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Deriving algorithms by adding and removing variables*) 

by 

H.B.M. Jonkers 

ABSTRACT 

A simple method of deriving algorithms and showing the correctness of 

the derivation is described. It is based on decomposing global 

transformations amounting to changes of representation into a number of 

local transformations, the correctness of which is self-evident. The 

effectiveness of the method is demonstrated in a derivation and proof of 

correctness of the Deutsch-Schorr-Waite marking algorithm. 

KEY WORDS & PHRASES: transformational programming, redundant variable, 

intermediate assertion, nondeterminism 

*)This report will be submitted for publication elsewhere. 





1 • INTRODUCTION 

Of late the transformational approach to algorithm construction is 

enjoying an increasing popularity. The basic idea behind the method of 

algorithm transformation (or "algorithmics" [10]) is to start with a simple 

"abstract" algorithm, which can easily be proved correct but which may be 

intolerably inefficient. Then a number of correctness-preserving 

transformations are applied to the algorithm, turning it into a more 

complex "concrete" algorithm, which is still correct and (hopefully) more 

efficient. The virtues of this approach are widely known and will not be 

discussed here. For a short introduction and survey the reader is referred 

· to [3] • 

The correctness of the abstract algorithm which serves as a starting 

point for the transformation process can be proved by conventional means, 

e.g. by using the axiomatic method [6]. If the abstract algorithm and the 

problem specification coincide, this step is not even necessary. Problems 

arise, however, if an attempt is made to prove that the transformations 

applied to the abstract algorithm do not affect the correctness of the 

algorithm. The conventional verification methods fall short here. They must 

be extended with the ability to prove the correctness of algorithm 

transformations (see e.g. [1]), which increases the complexity of the 

verification process considerably. 

One of the ways to overcome the above problems is not to let the 

algorithm constructor prove the correctness of each individual 

transformation applied by him, but provide him with a catalogue of 

transformation rules [4]. Such a transformation rule is basically a 

parameterized transformation, which by verifying a number of "premises" and 

providing the right parameters may be applied to an algorithm. Each 

transformation obtained this way from a transformation rule is 

automatically correctness-preserving. This can be proved formally, using 

some extended verification method [11, but that is of no concern to the 

algorithm constructor. The only thing he has to do is to verify the 

premises which must be satisfied in order to apply a transformation rule. 

These premises can be verified in the traditional way. 

The catalogue method of transformation constitutes an interesting 
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approach to algorithmics. Yet there are a number of drawbacks attached to• 

it. First of all, for any but a toy algorithmic language a rather large set 

of transformation rules is required in order to be able to perform all 

useful transformations. Second, transformation rules often deal with global 

transformations, which affect the entire structure of an algorithm. The 

correctness of such a global transformation is usually far from trivial to 

comprehend. Also global transformations tend to obscure an algorithm. In a 

mechanical algorithm transformer, such as an optimizing compiler, this is 

not really an objection. For a human algorithm transformer, on his way to 

derive a new algorithm, it is, however. He may easily lose insight into the 

algorithm and overlook the proper transformation. 

This paper addresses the above two problems. It is argued that a 

rather small number of local transformation rules is sufficient to 

accomplish most of the necessary transformations, even global ones. The 

method will be described in detail in section 2. In a nutshell the idea is 

as follows. Let an algorithm S be given which is a correct solution to a 

certain problem. The introduction in Sofa new variable X and the addition 

to Sofa number of well-defined assignments to X will not affect the 

correctness of s. After having added X to Sa number of intermediate 

assertions, which relate X to the other variables in S, can be proved to 

hold insides. These intermediate assertions can be used to replace certain 

expressions in S by equivalent or more restrictive ones, which clearly does 

not affect the correctness of s. It may turn out then that a variable Y 

used in Sis not used anywhere else but in assignments to Y. Consequently Y 

has turned into a "redundant" variable, the assignments to which may be 

removed from S, as well as Y itself, without affecting the correctness of 

s. Thus global transformations of Scan be performed step by step by the 

following simple transformations: adding a variable X to Sand adding 

assignments to X, making J0cal replacements in S, removing assignments to a 

redundant variable Yin Sand removing Y. 

The above scheme constitutes a very flexible way to change the 

representation of variables. Since the derivation of many algorithms 
I 

amounts to continually changing the representation of variables, it is also 

very general. In a derivation of an algorithm according to this scheme only 

small steps are taken, which can easily be seen to be correctness-
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preserving by proving intermediate assertions (if necessary). No 

enhancement of existing verification techniques is therefore required, at 

least not to convince oneself intuitively of the correctness preservation 

of each step. From a strict form.al point of view such an enhancement is 

still necessary of course. The formalization of the scheme would among many 

other things require a precise definition of concepts such as "correctness 

preservation", "redundant variable", "local replacement", etc. It is 

believed that this formalization will not pose any serious problems. The 

level of formality required for it is not sought for in this paper. Things 

will be kept intuitive, yet sufficiently precise to be confident about the 

formal soundness. 

The effectiveness of the method will be demonstrated in the derivation 

of a well-known test case for verification techniques: the Deutsch-Schorr

Waite marking algorithm [12], henceforth called the DSW-algorithm. In 

contrast with most other proofs of correctness of the DSW-algorithm [5, 8, 

11, 13] the most general form of the algorithm will be chosen here. In 

section 3 the problem will be defined precisely. From the specifications 

given there a simple algorithm can be derived almost immediately. This 

algorithm is given and proved correct in section 4 using the axiomatic 

method. Then, in five subsequent "phases" (sections 5 - 9), each of which 

follows exactly the scheme described in section 2, the DSW-algorithm is 

derived from this algorithm by correctness-preserving transformations. The 

intermediate assertions which are required in this derivation process are 

again proved by using the axiomatic method. The algorithmic language used 

is somewhat informal. As far as the semantics of the constructs of this 

language is not self-evident, it will be explained. 

2. METHOD 

In this section a detailed outline of the method will be presented as 

it will be applied in the next sections. We assume the problem is to 

construct an (efficient) algorithm S operating on a set of variables Win 

such a way that if the precondition PW holds the postcondition PW will 
in out 
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hold. The first stage is: 

(0) Construct a simple algorithm S operating on a set of variables X, 

where W c: x. 
Assuming that the precondition P~ holds prove and insert intermediate in 
assertions P~ (i = 1, 2, ••• )ins. 

Prove that the postcondition PW holds. 
out 

Through the above a partially correct abstract algorithm together with a 

number of valid intermediate assertions is obtained. If sufficiently 

abstract this algorithm will probably be highly nondeterministic. Though it 

· need not necessarily terminate, it must be such that a terminating (and 

consequently totally correct) algorithm can be derived from it by 

curtailing the nondeterminism. Termination will therefore be considered at 

the relevant point in the derivation. 

An iterative process of correctness-preserving algorithm 

transformations is now started. Each iteration or "phase" can be decomposed 

in a number of steps which will be described below. What we have is an 

algorithm S operating on a set of variables x. What we want is to make S 

more efficient (which among other things implies making S terminate). The 

first step to achieve this is to introduce a number of fresh variables in 

the algorithm. The purpose of these variables is to gather additional 

information which can be used to increase the efficiency of the algorithm. 

Two major examples of the use of this additional information are: replacing 

nondeterministic operations by less nondeterministic ones and making 

variables redundant by replacements. The latter amounts to changing the 

representation of a set of variables into a more efficient one. The 

information to be gathered in the newly added variables should be 

formulated in terms of additional intermediate assertions which we wish to 

be valid for these variables. The first step of the iterative 

transformation process therefore reads as follows: 



(1) Introduce a set of variables Yin S, where X n Y = 0 (and possibly 

y = 0). 
Formulate and insert additional intermediate assertions Q!'y 

(i = 1, 2, ••• ) to be valid for the X- and Y-variables. 

Th~ next step is to add assignments to the Y-variables to S, in order to 

make the additional intermediate assertions Q~,Y hold. As it turns out, 
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l. 

however, it is not always possible to make the intermediate assertions Q:,Y 

hold simply by adding assignments to the Y-variables. It may be necessary 

to apply a number of replacements also, which are based on the assumption 

that the intermediate assertions Q:,Y already hold. This situation 

(examples of which will be encountered) typically occurs with intermediate 

assertions Q~'y inside loops, which are introduced in order to replace 
l. 

nondeterministic operations on the X-variables inside the loop by more 

deterministic operations. Intermediate assertions of this type allow the 

assertions on the X-variables to be strengthened. Hence it is impossible to 
X y 

make the Qi' hold solely by adding assignments to the Y-variables. 

Replacements involving the X-variables must also be performed. Because of 

the cyclic nature of loops, however, the correctness of these replacements 

may depend on the intermediate assertions Q!'Y, the truth of which the 

replacements are supposed to establish. The only way out here is to assume 
XY that for the purpose of these replacements the Q.' already hold. After 
l. 

having made the assertions Q~'y hold, their validity can then be proved. 
l. 

At first sight the transformation step described above may seem to be 

incorrect. The point is that the intermediate assertions Q~,Y are used for 

replacement purposes before their truth has been established. In fact these 

replacements are used to help establish the truth of the Q~'Y! 
l. 

Contradictory as it may seem this can do no harm, however. We will show 

that now by applying the 8ame transformation step in a more circumstantial 

way. 

Consider a statement S~ in S, prior to which the intermediate 

assertion P~ holds. This will be denoted as follows: 

s = 
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X X X First of all strengthen Pi to R., where Riis the strongest assertion which 
X 1 X X 

holds prior to Si (consequently Ri~ Pi): 

s = 

Insert a nondeterministic assignment "X, Y := [RXi A Q~'y]" prior to Sx, 
1 X i X Y 

which assigns values to the X- and Y-variables in such a way thpt Ri A Qi' 

holds afterwards. This does not affect the correctness of the algorithm, 

Rx. X because 1 still holds prior to Si: 

Make replacements in SX based 
i 

on the validity of QX,Y 
i 

these replacements turn S~ into S~'y: 
l. 

s = 

X prior to Si. Suppose 

Make additional replacements in Sand add assignments to Y-variables to S 

in such a way that Q~,Y will hold prior to "X, Y := [R~ A Q~'Y]": 

s = 

Remove the nondeterministic assignment "X, Y 

s = 

Finally weaken R~ to P~: 

s = 

The above sequence of transformation steps is evidently correct and can be 

applied simultaneously to all statements of s. In its effect it is the seme 

as the original transformation step the correctness of which was 

questioned. Consequently the latter is also correct. This step is 

summarized below: 



(2) Assuming the additional intermediate assertions Q~,Y hold make 
1 
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replacements in Sand add assignments to the Y-variables to Sin order 
X y 

to make the Q.' hold. 
1 

Prove that the intermediate assertions Q~,Y hold. 
1 

The third step is to fully exploit the new intermediate assertions to 

make replacements ins. Strictly speaking this could already be done in the 

second step, but from a conceptual point of view it is better to separate 

the replacements necessary to make the intermediate assertions Q~,Y hold 

from the other "optimizing" replacements. The class of replacements allowed 

will not be defined here. The only requirement is that the replacements 

· must be very simple and evidently correctness-preserving. The replacements 

can be used either to replace expressions by more efficient ones, or to 

turn certain variables into redundant variables. What is exactly meant by a 

"redundant variable" will not be defined here. Broadly speaking a variable 

is redundant in an algorithm if it is a local variable of the algorithm and 

it is used in assignments to itself only. It is obvious that the 

assignments to such a variable may be removed from the algorithm without 

affecting the correctness. This is step 3: 

(3) Choose a set of variables Z c: XU Y, where W n Z = 0, which are to be 

made redundant (possibly Z = 0). 
Using the intermediate assertions make a number of replacements in S 

which turn the Z-variables into redundant variables and remove all 

assignments to Z-variables. 

The third step can be viewed in a sense as the reverse of the second 

step. Analogously the fourth step can be viewed as the reverse of the first 

step. Instead of introducing variables we are going to remove them and 

instead of strengthening the intermediate assertions we are going to weaken 

them. In step 3 all assignments to redundant variables have been removed. 

Consequently these variables have turned into "ghost variables", which may 

be removed from the algorithm. However, these variables may (and probably 

will) still occur in intermediate assertions. From a strict point of view 

these assertions no longer hold now. Simply throwing them away would 
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probably make the remaining intermediate assertions too weak for further 

use. Therefore new and sufficiently strong assertions, in which the 

redundant variables no longer occur, must be derived from the old 

assertions to take their place. This could be done in a systematic way by 

putting an existential quantifier before each intermediate assertion, 

quantifying over each redundant variable. It is easy to see that these 

derived intermediate assertions will hold. So we have: 

(4) Replace the old intermediate assertions P: A Q:,Y by new assertions P: 
implied by the old and containing only V-variables, where 

V =(XU Y) \ z. 

Through steps 1 to 4 a global correctness-preserving transformation can be 

performed in a stepwise way. These steps can be repeated until a 

sufficiently efficient algorithm is obtained. If necessary, prior to step 

or between steps 2 and 3 new intermediate assertions can be proved and 

inserted. Though the final algorithm obtained this way is partially correct 

"by construction", it must still be proved to terminate. This need not 

necessarily be done afterwards, but can be done at some intermediate stage 

in the derivation. 

If desirable, the intermediate assertions of the final algorithm can 

be used to give an independent proof of correctness of that algorithm. This 

saves one the trouble of inventing the intermediate assertions required for 

an independent proof of correctness. It may turn out, however, that the 

intermediate assertions of the final algorithm are too weak for that 

purpose. If an independent proof of correctness of the final algorithm 

should be possible, care must therefore be taken to keep the intermediate 

assertions strong enough. The latter is entirely the responsibility of the 

algorithm constructor. 

The effectiveness of the method will now be demonstrated in a 

derivation of the DSW-algorithm exactly along the lines described above. 

Since the algorithm consists of a single loop, it is more convenient in the 

derivation to keep track of the loop invariants instead of the intermediate 

assertions mentioned above. Invariants instead of intermediate assertions 

will therefore be used in the sequel. Each invariant corresponds to four 



intermediate assertions: one immediately before the loop, one at the 

beginning and. one at the end of the loop body, and one immediately after 

the loop. If intermediate assertions at other places in the algorithm are 

required in order to apply a transformation, they can usually be derived 

from the invariants rather easily. We start with a definition of the 

problem in the next section. 

3. PROBLEM 

9 

Given is a finite set G of objects. Each object is composed of a 

finite number of components. The set of all components of an object Xis 

denoted as comp(X). Different objects have different components (so objects 

do not "overlap"). Associated to each object Xis a unique reference, 

denoted as ref(X), which is said to refer to x. The unique object which has 

reference p associated to it, will be denoted as obj(p). Each component C 

of an object contains a value, denoted as val(C). A reference is a value. 

Among other values (which we are not interested in here) references may 

therefore be contained in components of objects. A component of an object 

which contains a reference will be called a branch of the object. The set 

of all branches of an object X will be denoted as base(X) and the number of 

branches as degree(X). The branches of X are numbered from 1 to degree(X). 

The i-th branch of X (where 1 _:s. i _:s. degree(X)) is denoted as branch(X, i). 

Objects will be pictured as in Fig. 1. There is a dummy object, denoted as 

null, which is not an element of G. The reference of null is denoted as 

nil: nil= ref(null). 

component 
I 
I 
I 
I 

object ----{000Q 

Fig.1 
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The set G of objects is closed. This implies that for each reference p 

contained in a branch of an object in G, the object referred to by pis 

also in G. There is one special object R in G, called the .!.Q.Q.!.• G can now 

be viewed as a directed graph, where the objects are the nodes and the 

refer~nces contained in branches are the edges of the graph. An example of 

how G may look like is given in Fig. 2. 

R 

0 
y X 

Fig.2 

The concept of reachability for objects in G is defined by the 

following rules: 

(1) The root R is reachable. 

(2) If Xis a reachable object, 

B E base(X), 

Y = obj(val(B)), 

then Y is reachable. 

(3) An object is reachabl~ on account of the above rules only. 

For instance in Fig. 2 Xis a reachable object and Y is an unreachable 

object. 

The problem is to construct an algorithm which determines the set of 

all reachable objects. Such an algorithm is traditionally called a "marking 

algorithm". For the description of marking algorithms a variable set M of 



objects will be introduced. It is the job of a marking algorithm to 

establish the truth of the following assertion: 

M ={XE GI Xis reachable} 
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It follows directly from the definition of reachability that this assertion 

is equivalent to the conjunction of the following three assertions: 

Al. R E M. 

A2. V XE M VB E base(X) [obj(val(B)) EM]. 

A3. V XE M [Xis reachable]. 

The DSW-algorithm, which is a particular solution to the above problem, 

will now be derived in six "phases". In the initial phase (phase 0) a 

simple algorithm is constructed, which serves as the starting point. 

4. PHASE 0: GETTING STARTED 

Looking at the definition of reachability one sees that it is almost 

an algorithm itself. That is, if we start with M = {R} and repeat the 

following actions "long enough", M will finally become equal to the set of 

reachable objects: 

Let XE M. 

If base(X) =/: 0 
Let B E base (X) • 

Let Y = obj(val(B)), 

M := M U {Y}. 

Here the operations "Let XE M" and "Let BE base(X)" select an element 

from a set in a nondeterministic way. This nondeterminism can be thought of 

as being governed by a "demon". The first part of the derivation of the 

DSW-algorithm mainly consists of "exorcising" this demon, i.e. convert it 
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to determinism. 

The question is what "long enough" means. A marking algorithm should 

establish the truth of the assertions Al, A2 and A3. The assertions Al and 

A3 are initially true and are not affected by the above actions. Now one 

could.say that "long enough" means: until assertion A2 holds. The process 

need not stop i:xactly at the point where this assertion holds for the first 

time, however (most known marking algorithms don't). Any point beyond this 

point will do as a termination point. In order to model this the following 

nondeterministic construct will be introduced: 

Beyond A 

I s. 

where Sis a SE?ries of actions and A is an assertion. It prescribes that S 

must be repeated until some (but not necessarily the first) point where A 

holds. Note that prior to an execution of S, the assertion ~A need not 

necessarily hold. The termination point is supposed to be chosen 

nondeterministically by the demon. 

The above construct turns out to be very useful in the derivation of 

algorithms. From an algorithm containing this construct a new algorithm can 

be derived by replacing the assertion A by an other assertion B which is a 

sufficient condition for A, i.e. B ⇒ A. If the old algorithm was partially 

correct, the new one will also be. Neither of the algorithms needs to 

terminate, however. The termination of any algorithm containing the above 

construct will depend upon the nature of the demon. The demon could for 

instance be "unfair" and refuse to choose a termination point even if the 

termination condition holds after each iteration. This can be prevented by 

replacing the above construct by the deterministic construct: 

Until A 

I s. 

which prescribes zero or more repetitions of S until A holds for the first 

time. Note that prior to an execution of S the assertion ~A will now hold. 

As indicated above, the nondeterministic algorithms considered here 
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need not terminate. Therefore some people may not call them algorithms at 

all, but here we will. Nondeterministic algorithms are viewed here as 

"abstractions" of (more) deterministic algorithms. The demon represents the 

part of these abstract algorithms which has been "abstracted away". Certain 

terminating and non-terminating algorithms have the same abstraction. So in 

the inverse process of abstraction, i.e. the derivation of algorithms, it 

is often possible to derive both terminating and non-terminating algorithms 

from nondeterministic algorithms. This also applies to the following 

nondeterministic algorithm which will be chosen as a starting point for the 

derivation of the DSW-algorithm: 

Algorithm 

M := {R}. 

Beyond V XE M VB E base(X) [obj(val(B)) EM] 

Let XE M. 

If base(X) 'F 0 
Let BE base(X). 

Let Y = obj(val(B)). 

M := M U {Y}. 

The (partial) correctness of this algorithm should be obvious. It can 

formally be established by proving that Al and A3 hold immediately before 

the loop and are kept invariant by the loop body. Assertions which satisfy 

the latter properties will (as usual) be referred to as "invariants". So 

for Algorithm 1 we have: 

Invariants · 

1 • 1 • R E M. 

1.2. V XE M [Xis re1chable]. 

In the next sections the actions occurring in the body of the loop 

will be referred to as indicated below: 
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Let X E M. 

If base (X) =f, 0 

Let B E base (X) • 

Let Y = obj(val(B)). 

M := M U {Y}. 

visiting X 

r: tracing B 

}--- marking Y 

All following sections will be divided in four subsections, each of which 

corresponds to one of the four transformation steps described in section 2. 

The next two derivation phases will consist of limiting the freedom of the 

demon in such a way, that even though the algorithm remains 

nondeterministic, termination is guaranteed. 

5. PHASE 1: RESTRICTING THE TRACING OF BRANCHES 

Even if in Algorithm 1 the beyond-construct was replaced by an until

construct, the algorithm need not terminate. The reason is that there is 

too much freedom in the choice of objects to be visited and branches to be 

traced. The demon could for instance choose the same object and the same 

branch in each iteration of the loop. Consequently the termination 

condition would never hold (except in trivial cases). Our primary concern 

will therefore be to impose restrictions on the visiting of objects and 

trac~ng of branches in such a way, that the termination condition of 

Algorithm 1 will hold in a finite number of iterations. 

What are reasonable restrictions? A general reasonable restriction 

which may be imposed on an algorithm is, that it should not do the same 

thing twice if once is enough. Let us apply this principle to the tracin"5 

of branches first. It is ~asy to see that it makes no sense to trace a 

branch more than once in Algorithm 1. The second time a branch B would be 

traced, the object Y referred to by the value of B would already have been 

marked. So the following restriction is reasonable: 



Restriction 1 

A branch may be traced only once. 

We will now transform Algorithm 1 in such a way that this restriction is 

met. 

Step 

The enforcement of Restriction 1 introduces a certain overhead. The 

demon must be prevented to select a branch which has already been traced. 
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· For that purpose a variable set C(X) of branches of X will be associated to 

each object X with the following interpretation: 

Interpretation 1 

For each object XE M, C(X) is equal to the set of branches of X which 

have not yet been traced. 

This interpretation of C, which is of course strictly informal, can 

immediately be translated in a number of invariants for the algorithm to be 

derived (by adding C). First of all the obvious invariant: 

Invariant 1.3 

V XE M [C(X) c base(X)J. 

Second, each branch of an object X which is not an element of C(X) has 

already been traced. For each branch B which has been traced the object 

referred to by the value of B has been marked. Consequently we have: 

Invariant 1.4 

V XE M VB E base(X) \ C(X) [obj{val(B)) EM]. 
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Step 2 

Let us now insert assignments to C in Algorithm 1 according to 

Interpretation 1, thus making sure Invariants 1 .3 and 1.4 hold. First of 

all C(X) must be properly initialized for each object x. For the root this 

leads to: 

Addition 1 • 1 

M := {R} ---

M~ C(R) := {R}, base(R) 

· For all other objects Y, C(Y) must be initialized to base(Y) as soon as Y 

is marked for the first time. Whether an object is marked for the first 

time can be determined by testing whether Y f M prior to marking Y, 

resulting in: 

Addition 1 .2 

M :=MU {Y} -

If Y (/. M 

I C(Y) := base(Y). 

M := M U {Y} 

After having traced a branch B of an object X, B must be removed from C(X). 

This can be accomplished by: 

Addition 1 .3 

Let BE base(X) -

Let BE base(X). 

C(X) := C(X) \ 0} 

Note that C(X) is well-defined here because XE M. The above additions 

transform Algorithm 1 into Algorithm la for which besides Invariants 1.1 

and 1 .2 the additional Invariants 1.3 and 1.4 hold, as can easily be 

proved: 



Algorithm 1 a 

M, C(R) := {R}, base(R). 

Beyond V XE M VB E base(X) [obj(val(B)) EM] 

Let X E M. 

Step 3 

If base (X) "F 0 

Let BE base(X). 

C(X) := C(X) \ {B}. 

Let Y = obj(val(B)). 

If Y (£ M 

I C(Y) := base(Y). 

M := M U {Y}. 
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In this step the invariants will be used to make replacements in 

Algorithm la. Among other things these replacements will be used to enforce 

Restriction t. No variables will be made redundant. First, suppose an 

object X for which C(X) = 0 is visited. All branches of X have then already 

been traced, and using Invariant 1.4 it can easily be seen that tracing a 

branch B of X has no effect whatsoever on Mor c. Consequently tracing a 

branch B of an object X may be omitted if C(X) = 0, which justifies the 

following replacement: 

Replacement 1 • 1 

base(X) "F 0 -
C(X) "F 0 

Since we are now sure that C(X) "F 0, when selecting a branch B of X to be 

traced, B can just as well be selected from C(X) (which is a subset of 

base(X) according to Invariant 1.3) instead of base(X): 
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Replacement 1.2 

Let BE base(X) -

Let BE C(X) 

The above two replacements enforce Restriction 1. Two more replacements 

will be applied in order to "improve" Algorithm la. 

Let us look at the termination condition of Algorithm la (i.e. 

assertion A2). It follows directly from Invariant 1 .4 that this condition 

is implied by the simpler condition: 

V XE M [C(X) = 0) 

Hence the following replacement is in order: 

Replacement 1 .3 

V XE M VB E base(X) [obj(val(B)) EM] -

V X E M [C (X) = 0) 

Finally it is easy to see that marking an object Y makes sense only if 

Y f M. This leads to the following optimization: 

Replacement 1.4 

If Y f H 

I C(Y) := base(Y). 

M :=MU {Y} 

IfY(/.M 

I M, C(Y) := M U {Y}, base(Y) 

This concludes the third Ptep. 

Step 4 

In this step possible redundant variables are supposed to be removed. 

Since there are none, it suffices to give the final algorithm of this first 



transformation phase together with its invariants: 

Algorithm 2 

M, C(R) := {R}, base(R). 

Beyond V XE M [C(X) = 0] 
Let X E M. 

If C(X) 'F 0 
Let BE C(X). 

C(X) := C(X) \ {B}. 

Let Y = obj(val(B)). 

If Y f. M 

IM, C(Y) :=MU {Y}, base(Y). 

Invariants 

2. 1 • R E M. 

2.2. V XE M [Xis reachable]. 

2.3. V XE M [C(X) c base(X)]. 

2.4. V XE M VB E base(X) \ C(X) [obj(val(B)) EM]. 

Note that only Invariant 2.4 is temporarily disturbed inside the loop. 

6. PHASE 2: RESTRICTING THE VISITING OF OBJECTS 
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In this phase restrictions will be imposed on the visiting of objects. 

Visiting an object Xis useless if all branches of X have already been 

traced. A proper restriction would therefore be: only objects X with 

C(X) 'f 0 may be visited. Since in Algorithm 2 at the beginning of a visit 

to an object X it is already checked whether C(X) 'F 0, it is convenient to 

weaken this restriction a little and allow for one visit when C(X) = 0. 
This extra visit can then be used to establish that C(X) = 0 and take 

measures to prevent that Xis visited again. Hence we will impose the 

following restriction: 
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Restriction 2 

As soon as C(X) = 0, X may be selected for a visit at most once. 

Step 

Again the enforcement of this restriction introduces a certain 

overhead. The demon must be prevented to select an object X for a visit for 

which C(X) =~!and which has already been visited (once) since C(X) = 0. 

This will be accomplished through the introduction of a variable set U of 

marked objects.Uhas the following interpretation: 

Interpretation 2 

U is equal to the set of all marked objects X for which either: 

- C(X) ::/ 0, or 

C(X) = 0 and X has not been selected for a visit since C(X) = 0. 

It follows immediately from this interpretation of U that the following 

invariant should hold: 

Invariant 2.5 

Uc: M. 

Since for each marked object X, Xe U implies that ~(C(X)::/0), we also have: 

Invariant 2.6 

~XE M \ U [C(X) = 0). 

Step 2 

Assignments to U will now be added to Algorithm 2 according to 

Interpretation 2, so as to make Invariants 2.5 and 2.6 hold. First the 

initialization of U, which is obvious: 
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Addition 2. 1 

M, C(R) := {R}, base(R) -

M, C(R), U := {R}, base(R), {R} 

The first (and as will turn out the only) time an object is a candidate for 

addition to U is when the object is marked. At the moment an object Xis 

marked (for the first and only time) in Algorithm 2 it clearly satisfies 

one of the two conditions specified in Interpretation 2. It should 

therefore be added to U: 

Addition 2.2 

M, C(Y) :=MU {Y}, base(Y) -

M, C(Y), U := M U {Y}, base(Y), U U {Y} 

It follows from Interpretation 2 that an object X must be removed from U 

the first time it is selected for a visit when C(X) = 0. This can be 

accomplished by adding an else-part to the conditional clause 

"If C(X) / 0 "in Algorithm 2: 

Addition 2.3 r C(X) / 0 }-

If C(X) / 0 

I ... 
else 

I u := u \ {X} 

As soon as an object Xis removed from U, C(X) = 0 and will remain so. 

Hence X ne1ed never be added to U again. All provisions to keep track of U 

according to Interpretation 2 have thus been made. The additional 

Invariants 2.5 and 2.6 can easily be proved to hold for the algorithm 

obtained by applying the above additions to Algorithm 2: 
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Algorithm 2a 

M, C(R), U := {R}, base(R), {R}. 

Beyond V XE M [C(X) = 01 
Let XE M. 

If C(X) # 0 
Let BE C(X). 

C(X) := C(X) \ {B}. 

Let Y = obj(val(B)). 

If Y f M 

IM, C(Y), U :=MU {Y}, base(Y), U U {Y}. 

else 

I u := u \ {X}. 

Step 3 

Replacements will now be made to enforce Restriction 2, using the 

additional information gathered in the variable u. At first sight 

Restriction 2 can easily be enforced by selecting an object X for a visit 

from U instead of M. This poses a little problem, however, because U may be 

empty. Therefore first provisions will be made to ensure that U # 0 prior 

to an iteration of the loop. 

Consider the termination condition of Algorithm 2. It follows from 

Invariant 2.6 that this condition is implied by the condition: 

u = 0 

So the following replacement is allowed: 

Replacement 2.1 

V XE M [C(X) = 01 -
u = 0 

This replacement in itself is not enough to ensure that U # 0 prior to an 

iteration of the loop. It is, however, if the beyond construct is replaced 



by an until construct: 

Replacement 2.2 

Beyond -

Until 

Restriction 2 is now enforced by: 

Replacement 2.3 

Let XE M -

Let XE U 

Step 4 

Again no redundant variables occur in the algorithm derived so far. 

23 

The variables C and U have only been used to restrict nondeterminism and 

not to change the representation of other variables. The final algorithm of 

this transformation step (and consequently the entire transformation phase) 

is therefore equal to the final algorithm of the previous step: 

Algor:l thm 3 

M, C(R), U := {R}, base(R), {R}. 

Until U = 0 
Let XE U. 

If C (X) 'f 0 

Let BE C(X). 

C(X) := C(X) \ {B}. 

Let Y = obj(val(B)). 

If Y i M 

IM, C(Y), U :=MU {Y}, base(Y), U U {Y}. 

else 

I u := u \ {X}. 
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Invariants 

,3.J.REM. 

3.2. V XE M [Xis reachable]. 

3.3. V XE M [C(X) c base(X)]. 

3.4. V XE M VB E base(X) \ C(X) [obj(val(B)) EM]. 

3.5. Uc M. 

3.6. V XE M \ U [C(X) = 0]. 

Interlude: termination 

Having restrained the visiting of objects and tracing of branches 

drastically and having replaced the nondeterministic beyond construct by 

the deterministic until construct, Algorithm 3 may be expected to terminate 

irrespective of the nature of the (not yet fully excorcised) demon. This 

can be established more formally as follows. During each iteration of the 

loop in Algorithm 3 a marked object Xis visited. If C(X) / 0, a branch B 

of Xis traced, which has not yet been traced before according to 

Restriction 1. If C(X) = 0, Xis removed from U and will not be visited a 

next time according to Restriction 2. Hence the sum of the number of 

branches of marked objects, which have already been traced, and the number 

of marked objects which will not be visited again, will increase by one 

with each iteration of the loop. Translated into more formal terms this 

implies that the value of the following expression will increase by one 

with each iteration of the loop: 

# M \ U + L # (base(X) \ C(X)) 
XE M 

The fact that this is inde~d so, can easily be verified. Because of the 

finiteness of the number of objects and branches, the value of this 

expression has a finite upper bound. Termination of Algorithm 3 is thereby 

guaranteed. 

The fact that the value of the above expression increases by 1 with 

each iteration of the loop allows an even stronger statement on the 

termination of Algorithm 3. The initial value of the above expression is 1. 
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At termination of Algorithm 3 U = 0 and C(X) = 0 for each XE M. The final 

value of the expression is therefore: 

# Q + L # base(X) 
XE Q 

where Q is the set of reachable objects. Consequently Algorithm 3 will 

terminate after the following number of iterations: 

-1 + ) ( 1 + degree(X)) 
X .E Q 

This implies that Algorithm 3 operates in a time which is linear in the 

number of reachable objects and the number of branches of reachable 

objects, which is the best we can get. 

7. PHASE 3: CHANGING THE REPRESENTATION OF C 

In this step and the following the exorcising of the demon will be 

completed. The remaining places where the demon resides are the operations 

"Let XE U" and "Let BE C(X)". Here we shall consider the operation 

"Let BE C(X)". The only operations which are performed on C(X) are 

initialization, testing for equality to 0, and selecting and immediately 

thereafter removing an element. The following restriction, which eliminates 

the demon from "Let BE C(X)", is therefore enforceable: 

Step 

Restriction 3 

Branches are selected and removed from C(X) in the order of their 

numbering. 

Restriction 3 can be complied with by associating a variable counter 

k(X) to each marked object X with the following interpretation: 
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Interpretation 3 

For each object XE M, k(X) is the number of the last branch which has 

been removed from C(X). If no branches have been removed from C(X) 

yet, k(X) = O. 

This interpretation implies that k must first of all satisfy the following 

invariant: 

Invariant 3.7 

~XE M [O ~ k(X) ~ degree(X)]. 

· Moreover, Restriction 3 together with Interpretations 1 and 3 imply that 

the following invariant should hold: 

Inv~riant 3.8 

~XE M [C(X) = {branch(X, i) I k(X) < i ~ degree(X)}]. 

Step 2 

In this step assignments to k should be added in agreement with 

Interpretation 3 in order to make Invariants 3.7 and 3.8 hold. However, 

Invariant 3.8 cannot be made to hold without also making some replacements, 

which are based on the assumption that Invariants 3.7 and 3.8 already hold. 

The reason for that is that in contrast with the invariants derived before, 

Invariant 3.8 depends critically on the restriction of nondeterminism 

(Restriction 3) to be enforced and not solely on the interpretation of the 

new variable (k). Invariant 3.8 can therefore only be made to hold by 

enforcing that restrictior through a replacement first. This is an example, 

in which it is essential that the new intermediate assertions (the 

invariants) are used for replacements before their truth has been 

established. Another example will be met in the next phase. 

Let us perform the additions and replacements required to make 

Invariants 3.7 and 3.8 hold now. The initialization of k, which should be 

done together with the initialization of C, is obvious and leads to the 
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following additions: 

Addition 3.1 

M, C(R), U := {R}, base(R), {R} --

M, C(R), U, k(R) := {R}, base(R), {R}, 0 

Addition 3.2 

M, C(Y), U :=MU {Y}, base(Y), U U {Y} ..:.____ 

M, C(Y), U, k(Y) :=MU {Y}, base(Y), U U {Y}, 0 

The only statement which disturbs Invariant 3.8 is "C(X) := C(X) \ {B}". 

· Hence an assignment to k(X) should be added to this statement. First we 

must make sure, however, that Bis chosen according to Restriction 3, 

because otherwise it is impossible to restore Invariant 3.8. That is, 

instead of selecting an arbitrary branch B from C(X), the (k(X) + 1)-st 

branch of X must be chosen. It must be assumed for that purpose, that 

Invariants 3.7 and 3.8 hold prior to "Let BE C(X)". From these invariants 

and the fact that C(X) # 0 can be derived that indeed 

1 ~ k(X) + 1 ~ degree(X) and branch(X, k(X) + 1) E C(X): 

Replacement 3. 1 

Let BE C(X) -

Let B = branch(X, k(X) + 1) 

Invariant 3.8 is now restored by: 

Addition 3.3 

C(X) := C(X) \ {B} -

C(X), k(X) := C(X) \ {B}, k(X) + 1 

The only thing that remains to be done is to prove that Invariants 3.7 and 

3.8 hold indeed, which is left to the reader. This completes step 2, in 

which Restriction 3 was enforced. This is the algorithm we have so far: 
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Algorithm 3a 

M, C(R), U, k(R) := {R}, base(R), {R}, O. 

Until U = 0 
Let XE U. 

If C(X) =/: 0 

Let B = branch(X, k(X) + 1). 

C(X), k(X) := C(X) \ {B}, k(X) + 1. 

Let Y = obj(val(B}). 

IfYf.M 

IM, C(Y), U, k(Y) :=MU {Y}, base(Y), U U {Y}, O. 

else 

I u := u \ {X}. 

Step 3 

In this step C will be turned into a redundant variable. The only 

place where the value of C is used in Algorithm 3a is in the test 

"C(X) =/: 0"• Invariants 3.7 and 3.8 imply that this test is equivalent to 

"k(X) =/: degree(X)", which results in the following replacement: 

Replacement 3.2 

C(X) =/: (/j -

k(X) =/: degree(X) 

Chas now turned into a redundant variable the assignments to which may be 

removed: 

Removal 3. l 

C(X), k(X) := C(X) \ {B}, k(X) + l -

k(X) := k(X) + l 



Removal 3.2 

M, C(Y), U, k(Y) := M U {Y}, base(Y), U U {Y}, 0 -

M, U, k(Y) :=MU {Y}, U U {Y}, 0 

Removal 3.3 

M, C(R), U, k(R) := {R}, base(R), {R}, 0 -

M, U, k(R) := {R}, {R}, 0 

Finally the following optimizing replacement is applied, the omission of 

which would be an eye-sore to any right-minded programmer: 

Replacement 3.3 

Let B = branch(X, k(X) + 1). }-

k(X) := k(X) + 1 

k(X) := k(X) + 1. 

Let B = branch(X, k(X)) 

Step 4 
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The variable C no longer occurs in the algorithm and may be disposed 

of. Yet C still occurs in the invariants. New (and preferably equivalent) 

invariants must be derived from these invariants. This is a straightforward 

matter. The final algorithm and the result of rewriting the invariants is: 
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Algorithm 4 

M, U, k(R) := {R}, {R}, O. 

Until U = 0 
Let XE U. 

If k(X) I degree(X) 

k(X) := k(X) + 1. 

Let B = branch(X, k(X)). 

Let Y = obj(val(B)). 

IfY(/.M 

IM, u, k(Y) :=Mu {Y}, u u {Y}, o. 
else 

I u := u \ {X}. 

Invariants 

4.1. REM. 

4.2. V XE M [Xis reachable]. 

4.3. V XE M [0 .5, k(X) .5, degree(X)]. 

4.4. V XE M ~ i = 1, ••• , k(X) [obj(val(branch(X, i))) EM]. 

4.5. Uc M. 

4.6. ~XE M \ U [k(X) = degree(X)]. 

8. PHASE 4: CHANGING THE REPRESENTATION OF U 

Let us consider the operation "Let XE U" now. Apart from this 

operation the only operations which are performed on U are adding an object 

Y (which is not yet in U) to U and removing the (arbitrarily chosen) object 

X from u. This makes the f~llowing a feasible restriction: 

Restriction 4 

Objects are added to and removed from U in a last-in first-out manner. 

The purpose of this restriction is, of course, to be able to "implement" U 

efficiently as a stack. 
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Step 

Introduce a variable stack S of objects. This stack has the following 

obvious interpretation: 

Interpretation 4 

S contains the objects in U in the order of their addition to U (the 

most recently added object at the top of S). 

This interpretation of S implies the following invariant: 

Invariant 4.7 

If S = <X 1 , ••• , Xn> then U = {X1 , ••• , Xn}. 

Here <X1, ••• , Xn> is the stack containing the objects x1, ••• , Xn' where 

X is the top of the stack. 
n 

Step 2 

Assignments to S should be added according to Restriction 4 and 

Interpretation 4, thereby establishing the truth of Invariant 4.7. As in 

the second step of the previous phase, this is not possible without making 

some replacements based on Invariant 4.7 also. All operations modifying U 

must be accompanied by operations modifying s. First of all S should be 

initialized together with U: 

Addition 4. 1 

M, U, k(R) := {R}, {R}, 0 -

M, U, k(R), S := {R}, {R}, 0, <R> 

The addition of an element to U should be accompanied by a "push" 

operation: 
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Addition 4. 2 

M, U, k(Y) :=MU {Y}, U U {Y}, 6 --
M, U, k(Y), S :=MU {Y}, U U {Y}, 0, push(S, Y) 

The removal of an element from U (in "U := U \ {X}") poses a problem, 

because we can only remove an element from S if that element is at the top 

of S (through a "pop" operation). So we. must make sure X is at the top of 

s. Invariant 4.7 implies that top(S) EU, which justifies the following 

replacement: 

Replacement 4.1 

Let XE U -

Let X = top(S) 

X can now be popped from S: 

Addition 4.3 

U := U \ {X} -

U, S := U \ {X}, pop(S) 

The conclusion of this step is to prove that Invariant 4.7 holds in the 

newly derived algorithm. Notice that for this proof the proof of an 

additional invariant is required: 

Invariant 4.8 

All elements of Sare different. 

The combined proof of Invariants 4.7 and 4.8 is simple (use Invariant 4.5). 

Here is the final algoritlm of this step: 



Algorithm 4a 

M, U, k(R), S := {R}, {R}, O, <R>. 

Until U = (3 

Step 3 

Let X = top(S). 

If k(X) / degree(X) 

k(X) := k(X) + 1. 

Let B = branch(X, k(X)). 

Let Y = obj(val(B)). 

If Y (/_ M 

IM, U, k(Y), S :=MU {Y}, U U {Y}, O, push(S, Y). 

els•~ 

I U, S := U \ {X}, pop(S). 

33 

In th:is step the change of representation from U to S must be 

completed by turning U into a redundant variable and by subsequently 

removing all assignments to u. The value of U is used in Algorithm 4a only 

in the test "U = (3". Invariant 4.7 implies that this test is equivalent to 

"S =<>",where"<>" is the empty stack: 

Replacement 4.2 

u = (3 -
s = <> 

Uhas become a redundant variable this way. All assignments to U may be 

removed: 

Removal 4.1 

U, S := U \ {X}, pop(S) -

S := pop (S) 
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Removal 4.2 

M, U, k(Y), S :=MU {Y}, U U {Y}, O, push(S, Y) -

M, k(Y), S :=MU {Y}, O, push(S, Y) 

Removal ~f • 3 

M, U, k(R), S := {R}, {R}, O, <R> -

M, k(R), S := {R}, O, <R> 

Step 4 

In this step the removal of U must formally be completed by 

eliminating U also from the invariants. As in the previous phase this is 

straightforward. The final algorithm of this phase together with the 

rewritten invariants is given below. For notational convenience the stack S 

is occasionally considered as the set of its elements in the invariants. 

Algorithm 5 

M, k(R), S := {R}, O, <R>. 

Until S = <> 

Let X = top(S) 

If k(X) I degree(X) 

k(X) := k(X) + 1. 

Let B = branch(X, k(X)). 

Let Y = obj(val(B)). 

If Y (/. M 

IM, k(Y), S :=MU {Y}, O, push(S, Y). 

else 

I S := pop(S). 



Invariants 

5. l. R E M. 

5.2. V XE M [Xis reachable]. 

5.3. 'r/ XE M [O ~ k(X) ~ degree(X)J. 

?•4• 'r/ XE M 'r/ i = t, ••• , k(X) [obj(val(branch(X, i))) EM]. 

5.5. Sc: M. 

5.6. 'r/ XE M \ S [k(X) = degree(X)]. 

5.7. All elements of Sare different • 

. 9. PHASE 5: CHANGING THE REPRESENTATION OF S, OR: THE DSW-IDEA 
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In this phase the actual DSW-idea will be applied, which in fact is 

nothing but a change of representation. In contrast with the previous 

changes of representation (from C to k and U to S) this change of 

representation is not accompanied by a reduction of nondeterminism. This 

would be impossible in the first place, because through the successive 

restrictions enforced in the previous phases Algorithm 5 has turned into a 

completely deterministic algorithm. No "restrictions" will or can therefore 

be imposed in this phase. 

In order to demonstrate the DSW-idea let us take a closer look at 

Algorithm 5. It is very easy to infer from Algorithm 5 that whenever there 

is an object X at the top of the stack Sand an object Y is pushed on top 

of it, the k(X)-th branch of X contains a reference to Y. This makes S look 

as shown in Fig. 3.a (in this picture objects are assumed to be composed of 

exactly four branches). It amounts to the following invariant which can 

easily be proved: 

Invariant 5.8 

If s = <Xt, ... , X > then n 
t. 'r/ i = t , ... , n - [k(Xi) > OJ. 

2. 'r/ i = 1 , ... , n - [val(branch(Xi, k(Xi))) = ref(Xi+l)J. 
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k(Xl 

0000 

000 q 

s 00 0 3 00 0 

0 00 2 0 00 

000 4 000® 

3.a 3.b 

Fig. 3 

The basic DSW-idea is that using two variable references p and q the 

situation of Fig. 3.a can be transformed without loss of information into 

the situation of Fig. 3.b. Here the cross in the fourth branch of the 

object at the bottom of the stack is the dummy reference nil (see section 

3). The situation of Fig. 3.b has the advantage over the situation of Fig. 

3.a that it makes the stack S redundant: all stack operations can be 

expressed in terms of operations on the variables p and q and the contents 

of branches. Put otherwise: Fig. 3.b sketches an implementation of S 

without any space overhead (apart from the two variable references p and 

q) • 

The application of tP~ DSW-idea to Algorithm 5 raises a little 

problem. It is apparently assumed that the value of a component of an 

object is variable. Otherwise the transformation from Fig. 3.a to Fig. 3.b 

would never be possible. Up till now the value of a component of an object 

was assumed to be constant. Simply making the function val variable and 

adding modifications of val (according to Fig. 3.b) to Algorithm 5 does not 

work, however, because these changes may affect the correctness of the 



37 

algorithm. The solution, of course, is to introduce alongside the constant 

function val an extra variable function VAL, which is initially equal to 

val. Modifications to VAL may freely be added to Algorithm 5 because they 

in no way affect the correctness of the algorithm. After having added the 

variables p, q and VAL according to the DSW-idea to Algorithm 5, the job is 

then to eliminate the stack Sand the function val from the algorithm 

(using inv.~riants). Finally, in order to show that VAL can just as well be 

replaced by val (made variable) it must be shown that the final value of 

VAL is equal to val. 

Step 

Let us now introduce the variables p, q and VAL according to the DSW

idea. Using Fig. 3 as a guide this idea can be translated in the following 

invariant which the new algorithm should satisfy: 

Invariant 5.9 

Let S = <X1 , ••• , Xn> and let x0 = x_ 1 = null. 

Let V = {branch(X., k(X.)) I i = 1, ••• , n - 1}. 
1 1 

Then 

1 • p •- ref (X ) • 
n 

2. q •- ref (Xn- l). 

3. 'Vi= 1, ••• , n - 1 [VAL(branch(Xi, k(X.))) = ref(X. 1)]. 
1 1-

4. 'V XE G 'V C E comp(X) [C i V =? VAL(C) = val(C)]. 

Note that as implied by this invariant the situation where S = <> 

corresponds top= nil, q = nil and VAL= val. 

Step 2 

Assignments to the variables p, q and VAL must be added to Algorithm 5 

in such a way that Invariant 5.9 is satisfied. First the variables should 

be initialized properly. VAL is implicitly assumed to be equal to val at 
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the beginning of the algorithm. The initialization therefore amounts to: 

Addition 5. 1 

M, k(R), S := {R}, 0, <R> -

M, k(R), S, p, q := {R}, 0, <R>, ref(R), nil 

Invariant 5.9 now holds initially. The only operations which disturb 

Invariant 5.9 are the operations which modify S: "S := push(S, Y)" and 

"S := pop(S)". Consequently these operations should be accompanied by 

modifications of p, q and VAL in order to restore Invariant 5.9. 

Consider the operation "S := push(S, Y)" first. This operation makes Y 

the top element of Sand X the subtop element. Hence the set of branches V 

in Invariant 5.9 is extended by this operation with branch(X, k(X)), which 

is denoted by Bin Algorithm 5. This affects parts 1, 2 and 3 but not part 

4 of Invariant 5.9. Part 1 can be restored by assigning top the value 

ref(Y), which is equal to val(B). Part 4 of Invariant 5.9 implies, since 

Br/. V, that val(B) = VAL(B). Part 1 can therefore be restored by assigning 

top the value VAL(B). Part 2 can be restored by assigning to q the value 

ref(X), which is equal top. Finally part 3 can be restored by assigning to 

VAL(B) the reference of the object "below" X in S, i.e. the value q. 

(Notice that this assignment to VAL does not affect part 4 of Invariant 

5.9). This leads to: 

Addition 5 .2 

M, k(Y), S :=MU {Y}, O, push(S, Y) -

M, k(Y), S, p, q, VAL(B) := M U {Y}, O, push(S, Y), VAL(B), p, q 

The operation "S := pop(S)" removes the object X at the top of S from 

s. In order to investigatr the way this operation affects Invariant 5.9 two 

cases must be distinguished: the case where S contains a single object and 

the case where S contains two or more objects. Consider the former first. 

If S contains only one object the set Vin Invariant 5.9 is empty and will 

be so after the operation "S := pop(S)". This implies that parts 3 and 4 of 

Invariant 5.9 are not affected. Part 2 is neither affected because 

ref(X0 ) = ref(X_ 1) =nil.Only part 1 must be restored which can be done by 



assigning the value ref(X0 ) = nil top. This covers the first case. 

In the: second case S contains two or more objects and consequently 

V 1 0. Let Y be the subtop element of S, i.e. the object referred to by q 

and let B = branch(Y, k(Y)), then BE v. The effect of the operation 
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"S := pop(S:)" on Vis that Bis removed from v. This does not affect part 3 

of Invariant 5.9 (n decreases by one). It does affect parts 1, 2 and 4 

though. Part 1 can be restored by assigning top the value ref(Y), which is 

equal to q. Part 2 can be restored by assigning to q the value ref(Z), 

where Z is the (possibly imaginary) object below Yins. Part 3 of 

Invariant 5.9 implies that ref(Z) = VAL(branch(Y, k(Y))) = VAL(B). So part 

2 can be restored by assigning the value VAL(B) to q. Remains part 4. This 

part of thE! invariant is disturbed because Bis removed from V and the 

assertion VAL(B) = val(B) is not guaranteed to hold. As a consequence part 

4 can be restored by assigning the value val(B) to VAL(B). (Notice that 

this does not affect part 3 of Invariant 5.9). According to part 2 of 

Invariant Si.8, val(B) = val(branch(Y, k(Y))) = ref(X) = p. So part 3 of 

Invariant Si.9 can be restored by assigning the value p to VAL(B). 

Immediately before the operation "S := pop(S)" in Algorithm 5 the 

assertion S 1 <>holds.This implies that the distinction between the two 

cases considered above can be made by testing whether q = nil or not (see 

Invariant Si.9). All in all this amounts to: 

Addition 5.3 

S := pop(S) -

If q = nil 

I S, p := pop(S), nil. 

else 

Let Y = obj(q). 

Let B = brancr\Y, k(Y)). 

S, p, q, VAL(B) := pop(S), q, VAL(B), p 

The algorithm obtained through the above additions to Algorithm 5 is 

given below. Though we made sure Invariant 5.9 is satisfied (not only as a 

loop invariant, but "everywhere"), a formal proof is still required. This 

proof will be obvious now and is omitted. 
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Algorithm Sa 

M, k(R}, S, p, q := {R}, O, <R>, ref(R), nil. 

Until S = <> 

Let X = top(S}. 

If k(X} j degree(X} 

k(X} := k(X) + 1. 

Let B = branch(X, k(X)}. 

Let Y = obj(val(B)). 

IfYfM 

IM, k(Y}, S, p, q, VAL(B} :=MU {Y}, O, push(S, Y}, VAL(B}, p, q. 

else 

If q = nil 

I s, 
else 

p := pop(S}, nil. 

Let y = obj(q). 

Let B = branch(Y, k(Y}}. 

s, p, q, VAL(B} := pop(S}, q, VAL(B}, P• 

Before removing Sit should be proved that the effect of the algorithm on 

VAL is nil. In other words, it must be proved that the postcondition VAL= 

val holds. Proof: at termination of the algorithm S =<>,which implies 

that V = 0 in Invariant 5.9, which implies that VAL= val according to part 

4 of Invariant 5.9. 

Step 3 

In this step the invariants will be applied so as to eliminate Sand 

val from Algorithm Sa through replacements. Invariant 5.9 part 1 implies 

that the assertion S =<>is equivalent top= nil, which results in: 

Replacement 5.1 

s = <> -

p = nil 



Invariant 5.9 part 1 also implies that~ if SI<>, top(S) = obj(p). This 

gives us: 

Replacement 5.2 

Let X = top(S) -

Let X = obj(p) 

Immediately after the statement "Let B = branch(X, k(X))" the assertion 

Bf V holds. From part 4 of Invariant 5.9 (which also holds there) can be 

inferred that this implies that val(B) = VAL(B), which justifies: 

Replacement 5.3 

Let Y = obj(val(B)) -

Let Y = obj{VAL(B)) 
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The application of the above replacements transform Algorithm Sa into 

an algorithm in which val no longer occurs and in which S has become a 

redundant variable. The assignments to Scan now be removed: 

Removal 5.1 

S, p, q, VAL(B) := pop(S), q, VAL(B), p -

p, q, VAL(B) := q, VAL(B), p 

Removal 5.2 

S, p := pop(S), nil -

p := nil 

Removal 5.3 

M, k(Y), S, p, q, VAT (B) := M U {Y}, O, push(S, Y), VAL(B), p, q -

M, k(Y), p, q, VAL(B) :=MU {Y}, O, VAL(B), p, q 

Removal 5.4 

M, k(R), S, p, q := {R}, O, <R>, ref(R), nil -

M, k(R), p, q := {R}, O, ref(R), nil 
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Step 4 

In this step Swill be removed from the invariants. Though in the 

previous steps the constant function val was removed from the algorithm 

together with S, this function need (and should) not be removed from the 

invariants (val is part of the problem specification). In contrast with the 

previous two phases the rewriting of the invariants containing S so as to 

eliminate Sis far from obvious. Therefore the invariants will not be 

rewritten and an existential quantifier will be used to "eliminate" s. The 

final algorithm of this phase and of the entire derivation, the DSW

algorithm, is given below together with its invariants, pre- and 

postconditions. Strictly speaking the invariants are superfluous now, but 

they could be used for an independent proof of correctness, if desired. 

Algorithm 6 (Deutsch-Schorr-Waite) 

M, k(R), p, q := {R}, O, ref(R), nil. 

Until p = nil 

Let X = obj(p). 

If k(X) # degree(X) 

k(X) := k(X) + t. 

Let B = branch(X, k(X)). 

Let Y = obj(VAL(B)). 

IfY<lM 

IM, k(Y), p, q, VAL(B) :=Mu {Y}, O, VAL(B), p, q. 

else 

Let Y 

Let B 

nil 

nil. 

= obj(q). 

= branch(Y, k(Y)). 

p, q, VAL(B) := q, VAL(B), P• 

Preconditions 

6 • t • VAL = val. 



Invariants 

6.1. REM. 

6.2. V XE M [Xis reachable]. 

6.3. V XE M [O ~ k(X) ~ degree(X)]. 

6.4. V XE M Vi= 1, ••• , k(X) [obj(val(branch(X, i))) EM]. 

6.5. There is a stack of objects S = <X1, 

6.5.1. Sc M. 

6.5.2. V XE M \ S [k(X) = degree(X)]. 

6.5.3. All elements of Sare different. 

... , n -

... ' X > such that 
n 

6.5.4.'t/i=l, 

6.5.5. 't/ i = 1, ••• , n - 1 [val(branch(Xi, k(Xi))) = ref(Xi+l)]. 

x0 = x_1 = null. 6.5.6. Let 

Let V = {branch(Xi, k(Xi)) I i = 1, ••• , n - 1}. 

Then 

6.5.6.1. p = ref(X ). 
n 

6.5.6.2. q = ref(Xn_ 1). 

6.5.6.3. Vi= 1, ••• , n - 1 [VAL(branch(Xi, k(Xi))) = ref(Xi_ 1)]. 

6.5.6.4. 't/ XE G 't/ CE comp(X) [C </. V =>VAL(C) = val(C)]. 

Postconditions 

6.1. M ={XE G IX is reachable}. 

6.2. VAL= val. 

10. CONCLUSION 
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There are three different ways to look at the method of deriving 

algorithms described and demonstrated in this paper. The first is from the 

viewpoint of algorithm construction. Can the method be of any help in the 

process of constructing (deriving) a new algorithm? It would not be 

entirely fair to judge this from the derivation of the DSW-algorithm given 

above. We knew beforehand what target we were aiming at and carefully 

directed the derivation process in order to hit that target. In 

constructing a new algorithm the target is unknown. Yet the derivation 
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method described here is believed to be of help in deriving new algorithms 

too. The first reason is that performing global transformations in a 

stepwise way aids in retaining or even gaining insight in the algorithm 

under development, which may lead to the discovery of new useful 

trans~ormations. The second reason is that the algorithm constructor is 

invited to try and perform a complex transformation, even if he has only 

some intuitive idea of it. He can cast his idea in a number of new 

variables and assertions on these variables, and start adding assignments 

to the variables and making replacements based on the assertions. If he 

does not achieve what he had in mind, too bad. If he does, he need only 

proof the assertions he postulated and remove whatever variables he made 

redundant. 

The second way to look at the method is from the point of view of 

algorithm verification. The method constitutes a simple way to proof the 

correctness of global transformations which amount to changes of data 

representation .• The correctness of such a transformation is proved by 

decomposing the transformation into a sequence of simple and evidently 

correct transformations. No comprehensive catalogue of transformation rules 

is required, nor the use of an "abstraction function" as in [7]. The method 

is also very flexible in that it allows very complex changes of 

representation (such as the DSW-transformation) to be proved correct 

without the need for enhanced verification techniques. 

In relation to the above it is interesting to compare the correctness 

proof of the DSW-algorithm given here with other proofs of correctness of 

the DSW-algorithm [5, 8, 11, 13]. The first thing to be noted is that all 

of the latter were proofs of more or less simplified versions of the DSW

algorithm instead of the general DSW-algorithm considered here. The second 

thing to be noted is that in [5, 8, 11, 13] the DSW-algorithm is considered 

as a given algorithm which is proved correct "independently". Here the 

DSW-algorithm is proved correct by proving a simple abstract algorithm 

correct and deriving the DSW-algorithm through a number of correctness

preserving transformations from this algorithm. In fact we proved the 

correctness of a number of algorithms (Algorithms 1 - 6). Consequently the 

proof given here is much longer than the proofs in [5, 8, 11, 13]. We could 

have chosen Algorithm 5 (the stack algorithm) as a starting point, however. 
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The length of the proof would then have been comparable to the length of 

the proofs in [5, 8, 11, 13]. The advantage of the approach pursued here 

is, that the correctness proof is "factorized", which makes it more 

suitable for human consumption. The only similar approach to a correctness 

proof of the DSW-algorithm is [9], in which the outline of a correctness 

proof using the catalogue approach is given (only the intermediate 

algorithms are given). Apart from not being complete, the proof (the 

derivation) sketched there seems to be more complicated than the one given 

here. 

The third way to consider the method described here is from the 

viewpoint of algorithm presentation. Presenting an algorithm by showing how 

it can be derived by a number of transformations from a simple algorithm 

adds considerably to understandability. This is an inherent advantage of 

the transformational method. It adds even more to understandability if not 

only the initial algorithm, but also all transformations applied to it are 

simple. The latter holds for the method described here. The 

transformational method in general is also very suitable for presenting 

classes of algorithms. Instead of walking to the DSW-algorithm straight 

ahead, we could have turned into several sideways in the derivation. If 

this is done in a systematic way, the entire class of marking algorithms 

can be discussed with a minimum of effort and a maximum of coherence. On a 

small scale and in a somewhat different context this was done in [2] for 

sorting algorithms. On a larger scale, using a more coarsely grained 

version of the method described here, this will be done in a survey of 

garbage collection algorithms (both marking and compaction algorithms) 

which I am currently working on. 

REFERENCES 

[1] BACK, R., On the correctness of refinement steps in program 

development, Ph.D. thesis, University of Helsinki, Helsinki 

(1978). 



46 

[2] DARLINGTON, J., A synthesis of several sorting algorithms, Acta 

Informatica 11 (1978), 1-30. 

[3] DARLINGTON, J., Program transformation: an introduction and survey, 

Computer Bulletin 2, 22 (1979), 22-24. 

[4] GERHART, S.L., Correctness-preserving program transformations, 

Conference Record of the Second ACM Symposium on Principles of 

Programming Languages, Palo Alto (1975), 54-66. 

[5] GRIES, D., The Schorr-Waite graph marking algorithm, Acta Informatica 

11 (1979), 223-232. 

[6] HOARE, c.A.R., An axiomatic basis for computer programming, 

Communications of the ACM 12 (1969), 576-580. 

[7] HOARE, c.A.R., Proof of correctness of data representations, Acta 

Informatica 1 (1972), 271-281. 

[8] KOWALTOWSKI, T., Data structures and correctness of programs, Journal 

of the ACM 26 (1979), 283-301. 

[9] LEE, S., W.P. DE ROEVER & S.L. GERHART, The evolution of list-copying 

algorithms and the need for structured program veritication, 

Conference Record of the Sixth ACM Symposium on Principles of 

Programming Languages, San Antonio (1979), 53-67. 

[10] MEERTENS, L.G.L.T., Abstracto 84: the next generation, Proceedings of 

the 1979 Annual ~onference of the ACM, Detroit (1979), 33-39. 

[11] ROEVER, W.P. DE, On backtracking and greatest fixpoints, in: Formal 

Descriptions of Programming Concepts, E.J. Neuhold (ed.), North

Holland Publishing Company (1978), 621-639. 



47 

[ 12) SCHORR,, H. & W.M. WAITE, An efficient machine-independent procedure 

for garbage collection in various list structures, Communications 

of the ACM 1 0 ( 1 96 7) , 501-506. 

[13) TOPOR, R.W., The correctness of the Schorr-Waite list marking 

algorithm, Acta Informatica 11 (1979), 211-221. 




