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ABSTRACT

Game Logic (GL), introduced in [18], is examined from a game-theoretic perspective. A new semantics

for GL is proposed in terms of untyped games which are closely related to extensive game forms of perfect

information. An example is given of how GL can be used as a formal model of game situations, and some

metatheoretic results are presented in the context of their game-theoretic relevance.
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1. Introduction

Over the last years, various logics have been proposed for formalizing certain aspects of reasoning in
and about games. Most of these logics focus on the epistemic aspects of game-theoretic reasoning (see
e.g. [13, 9, 3]): Given certain assumptions about the players' beliefs and knowledge, one can prove that
a certain solution of the game (e.g. Nash equilibrium or backward induction) will be obtained. Non-
epistemic game logics on the other hand have been investigated e.g. in the computer science literature,
where system speci�cations can be modeled as a game between the system and its environment (see
e.g. [4, 1]).
This paper investigates Game Logic (GL), a non-epistemic logic introduced in [18]. We hope that

logics like GL can extend the game-theoretic research agenda in three ways: First, since GL is an
adaptation of a logic used to reason about computer programs, the modeling approach taken di�ers
from standard game-theoretic approaches, most importantly in the use of external states of the world
which are independent of the positions in a game. The resulting model is that of a game web which is
introduced in section 2 and which may be of interest to the game theorist. Along with this model also
comes a non-standard notion of a game, an untyped game, which combines extensive games and game
forms into one notion and which can be used to reason about games with incomplete information
(section 3).
Second, GL presents a formal tool for modeling game situations. Such a tool may help to clarify

terminological ambiguities or conceptual di�culties, as shown e.g. in [6]. On a more applied level, it
may be used as a computational device, since conjectures about properties of a given game can be
translated into formulas of the object language which can be given to an automated theorem prover
(section 6). Section 5 applies GL to model an example of a game of incomplete information. It also
demonstrates that a formal language for game construction allows one to address a simple instance
of the implementation problem in a new way, namely by generalizing program synthesis to game
synthesis.
Third, besides working within the language of GL, we can also investigate the logic itself to obtain

metatheorems (section 6) which supply new game-theoretic information: It is shown e.g. that for the
game operations under consideration, winning strategies of complex games can be constructed out of
winning strategies for the subgames and that the game operations preserve determinacy. Furthermore,
we mention some laws governing the interaction of GL's game operations as well as additional game
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operations and the possibility of showing that a certain set of operations is su�cient to construct a
particular class of games.

2. A Model of Interaction: Game Webs

A game web, the model of (inter-)action underlying Game Logic, is a generalization of the state-space
model representing how a program transforms one computational state (an assignment of values to
variables) into another. We assume that the world can be in a number of di�erent states (states of
the world, possible worlds, situations), and that actions taken by the agents can change this state in
various ways. Interaction between the players may lead to a number of di�erent resulting states, and
the agents may prefer certain states of the world over others, e.g. an agent may prefer a state where
she is happy over a state where she is unhappy, and/or a state where she has $100 over a state where
she has $10. The resulting states of an interaction will usually again allow for further interactions
to take place, leading to new resulting states, etc.. While the formalization of this model will be
given in the next section, this informal description should already highlight the crucial features of this
approach:
First, di�erent interactions may be possible even at one single state of the world. Put di�erently,

it may be possible to play various games in a given situation, so our model is not restricted to the
analysis of a single game. The fact that resulting states of a game may be starting points for new
games also shows that we are not modeling isolated games but a \web" of games.
Second, note that standard game-theoretic models such as extensive games do not include states of

the world; what matters are the states of the game, and preferences can be de�ned over these without
referring to states of the world. However, if we want to talk about a complex structure of interaction
with possibly many games, general preferences over states of the world seem simpler and more natural
than preferences over terminal states of all the games involved. Game-theoretically, one can think of
states of the world as possible consequences resulting from interaction, and the agents' preferences
are de�ned over these consequences rather than the outcomes of the interaction directly (see e.g. the
alternative de�nition of strategic games in [17]).
Third, game webs allow to model situations with incomplete information: The agents' preferences

may be only partially known, or they may not be known at all. However, we do not (yet) include
probabilities or information sets in our model which are usually used in a game theoretic analysis of
games of incomplete information. Instead, we will be able to reason explicitly about di�erent types
of players.

3. Interaction in Game Webs: Untyped Games

As mentioned in the previous section, game webs are based on a set of situations at which interaction
can take place. Since interaction in game webs causes changes in the state of the world, and since the
preferences of the agents may not be known, standard game-theoretic game models will have to be
adopted to �t the situation at hand, resulting in the notion of an untyped game.
Given a nonempty set of states S, we de�ne an untyped game on S between the players Angel (A,

player 1) and Demon (D, player 2) as a 5-tuple

G = (H;PA;WA;WD; �)

where H is a set of sequences (histories, plays, runs) subject to the following three standard con-
ditions (see the de�nition of extensive games in [17]): (1) The empty sequence hi 2 H , (2) if
q = hq0; q1; : : : ; qni 2 H (where n may be in�nite) and m < n then hq0; q1; : : : ; qmi 2 H , and
(3) if for an in�nite sequence q = hq0; q1; : : :i we have hq0; q1; : : : ; qmi 2 H for every positive integer
m, then q 2 H . A history q 2 H is called terminal if it is either in�nite or q = hq0; q1; : : : ; qni and
there is no qn+1 such that hq0; q1; : : : ; qn+1i 2 H . Let Ht � H be the set of terminal runs and let
H1 � Ht be the set of in�nite runs.
As for the other components of the de�nition, PA � Ht is the set of nonterminal positions where

it is Angel's turn to move; at all other nonterminal positions, it is Demon's turn. WA � Ht denotes
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the set of terminal runs won by Angel, and similarly WD � Ht denotes the set of terminal runs won
by Demon. We require that H1 � WA [ WD and that WA \ WD = ;. We do not require that
WA [WD = Ht, i.e. we allow for open or undecided terminal runs where neither player wins. Lastly,
the function � : H1 ! S associates with every position (i.e. �nite history) of the game a state of the
world.
As with extensive games, we can depict untyped games as decorated trees. Nodes corresponding to

terminal positions shall be drawn as squares, non-terminal positions as circles. A letter in a circle or
square indicates the player whose turn it is to move, or the winner of the play in case of a terminal
run. Thus, empty squares denote open terminal positions. States associated with positions by the �-
function are written to the right of the corresponding node. Figure 1 shows an example of an untyped
game on the natural numbers which has one in�nite run winning for Demon.
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Figure 1: Example of an untyped game

Untyped games are closely related to extensive games of perfect information (see [17]). To be more
precise, an untyped game is similar to a strictly competitive extensive game of perfect information
between two players where the players' payo�s are either 1 or �1. There are however two points in
which untyped games di�er from these extensive games. Both of these point are motivated by the
game web model described. First, untyped games contain as an additional component a � function
which maps game positions to external states of the world. It allows us to keep track of how the state
of the world changes through the actions of the players.
Second, untyped games can contain terminal histories without payo�s. From a game-theoretic

point of view, untyped games are thus only semi-games, since they allow for these undecided terminal
positions. The state associated with such a terminal position represents an abstract outcome, without
specifying the players' valuation of the outcome; thus, an untyped game should be thought of more
as an extensive game form rather than as a single extensive game. Extensive games and extensive
game forms are the two extreme cases of untyped games: Extensive games are simply untyped games
without undecided terminal nodes, i.e. WA [WD = Ht, whereas modulo in�nite runs, extensive game
forms are untyped games where all �nite terminal runs are undecided, i.e. WA;WD � H1. While
in extensive game forms, an abstract outcome may also be associated with in�nite plays, the present
approach views in�nite runs as changing the state of the world inde�nitely, never converging to any
de�nite outcome. Since players' preferences are over states, this requires us to specify directly which
player wins such an in�nite run. The de�nition of a winning strategy below will make this point clear.
The generality obtained by allowing for undecided terminal positions can be used to model incom-

plete information. Every set of states X � S can be viewed as a possible player type, e.g. an angelic
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type. Hence, X is a set of outcomes which a certain angelic player may prefer. Given such an angelic
type, we can consider all undecided terminal histories h such that �(h) 2 X a win for Angel. The
result is a standard strictly competitive extensive game of perfect information, and we can ask e.g.
whether Angel has a winning strategy in this typed game. Note that in case the original untyped
game did not have any undecided terminal nodes, the type of the player is irrelevant for determining
winning strategies.
The approach taken here to uncertainty about players' preferences should be sharply contrasted

with Harsanyi's standard theory of incomplete information. In Harsanyi's approach, we start out with
a number of extensive games of imperfect information, one for each type. Next it is assumed that one
can attach probabilities to the di�erent types and hence the original games can all be put together
into one extensive game of imperfect information with chance move(s). In the approach taken here,
the original extensive games are combined into one untyped game with undecided terminal position.
The example of section 5 will demonstrate how these untyped games can be used to reason about a
player's winning strategies against one or more types of opponents.
Given an untyped game G = (H;PA;WA;WD; �), a strategy for Angel in G is a function � : PA ! H

such that �(hq0; : : : ; qni) = hq0; : : : ; qn; ki; strategies for Demon are de�ned analogously. A run q =
hq0; q1; : : : qni (where n may be in�nite) obeys Angel's strategy � i� for all hq0; q1; : : : ; qmi 2 PA with
m < n we have �(hq0; : : : ; qmi) = hq0; : : : ; qm; qm+1i. For any Q � H , let Q� := fq 2 Q j q obeys �g.
Now as to the key concept, given a set of states X � S, a strategy � for Angel is an X-strategy for

Angel in G i� for all runs q 2 Ht obeying �, either (1) q 2 WA or (2) q 62 WA [WD and �(q) 2 X .
The de�nition for Demon is again analogous, exchanging WA with WD . Call an untyped game G on
S determined i� for every X � S, either Angel has an X-strategy in G or Demon has a X-strategy
in G, where X = S �X . Note that by de�nition, it cannot happen that both have such a strategy.
Given the previous remarks on how a type X transforms an untyped game into an extensive game,
this de�nition of determinacy generalizes the standard notion of determinacy to games of incomplete
information.

4. Syntax and Semantics of Game Logic

Game Logic is an extension of Propositional Dynamic Logic (PDL, see [11, 14]) which makes use of
a more general semantics and adds a new program operator to PDL. The language of GL consists of
two sorts, games and propositions. Given a set of atomic games �0 and a set of atomic propositions
�0, games 
 and propositions ' can have the following syntactic forms, yielding the set of games �
and the set of propositions/formulas �:


 := g j '? j 
; 
 j 
 [ 
 j 
� j 
d

' := ? j p j :' j ' _ ' j h
i' j [
]'

where p 2 �0 and g 2 �0. As usual, we de�ne > := :?, ' ^  := :(:' _ : ) and '!  := :' _  .
Furthermore, we shall de�ne a second demonic choice construct 
1 \ 
2 as (
d1 [ 


d
2 )
d.

Given an untyped game 
, the formula h
i' expresses that Angel has a '-strategy in the untyped
game 
. To provide some �rst intuition regarding the game operations, 
1[
2 denotes the game where
Angel chooses which of the two subgames to continue playing. The sequential composition 
1; 
2 of
two games consists of �rst playing 
1 and then 
2, and in the iterated game 
�, Angel chooses how
many 
 games (possibly none) she wants to play. Playing the dual game 
d is the same as playing

 with the players' roles reversed, i.e. any choice made by Angel in 
 will be made by Demon in 
d

and vice versa. Hence, 
1 \ 
2 will refer to the game where Demon chooses which subgame to play,
leaving the roles of the players in 
1 and 
2 intact. The test game '? consists of checking whether a
proposition ' holds at that position. This construction can be used to de�ne conditional games such
as (p?; 
1) [ (:p?; 
2): If p holds at the present state of the game, 
1 is played, and otherwise 
2.
Turning now towards the formal semantics, given �0 and �0, de�ne a game web (game model) as a

triple I = (S; fG(g; s)jg 2 �0 and s 2 Sg; V ) where S is a set of states (the universe), and the G(a; s)
are determined untyped games on S such that the initial game position hi is associated with state s.
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V : �0 ! P(S) is the valuation function which associates with every atomic proposition the set of
states where it holds.
By simultaneous induction, we de�ne truth in a game web on the one hand and the games which

can be played in that model/web on the other hand. Formally, truth of a formula ' in a model I at
a state s (denoted as I; s j= ') is de�ned as follows:

I; s 6j= ?
I; s j= p i� p 2 �0 and s 2 V (p)
I; s j= :' i� I; s 6j= '
I; s j= ' _  i� I; s j= ' or I; s j=  
I; s j= [
]' i� Demon has a 'I-strategy in game G(
; s)
I; s j= h
i' i� Angel has a 'I-strategy in game G(
; s)

where 'I := fs 2 SjI; s j= 'g. A formula ' is valid in a model I with universe S, denoted as I j= ',
i� 'I = S, and ' is valid (denoted as j= ') i� for all models I we have I j= '. Lastly, ' is a
consequence of a set of formulas � (notation � j= ') i� ' is valid in every model in which all formulas
of � are valid.
Given model I, we de�ne the untyped game G(
; s) for non-atomic games by induction on 
 for

all s 2 S. Given two sequences q and q0 where q is �nite, let qq0 denote the concatenation of the two
sequences, and given a set of sequences Q, let qQ := fqq0j q0 2 Qg. Figure 2 illustrates the formal
de�nitions of the game constructions.

1. G('?; s): If ' holds, then the game can be continued; otherwise, Demon has won. So we de�ne

G('?; s) :=

�
(fhig; ;; ;; ;; f(hi; s)g) if I; s j= '
(fhig; ;; ;; fhig; f(hi; s)g) otherwise

2. G(� [ �; s): Angel can choose whether to play � or �. Suppose we are given G(�; s) =
(H�; P�;W�;W

0
�; ��) and G(�; s) = (H� ; P� ;W� ;W

0
� ; ��). Then let

G(� [ �; s) :=
�
fhig [ h0iH� [ h1iH� ; PA; WA; WD ; �

�
where �(hi) := s, �(h0iq) := ��(q) and �(h1iq) := ��(q). For the other parameters,

PA := fhig [ h0iP� [ h1iP�
WA := h0iW� [ h1iW�

WD := h0iW 0
� [ h1iW

0
�

3. G(�;�; s): Game � is played after game �, provided � has not already resulted in a win for one
of the players. Suppose we are given G(�; s) = (H�; P�;W�;W

0
�; ��). Let O� := Ht

� \W� \W 0
�

be the set of undecided (�nite) terminal runs of G(�; s), and let G(�; t) := (Ht; Pt;Wt;W
0
t ; �t)

for every t 2 O�. Then in G(�;�; s) := (H;PA;WA;WD; �), let

H := H� [
[
q2O�
��(q)=t

qHt

and �(q) := ��(q) for q 2 H�, and �(qr) := �t(r) for q 2 O� and ��(q) = t. This is well-de�ned
since for q 2 O�, ��(q) = �t(hi) = t. Furthermore,

PA := P� [
[
q2O�
��(q)=t

qPt; WA :=W� [
[
q2O�
��(q)=t

qWt; WD :=W 0
� [

[
q2O�
��(q)=t

qW 0

t
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4. G(�d; s): We simply interchange the roles of Angel and Demon, i.e. ifG(�; s) = (H;PA;WA;WD ; �),
we de�ne

G(�d; s) := (H;Ht � PA;WD;WA; �)

5. G(��; s): Angel can choose whether or not to play �. If � has been played, she can choose
to play it again, and so on, the only requirement being that Angel cannot choose to play �
forever. We shall de�ne the game in stages by inductively de�ning the game Gn(�; s) (or Gn

for short) consisting of at most n �-iterations. At the same time, we shall de�ne sets An which
will serve to mark those sequences where we need to plug in another �-copy. For the base case,
set G0 := (fhig; ;; ;; ;; f(hi; s)g) and let A0 := fhig.

Now suppose we constructed game Gn = (Hn; Pn;Wn;W
0
n; �n) and set An, where we can assume

that An � On = Ht
n\Wn\W 0

n. Assume further that we are given G(�; t) = (Ht; Pt;Wt;W
0
t ; �t)

for any t 2 �n(An). Now de�ne Gn+1 := (Hn+1; Pn+1;Wn+1;W
0
n+1; �n+1) where

Hn+1 := Hn [ Anh0i [
S

q2An
�n(q)=t

qh1iHt

�n+1(q) :=

8<
:

�n(q) if q 2 Hn

�n(r) if q = rh0i and r 2 An
�t(s) if q = rh1is, r 2 An and �n(r) = t

Pn+1 := Pn [ An [
S

q2An
�n(q)=t

qh1iPt

Wn+1 :=Wn [
S

q2An
�n(q)=t

qh1iWt

W 0
n+1 :=W 0

n [
S

q2An
�n(q)=t

qh1iW 0
t

An+1 :=
S

q2An
�n(q)=t

qh1i(Ht
t \Wt \W 0

t )

Note that �n+1 is well-de�ned: It is fully de�ned on Hn+1, and since An � On, the three
clauses are mutually exclusive. Also observe that An+1 � On+1 = Hn+1 \Wn+1 \W 0

n+1, and
Wn+1 \W 0

n+1 = ;. Note that iterating this procedure will usually lead to in�nite runs which
should be winning for Demon, i.e. Angel must stop playing � eventually in order to win. Let
Q1 be the set of in�nite sequences such that all its �nite initial subsequences are in

S
nHn. We

then de�ne

G(��; s) := (Q1 [
[
n

Hn;
[
n

Pn;
[
n

Wn; Q
1 [

[
n

W 0
n;
[
n

�n)

5. An Example: Beer or Quiche?

The following situation is an adaptation of the Beer or Quiche? game as introduced in [8]. The
original game has been changed into a strictly competitive win/lose game for a better �t with our
present framework. This modi�cation is not crucial however since the main purpose of this section
is to show how game webs and game logic can be used to model game situations with incomplete
information.
The situation we are considering is the following: Two men, Al and Dick, meet in a bar. Dick is not

particularly fond of Al and considers challenging him for a �ght. Al can either drink a beer (and get
drunk) or eat quiche. Subsequently, Dick has to decide whether or not to �ght Al. What complicates
the situation is that Dick is unsure about Al's strength. Considering Al's preferences, we assume that
if he is weak, he prefers not to �ght, whereas if he is strong, he prefers to �ght if and only if he is
sober. We assume the game is strictly competitive, so Dick's preferences are the opposite: If Al is
weak, Dick prefers to �ght him, but if Al is strong, Dick only wants to �ght him if Al's reaction times
have deteriorated due to alcohol. The situation is summarized by the game tree in �gure 3.
We can model this situation with the game web pictured in �gure 4. Four atomic games are under

considerations, Al can drink beer (b), Al can eat quiche (q), Dick can �ght (f) and Dick can do nothing
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Figure 4: The game web for Beer or Quiche?

(n). These atomic untyped games are of a very simple kind, they are just deterministic actions for
one of the players. The atomic untyped game corresponding to Al drinking beer in state s0 is simply
(fhi; h0ig; fhig; ;; ;; �) where �(hi) = s0 and �(h0i) = s1. Similarly for the other atomic games. Since
these atomic games are simply deterministic actions, �gure 4 represents these games simply by arrows.
After one of these actions has taken place in s0, the resulting state again allows for actions being taken.
Note that the modeling we have chosen in �gure 4 is very general: It allows e.g. for the possibility
that Dick decides to �ght before waiting to see what Al eats/drinks. Also observe that technically,
�gure 4 only depicts part of the web I, since we assumed in our de�nition of game webs that every
game can be played everywhere.
Consider now the scenario described by the original story: First Al chooses whether to drink beer

or eat quiche, then Dick chooses whether to �ght or not. The expression (b[q); (f \n) is a translation
of this scenario into the language of GL, and �gure 5 represents G((b [ q); (f \ n); s0).
The game depicted does not contain any information about preferences yet, it is untyped. Let us

consider various types of players which can be represented by propositional letters. Given the earlier
description of the players' preferences, let

SI := fs6; s7; s9; s10g

be the set of states which a strong Al prefers. Similarly, let

W I := fs6; s8; s11; s12g

be the set of states which a weak Al prefers. If Al is of the strong type (and hence Dick prefers :S),
Dick has a winning strategy in the (now typed) game, i.e. I; s0 j= [(b[ q); (f \ n)]:S. Similarly, Dick
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Figure 5: The untyped Beer or Quiche? game: G((b [ q); (f \ n); s0)

can win against a weak Al, i.e. I; s0 j= [(b [ q); (f \ n)]:W , but Dick cannot win if he does not know
whether Al is weak or strong,

I; s0 6j= [(b [ q); (f \ n)](:W ^ :S)

Also note that Al has no winning strategy no matter whether he is weak or strong:

I; s0 j= :h(b [ q); (f \ n)iW ^ :h(b [ q); (f \ n)iS

We have seen that Dick cannot guarantee a win in the game if he does not know whether Al is weak
or strong. The present framework allows us to ask a further question: Is there a game in which Dick
can win independent of Al's type? The answer is yes, e.g. for 
 := b; (f \ n), since

I; s0 j= [b; (f \ n)](:W ^ :S)

so if the owner of the bar only serves beer, Dick will have a winning strategy. This example shows
that game webs and a formal language to construct games allow us to address questions of game
synthesis: Given a game web which speci�es which atomic games (i.e. actions) are available at every
state, is there a complex game which gives one of the players a winning strategy against all opponents
of certain types? This game synthesis problem should be seen as a particularly simple instance of the
more general implementation problem (see [16]). The emphasis here is not on implementing a certain
equilibrium outcome, but rather on implementing a winning strategy for one of the players against
various types of opponents. Classic implementation problems such as Solomon's judgment can at least
be reformulated in these terms, 1 though they may have no winning strategy implementation.

6. Metatheory

6.1 Game Equivalence

The language which GL provides to describe untyped games is very restricted. The formulas h
i'
and [
]' express the existence of a '-strategy for one of the players in the game 
, other properties of

 cannot be expressed. This observation induces an equivalence notion for untyped games. We shall

1In the example of Solomon's judgment, we need a game in which Solomon has a winning strategy against two types

of opponent, the real and the false mother; Solomon wins if he has given the correct wise judgment.
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consider two untyped games as equivalent i� no player type can distinguish the two games in terms
of winning strategies. Formally, call two untyped games G1 and G2 over the same set of states S
equivalent (notation G1 � G2) i� for all X � S, (1) Angel has an X-strategy in G1 i� she has one in
G2 and (2) similarly for Demon. Note that if G1 and G2 are determined, the �rst condition su�ces.
This de�nition of equivalence can be lifted to syntactic game expressions as well. Given 
1; 
2 2 �,

call 
1 and 
2 equivalent (notation 
1 � 
2) i� for all game webs I with universe S and for all s 2 S,
G(
1; s) � G(
2; s). It will be shown in section 6.3 that all GL-games are determined, so equivalently,

1 � 
2 i� j= h
1ip$ h
2ip.
The reader can check that the following three distribution principles hold:

(� [ �) \ 
 � (� \ 
) [ (� \ 
)
(� [ �); 
 � (�; 
) [ (�; 
)

(�;�)d � �d;�d

The second and third equivalence could be called literal equivalences, for the untyped games which
the game expressions give rise to are identical in every model. The �rst equivalence on the other hand
is not literal, given that the untyped games (� [ �) \ 
 and (� \ 
) [ (� \ 
) di�er in which player
gets to move �rst.
As an example of an invalid distribution principle, observe that the game expression �; (� [ 
) is

not equivalent to (�;�) [ (�; 
).

6.2 An Alternative Semantics

Given the rather coarse notion of equivalence implicit in GL, the semantics of GL seems more complex
than needed. Since all the information needed is which angelic types have winning strategies, an
alternative semantic approach could simply model untyped games as relations between states and
winning angelic types. For this project to succeed however, the winning types of complex games
must be de�nable purely in terms of the winning types of its subgames, i.e. not using any additional
information about the subgames. The semantics presented below succeeds in doing just that. It is the
semantics originally proposed for GL in [18], a modal neighborhood semantics which associates with
every game a neighborhood relation N between states and sets of states. In modal logic, neighborhood
semantics is frequently used for non-normal modal logics, i.e. modal logics weaker than K (see [7]).
A neighborhood model M = (S; fNgjg 2 �0g; V ), consists of a set of states S, a valuation V :

�0 ! P(S) for the propositional letters and a set of neighborhood relations Ng � S � P(S) which
are monotonic, i.e. sNgX and X � X 0 imply sNgX

0. The idea is that sNgX holds whenever Angel
has an X-strategy in game g. Truth in M according to the neighborhood semantics shall be denoted
using `. As usual, M; s ` ' is de�ned by induction on ', and the cases for atomic propositions and
boolean connectives are no di�erent from the previous semantics. For h
i', we say that

M; s ` h
i' i� sN
'
M

where in the present context 'M := fs 2 SjM; s ` 'g. As usual in modal logic (but di�erent from the
earlier semantics), we de�ne [
]' as :h
i:'. The relation N
 � S �P(S) is now de�ned inductively
for non-atomic programs 
. Let N
(Y ) := fs 2 SjsN
Y g. Then

N�;�(Y ) := N�(N�(Y ))
N�[�(Y ) := N�(Y ) [N�(Y )
N'?(Y ) := 'M \ Y

N�d(Y ) := N�(Y )
N��(Y ) := �X:(Y [N�(X) � X)

In this de�nition, �X:f(X) denotes the smallest set X satisfying f(X). It can be shown that mono-
tonicity of the Ng-relations is preserved under the program connectives, so this �xpoint always exists.
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Figure 6: Constructing an atomic game from a given relation Ng

We say that a game model I = (S; fG(g; s)jg 2 �0 and s 2 Sg; V ) and a neighborhood model
M = (S; fNg jg 2 �0g; V ) correspond i� for any s 2 S and X � S,

sNgX () Angel has an X-strategy in G(g; s) (6.1)

Note that since the two players cannot both have winning strategies for complementary winning
positions, and since every G(g; s) was assumed to be determined, corresponding models also have the
following property:

not sNgX () Demon has a X-strategy in G(g; s) (6.2)

Given any game model, we can de�ne a corresponding neighborhood model simply by using (6.1)
to de�ne the atomic neighborhood relations. Conversely, given any neighborhood model, we can
de�ne a corresponding game model as follows: Given the monotonic relation Ng and a state s, let
�s := fX � SjsNgXg. We de�ne G(g; s) as shown in �gure 6.
In case �s = ;, let G(g; s) := (fhig; ;; ;; fhig; f(hi; s)g). Otherwise, we allow Angel to choose a

possible set X 2 �s. Next, Demon may choose an element x 2 X . � maps each X to state s, while
each x 2 X is mapped to x itself. In case X = ;, Angel wins immediately. We will not write out the
formal de�nition of this game, but it can be checked that the game G(g; s) constructed in this way is
determined and stands in the required relationship (6.1) to Ng .
The following theorem contains the main technical result of this paper: If we choose to identify

corresponding models, the two semantics are equivalent. In other words, atomic correspondence
extends to composite games and formulas.

Theorem 1 (Equivalence) Let I be a game model and M be a corresponding neighborhood model.

Then for all formulas ' and games 
 we have

(i) M; s ` ' i� I; s j= '
(ii) sN
X , Angel has an X-strategy in G(
; s)
(iii) not sN
X , Demon has a X-strategy in G(
; s)

6.3 Determinacy and Complexity of Games

Given �0, �0 and a game model I with universe S, de�ne the class of GL-games as GIGL :=
fG(
; s)j
 2 � and s 2 Sg, i.e. as the class of all untyped games which can be constructed by means
of the game constructions in the model.
When isolating a certain class of �nite and in�nite games, one of the most basic game-theoretic

questions concerns determinacy: Is it always the case that one of the two players has a winning
strategy? The answer to this question is an easy corollary to the preceding theorem:

Corollary 2 For every I, all games in GIGL are determined.
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In Hintikka's game-semantics for �rst-order logic [12], it turned out that the law of excluded middle
was just determinacy in disguise. This link between a logical principle and a basic game-theoretic
property has its analogue in GL, namely in the Box-Diamond duality h
i' $ :[
]:'. The validity
of this principle is equivalent to the validity of (1) :(h
i'^ [
]:') and (2) h
i'_ [
]:'. Formula (1)
is valid by our de�nition of winning strategies, formula (2) states determinacy, so it is valid by the
previous corollary. As shall be shown subsequently, proving determinacy directly is not a trivial task,
so giving a non-game-theoretic semantics such as neighborhood semantics can be seen (among other
things) as a technique to establish determinacy.
To prove determinacy directly using game-theoretic techniques, one has a number of standard results

at one's disposal, such as Zermelo's theorem [20] and the Gale-Stewart theorem [10]. Note �rst that
Zermelo's result does not apply to GL-games, since it states that �nite games are determined, i.e.
games where all runs are �nite. Since we introduced in�nite runs for iteration, Zermelo's theorem
cannot be applied.
As for the Gale-Stewart theorem, we shall show that it is also too weak to cover all GL-games. Let

G = (G;PA;WA;WD ; �) be an untyped game. Q � H1 is a basic open subset of H1 i� there is some
integer n such that

8q 2 Q 8h 2 H1 : qjn = hjn) h 2 Q

where qjn denotes the sequence consisting of the �rst n elements of q. Q � H1 is an open subset of
H1 i� it is the countable union of basic open subsets of H1. Similarly, Q � H1 is a closed subset
of H1 i� it is the countable intersection of basic open subsets of H1. Finally, G is basic open, open,
or closed i� WA or WD is respectively a basic open, open, or closed subset of H1. A class of untyped
games has one of these three properties i� all games in the class have the property. While originally
not formulated for the games we are interested in here, the Gale-Stewart theorem can be applied to
untyped games as well:

Theorem 3 (Gale-Stewart) Open games are determined.

It is not di�cult however to think of an example of a game which is neither open nor closed,
demonstrating that also the Gale-Stewart theorem is too weak to establish the determinacy of all
GL-games.

Theorem 4 For all I, GIGL is neither open nor closed.

For in�nite games, Martin proved in [15] that all Borel games are determined. This result sub-
sumes the result of Gale-Stewart, and given certain assumptions about the atomic games (e.g. only
a countable number of undecided positions), we conjecture that all GL-games are Borel, and hence
determined. A more detailed analysis could probably establish an upper bound on the Borel rank of
GL-games.

6.4 Study of Game Constructions

While the operations provided by GL (such as composition and union) seem natural enough, there
are other operations one might consider such as parallel execution of games as studied e.g. in the
game-theoretic analysis of linear logic [5, 2], or an alternative version of iteration as shown in �gure
7.
In this version of iteration, Angel has to decide in advance how often she wants to play �. A winning

strategy for Angel in this alternative version of iteration is also a winning strategy for the standard
game ��, but the converse is not true. If we replaced standard iteration with this alternative iteration,
all games would be �nite, and determinacy would simply follow from Zermelo's theorem.
The variety of possible game operations suggests a natural metatheoretic question: Can we �nd

an \interesting" characterization of the class of untyped games which can be constructed (in a given
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Figure 7: An alternative version of iteration

model) by means of a certain set of game operations? Or starting at the other end, given a class
of untyped games we are interested in, what game operations are su�cient to construct every game
in that class? That such an investigation is feasible is shown in [19]. Working in models where the
atomic games can be expressed by binary relations over states, it is shown that GL-games without
iteration are all de�nable by means of a formula of �rst-order logic. Conversely, it is shown that any
formula of �rst-order logic which de�nes an untyped game can be obtained using only game operations
of iteration-free GL. In other words, if we are only interested in games which can be described in �rst-
order logic, the game operations of union, composition, test and dual are su�cient to construct every
game. This means that within �rst-order logic, no \new" game operations can be discovered.

6.5 Axiomatic Reasoning about Games

When introducing a logical language together with a semantics for that language, one of the standard
exercises for the logician is to provide a set of axioms and inference rules which together allow one to
derive all and only the validities of the logic. This exercise has been carried out in [18] with partial
success: While there is a clear candidate for such an axiomatization, a completeness proof exists
only for GL without the dual-operator and for GL without iteration. None the less, the same paper
contains an argument showing that GL is decidable, i.e. there is an algorithm which can determine of
any formula whether or not it is true in some model in GL. While this algorithm takes time exponential
in the length of the formula, it is not known whether better algorithms exist.
Besides the theoretical interest in knowing the complexity of reasoning about untyped games, results

regarding axiomatization and complexity are also of practical relevance. Looking back at the example
of section 5, such results can also provide a (naive) method for solving the implementation problem
in its game synthesis form, provided our target games do not contain iteration: If we are looking
for a game 
 such that every model satisfying our assumptions � about atomic games also satis�es
[
](:W ^ :S), simply enumerate the possible games 
 and check whether � j= [
](:W ^ :S) holds.
The result will be a game which guarantees Dick to win against both a weak and a strong Al, for
example b; (f \ n).

7. Conclusions and Future Work

We described an interaction model (game webs) based on states of the world at which di�erent games
can be played. These games associate a state of the world with each position of the game, keeping
track of how the game changes the state of the world. Since di�erent games can be played at each
state, implementation questions can also be addressed within this framework, where the focus is not
on an equilibrium analysis but rather on a winning strategy analysis. The games involved are untyped,
which allows for reasoning with incomplete information, by reasoning about winning strategies against
di�erent types of players. Viewed di�erently, untyped games combine extensive games, extensive game
forms and everything in between in one notion. Finally, the most crucial aspect of this approach is to
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consider games as objects which are constructed by means of certain operations. This view leads to
a whole set of new questions concerning game operations, game equivalence, and so on.
Next to research on metatheoretic questions, extensions of the basic language of GL seem desirable

to increase the applicability of GL as a game-theoretic modeling tool. We shall now brie
y discuss
two such extensions.
First, the restriction to zero-sum win/lose games limits the applicability of the present system. In

principle, it is possible to model a wider range of games even in the present framework by simply
introducing propositional letters for the di�erent payo�s of a player. As an example, let p denote
player 1 getting payo� 3, and let q denote player 2 getting payo� 5. Then h
i(p ^ q) expresses that
player 1 has a strategy for reaching a state with the payo� pro�le (3; 5). Especially when combined
with di�erent types of players however, such a solution may not be very appealing conceptually, and
it may be more natural to extend the model by preference relations over states.
Second, one could add operators which allow one to construct games of imperfect information. A

candidate operation to add would be [i, where i indicates the information set to which the game
position belongs. Such an extension is di�cult to handle using neighborhood semantics, for given
the neighborhood relations of 
1 and 
2, what should the relation for 
1 [i 
2 be? The answer
depends on the information sets of the two subgames, but the neighborhood relations do not contain
any information about information sets, nor is it clear how to enrich them with such information.
Untyped games on the other hand contain enough information about the game structure, so that we
can simply assign the game positions to information sets. Making the move to games of imperfect
information would result in a loss of determinacy, yielding a rather unusual modal logic in which there
will be games 
 for which h
i'$ :[
]:' is not valid anymore.

Appendix

Proof of theorem 1: By simultaneous induction on programs and formulas. For (i), the case for
atomic formulas holds by de�nition and the boolean cases are immediate. For ' = [
] and ' = h
i ,
we use the induction hypothesis (i) for  and (ii) and (iii) for 
. The work lies in proving (ii) and
(iii) by induction on 
. Note that it is su�cient to prove (ii) and (iii) from left to right given the
de�nition of winning strategies.
In the proof below, given a game Gk = (Hk; Pk;Wk;W

0
k; �k), Ok will denote the set of open terminal

runs of Gk, i.e. Ok := Ht
k \Wk \W 0

k.
For an atomic program a, (ii) and (iii) hold by the de�nition of correspondence.

1. Test '?: sN'?X i� I; s j= ' (by induction hypothesis (i))and s 2 X . Hence, doing nothing is
an X-strategy for Angel in G('?; s).

On the other hand, if :sN'?X , I; s 6j= ' or s 62 X . In both cases, doing nothing is a X-strategy
for Demon.

2. Union �[�: By induction hypothesis, Angel has an X-strategy for G(�; s) or G(�; s). Suppose
w.l.o.g. that Angel has an X-strategy �0 for G(�; s). So when playing G(� [ �; s), Angel
can choose � and continue playing according to �0. Formally, any � with �(hi) = h0i and
�(h0iq) = �0(q) is an X-strategy for Angel in G(� [ �; s).

On the other hand, if not sN�[�X , Demon has X-strategies �0 and �1 for respectively G(�; s)
and G(�; s), and then no matter how Angel chooses at the beginning of G(�[�; s), Demon can
win. Hence, � de�ned by �(h0iq) = �0(q) and �(h1iq) = �1(q) is a X-strategy for Demon in
G(� [ �; s).

3. Composition �;�: Suppose s 2 N�;�(X) = N�(N�(X)). Then Angel has a N�(X)-strategy ��
in G(�; s) = (H�; P�;W�;W

0
�; ��), that is ��(O

��
� ) � N�(X). So by induction hypothesis, for

any t 2 ��(O��
� ), Angel has an X-strategy �t in G(�; t). So after playing according to ��, Angel
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will either win or reach a position q 2 O� where she can start playing according to �t (where
��(q) = t) which will be X-winning. Thus, � satisfying

�(q) = ��(q) for q 2 H�

�(qr) = �t(r) for q 2 O��
� and ��(q) = t

(7.1)

provides an X-strategy for Angel in G(�;�; s).

Conversely, suppose that Demon has a N�(X)-strategy �� in G(�; s). Then by induction hy-
pothesis, for any t 2 ��(O

��
� ), Demon has an X-strategy �t in G(�; t). Then � (as de�ned in

(7.1)) is a X-strategy for Demon in G(�;�; s).

4. Dual �d: sN�dX i� not sN�X which by induction hypothesis implies that Demon has an X-
strategy � in G(�; s), in which case � is also an X-strategy for Angel in G(�d; s).

Analogously for (iii).

5. Iteration ��: Let Z be the set of all states s such that Angel has an X-strategy in G(��; s).
We need to show that �Y:(X [ N�(Y ) � Y ) � Z. For this, it is su�cient to show that
X [ N�(Z) � Z. If s 2 X , then Angel clearly has an X-strategy, namely to stop right away.
In that case, � with �(hi) = h0i is an X-strategy. Otherwise, if s 2 N�(Z), then Angel has a
Z-strategy �� in G(�; s) = (H�; P�;W�;W

0
�; ��), by induction hypothesis. But then Angel can

simply choose to do � at s playing according to ��. This will lead to states t where Angel has
an X-strategy �t in G(�

�; t). Formally, � de�ned as

�(hi) = h1i
�(h1iq) = ��(q) for q 2 H�

�(h1iqr) = �t(r) where q 2 O��
� and ��(q) = t

is an X-strategy for Angel in G(��; s), so s 2 Z.

Finally, let us sketch the proof of (iii) for iteration. Note �rst that N��(X) = �Y:(Y � X \

N�(Y )), i.e. the greatest set Y satisfying the relation given. Let Z be the set of states s where

Demon has a X-strategy in G(��; s). It su�ces to show that for all Y � S, if Y � X \N�(Y )

then Y � Z. So assume s 2 Y , and hence s 2 X \ N�(Y ). We shall show by induction on
n that Demon has a Y -strategy �n in Gn(�; s), as de�ned on page 7. For n = 0 it su�ces
that we have s 2 Y , so doing nothing does the job. For the inductive step, assume that
Demon has a Y -strategy �n in Gn. Now Demon can play Gn+1 as follows: While in Gn, play
according to �n. At any q 2 O�n

n , �n+1(q) = �n(q) 2 Y . On the other hand, for q 2 A�nn ,

�n+1(qh0i) = �n+1(qh1i) = �n(q) = t 2 Y � N�(Y ), so by induction hypothesis, Demon has a
Y -strategy �t in G(�; t) according to which she can play if Angel chooses to play � again. This
yields the following Y -strategy �n+1 for Gn+1:

�n+1(q) = �n(q) for q 2 Hn

�n+1(qh1ir) = �t(r) where q 2 A�nn and �n(q) = t

Since the in�nite runs created by this iterative process are winning for Demon anyway,
S
n �n

is a Y -strategy (and hence also an X-strategy) for G(��; s), so s 2 Z. 2

Proof of theorem 4: Let I be an arbitrary game model. Let gd := >?�;?? and let

g := (>?�d; gd) [ (>?�; gd
d)
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Figure 8: Game Gd on the left and G on the right

Let Gd := G(gd; s), Ga := G(gd
d; s) and G := G(g; s) for an arbitrary state s. Note that every position

of these games is associated with state s, and that there are no undecided �nal positions. Figure 8
shows games Gd and G. As shown, we have numbered the di�erent copies of the subgames Ga=Gd

we plugged in from top to bottom. Let us refer to the in�nite branch in game Gi
d (which is winning

for Demon) as di, and to the in�nite branch in game Gi
a (which is winning for Angel) as ai. The two

remaining in�nite branches will be referred to as a! and d! depending on the winner of the branch.
We claim that G = (H;PA;WA;WD ; �) is neither open nor closed.
Suppose by reductio that WA = fa1; a2; : : : ; a!g is open, i.e. WA =

S
iQi where all Qi are basic

open subsets of H1. Then the in�nite branch a! must be in some Qj . But since Qj was assumed to
be a basic open subset of H1, there is some k such that all in�nite branches which agree with a! up
to k must also be in Qj . Given the construction of G, this means that there must be some in�nite
branch di 2 Qj , a contradiction since di 62 WA. By the same reasoning, WD = fd1; d2; : : : ; d!g is not
open.
Suppose on the other hand that WA is closed, i.e. WA =

T
iQi where all Qi are basic open subsets

of H1. This means that for every Qi, WA � Qi. Since every Qi contains every a
j for j < !, d! must

also be in every Qi and hence in WA, a contradiction. Similarly for WD. 2
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