 

- scope(L) = scope(E) + 1, 

- establisher(L) = E, 

-- size(L) = 'v, 

If R = PO 

I - kind(L) = simple. 

E~lse 

kind(L) = extended, 

- status(L) = alive. 

ALLOCATE(L). 

t : = L U {L}. 

Emviron(R) := L. 

FINISH:: 

Precondition: 

E~nviron(R) :f,. origin(R). 

Action: 

Let E = environ(R). 

E~nviron(R) := establisher(E). 

If kind(E) = extended 

I status(E) := dead. 

RELEASE. 
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GENERATE(t, L): 

Precondition: 

tis a type, 

LE L, L ~A environ(R). 

Action: 

Let B be a block such that 

- B fl B, 
- type(B) = t, 

- scope(B) = scope(L), 

- size(B) = '\.,, 

- kind(B) = kind(L), 

If kind(L) = extended 

I - generator(B) = L. 

ALLOCATE(B). 

B := B U {B}. 

In removing the redundant variables.from the operation KEEP(B, L) an 

interesting problem arises. The precondition of KEEP(B, L) contains a 

condition on the generator of B. However, in the new model the generator of 

B need not exist (to wit, if kind(B) = simple). We can do two things now. 

First, we can simply do away with the preconditions of operations. They are 

not supposed to be implemented (as run-time checks) anyway. They are only 

meant for the code generator, who must make sure they are satisfied 

whenever an operation is used. Second, we can replace the condition on the 

generator of B by an equivalent one which does not use the generator of B 

if kind(B) =simple.The latter seems the more elegant solution, which we 

will choose for here. It requires the proof of an additional invariant (in 

the "old" model): 

Invariants for Sand H 

U14. For each LET n L with status(L) = alive 

and each BET n B 

I generator(B) = L ~ L <s Band scope(B) = scope(L). 

This invariant can be derived from the invariants already formulated (in 



particular from Invariant Ull). The generator of a simple block can now 

also be removed from the precondition of KEEP(B, L): 

KEEP (B ,t L) : 

Precondition: 

BE B, LE L, L ,f:: L0 , L <11 environ(R), 

If kind(B) = simple 

environ(R) <s Band 

scope(B) = scope(environ(R)). 

,~lse 

I generator(B) = environ(R). 

Act:lon: 

scope(B) := scope(L). 

kind(B) := kind(L). 

If kind(B) = extended 

I generator(B) := L. 
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The operations SPAWN(n), COMPLETE and SWITCH remain entirely the same. This 

leaves only the operation JUMP(L, P). Suppose that prior to JUMP(L, P) the 

· assertion R = P0 holds (i.e. the program is in "sequential mode"). From the 

fact that P ~IT P0 (see the precondition of JUMP(L, P)) and P0 ~IT P 

(Invariant P4) we know that P = P0 • Hence the actions: 

R := p,, 

mode(R) := active. 

in the definition of JUMP(L, P) reduce to dummy actions. Though this is not 

so for the action: 

environ(R) := L. 

it also applies to the rest of the actions in the definition of JUMP(L, P) 

except to RELEASE of course. First consider 
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For each M E L with L ~ M 

I status(M) := dead. 

This action can be removed because the following assertion (which is not 

disturbed by "environ(R) := L") holds prior to JUMP(L, P): 

For each M E L with L <A M 

I status(M) =alive=> kind(M) = simple. 

Next, the action 

For each BE B with L <A generator(B) 

I status(B) := dead. 

can be removed because the status of a block is a redundant variable. 

Finally, the action 

For each Q E P with P <rr Q 

I mode(Q) := completed. 

can be removed because P (= P0) is the only process in P which is not yet 

completed. If R # P0 prior to JUMP(L, P) the required changes in JUMP(L, P) 

are obvious. All in all we get: 



JUMP(L, P): 

Precondition: 

lL EL, L <fl environ(R), 

JP E P, P ~IT R, 

origin(P) ~AL <11. ertviron(P). 

Act:ion: 

If R = PO 

I environ(R) := L. 

,else 

R := p. 

mode(R) := active. 

environ(R) := L. 

For each MEL with L <AM and kind(M) = extended 

I status(M) := dead. 

For each Q E P with P <IT Q 

I mode(Q) := completed. 

RELEASE. 

The only thing that remains to be done is the rewriting of the 
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invariants. That is, the redundant variables must also be removed from the 

invariants. This is a straightforward matter which will be omitted. The 

"stripping" of the model is herewith completed. Yet, the system is still in 

a rather abstract form. The final implementation of the system in "hard 

code", which is a purely technical matter, will be discussed in the next 

subsection. 

4.8 Final implementation 

In the introduction we stated that the storage management system 

should be written in a subset of the code of the abstract machine. Up till 

now we only have a description in terms of algorithms which operate on the 

abstract variables of the (enhanced) machine model. In order to obtain a 

storage management system written in abstract machine code the entire model 

must be mapped back to the abstract machine. There are two aspects to this 
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mapping. 

First of all there is the data structure aspect. A layout for the data 

structures of the model must designed. This layout specifies how the 

entities associated to locales, blocks and processes are implemented as 

subfields of the fields occupied by these data structures in the store of 

the abstract machine. Note that in reality there are more entities 

associated to locales, blocks and processes than we discussed here. We 

discussed only those entities which were of interest to the storage 

management problem. The design of such a layout is not difficult. 

Optimizations are often possible by com~ining different entities in the 

same subfield. Having defined a layout, the referencing or changing of an 

entity associated to a locale, block or process can directly be translated 

into an instruction of the abstract machine which accesses the 

corresponding subfield (using a "pointer" and an "offset"). 

Second, there is the control structure aspect. Most of the control 

structures used in the algorithms (such as while-loops) can directly be 

translated into abstract machine code. The only two control structures the 

translation of which is not enttrely trivial are the two for-loops in 

JUMP(L, P). Using the (rewritten) invariants one can transform the 

definition of JUMP(L, P) into the following more readily translatable form, 

however: 



JUMP(L, P): 

Preicondi t ion: 

L € L, L ~ environ,(R), 

p € p' p ~II R, 

origin(P) ~AL ~A environ(P). 

Action: 

If R = PO 

I environ(R) := L. 

else 

Let E = environ(P). 

R := P. 

mode(R) := active. 

environ(R) := L. 

If P.,,. Po 

M := E. 

While M :/= L 

status(M) := dead. -

M := establisher(M). 

Q := {S €PI spawner(S) = P, mode(S) # completed}. 

While Q # 0 
Let Q € Q.. 

Q := Q \ {Q}. 

mode(Q) := completed. 

M := environ(Q). 

While M # origin(Q) 

status(M) := dead. 

M := establisher(M). 

Q := Q U {S €PI spawner(S) = Q, mode(S) # completed}. 

RELEASE. 

In the oth,er algorithms several optimizations are possible too. 
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The translation of the algorithms into abstract machine code will thus 

not pose any serious problems. The only operations which cannot directly be 

translated are COLLECT GARBAGE and COMPACTS. The design of efficient 

algorithms for these operations (based on the specifications given in the 
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foregoing) will be treated in a separate paper [7]. 

S. CONCLUSION 

The implementation of a programming language is a highly complex 

process. In order to keep this process under control a "divide and rule" 

approach is absolutely mandatory. The job should be divided in clearly 

interfaced sub-tasks, which should be as independent from each other as 

possible. The division should be done with great care in order to keep the 

implementation as efficient as possible. One of the sub-tasks is the 

construction of a storage management system. In this paper it was 

demonstrated through an example that indeed the design of a storage 

management system can be viewed as a relatively independent part of the 

language impl1ementation effort. The interface with the other parts of the 

implementation consisted of an abstract model, which contained exactly the 

information relevant to the storage management problem and no more than 

that. It allowed us to approach the problem in a systematic and rigorous 

· way, up to a level of formality which allowed proofs of correctness. Since 

all irrelevan1t details were discarded, the design process remained 

transparent and things could be kept relatively simple. The final result of 

the design process was an efficient storage management system. The majority 

of the techniques used in this system are certainly not novel. The primary 

goal of this paper was not to demonstrate some fancy storage management 

technique. Its main purpose was to demonstrate a technique to design a 

storage management system in a systematic way. 

Apart from a number of advantages already mentioned in the 

introduction, the major advantage of the method demonstrated in this paper 

over the more usual ("classical") approach to the design of storage 

management systems (such as described in e.g. [l, 4, 5, 8]) is considered 

to be the fact that it forces one to a separation of concerns. In the 

process of designing a storage management system for an implementation of a 

programming language Lon a machine Ma number of concerns can be 

distinguished, which were clearly separated in the foregoing: 
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1. ThE~ programming language L. 

2. ThE~ machine M. 

3. ThE~ definition of the ,problem. 

4. ThE~ design of the algorithms. 

5. ThE~ implementation of the system. 

Concerns 1 and 2 are often not well separated. In any but a purely 

interpretive implementation a storage management system should not be 

designed for (the machine corresponding to) the programming language L, but 

for the machine Minto code of which programs in Lare translated. The 

operation KEEP(B, L), which does not correspond to any ALGOL 68 construct, 

demonstrate~s this clearly. Of course, if the abstract machine approach is 

pursued, there will usually be a certain correspondence between Land M 

(the more abstract the machine is, the closer this correspondence will 

generally be). Good abstract machines (or better, their definitions) should 

be such that they can be implemented without using information on the 

programming language Lor the way programs in Lare translated into code 

for M, howE~ver. Admittedly with the MIAM [9] we were in a rather fortunate 

position in this respect. During the design process we only seldom needed a 

reference to ALGOL 68. 

The third concern, the definition of the problem, is usually either 

omitted or taken for granted. Lacking a simple model free of irrelevant 

detail it ts indeed not easy to define precisely what the storage 

management problem amounts to. Yet an unambiguous statement of the problem 

is essential to the reliability of the system to be developed. E.g., should 

we not havE~ clearly defined what operations on the allocation function were 

allowed, WE~ might have erroneously deallocated living areas. 

Concerns 4 and 5 are most often confused. It is generally accepted 

that in designing an algorithm (or a program) one should keep the algorithm 

(or the program) free from implementation detail as long as possible. It 

enables onE~ to keep a clear view at the algorithm under development. Thus 

possible improvements of the algorithm are more easily discovered. An 

example of this was the discovery of Invariant S5, which enabled a 

substantial improvement of the efficiency of the storage management system. 

It is questionable whether this invariant would ever have been discovered 
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(let alone that it could have been proved) if we had not kept the system as 

abstract as we did. The separation of concerns 4 and 5 also helps in 

keeping the presentation of the algorithms digestible. Interspersing an 

algorithm with implementation details can make the algorithm utterly 

unreadable. 

A sixth concern could be added to the above list of separated 

concerns: the design of the garbage collector. This concern was separated 

because it constitutes a problem so different from the rest of the design 

that it justifies a separate treatment. The fact that this concern could be 

separated shows the power of the tec~nique. 
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