
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SC I ENCE)

H • B. M. J ON KE RS

A FAST GARBAGE-COMPACTION ALGORITHM

Preprint

~
MC

IW 107/79 MAART

2e boerhaavestraat 49 amsterdam

E,IBLlOTHEEK 1\11!0 THEfst,1;T,SCH CEr,TRUM
-Afv1STEMD/iJv1-

PILlnted a,t, the Ma-t.hema.:Uc.ai. CentJr..e, 49, 2e BoeJLha.a.ve1i,t,r.a,a;t, AmtdeJr.dam.

The Ma-t.hema.:Uc.ai. CentJr..e, 6ou.nded the 11-,th 06 FebJ[.u.aJLy 1946, ,i..,t, a. non
p}[.o6U -ln.6.ti..:tt.Ltlon a,im,lng a-t. ,the pJL.omo.tlon 06 pUll.e ma-t.hema.:Uc.6 a.nd .lt6
a.ppUc.a.:Uon.6. It ,i..,t, .6pon.6o}[.ed by -the NetheJLta.n.d.6 GoveJLnment tMough the
NetheJt.1.a.n.d6 OJz.ga.n-lza.Uon. 60}[. the Adva.nc.ement 06 PU/l.e Re6eMc.h (Z.W.O).

AMS(MOS) subject classification scheme (1970): 68A10

ACM-Computing Reviews-categories: 4.34, 4.49, 5.32

A fast garbage-compaction algorithm

by

H.B.M. Jonkers

ABSTRACT

A compaction algorithm for variable size storage elements, for use in

a compacting garbage collector is described. Under certain plausible

assumptions on the structure of these storage elements, the algorithm

requires no space overhead and is faster than any compaction algorithm

published before. It scans the area to be compacted twice, but examines

pointers only once.

KEY WORDS & PHRASES: garbage collection, compaction, list processing.

*) This report will be submitted for publication elsewhere.

O. INTRODUCTION

This paper presents a compaction algorithm for variable size storage

elements, for use in a compacting garbage collector. Under certain

plausible assumptions on the structure of these storage elements, the

algorithm requires no space overhead and is faster than any compaction

algorithm published before. It scans the area to be compacted twice, but

examines pointers only once. We start by defining the problem in Section

1. Then, in Section 2 the algorithm is described and illustrated. In

Section 3 the correctness of the algorithm is considered. Finally, in

Section 4 the efficiency of the algorithm is discussed as compared with

other compaction algorithms.

1

2

1. PROBLEM

We have a machine memory, which is represented by an array M of cells.

Every cell has an address, which is the index of the cell in M. A pointer

is an address or nil, which is a special value not equal to any address.

We assume that every cell can contain a pointer. There is a subarray S of

M, called the store, which is the part of M to be compacted. S contains a

number of disjoint subarrays of (possibly) varying sizes, which we call

nodes. The address of a node is the address of its first cell. Every node

contains a number of pointer cells, which are cells that contain a pointer.

We assume a pointer q in a pointer cell of a node is either nil or points

to a node, i.e. q is either nil or the address of a node. Furthermore we

assume that every node has at least one cell that does not contain a

pointer, but some other value which is distinguishable from a pointer. For

the sake of convenience we take that cell to be the first cell of a node.

Just before the call of the compaction routine we have the following

information (established by the marking phase of the garbage collector):

(1) The addresses e 1, ••• , e1 of cells not contained in S, containing

nil or a pointer to a node.

These external cells are the starting points of the marking phase.

(2) The addresses k1 , ••• , km of the nodes contained ins.

These nodes have been determined by the marking phase as being

non-garbage.

This situation is schematically shown in Figure 1. The problem now is to

rearrange the nodes in Sin such a way that

(1) The nodes occupy a compact piece of memory at the left(= lower)

end of S;

(2) Pointers in the pointer cells of nodes still point to the same

nodes as before;

(3) Their order in Sis preserved.

3

M

s

e 1 ---------- k 1 -------------------------------------km ------ e1

Figure 1

4

2. ALGORITHM

We shall describe the algorithm informally first and illustrate it by

an example simultaneously (Figure 2.a; only the pointers to an arbitrary

node v are shown). The algorithm starts by visiting all external cells.

Upon visiting the external cell e containing a pointer to a node v, e

cannot be updated immediately since the new address of vis not known yet.

Therefore e is threaded to v. How this threading is achieved is not

important yet, we will discuss that later. Having visited all external

cells this way (Figure 2.b where <E-- indicates the "is threaded to"

relation), the algorithm then scans the store twice, visiting all nodes

(hence all pointer cells) in the order from left to right. Upon visiting a

node v in the first scan (Figure 2.c), the new address of vis known (from

an accumulated counter). Using this information all cells threaded to v

are updated (Figure 2.d), where "updating" a cell also means "unthreading"

it. Subsequently all pointer cells of v containing a pointer to a node are

threaded to that node (Figure 2.e). After the first scan all external

cells will have been updated this way. Furthermore, all pointer cells at

the left of a node v originally containing a pointer to v will have been

updated, and all pointer cells in or at the right of v containing a pointer

to v will be threaded to v (Figure 2.f). In the second scan all nodes are

visited in the order from left to right again. Upon visiting a node v

(Figure 2.g), all cells threaded to v are in or at the right of v, and

neither v nor any node at the right of v will have been moved yet. All

cells threaded to v can therefore correctly be updated to the new address

of v (Figure 2.h). Now all cells originally containing a pointer to v will

have been updated. Since all nodes at the left of v are already moved, v

can safely be moved to its new address (Figure 2.i). At the end of the

second scan all nodes will have been moved and all pointer cells - internal

and external - will have been updated (Figure 2.j). The whole procedure is

summarized below.

5

s

•l ti! i ii W i • I
V

b) ct~L_-------;_ -~,--------- ----~--,,------ -_-__ ------ ---- i • I

c) otL_ ~-- ---~-----------$i i • I

d) ct1 i ¥ ia ii i • I

e) ct1 i ! - • i • I
, ___ J

n ct1 if iii Ni •1 ... _ _ _.! __ --- - - _...,_l, _________ - --·'

g) ct•½ jiji •1 \ ___ ,, _______ ll:,.1 ____________)

h) ot•J
,i ot•AW
j) ot~

Figure 2

6

Algorithm 1 (informal description)

For every external cell e do

If e contains a pointer to a node v,

then thread e to v.

For every node v from left to right do

Calculate new address of v.

Update all cells threaded to v.

For every pointer cell p of v do

If p contains a pointer to a node w,

then thread p tow.

For every node v from left to right do

Calculate new address of v.

Update all cells threaded to v.

Move v to its new address.

We have not discussed yet how cells are "threaded" to a node. This

threading of cells to a node can be done without space overhead using a

well-known trick (also used in [1, 4, 6, 8)). We know two things:

(1) The first cell of a node does not contain a pointer.

(2) All cells threaded to a node (originally) contain a pointer to

that node.

This situation is shown in Figure 3.a. Without loss of information we can

transform this situation so that the cells threaded to a node are chained

together in a list, using the first cell of the node as a list head and the

original value of this cell as a list terminator, as in Figure 3.b.

Updating all cells threaded to a node now simply is a matter of traversing

this list, updating the cells in it and assigning the list terminator to

the first cell of the node. The old value of the first cell of the node is

thereby restored. This is important since this cell may contain

information which is subsequently used to find the pointer cells of the

7

node (in the first scan) or to move the node (in the second scan). Figures

2.a through 2.j now have to be modified as in Figure 4.

a)

b)

Figure 3

8

s

•l 1~1 i - W i iiB I
V

b) 1,1 ~ ii • i • I

c) I ' I r4 -'----------'1i i 8 I

d) 1m1 i l m w i • 1

el I ~ I i I - ~ i--------· I

f) 1 m I i l • ~ ~---------' 1

•> I ~ iiii* " ~ , I

h) I ' -l ii i • · I
i) I ~ iiiii i R I

j) I~~
Figure 4

We are now able to describe the algorithm formally. For that purpose

we use a kind of pseudo ALGOL 68, which semantics is (hopefully) obvious.

Algorithm 1 (formal description)

proc compact= void:

begin !!!5:>de address = int;

addre~ss new;

for i to 1 do thread(e.) od;
1 -

new := lwb S;

for i tom

do UJ>date(k., new); scan(k.); new:= new+ size(k.) od;
- 1 1 .1 -

new ::= lwb S;

for i tom

do update(k., new); move(k., new); new:= new+ size(k.) od;
1 1 1 -

proc thread= (address p) void

if M l[p] :f: nil

then address k = M[p]; M[p] := M[k]; M[k] := p

proc scan= (address k) void:

begi11 let p1 , ••• , pn be the addresses of the

pointer cells of the node with address k;

for j ton do thread(p.) od
J -

end· --·

9

10

end

proc update= (address old, new) void

begin int p := M[old];

while address(p)

do int q = M[p]; M[p] := new; p := q od;

M[old] := p

end;

proc move= (address old, new) void

begin address p := new, q:= old;

!,Q_ size(old)

do M[p] := M[q]; p := p + l; q := q + 1 od

end

Remarks:

(1) "size(k)" is the size of the node with address k.

(2) "address(p)" yields~ iff pis an address.

(3) By adjusting the operation "new:= new+ s'ize(ki)" the algorithm

can also be used for paged memories.

11

3. CORRECTNESS

We shall not prove the correctness of Algorithm 1 formally here.

Instead we shall give the principal invariants of the two main loops of the

algorithm. They give the necessary hints to construct a proof of

correctness. For that purpose we describe Algorithm 1 informally, using

while loops for the two main loops (vi is the node with address ki):

For every external cell e do

If e contains a pointer to a node v,

then thread e to v.

i := 1;

While i < m do

Calculate new address of vi.

Update all cells threaded to v .•
l.

For every pointer cell p of vi do

If p contains a pointer to a node w,

then thread p tow.

i:=i+l.

i := 1;

While i < m do

Calculate new address of v .•
l.

Update all cells threaded to

Move v. to its new address.
l.

i := i + 1.

V. •
l.

We shall call a cell of a node or an external cell

intact if it contains the same value as before compaction;

threaded: if it is threaded to a node;

updated: if it contains the value it should contain after compaction.

12

The following invariants apply to the first while loop:

(1) Every external cell is threaded or updated.

(2) For every j = 1, • • • , m

v. is not moved.
J

If j < i then

Every pointer cell of v. is threaded or updated.
J

Every cell threaded to v. is a pointer cell of
J

a node vk with k ~ j.

If j ~ i then

Every pointer cell of v. is intact.
J

Every cell threaded to v. is an external cell or
J

1 a pointer cell of a node vk with k < i.

The following invariants apply to the second while loop:

(1) Eveiry external cell is updated.

(2) For every j = 1, • • • , m

If j < i then

v. is moved.
J

Every pointer cell of v. is updated.
J

No cells are threaded to v .•
J

If j > i then

v. is not moved.
J

Every pointer cell of v. is threaded or updated.
J

Every cell threaded to v. is a pointer cell of
J

a node v k with k ~ j •

13

4. EFFICIENCY

The algorithm presented here operates in linear time. This can easily

be seen, because (in terms of the informal description) the algorithm

visits every node twice, and executes at most one test, thread and update

operation per external and pointer cell and exactly one move operation per

node. Moreover, under the assumption that we have at least one cell per

node, not containing a pointer, the algorithm requires no space overhead.

The latter assumption is not unrealistic. In the implementation of many

programming languages, such as SNOBOL or ALGOL 68, we are dealing with

nodes of varying types and sizes, requiring the introduction of a type

and/or size field in every node. Generally the contents of this type or

size field can easily be distinguished from a pointer, thereby satisfying

the assumption.

Several other solutions to the compaction problem dealt with in this

paper have been published [3, 5, 9, 2, 6]. Comparing them to the solution

presented here, we see that they either do not operate in linear time [3,

9, 2], or require a substantial space overhead [5]. The only exception is

the algorithm presented in [6]. Somewhat modified (but not essentially) we

can describe this algorithm informally as below:

14

Algorithm 2 (informal description)

For every external cell e do

If e contains a pointer to a node v,

then thread e to v.

For every node v from right to left do

Calculate new address of v.

Update all cells threaded to v.

For every pointer cell p of v do

If p contains a pointer to a node w,

then

If w is at the left of v,

then thread p tow,

else if w = v then update P•

For every node v from left to right do

Calculate new address of v.

Update all cells threaded to v.

Move v to its new address.

For every pointer cell p of v do

If p contains a pointer to a node w,

then

If w is at the right of v,

then thread p tow.

15

As compared with Algorithm 1, this algorithm has the following pros and

cons:

Cons:

Pros:

(1) We have to scan the pointer cells of a node twice instead of once.

If finding the pointer cells of a node is a non-trivial operation,

this can cause a substantial overhead.

(2) Visiting a pointer cell containing a pointer to a node, we have to

execute an extra test to determine the direction the pointer is

pointing in.

(3) The two scans of the store go in opposite directions.

Since visiting the nodes going in one direction can be

considerably more difficult than going in the other direction,

this can also give an overhead.

(4) We have to know the amount of garbage beforehand.

(1) Algorithm 2 is also applicable if we do not have a cell in every

node, not containing a pointer, provided we have a mark bit in

each cell. (The following invariant applies to Algorithm 2: if

one or more cells are threaded to a node v, none of the pointer

cells of vis threaded to a node. So we can use an arbitrary cell

of v as the head of the list of cells threaded to v, even if this

cell contains a pointer, and use the mark bit of a cell as the

list terminator. Algorithm 1 does not satisfy the invariant.)

Conclusion: under the given assumptions Algorithm 1 is the most efficient

compaction algorithm known so far; if not every node has a cell, not

containing a pointer, Algorithm 2 is. This conclusion should not be

misinterpreted, however. It does not mean that, if possible, Algorithm 1

should be used in a compacting garbage collector. A compacting garbage

collector (conceptually) consists of a marking algorithm and a compaction

algorithm. If every garbage collection should involve a compaction, it is

possible to let the marking algorithm do the threading of external and

pointer cells to their target nodes (the marking algorithm visits these

16

cells anyway). Then, in two separate scans the compaction algorithm can

update these cells and move the nodes. Though the compaction algorithm

still needs two scans, it now does not have to scan the pointer cells of a

node any more. It is even possible to use the threading trick described

before [l, 4, 8]. The only objection against this method is, that in the

marking phase we may need the (original) value of the cell we use as a list

head for the list of cells threaded to a node (e.g. because this value

indicates the type of the node). Upon returning to a node (using a

recursive marking algorithm like [7, p.567]) or arrival at a node (using an

iterative marking algorithm like [7, p.560]) we may find this value to be

at the end of a long list. As a result, getting hold of this value may

involve an additional overhead. If we do not need this value in the

marking phase, there is no overhead. Before incorporating Algorithm 1 in a

compacting garbage collector, the method of threading cells in the marking

phase should therefore first be considered. If not every garbage

collection automatically involves a compaction, e.g. if compaction is

dependent upon the fragmentation of the free space, this method should of

course not be applied. So, in each case where we need a stand-alone

compaction algorithm for the problem described in Section 1, Algorithm 1 is

the best choice.

REFERENCES

[1] Dewar, R.B.K. and A.P. Mccann,

MACRO SPITBOL - a SNOBOL4 compiler,

Software-Practice and Experience 7 (1977), 95-113.

[2] Fitch, J.P. and A.c. Norman,

A note on compacting garbage collection,

The Computer Journal 21 (1978), 31-34.

[3] Haddon, B.K. and W.M. Waite,

A compaction procedure for variable-length storage elements,

The Computer Journal 10 (1967), 162-165.

[4] Hanson, D.R.,

Storage management for an implementation of SNOBOL4,

Software-Practice and Experience 7 (1977), 179-192.

[5] Knuth, D.E.,

The Art of Computer Programming, Vol. 1: Fundamental Algorithms,

Addison-Wesley, Reading, Mass. (1968).

[6] Lockwood Morris, F.,

A time- and space-efficient garbage compaction algorithm,

Communications of the ACM 21 (1978), 662-665.

[7] Thorelli, L.,

Marking algorithms,

BIT 12 (1972), 555-568.

[8] Thorelli, L.,

A fast compactifying garbage collector,

BIT 16 (1976), 426-441.

17

18

[9] Wegbreit, B.,

A generalised compactifying garbage collector,

The Computer Journal 15 (1972), 204-208.

(i G N

