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ABSTRACT

In spite of the absence of shock waves in most hydrodynamic applications, sufficient reason remains to employ

Godunov-type schemes in this field. In the instance of two-phase flow, the shock capturing ability of these

schemes may serve to maintain robustness and accuracy at the interface. Moreover, approximate Riemann

solvers have greatly relieved the initial drawback of computational expensiveness of Godunov-type schemes. In

the present work we develop an Osher-type flux-difference splitting approximate Riemann solver and we examine

its application in hydrodynamics. Actual computations are left to future research.
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1. Introduction

The advantages of Godunov-type schemes [God59] in hydrodynamic flow computations are not as
widely appreciated as in gas dynamics applications. Admittedly, the absence of supersonic speeds
and hence shock waves in incompressible flow (the prevailing fluid model in hydrodynamics) reduces
the necessity of advanced shock capturing schemes. Nevertheless, many reasons remain to apply
Godunov-type schemes in hydrodynamics: Firstly, these schemes have favourable robustness properties
due to the inherent upwind treatment of the flow. Secondly, they feature a consistent treatment of
boundary conditions. Thirdly, (higher-order accurate) Godunov-type schemes display low dissipative
errors, which is imperative for an accurate resolution of boundary layers in viscous flow. Finally, the
implementation of these schemes in conjunction with higher-order limited interpolation methods, to
maintain accuracy and prevent oscillations in regions where large gradients occur (see, e.g., [Swe84,
Spe87]), is relatively straightforward.

In addition, Godunov-type schemes can be particularly useful in hydrodynamics in case of two-phase
flows, e.g., flows suffering cavitation and free surface flows. In these situations, an interface exists
between the primary phase (water) and the secondary phase (air, damp, etc.) and fluid properties
may vary discontinuously across the interface. In our opinion, the ability of Godunov-type schemes
to capture discontinuities is then very useful to maintain robustness and accuracy at the interface.
Examples of such interface capturing can be found in, for instance, [MOS92, CHMO96, KP97].

A disadvantage of the method originally proposed by Godunov is that it requires the solution
of an associated Riemann problem with each flux evaluation. In practice, many such evaluations
are performed during an actual computation. Consequently, the method is notorious for its high
computational costs. To relieve this problem, several approaches have been suggested to reduce
the computational costs of the flux evaluations involved, by approximating the Riemann solution.
Examples of such approximate Riemann solvers are the flux vector splitting schemes (such as those
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of Van Leer [Lee82] and Steger & Warming [SW81]) and the flux difference splitting schemes (such as
Roe’s [Roe81] and Osher’s [OS82]).

In the present work we develop an Osher-type flux-difference splitting scheme for the approximate
solution of the Riemann problem and we investigate its application in hydrodynamics. Details are
presented for the Euler equations for three types of fluids that are used to model the behaviour of water,
viz., a genuinely compressible fluid, an artificially compressible fluid and a genuinely incompressible
fluid, and for a two-phase flow. As a preliminary, we examine the Riemann problem. Next, we give
an outline of Osher’s approximate Riemann solver. Analysis shows that Osher’s scheme suffers loss of
accuracy in the presence of centered shock waves and therefore a modified scheme is proposed. Finally,
we present the specifics for the aforementioned hydrodynamic applications. Actual computations are
deferred to future research.

2. Riemann Problem

In this section we investigate the Riemann Problem:

Definition 2.1 Let q ∈ IRn = (q1, . . . , qn)T , (x, t) ∈ IR × IR+ and f ∈ C1(IRn, IRn). Consider the
Cauchy problem

∂tq + ∂xf(q) = 0, ∀x ∈ IR, t ∈ IR+, (2.1a)

subject to the initial condition

q(x, 0) =
{

qL, if x < 0,
qR, if x > 0,

(2.1b)

with qL and qR constant. The initial value problem (2.1a) and the initial condition (2.1b) define the
Riemann problem.

First, an introductory analysis is presented. Subsequently, we obtain the general solution to (2.1).

2.1 Preliminary Analysis
Let A(q) denote the Jacobian of f(q), A(q) = ∂qf(q), and let λk(q), k = 1, 2, . . . , n, λ1 ≤ λ2 ≤
. . . ≤ λn, be its eigenvalues and rk(q) the corresponding eigenvectors. Equation (2.1a) constitutes
a hyperbolic system if the eigenvalues λk(q) are real and nonzero. Then, the matrix A(q) can be
decomposed with respect to a basis of its eigenvectors:

A(q) = R(q) ·Λ(q) ·R(q)−1, (2.2)

where Λ(q) = diag(λ1(q), . . . , λn(q)) and the matrix R(q) = (r1(q), . . . , rn(q)) contains the eigen-
vectors. From [Lax57] we adopt the following classification of the eigenpairs (λk(q), rk(q)):

Definition 2.2 Consider the matrix A(q) ∈ IRn×n. Let λk(q), k = 1, 2, . . . , n, be its eigenvalues
and rk(q) the corresponding eigenvectors. An eigenvalue λk(q) and an eigenvector rk(q) are called
genuinely nonlinear on a subdomain Ω ⊆ IRn if

∂qλk(q) ·rk(q) 6= 0, ∀q ∈ Ω. (2.3)

An eigenvalue λk(q) and an eigenvector rk(q) are said to be linearly degenerate on Ω if

∂qλk(q) ·rk(q) = 0, ∀q ∈ Ω. (2.4)

The eigenvalues that are genuinely nonlinear for all q ∈ IRn are related to rarefaction waves and
shocks in the solution of the Riemann problem. The eigenvalues that are linearly degenerate on IRn

correspond to contact discontinuities in the solution. More complex contact phenomena can occur
for eigenvalues that are neither genuinely nonlinear nor linearly degenerate on IRn, see, e.g., [LeV90,
pages 48–50].
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With each of the eigenpairs (λk(q), rk(q)) we associate two paths in state space. Firstly, the
k-shock path:

Definition 2.3 Consider the hyperbolic system (2.1a). The k-shock path through qL is the set

Sk(qL) = {q ∈ IRn | s(q;qL)(q − qL) = f(q)− f(qL)}, (2.5)

where s(q;qL) is referred to as the shock speed.

Secondly, we distinguish the k-path:

Definition 2.4 Consider the hyperbolic system (2.1a). The k-path through qL is the set

Rk(qL) = {q ∈ IRn | q = h(ξ), ξ ∈ IR} (2.6)

with h(ξ) the solution to the ordinary differential equation

∂ξh(ξ) = rk(h(ξ)), ξ ∈ IR,
h(ξL) = qL,

(2.7)

for some ξL ∈ IR.

Furthermore, to each k-path corresponds a set of functions which are invariant on Rk:

Definition 2.5 Consider the hyperbolic system (2.1a). Let rk(q) denote the kth eigenvector of the
Jacobian A(q) = ∂qf(q). A k-Riemann invariant is any function ψk ∈ C1(IRn, IR) satisfying

∂qψk(q) ·rk(q) = 0, ∀q ∈ IRn. (2.8)

There are at most n−1 such k-Riemann invariants with linearly independent gradients in IRn. Observe
that for a linearly degenerate eigenpair (λk(q), rk(q)) the eigenvalue λk(q) is a k-Riemann invariant.

2.2 Solution
The general solution to (2.1) consists of regions in the (x, t)-domain where the solution is constant,
separated by simple waves, contact discontinuities and shock waves. Before constructing the gen-
eral solution, we first obtain the (weak) solution to (2.1) in case that it contains only one of the
aforementioned contact phenomena.

We establish that the (weak) solution to the Riemann problem can generally be written in similarity
form (see, e.g., [Smo83]):

Theorem 2.1 Suppose a unique solution q(x, t) to the Riemann Problem (2.1) exists. Then q(x, t)
can be written in similarity form q(x, t) = h(x/t).

Proof: Assume q(x, t) solves (2.1). Then for all α ∈ IR, q(αx, αt) is also a solution:

∂tq(αx, αt) + ∂xf (q(αx, αt)) = α [D2q(αx, αt) + A(q(αx, αt)) ·D1q(αx, αt)] = 0, (2.9)

where Dl denotes differentiation with respect to the lth function-argument. Because the solution is
unique by assumption, q(x, t) = q(αx, αt). Hence, q(x, t) = h(x/t). 2

A (classical) simple wave solution of (2.1) exists if λk(q) is a genuinely nonlinear eigenvalue,
λk(qL) < λk(qR) and qR is on the k-path through qL. Note that this implies that the k-Riemann
invariants are equal for qL and qR, i.e., ψm

k (qL) = ψm
k (qR), for m 6= k, m = 1, . . . , n. Assuming that

the genuinely nonlinear eigenvector in (2.7) is normalised such that

∂qλk(q) ·rk(q) = 1, ∀q ∈ IRn, (2.10)

we find that q(x, t) = h(x/t) is the similarity solution in the simple wave region λk(qL) < x/t <
λk(qR) (see, e.g., [Smo83], [Lax73]):
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Theorem 2.2 Suppose h ∈ C1(IR, IRn) solves (2.7), with rk(q) normalised according to (2.10), and
qR ∈ Rk(qL). Then q(x, t) = h(x/t) is the similarity solution of (2.1) in the simple-wave region
λk(qL) < x/t < λk(qR).

Proof: We will only show that q(x, t) = h(x/t) solves (2.1a). Inserting q(x, t) = h(x/t) in (2.1a),
one obtains

∂th(x/t) + ∂xf(h(x/t)) =
1
t

(
A(h(x/t))− I

x

t

)
·Dh(x/t), (2.11)

where I stands for the IRn×n identity matrix and D denotes differentiation with respect to the function-
argument. The right hand side term of (2.11) vanishes if x/t = λk(h(x/t)) and Dh(x/t) = rk(h(x/t)).
The latter trivially follows from (2.7), the former from (2.10). Hence, h(x/t) solves (2.1a). 2

Outside the wave region the solution remains unchanged. The Riemann solution q(x, t) in the case of
a k-rarefaction wave is now simply composed of the solutions on the separate regions:

q(x, t) =

 qL, if x/t < λ(qL, )
h(x/t), if λ(qL) < x/t < λ(qR),
qR, if x/t > λ(qR).

(2.12)

Next, we derive the (weak) Riemann solution in the instance that it contains a single contact
discontinuity. The states qL and qR are connected by a k-contact discontinuity if (λk(q), rk(q)) is a
linearly degenerate eigenpair and qR is on the k-path through qL. Then, by (2.4), λk(qR) = λk(qL).
The solution to the Riemann problem is now obtained immediately from (2.12):

q(x, t) =
{

qL, if x/t < λ(qL) = λ(qR),
qR, if x/t > λ(qL) = λ(qR). (2.13)

However, because (2.13) is discontinuous at x/t = λ(qL) = λ(qR), it must be verified that (2.13)
satisfies the weak form of (2.1a):∮

C
qnt + f(q)nxdC = 0. (2.14)

Here C is any closed curve in (x, t) and n = (nt, nx) denotes the outward pointing unit normal on C.
It can easily be shown that (2.14) does indeed hold for (2.13), so that (2.13) is a valid weak solution.

Finally, we consider the solution to (2.1) when it comprises a single shock. A shock occurs if λk(q)
is a genuinely nonlinear eigenvalue, λk(qL) > λk(qR) and qR is on the k-shock path through qL.
A solution of the form (2.12) is then necessarily multiple-valued and must therefore be discarded.
Instead, the weak solution reads

q(x, t) =
{

qL, if x/t < s(qL;qR),
qR, if x/t > s(qL;qR), (2.15)

where s(qL;qR) denotes the shock speed, determined by the Rankine-Hugoniot relation

s(qL;qR)(qL − qR) = f(qL)− f(qR). (2.16)

Expression (2.16) is in fact equivalent to (2.14). Hence, (2.15) is a valid weak solution of (2.1).
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The general solution to the Riemann problem consists of n + 1 (possibly empty) regions Ωl where
the solution is constant, separated by simple waves, contact discontinuities and shock waves. Define
q0 = qL, q1 = qR and let ql/n, l = 0, . . . , n, be the solution in Ωl. Assuming that q(l−1)/n is connected
to ql/n by a simple wave, we denote by hl(x/t) the similarity solution in the wave region. Conversely,
if q(l−1)/n is connected to ql/n by a shock wave, we designate sl the appropriate shock speed. Then,
in succinct form:

q(x, t) =


q0, if x/t < σ+

0 ,
ql/n, if σ−l < x/t < σ+

l , l = 1, . . . , n− 1,

hl(x/t), if σ+
l−1 < x/t < σ−l , l = 1, . . . , n− 1,

q1, if x/t > σ−n ,

(2.17a)

where σ±l denotes the contact speed

σ±l =
{

λl+(1±1)/2(ql/n) if ± λl+(1±1)/2(ql/n) < ±λl+(1±1)/2(q(l±1)/n),
sl+(1±1)/2 otherwise.

(2.17b)

The general solution (2.17) is schematically depicted in figure 1. The figure illustrates the contiguity
of regions connected by shock waves and contact discontinuities, for instance, Ω(l−1)/n and Ωl/n, and
the separation of regions connected by rarefaction waves, e.g., Ωl/n and Ω(l+1)/n.

As a sidenote, we mention that for general f (q) and sufficiently large ‖qL−qR‖, a solution to (2.1)
can be non-existent (see, for example, [Smo83]).

q0

q1/n

q(l−1)/n

ql/n

q(l+1)/n

q(n−1)/n

q1

σ+
0

σ−1

σ+
1

σ−l−1

σ+
l−1 = σ−l σ+

l
σ−l+1

σ+
l+1

σ−n−1

σ+
n−1 = σ−n

h1(x/t)

hl+1(x/t)

t

x

Figure 1: General solution to the Riemann problem

3. Approximate Riemann Solution

In the previous section we established that the solution to the Riemann problem can generally be
written in similarity form h(x/t). Denoting by h(x/t;qL,qR) the similarity solution for given qL and
qR, we find f(h(0;qL,qR)) to be the corresponding centered flux, f (qL,qR). This flux is of particular
importance in computational applications: following Godunov’s approach, it can be interpreted as
the flux between two adjacent cells in the discretised domain. Unfortunately, solving the Riemann
problem exactly is computationally expensive and it is therefore necessary to revert to approximate
solution techniques.

In this section, we investigate Osher’s approximate Riemann solver and a modified Osher-type
scheme. We will first present a general outline of the Osher scheme. Subsequently, the approximate
Riemann solution employed in Osher’s scheme is examined and the computed flux approximation is
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compared to the exact solution. Finally, we shall propose the modified scheme, based on the preceding
analysis.

3.1 Osher’s scheme
In the scheme developed by Osher [OS82], [OC83], the centered flux f(qL,qR) = f(h(0;qL,qR)) is
approximated by:

f̃(qL,qR) =
1
2
f (qL) +

1
2
f(qR)− 1

2

qR∫
qL

|A(w)| ·dw, (3.1)

with the absolute value of the Jacobian matrix A(q) defined by |A(q)| ≡ R(q)·|Λ(q)|·R(q)−1. Here,
|Λ(q)| = diag(|λ1(q)|, . . . , |λn(q)|). Clearly, the integral term represents the upwind contribution to
the centered flux approximation.

The integral in (3.1) is evaluated along a path Γ = {q(s) : 0 ≤ s ≤ 1} ⊂ IRn in state space,
satisfying q(0) = q̃0 and q(1) = q̃1, with q̃0 = qL and q̃1 = qR or vice versa. This path is composed
of sub-paths Γl, l = 1, 2, . . . , n, where each of the sub-paths connects two adjacent states q̃(l−1)/n

and q̃l/n. Moreover, Γl is tangential to an eigenvector rk(l), where k : {1, 2, . . . , n} → {1, 2, . . . , n}
is a bijective mapping. It should be appreciated here that Γl is thus a section of the k(l)-path
through q̃(l−1)/n, connecting q̃(l−1)/n and q̃l/n. Usual choices for the ordering of the sub-paths are
the O-variant k(l) = n− l and the P-variant k(l) = l.

The integral term in (3.1) can be rewritten as a summation of the contributions of the integral
over each of the sub-paths:

qR∫
qL

|A(w)| ·dw =
n∑

l=1

∫
Γl

|A(w(ξ))| ·rk(l)(w(ξ))dξ =
n∑

l=1

∫
Γl

sign(λk(l)(w))A(w) ·dw (3.2)

Obviously, if λk(l) does not change sign along Γl, then the sub-integral can be evaluated to [f(q̃l/n)−
f(q̃(l−1)/n)] sign(λk(l)). Then, by (2.4), if λk(l) = λk(l+1) = . . . = λk(l+µ) is a linearly degenerate
eigenvalue, the sum in (3.2) concatenates and we simply obtain

µ∑
i=0

∫
Γl+i

|A(w)| ·dw = sign(λk(l)(ql/n))[f (ql/n)− f(q(l+µ)/n)] (3.3)

Hence, the intermediate stages q̃(l+i)/n, i = 1, 2, . . . , µ−1 are of no consequence and may be eliminated
from the composed path Γ.

As a result of the choice of the sub-paths Γl, the intermediate q̃l/n, l = 1, 2, . . . , n−1 can be conve-
niently determined by means of the Riemann invariants: Because the sub-path Γl ⊂ Rk(l)(q̃(l−1)/n),

ψm
k(l)(q̃(l−1)/n) = ψm

k(l)(q̃l/n), l, m = 1, 2, . . . , n, m 6= k(l), (3.4)

see section 2.1. If it is assumed that the k-Riemann invariants in (3.4) have linearly independent
gradients, then by the implicit function theorem, (3.4) constitutes a solvable system of equations from
which the q̃l/n, l = 1, 2, . . . , n can be extracted. In many practical cases the intermediate stages can
then be solved explicitly from (3.4). Once the intermediate states q̃l/n have been obtained, the flux
approximation f̃(qL,qR) can be computed using (3.1), (3.2).
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3.2 Accuracy
The flux computed by means of the Osher scheme, f̃(qL,qR), relies on an approximate solution of the
Riemann problem. Because the approximation can again be written in similarity form, it is useful to
introduce the notation f̃(qL,qR) = f(h̃(0;qL,qR)), where h̃(x/t;qL,qR) stands for the approximate
similarity solution. In this section we investigate the accuracy of the approximate similarity solution
and of the corresponding centered flux approximation.

To evaluate the accuracy of the approximate solution, we examine the inherent representation of
simple waves, contact discontinuities and shock waves. In section 3.1 it was emphasized that the sub-
paths, Γl, in Osher’s scheme are actually sections of k(l)-paths. Referring to section 2.2, it follows that
the intermediate states q̃l/n, l = 0, . . . , n, in the approximate solution are connected by simple-waves
only. Clearly, this representation is correct for simple waves and contact discontinuities. However,
shock waves in the actual solution are then replaced by so-called overturned simple waves, see [Lee84].
We will now show that this representation is accurate for weak shocks. From [Smo83] we adopt:

Lemma 3.1 Suppose qL and qR are connected by a weak k-shock with shock strength ε, i.e., qR ∈
Sk(qL) and λk(qL) = λk(qR) + ε, with ε a small positive number. Then the change in a k-Riemann
invariant across the k-shock is of order O(ε3).

Proof: Proof is omitted here, but can be found in [Smo83, pages 326–333]. 2

Then, we obtain:

Theorem 3.1 Suppose qR ∈ Sk(qL) and λk(qL) = λk(qR) + ε. Then a q̃R ∈ Rk(qL) exists such
that λk(q̃R) = λk(qR) and |q̃R − qR| is of order O(ε3).

Proof: By definition 2.5, ψm
k (qL) = ψm

k (q̃R), k = 1, 2, . . . , n, k 6= m. Then, by lemma 3.1,

ψm
k (q̃R) = ψm

k (qR) +O(ε3). (3.5)

System (3.5) can be augmented with λk(q̃R) = λk(qR) to obtain n equations for q̃R. Because
rank(∂qψ1

k, . . . , ∂qψn
k ) = n − 1 and ∂qλk ∈ (∂qψ1

k, . . . , ∂qψn
k )⊥, det(∂qψ1

k, . . . , ∂qψn
k , ∂qλk) 6= 0. The

result now simply follows by a Taylor expansion around qR of the terms in q̃R of the augmented
system. 2

From theorem 3.1 it may be inferred that the intermediate states obtained by a rarefaction-waves-
only approximation are O(ε3max) accurate, with

εmax = max
l=1...n

(λl(q(l−1)/n)− λl(ql/n), 0) (3.6)

the strength of the strongest shock.

Although the computed intermediate states are accurate even in the presence of (weak) shocks,
the flux approximation f̃(qL,qR) is not necessarily so. By (3.2), if q̃R ∈ Rk(qL) and λk(qL) > 0 >
λk(q̃R),

f̃(qL, q̃R) = f(qL) + f(q̃R)− f (q?), (3.7)

with q? ∈ Rk(qL) such that λk(q?) = 0. In contrast, ignoring terms O(ε3), one finds that the actual
flux corresponding to the k-shock is f(qL) if s(qR;qL) > 0 and f(qR) if s(qR;qL) < 0. Consequently,
the error in the approximate flux in the instance of a centered shock with strength ε may be of O(ε).

3.3 Modified Scheme
In view of the above, a modification of the scheme is advocated. The rarefaction waves only approxi-
mation of the similarity solution is maintained. However, the centered flux approximation is obtained
differently, to avoid loss of accuracy due to centered shock waves.
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We propose to extract the intermediate states in the approximate solution to the Riemann problem
from

ψm
l (q̃(l−1)/n) = ψm

l (q̃l/n), l, m = 1, 2, . . . , n, m 6= l, (3.8)

with q̃0 = qL and q̃1 = qR. This is in fact equivalent to (3.4) with a presumed P-variant ordering of
the sub-paths. Next, approximate contact speeds σ̃±l are obtained:

σ̃±l =
{

λl+(1±1)/2(q̃l/n) if ± λl+(1±1)/2(q̃l/n) < ±λl+(1±1)/2(q̃(l±1)/n),
s̃l+(1±1)/2 otherwise,

(3.9a)

with

s̃l+(1±1)/2 =
1
2
λl+(1±1)/2(q̃l/n) +

1
2
λl+(1±1)/2(q̃(l±1)/n). (3.9b)

Estimate (3.9b) of the shock speed is justified by the following theorem, taken from [Smo83]:

Theorem 3.2 Suppose qR ∈ Sk(qL) and λk(qL) = λk(qR) + ε, ε > 0. Then the speed of the k-shock
connecting qL and qR satisfies s(qL;qR) = 1

2λk(qL) + 1
2λk(qR) +O(ε2).

Proof: Proof can be found in [Smo83, pages 326–333]. 2

Once the intermediate states and contact speeds have been established, the approximate Riemann
solution can be constructed in a manner similar to (2.17a). However, considering that our purpose
is to compute an approximation to the centered flux, we only need to obtain the central part of the
approximate solution:

h̃(0;qL,qR) =


q̃0, if σ̃+

0 > 0,
q̃l/n, if σ̃−l < 0 < σ̃+

l , l ∈ {1, . . . , n− 1},
q̃∗, if σ̃+

l−1 < 0 < σ̃−l , l ∈ {1, . . . , n− 1},
q̃1, if σ−n < 0,

(3.10)

with q̃∗ ∈ Rl(q̃(l−1)/n) such that λl(q̃∗) = 0 in case of a centered rarefaction wave. The centered flux
approximation is now simply f̃(qL,qR) = f(h̃(0;qL,qR)).

4. Applications in Hydrodynamics

In the previous section we presented a flux-difference splitting scheme that gives an accurate ap-
proximation of the centered flux in the Riemann problem, even in the presence of (weak) centered
shock waves. A prerequisite for the flux evaluation is the derivation of the intermediate states q̃l/n,
l = 1, . . . , n. Once these states have been obtained, the flux calculation proceeds via straightforward
operations.

In this section we derive the intermediate states for the one dimensional Euler equations for three
types of fluids that are used to model the behaviour of water. These fluids are, successively, a genuinely
compressible fluid, an artificially compressible fluid and an incompressible fluid. Furthermore, we
obtain the intermediate states for the Euler equations in the case of an immiscible, compressible
two-phase flow.

4.1 Compressible fluid
Suppose that u, v and w denote the x, y and z components of a fluid velocity u ∈ IR3 in a Cartesian
coordinate system, respectively, and that ρ ∈ IR+ denotes the density of the fluid. Consider the
hyperbolic system (2.1a) with q = (ρu, ρv, ρw, ρ)T and f (q) given by

f(q) =
(
q2
1/q4 + p(q4), q1q2/q4, q1q3/q4, q1

)T
. (4.1)
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Then equations (2.1a) are the Euler equations for a compressible fluid in one dimension. In this section
it is assumed that the pressure is related to the density via an equation of state of the form p = p(ρ),
with p ∈ C1(IR+, IR+) an increasing function. An example is Tait’s equation of state, which is often
used to model the behaviour of water:

p(ρ) = αργ + β, (4.2)

where α, γ ∈ ]0,∞[ and β ∈ IR are given constants. Our objective now is to obtain the approximate
intermediate states for the Euler equations (2.1a), (4.1).

In order to compute the intermediate states from (3.8), k-Riemann invariants for the system under
consideration have to be derived first. The Jacobian of the flux vector (4.1) reads

A(q) = ∂qf =


2 q1/q4 0 0 −q2

1/q2
4 + c2(q4)

q2/q4 q1/q4 0 −q1q2/q4

q3/q4 0 q1/q4 −q3q1/q4

1 0 0 0

 , (4.3)

where c(ρ) =
√

∂ρp denotes the speed of sound. Computation of the eigenvalues of A(q) and the
corresponding eigenvectors then yields

λ1 = q1/q4 − c(q4), λ2,3 = q1/q4, λ4 = q1/q4 + c(q4), (4.4)

and

r1 = (q1/q4 − c(q4), q2/q4, q3/q4, 1)T
,

r2 = (0, 1, 0, 0)T ,

r3 = (0, 0, 1, 0)T ,

r4 = (q1/q4 + c(q4), q2/q4, q3/q4, 1)T
.

(4.5)

Notice that the eigenvalue λk and the eigenvector rk are genuinely nonlinear for k = 1, 4 and linearly
degenerate for k = 2, 3. Riemann invariants are then obtained by solving partial differential equa-
tions (2.8), with the eigenvectors according to (4.5). The details are omitted here, but it can easily
be verified that (4.6) constitutes a complete set of k-Riemann invariants:

ψ2
1 = q1/q4 + φ(q4),

ψ1
2 = q1,

ψ1
3 = q1,

ψ1
4 = q1/q4 − φ(q4),

ψ3
1 = q2/q4,

ψ3
2 = q3,

ψ2
3 = q2,

ψ2
4 = q2/q4,

ψ4
1 = q3/q4,

ψ4
2 = q4,

ψ4
3 = q4,

ψ3
4 = q3/q4,

(4.6a)

where φ(ρ) is defined

φ(ρ) =

ρ∫
0

c(η)
η

dη. (4.6b)

The intermediate states can now be extracted from (3.8), (4.6). In view of the linear degeneracy of
the eigenvalues λ2 and λ3 and the arguments presented in section 3.1, we ignore q̃1/2. We then find
that q0 is connected to q1 via two approximate intermediate states q̃1/3 and q̃2/3:

q̃1/3 = φ−1
(

1
2ψ2

1(q0)− 1
2ψ

1
4(q1)

)
1
2ψ2

1(q0) + 1
2ψ1

4(q1)
ψ3

1(q0)
ψ4

1(q0)
1

 (4.7)
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and

q̃2/3 = φ−1
(

1
2ψ2

1(q0)− 1
2ψ

1
4(q1)

)
1
2ψ2

1(q0) + 1
2ψ1

4(q1)
ψ2

4(q1)
ψ3

4(q1)
1

 , (4.8)

where φ−1(ψ) denotes the inverse of φ(ψ).

For a fluid that is described by Tait’s equation of state, the intermediate states can be determined
by substituting (4.2) in equations (4.6) to (4.8). The intermediate velocity components ṽ1/3, ṽ2/3,
w̃1/3 and w̃2/3 are immediately obtained from (4.6):

ṽ1/3 = v0, ṽ2/3 = v1,
w̃1/3 = w0, w̃2/3 = w1.

(4.9)

From (4.6) it is also clear that ũ1/3 = ũ2/3 ≡ ũ1/2 and ρ̃1/3 = ρ̃2/3 ≡ ρ̃1/2. To determine ũ1/2 and
ρ̃1/2, it is necessary to distinguish between the cases γ = 1 and γ 6= 1. For γ = 1 one obtains

ũ1/2 =
1
2
(u0 + u1) +

α

2
ln(ρ0/ρ1),

ρ̃1/2 =
√

ρ0ρ1 exp
(

u0 + u1

2α

)
.

(4.10)

In case γ 6= 1, it is convenient to express the density in terms of the speed of sound:

ũ1/2 =
1
2
(u0 + u1) +

1
γ − 1

[c(ρ0)− c(ρ1)],

c(ρ̃1/2) =
γ − 1

4
(u0 − u1) +

1
2
[c(ρ0) + c(ρ1)].

(4.11)

4.2 Artificially compressible fluid
Assume that u, v and w again denote the x, y and z components of a fluid velocity u ∈ IR3 in a
Cartesian coordinate system, respectively, and that p ∈ IR+ denotes the fluid pressure. Consider
hyperbolic system (2.1a) with q = (u, v, w, p)T . Let f(q) be

f(q) =
(
q2
1 + q4, q1q2, q1q3, c

2q1

)T
, (4.12)

with c constant. Equations (2.1a), (4.12) are the Euler equations for an artificially compressible fluid
in one dimension. Notice that the ∂tp term that occurs in (2.1a) in this case, implies compressibility
of the fluid.

To obtain the intermediate states, we first derive Riemann invariants for (2.1a), (4.12). For the
Jacobian of f(q) we simply obtain

A(q) = ∂qf =


2 q1 0 0 1

q2 q1 0 0

q3 0 q1 0

c2 0 0 0

 . (4.13)

The eigenvalues of A(q) and the corresponding eigenvectors follow by straightforward computation:

λ1 = q1 −
√

q2
1 + c2, λ2,3 = q1, λ4 = q1 +

√
q2
1 + c2, (4.14)
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and

r1 =
(
1,−q2/

√
q2
1 + c2,−q3/

√
q2
1 + c2,−q1 −

√
q2
1 + c2

)T

,

r2 = (0, 1, 0, 0)T ,

r3 = (0, 0, 1, 0)T ,

r4 =
(
1, q2/

√
q2
1 + c2, q3/

√
q2
1 + c2,−q1 +

√
q2
1 + c2

)T

.

(4.15)

The eigenpairs (λ1, r1) and (λ4, r4) are genuinely non-linear, whereas the eigenpairs (λ2, r2) and
(λ3, r3) are linearly degenerate. Riemann invariants are now obtained by solving (2.8), (4.15):

ψ2
1 = q2λ4,

ψ1
2 = q1,

ψ1
3 = q1,

ψ1
4 = q2λ1,

ψ3
1 = q3λ4,

ψ3
2 = q3,

ψ2
3 = q2,

ψ2
4 = q3λ1,

ψ4
1 = λ4 exp

(
[2q4 + q1λ4]/c2

)
,

ψ4
2 = q4,

ψ4
3 = q4,

ψ3
4 = λ1 exp

(
[2q4 + q1λ1]/c2

)
.

(4.16)

The foregoing invariants have linearly independent gradients. Hence, the intermediate states can be
obtained from (3.8), (4.16).

Considering the linear degeneracy of λ2, λ3, we only need to obtain q̃1/3 and q̃2/3. Unfortunately,
in this instance we have not succeeded in deriving a closed form expression for these intermediate
states. However, from (4.16) it immediately follows that ũ1/3 = ũ2/3 ≡ ũ1/2 and ρ̃1/3 = ρ̃2/3 ≡ ρ̃1/2.
Then, using the expressions for ψ4

1 and ψ3
4 , one finds that ũ1/2 is determined by the implicit relation: ũ1/2 +

√
ũ2

1/2 + c2

ũ1/2 −
√

ũ2
1/2 + c2

 exp

2ũ1/2

√
ũ2

1/2 + c2

c2

 =
ψ4

1(q0)
ψ3

4(q1)
, (4.17)

Once ũ1/2 has been solved from (4.17), q̃1/3 and q̃2/3 are simply obtained from (4.16).

4.3 Incompressible fluid
We commence by analysing the Euler equations for an incompressible flow. Assume that u ∈ IR3

denotes the fluid velocity and that the fluid pressure divided by the (constant) fluid density is desig-
nated p ∈ IR+. Next, let F ∈ C1(IR3, IR3×3) be the convective momentum flux tensor, defined by the
dyad F(u) = uu. The Euler equations for an incompressible fluid read

∂tu + F(u) · ~∇+ ~∇p = 0, (4.18a)
~∇ ·u = 0, (4.18b)

where the postgradient operator is defined u ~∇ = ( ~∇u)T . Due to the absence of a time derivative
in (4.18b), equations (4.18) do not constitute a hyperbolic system. However, equations (4.18) can be
rewritten as an inhomogeneous hyperbolic system governing u and a Poisson equation for p. Indeed,
inserting F(u) and replacing (4.18b) by the divergence of (4.18a) with (4.18b) implicitly imposed, we
obtain:

∂tu + uu · ~∇ = − ~∇p, (4.19a)

∆p = −u ~∇ : ~∇u, (4.19b)

where ∆ denotes the Laplace operator in IR3. Solving the Euler equations for an incompressible fluid
now requires the simultaneous resolution of the hyperbolic system (4.19a) and the elliptic Poisson
equation (4.19b). Here, we shall only concern ourselves with the hyperbolic part of the operator.
Furthermore, in the following section we will only consider the homogeneous system in one dimension,
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i.e., we shall neglect the source term − ~∇p and (assuming a Cartesian coordinate system is employed)
the flux gradients in the y and z direction. We then retrieve an expression of the form (2.1a), with
q = (u, v, w)T , where u, v, w again denote the x, y, z components of the fluid velocity u ∈ IR3 in a
Cartesian coordinate system, respectively, and f (q) given by

f(q) =
(
q2
1 , q1q2, q1q3

)T
. (4.20)

We appreciate that the first equation of (2.1a), (4.20) is decoupled from the remaining system and
can therefore be treated separately. However, for completeness we refrain from doing so.

To obtain the approximate intermediate states for (2.1a), (4.20), we first determine Riemann
invariants for this system. The Jacobian of f(q) reads

A(q) = ∂qf =


2 q1 0 0

q2 q1 0

q3 0 q1

 , (4.21)

with the eigenvalues

λ1 = q2
1, λ2,3 = q1, (4.22)

and the corresponding eigenvectors

r1 = (q1, q2, q3)
T

,

r2 = (0, 1, 0)T ,

r3 = (0, 0, 1)T .

(4.23)

The first eigenpair is neither linearly degenerate nor genuinely nonlinear: the gradient of λ1(q) in the
direction of r1(q) vanishes for q1 = 0, but is nonzero otherwise. Nevertheless, for our purposes it is
sufficient to treat (λ1, r1) as a genuinely nonlinear eigenpair, because the eigenvalue vanishes only if
q1 = 0 and, therefore, the eigenvalue can change sign only once along R1(qL). The second and third
eigenpair are linearly degenerate. Riemann invariants are obtained by solving (2.8), (4.23):

ψ2
1 = q1/q2,

ψ1
2 = q1,

ψ1
3 = q1,

ψ3
1 = q1/q3,

ψ3
2 = q3,

ψ2
3 = q2.

(4.24)

These invariants have linearly independent gradients in IR3.

Because the second and third eigenpair are linearly degenerate, q0 and q1 are connected via a
single intermediate state q̃1/2. This intermediate state is immediately obtained from (3.8), (4.24):

q̃1/2 =

{ u1

u0
q0, u0 6= 0,

0, otherwise.
(4.25)

4.4 Two-Phase Flow
In this section we derive the intermediate states for the Euler equations for an immiscible, compressible
two-phase flow. The phases are supposed to be separated by a moving interface, which is described by
the time dependent set I(t) = {x ∈ IR3 | θ(x, t) = 0}. Furthermore, we assume θ(x, t) to be negative
in one phase and positive in the other. As a result of the immiscibility of the phases, the following
kinematic condition applies:

∂tθ + u · ~∇θ = 0, (4.26)
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where u ∈ IR3 again denotes the fluid velocity. Employing the continuity equation for compressible
fluids, we can restate kinematic condition (4.26) in conservation form:

∂tρθ + ~∇ ·ρθu = ρ
(
∂tθ + u · ~∇θ

)
+ θ

(
∂tρ + ~∇ ·ρu

)
, (4.27)

The first term in parentheses vanishes due to (4.26), the second due to continuity. Hence, ρθ is a
conserved quantity. Suppose that throughout the entire fluid volume the pressure is related to the
density via an equation of state of the form p = p(θ, ρ). Then, again using u, v, w to designate the
velocity components relative to a Cartesian coordinate system and ignoring spatial derivatives in y
and z direction, we retrieve (2.1a), with q = (ρu, ρv, ρw, ρθ, ρ)T and

f(q) =
(
q2
1/q5 + p(q4/q5, q5), q1q2/q5, q1q3/q5, q1q4/q5, q1

)T
. (4.28)

Equations (2.1a), (4.28) consitute the one dimensional Euler equations for an immiscible, compressible
two phase flow.

Our first objective now is to derive Riemann invariants for (2.1a), (4.28). We define c1 = c1(θ, ρ) =√
∂θp and c2 = c2(θ, ρ) =

√
∂ρp. Then, the Jacobian of (4.28) reads:

A(q) = ∂qf =



2 q1/q5 0 0 c2
1/q5 −q2

1/q2
5 − c2

1q4/q2
5 + c2

2

q2/q5 q1/q5 0 0 −q2q1/q2
5

q3/q5 0 q1/q5 0 −q3q1/q2
5

q4/q5 0 0 q1/q5 −q4q1/q2
5

1 0 0 0 0


. (4.29)

The eigenvalues and eigenvectors of A(q) are

λ1 = q1/q5 − c2, λ2,3,4 = q1/q5, λ5 = q1/q5 + c2, (4.30)

and

r1 = (q1/q5 − c2, q2/q5, q3/q5, q4/q5, 1)T
,

r2 = (0, 1, 0, 0, 0)T ,

r3 = (0, 0, 1, 0, 0)T ,

r4 =
(
q1c

2
1, 0, 0,−c2

2q
2
5 + c2

1q4, q5c
2
1

)T
,

r5 = (q1/q5 + c2, q2/q5, q3/q5, q4/q5, 1)T
.

(4.31)

The eigenvalue λk and the eigenvector rk are genuinely nonlinear for k = 1, 5 and linearly degenerate
for k = 2, 3, 4. Riemann invariants can now be obtained by solving (2.8), (4.31):

ψ2
1 = q1/q5 + φ,

ψ1
2 = q1/q5,

ψ1
3 = q1/q5,

ψ1
4 = q1/q5,

ψ1
5 = q1/q5 − φ,

ψ3
1 = q2/q5,

ψ3
2 = q3,

ψ2
3 = q2,

ψ2
4 = q2,

ψ2
5 = q2/q5,

ψ4
1 = q3/q5,

ψ4
2 = q4,

ψ4
3 = q4,

ψ3
4 = q3,

ψ3
5 = q3/q5,

ψ5
1 = q4/q5,

ψ5
2 = p,

ψ5
3 = p,

ψ5
4 = p,

ψ4
5 = q4/q5,

(4.32a)

with p = p(θ, ρ) and φ = φ(θ, ρ) defined by

φ(θ, ρ) =

ρ∫
0

c2(θ, η)
η

dη. (4.32b)

Observe that θ is a k-Riemann invariant for k ∈ {1, 5}. Hence, it may be inferred that the phase
transition is a contact discontinuity. Moreover, because both u and p are k-Riemann invariants for
k ∈ {2, 3, 4}, the pressure and the normal velocity component are continuous across the interface.
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The intermediate states can now be obtained from (3.8), (4.32). Because the linearly degenerate
eigenvalue q1/q5 has algebraic multiplicity 3, only two intermediate states have to be distinguished.
Trivially, ṽ1/3

w̃1/3

θ̃1/3

 =

 v0

w0

θ0

 ,

 ṽ2/3

w̃2/3

θ̃2/3

 =

 v1

w1

θ1

 , (4.33)

and ũ1/3 = ũ2/3 ≡ ũ1/2. Then, ρ̃1/3 and ρ̃2/3 are determined by

φ(θ0, ρ̃1/3) + φ(θ1, ρ̃2/3) = u0 − u1 + φ(θ0, ρ0) + φ(θ1, ρ1),
p(θ0, ρ̃1/3) = p(θ1, ρ̃2/3).

(4.34)

We refrain from a further reduction of these expressions and suffice by stating that once the interme-
diate densities have been obtained, ũ1/2 follows by straightforward computation.

5. Conclusions

In spite of the absence of shock waves in most hydrodynamic applications, sufficient reason remains
to employ Godunov-type schemes in this field. The shock capturing ability of these schemes renders
them notably useful in the case of two-phase flow. In the present work we developed an Osher-type
Riemann solver and we investigated several of its applications in the field of hydrodynamics. First, the
Riemann problem was examined. Subsequently, Osher’s approximate Riemann solver was discussed.
It was shown that this scheme employs a rarefaction-waves-only approximate Riemann solution and
that this approximation is accurate even in the presence of (weak) shocks. Then, it was demonstrated
that the centered flux approximation obtained by means of Osher’s scheme is not necessarily accurate
and, therefore, a modified scheme was proposed. Finally, details were presented for several applications
in hydrodynamics.
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